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A wearable sensor and machine learning
estimate step length in older adults and
patients with neurological disorders

Check for updates

Assaf Zadka1,2, Neta Rabin1,3, Eran Gazit1, Anat Mirelman1,4, Alice Nieuwboer5, Lynn Rochester6,7,
Silvia Del Din 6,7, Elisa Pelosin8,9, Laura Avanzino9,10, Bastiaan R. Bloem11, Ugo Della Croce12,
Andrea Cereatti13 & Jeffrey M. Hausdorff 1,4,14,15

Step length is an important diagnostic and prognostic measure of health and disease. Wearable
devices can estimate step length continuously (e.g., in clinic or real-world settings), however, the
accuracy of current estimationmethods is not yet optimal.We developedmachine-learningmodels to
estimate step length based on data derived from a single lower-back inertial measurement unit worn
by 472 young and older adults with different neurological conditions, including Parkinson’s disease
and healthy controls. Studying more than 80,000 steps, the best model showed high accuracy for a
single step (root mean square error, RMSE = 6.08 cm, ICC(2,1) = 0.89) and higher accuracy when
averaged over ten consecutive steps (RMSE = 4.79 cm, ICC(2,1) = 0.93), successfully reaching the
predefined goal of an RMSE below 5 cm (often considered the minimal-clinically-important-
difference). Combining machine-learning with a single, wearable sensor generates accurate step
length measures, even in patients with neurologic disease. Additional research may be needed to
further reduce the errors in certain conditions.

Step length is generally reduced with aging1,2 and among people with neu-
rological disorders3,4. The gait cycle represents a series of movements
repeated in a walking pattern5. A step refers to one single step during the
cycle, while a stride refers to an entire cycle; since a single stride consists of
two steps, step length and stride length are typically highly correlated. Both
of these spatial measures of gait, i.e., step length and stride length, are also
highly correlated with gait speed6. Indeed, in studies that have grouped the
spatial-temporal parameters of gait into different domains (for example, via
principal component analyses), it is now relatively common to refer to pace
(e.g., step length, gait speed), rhythm (e.g., cadence), and variability (e.g.,
step-to-step changes in step length)7,8. Alterations in these key spatial-

temporal measures of gait, especially step length, predict adverse health
outcomes such as falls, cognitive decline, dementia,morbidity,mortality6,9,10,
and the response to interventions4,11. Given its importance and ability to
reflect aging and the disease stage (e.g., in Parkinson’s disease), step length
has also been used as an outcome measure12–15. While large changes in step
length can be observed visually, quantitative estimations are required to
accurately determine subtle changes in step length over time, monitor the
response to therapy, and evaluate disease progression16. This ability can
allow for better assessment of changes associated with aging, improve the
capacity to objectively detect and track disease, and enhance the ability to
quantify the impact of interventions16,17.
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Conventional methods for obtaining step length estimation (SLE)
include camera-based systems and instrumented gait mats. These methods
are accurate; however, they only provide a snapshot view of a person’s
walking at a given instant in time. These snapshot observations may be
biased by many factors, such as the time of the day, medication, affect, and
white coat syndrome18–21. Indeed, a growing body of literature suggests that
continuous (e.g., 24/7)monitoring of gait is clinicallymeaningful and that it
captures information that cannot be measured by conventional test of
walking ability in the clinic or lab (such as variations in the gait pattern
across the week)1,18–27. Moreover, continuous monitoring bridges the gap
between measures of gait taken during daily living and those taken in a
lab1,22–24. The latter may reflect capacity, while the former captures actual,
real-world function. To optimally characterize the gait of an older adult and
patients with neurological diseases, it may, therefore, be helpful to measure
gait over an extended period of time25–27 Camera-based systems and
instrumented gait mats cannot be used for that purpose but inertial mea-
surement units have the potential to meet that goal.

A 3D inertial measurement unit (IMU) is an electronic device that
measures accelerations and angular velocities in three perpendicular
directions. With a wearable design, IMUs are lightweight and relatively
inexpensive and, therefore, can be incorporated into gear such as smart-
watches, shoe insoles, or dedicated sensors placed at different locations on
the body.Thus, IMUs canbe applied in clinical settings and also leveraged to
assess real-worldwalking over an extended period of time.Using awearable
device mounted on the lower back, acquired IMU signals can estimate and
analyze gait parameters, including step length28,29. However, since IMUs do
not directly measure spatial parameters, an estimator or model is required.

In general, three different approaches have been used to estimate step
length from an IMU. These are double integration30, kinematic human gait
modeling31, and regression methods31. The double integration of accel-
erometer data involves sequentially integrating acceleration to derive velo-
city and then integrating velocity to estimate displacement, providing a
method to assess step length in gait analysis31. However, the result tends to
drift over time32 or requires using zero velocity updates (ZUPT) that are
effective only if the IMU is placed near the foot33. The kinematic human gait
modeling option usually performs better with calibration31, limiting its
widespread application. Kose et al. 34 estimated step length using a combi-
nation of a Kalman filter and an optimally filtered direct and reverse inte-
gration applied to the IMU signals.

In recent years, with the rapid development ofmachine learning (ML),
researchers have aimed to develop a SLE regression model31,35. In several
studies36,37, the investigators tried to estimate the step length and walking
speed, respectively, using data acquired from a smartwatch. After pre-
processing that included filtering and segmenting the steps, a variety of
machine and deep learning models were attempted, including Linear
Regression (LR), Gaussian Process Regression (GPR), Support Vector
Machine (SVM), Regression Tree (RT), convolutional neural network
(CNN), and least short-termmemory (LSTM). Although these studies34,36,37

demonstrated high potential for SLE and walking speed estimation in the
specified dataset, the generalizability was restricted because themodels were
derived from a small training dataset that included only young and healthy
participants.

To address this gap, Byun et al. conducted a study on older adults38. An
IMU containing a 3D accelerometer and 3D gyroscope was located on the
lowerback, approximately at theheight of the center ofmass.Themodelwas
improved by applying a slow speed-specific regression model sequentially
after the estimation of gait speed by a general regression model. The pro-
posed method achieved relatively good estimation accuracy for gait speed
with a rootmean squared error (RMSE) of 6.81 cm=s. However, in addition
to the features extracted from the IMU, the researchers used demographic
and anthropometric features that required a large number of manual
measurements and frequent calibration (e.g., if the subject’s weight changes
over time). The study by Hannink et al. 39 also included a relatively large
number (n = 116) of older adults. The IMUs were placed laterally below
each ankle joint. Using a convolutional neural network (CNN), an accurate

estimate of the stride length (RMSE = 6.09 cm) was obtained. The chosen
location for the IMU was the main disadvantage in this study due to the
unconventional location for the body worn device, which can negatively
affect compliance.

A more recent study from the Mobilise-D consortium40 focusing on
patient groups (e.g., Parkinson’s disease, multiple sclerosis) and older adults
assessed and validated stride length estimators on 108 participants from six
different cohorts. The participants were monitored for about 2.5 h during
the day as they conducted routine daily living activities. The absolute error
between the estimations of stride length and the reference system ranged
from 15 to 33 cm across all algorithms. These results are impressive con-
sidering the challenging settings of everyday activities and the health status
and age of the cohort. Nevertheless, ideally, further reduction in the error
would be useful for reliably detecting even relatively small changes in step
length.

The Minimal-Clinically Important-Difference (MCID) is an
important concept in clinical research. It represents the smallest change in
a variable of interest that is considered clinically meaningful, signifying a
perceptible change in the patient’s condition or meaningful effectiveness
of an intervention41,42. Prior research indicates that theMCIDof gait speed
for adults with diverse health conditions, such as multiple sclerosis (MS),
acute cardiovascular disease, and stroke, typically falls within the range of
10 to 20 cm/s43,44. Taking into consideration the average duration of
typical steps (~0.5 s)45,46, this gait speed MCID translates to a step length
MCID of 5 cm. A more recent paper showed that the MCID for indivi-
duals with Parkinson’s disease (PD) is 3.6 cm47. Therefore, to estimate the
step length accurately and continuously, a more generalizable model with
a wearable device located in a convenient location is still needed. To this
end, we leveraged previously collected data to generate a relatively large
(n = 472) and diverse set of data, comprising five different groups of
participantswith a range of health status andgait abilities: individualswith
PD, those with mild cognitive impairment (MCI), individuals with MS,
healthy young, and older adults. Theoretically, the use of this diverse
dataset can contribute to the generalizability of the model and enable a
more comprehensive SLE analysis across different populations; this goal
of generalizability and using a single model in diverse cohorts is shared by
an approach that was also taken in theMobilise-D study25 as it potentially
allows for more widespread application.

The goal of the present work is to develop a regression model that can
estimate the step length more accurately than current solutions (below
5 cm) using IMU data collected from a single lower back wearable device
during a straightline walking trajectory in a laboratory setting. The study’s
primary contribution lies in the creation of a generalizedmodel, trained and
tested on diverse populations, that estimates step length accurately in older
adults and peoplewithneurological disease, without the need for calibration
or the use of any demographic or anthropometric features. Furthermore, for
somepurposes, itmaybebeneficial to calculate the averageover several steps
to achieve a more reliable SLE. Indeed, when considering the pace domain
(i.e., step length), one very common practice is to average multiple steps
taken in a walk in order to provide a single, representative summary of this
gait parameter. This averaging approach is commonly used during in-lab
andclinic studies of gait; thewalking test typically lasts between30 s to 6min
and the average is used to describe this feature13,48. This averaging technique
can reduce noise that may affect the computed features used to estimate the
step length. Therefore, considering the average over several steps provides a
single and more robust representation for estimating the patient’s gait
parameters. The trade-off between the SLE accuracy obtained by this
method and the ability to estimate instantaneous step length was also
explored. Assessing this trade-off is important for outcomes such as step-to-
step variability that can provide additional diagnostic, prognostic, and
mechanistic information13,49,50 when instantaneous values of step length are
available and step-to-step variability can be determined. In addition, we also
aimed to better understand the results of the models in terms of the feature
importance, error analysis, and the impact of gait speed, which can be used
for future improvements.
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Results
Subject demographics and description of the train and test sets
Age, height, and step length of the participants, as measured by the Zeno
Walkway, are presented in Table 1 as means and standard deviation,
whereas gender is presented as the percentage of females from the total
number of participants. A relatively wide range of values is seen. The col-
lected data for model training and initial testing includes three participant
groups—people with Parkinson’s disease (PD), subjects withmild cognitive
impairment (MCI), and a groupof older adults (OA).Additionally, the table
presents the way the data was split for the ML experiments. The top part of
the table describes themain dataset thatwas used to train and test themodel.
It is denoted as the “test set”. The other two datasets (central and bottom
parts of the table) serve as out-of-distribution examples. These include
people with multiple sclerosis, an age-matched healthy control group,
people with PD, and age-matched healthy control older adults. Their pur-
pose is to verify the generalization abilities of the constructed model to
process and predict data that were gathered from a slightly different
population; we refer to these datasets as the validation set. Evaluation of the
model for this type of out-of-distribution data is one of the main con-
tributions of the work, showcasing the robustness of the selectedMLmodel
and it related features.

Model selection
The XGBoost model provided the most accurate predictions, while the
simple regression tree was less accurate (Table 2) among the ML models.
Moreover, the standard deviation of the RMSE obtained using the XGBoost
modelwas the lowest, showing its robustness todifferent splits of thedata. In
the following sections, we describe several modifications to improve the
model’s performance and implementation in real-time by eliminating the
need for a separate step segmentation process, focusing on the
XGBoost model.

The step length histogram is presented in Fig. 1b for the test set (i.e.,
V-TIME dataset; recall Table 1, top panel). Figure 1a shows the Bland-
Altmanplot of the estimated step lengthusing theXGBoostmodel. The 95%
limitsof agreementbetween the estimated step lengthand themeasured step
length are in the range of −10.84 and 13.20 cm. Moreover, a trend can be
observed, suggesting that themodel tends to estimate a close to average step
length—underestimates large step length and overestimates small step
length. Figure 2 presents the regression analysis for the estimated step
length. The Pearson correlation coefficient and R2 are 0.86 and 0.71,
respectively, which indicates that there is a strong positive linear correlation
between the estimated and the measured step length.

Averaging technique for improving SLE accuracy
To improve the SLE accuracy, we employed an averaging technique by
calculating the mean of estimated and measured step lengths across several
consecutive steps. It should be noted that the model is trained on a single-
step length, and therefore, the averaging was applied to single-step esti-
mations. The RMSEwas reduced to 5.21, 4.98, and 4.79 cm for n = 3, 5, and
10, respectively. This decrease signifies a notable improvement (F-statis-
tic = 23.0, p value = 4:8 � 10�6 according to the ANOVA test when com-
paringno average to the average over 3, 5, and10 steps).However, it isworth
noting that this averaging approach resulted in a loss of the ability to
determine step-to-step variability that can also be used as another measure
of the subject’s gait. Figure 1c–e present the Bland-Altman plot for the 3, 5,
and 10-step averages, respectively. The 95% limits of agreement between the
estimated step length and the measured step length decrease when the
averaging is applied on a larger number of steps until reaching a range of
−8.15 cm to 10.51 cm for the ten-step averaging.

Table 3 and Figs. 3, 4 presents the step length RMSE for each group
(PD, MCI, and OA) from the test set and the n-average RMSE where n
equals 1, 3, 5, and 10. The RMSE of the PD participants was the highest
(6.64 cm), whereas the lowest RMSEwas obtained for theMCI participants
(5.27 cm), i.e., a relatively large difference, although not statistically different
(t value = 1.76, p value = 0.12) from the OA participants (6.39 cm). When

averaging the estimated step length, the RMSE for theMCI group decreased
to3.92 cm.Table 4presents the step lengthRMSE for eachof severalwalking
conditions. The error for comfortable walking speed was the lowest
(5.70 cm) while the RMSE for fast walking speed was the highest (6.72 cm).
This finding matches other results, showing that the model is less accurate
for extreme values (and less accurate for slow and fast walking).

Non-Segmented model for real-time implementation
Afundamental step in theprocess of SLE is step segmentation, inwhich each
straight-line walking segment of a subject is segmented into steps. As an
alternative, it is possible to train a model using fixed-size windows. Unlike
the previously describedmodel, in this case, the windows do not necessarily
contain a whole number of steps. Using this training method does not
require step segmentation and, therefore, is more suitable for real-time and
real-world (daily living) implementation of SLE since we can estimate the
distance/gait speed at each time point. This model will be denoted as the
“non-segmentedmodel”. The comparisonbetween the originalmodel and a
non-segmented model cannot be performed in terms of step length error
because the non-segmentedmodel estimates the traveled distance in a fixed
time window rather than steps. Therefore, we compared the gait speed
RMSE of the different models. The gait speed RMSE for two models that
were trained on a constant walking segment (1 and 5 s) were 12.4 and
11.8 cm/s, respectively. The gait speed RMSE of the original model that was
trained on step length was 11.4 cm/s. Although the original model that was
trained on a single step provided the lowest gait speed RMSE, the RMSE of
the models trained on 5 consecutive seconds and one second of a walking
segment were similar.

Model generalizability on validation datasets
Themodel generalizability was further tested on the four validation datasets
(recall Table 1). Figure 3 illustrates the RMSE and RA values for the test set
(Fig. 3a), along with the validation sets (Fig. 3b). Notably, the RMSE was
observed to be slightly larger for the validation set 2, due perhaps to the
inherently larger step length, while the RA remained relatively consistent
across the datasets. The step length RMSE increased for the validation set
1-OA participants. However, the RA decreased. Both RMSE and RA
increased for the participants with PD of the first validation set. The second
validation set included 102 participants, with younger ages
(40.00 ± 11.13 yrs compared to 73.38 ± 7.01 yrs), comprising both healthy
and MS participants. The step length RMSE increased for both the healthy
control group and theMS group.However, TheRAof the second validation
set for the healthy control group was smaller than the RA of the original
healthy control group and comparable to theMCI group. TheRAof theMS
participants group was larger than the RA of the original PD group.

Discussion
The present analyses were based on a relatively large number of subjects
(almost 500) with a range of health status and conditions, including healthy
older and young adults, and participants with MCI, PD, and MS. Our goal
was to accurately estimate the step length from a single IMU, placed on the
lower back, using ML models within controlled gait settings, without the
need for calibration or the measurement of a subject’s height or weight. We
tested several models and found that the XGBoost provided the best result
for the test set (RMSE = 6.08 cm for a single step and lower values when
averaged over multiple steps).

When comparing the model’s performance to other biomechanical
estimators, such as the inverted pendulum model51, a large improvement
was observed (6.08 vs 20.60 cm). The model presented a strong linear
correlation between the estimated and the measured step length. However,
the Bland-Altman plot, presented in Fig. 1a, revealed that the developed
model tended tounderestimate large step lengthswhile overestimating short
step lengths. This observation suggests a systematic bias in the model’s
estimations, with a consistent deviation towards smaller step length esti-
mations for longer steps and towards larger step length estimations for
shorter steps. While this limitation is a shared challenge among many
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models and may pose concerns for the precision required in diagnostic
settings52,53, it may have a comparatively lesser impact as a progression
biomarker that often relies more on within-subject changes over time. A
progression biomarker based on within-subject changes may still capture
disease progression across most step lengths, with potential overestimation
only in large steps, which are less common in individuals with neurological
disorders, and minimal underestimation in small steps. Still, further
research is required to enhance SLE, especially at the extremes of the gait
spectrum and for a single-step value.

The averaging technique reduced the RMSE to values lower than 5 cm
for 5 steps (4.98 cm) and 10 steps (4.79 cm). The improvement in the RMSE
is expected to increase as the number of averaged steps grows, at least up to a
certain value. Since we average the label to be predicted (and not the data),
the regression task becomes easier as the number of steps increases (the
function to predict becomes smoother). In other words, the input data
(single step data) remains the same in all of the experiments, while the step
length to predict is not the original number that was associated with the
single step, but anaverageof 3, 5, or 10 sequential steps.Thus, it is reasonable
that the error decays as the number of steps averaged increases. In the
present work, we provided a sense of the decay rate. Although this method
decreased the RMSE to achieve our predefined goal (MCID5 cm), it led to a
loss of the ability to study step-to-step variability that can also serve as an
importantmeasure of one’s gait. Furtherwork canhelp to identify the trade-
offs between averaging over many steps, a few steps, or not at all. Perhaps,
the optimal point may depend on the specific application. Alternatively, for
some purposes, it may be helpful to analyze both the average measure and
the non-averaged measures, as done in many previous studies using other
measurement approaches1,6,22,23.

Another finding is that the model’s performance among PD partici-
pants is the worst (RMSE = 6.64 ± 0.25 cm), whereas its performance on
MCI participants is the best (RMSE = 5.27 ± 0.93 cm). Estimating the step
length of PD participants may be more challenging due to the irregularities
in their walk, and therefore, we expected that the step length estimation
would be the least accurate among the different groups. However, among
the three groups who participated in the initial study, the PD participants
constituted the largest subgroup, hence the model was trained largely from
participants with this group’s walking pattern and therefore we speculated
that the model could estimate this group’s step length more accurately.
Although the RMSE obtained for the MCI group was the lowest, the stan-
dard deviation of theMCI participants was the largest, indicating that there
is a relatively large variability in the model’s performance in this subgroup.
Along with the low ICC obtained for this group (0.77), this suggests that
some participants’ walks in this group were much harder to estimate, likely
due to the relatively small number of participants within this subgroup. It is
worth noting that while all of the participants in the V-TIME study (the test
set) had a history of two or more falls at baseline, falls were much more
frequent among the people with PD (19 in 6 months) and were lowest in
MCI (2.9 in 6months; OA: 3.254). In addition, themodel’s performancewas
analyzed for the different gait tests that the participants performed. This
analysis was performed to explore potential variations in the model’s per-
formance across different walking patterns, which may inform future stu-
dies, especially in uncontrolled environments. The SLE during fast walking
was, somewhat surprisingly, the least accurate in terms of RMSE (although
the RMSEwas still only 6.72 cm for a single step, and this was reducedwhen

averaging over 3, 5, or 10 steps). Conversely, when examining the RA, our
model faced the greatest challenges during dual-task walking. Fast walking
inherently involves longer step lengths, perhaps leading to larger RMSE
values. In contrast, dual tasking typically results in shorter step lengths,
which suggests that the model encounters greater difficulty in accurately
estimating step length when the individual is engaged in a secondary task,
perhaps because walking is typically less regular and more variable in this
condition. These findings imply that themodel is influenced to some extent
by the walking speed, potentially constraining its applicability. This infor-
mation canbeused in the future to improve themodel basedon thedifferent
characteristics and walk types of the desired group. For example, if the
participants are known towalk at ornear ausual gait speed, themodel canbe
trained only on this dataset, and it can learn only the patterns belonging to
this type of walk. Alternatively, one could consider a two-stage model,
wherein gait speed or step length is first estimated crudely, and then amore
fine-tunedapproach is applied to refine the estimate, similar to the approach
taken by Byun et al. 38.

Our dataset contains a diverse range of groups, including older adults
and persons with either MCI or PD, each undergoing several gait tests.
Additionally, our assessment included separate validation sets—ONPAR
and MS-Watch, yielding consistent outcomes. This result underscores the
robustness of the selected features; the differences in the error obtained in
the test and validation sets were relatively small. Although the step length
RMSE of the second validation set for both groups was larger, the RA was
comparable to controls. The reason for that may be due to the different step
lengths of the two datasets. The original dataset has a mean step length of
57.72 cm, whereas the second validation set has a mean step length of
73.94 cm. Therefore, the RAmay be amore representativemeasure of error.
Thefirst validation set consists of twogroups of participants—healthy adults
andparticipantswithPD.TheRMSEofhealthy adults for thefirst validation
set is slightly larger than the value obtained on the test set test set (6.49 cm
compared to 6.39 cm). When comparing the RA, the model performed
better on the first validation set (8.17% compared to 9.27%). We note that
the RMSE for all of the groups in the two validation sets were above the
MCID, when examining the estimation error for a single step, and specifi-
cally the results for the second validation set. As mentioned above, the
RMSE can be biased when representing the error for larger step length and
this might contribute to this outcome. In addition, the second validation set
includes young and healthy adults, with different gait characteristics. The
model was trained on a completely different population and, therefore, it is
possible that training it on an even more diverse dataset would yield better
outcomes.

Another modification that we explored was training the model on an
arbitrary walking segment, which simplified the data processing pipeline.
The gait speedRMSE that we obtained for a 5-s segment was not lower than
the gait speed RMSE for one step, but it was comparable, showing that this
preprocessing step could be eliminated without a large increase in the gait
speed RMSE. The gait speed RMSE that was obtained for a single-step
estimation in our study was larger (11.4 cm= sec) compared to the one
achieved by Byun et al. 38 (6.81 cm= sec). However, although the result
obtained by Byun et al. 38 is impressive, their model requires using demo-
graphic and anthropometric features which makes this method less con-
venient. The study presented by Sabatini et al. 55 received a similar result to
the one obtained by Byun et al. 38. However, while Sabatini et al. 55 utilized

Table 2 | Step length average RMSE and standard deviation of five ML models and one biomechanical model for the test set
(recall Table 1, top panel)

Model LR RT SVM KNN XGBoost Inverted Pendulum

RMSE [cm] 6.46 ± 0.20 7.43 ± 0.23 6.31 ± 0.30 7.07 ± 0.21 6.08 ± 0.15 20.60 ± 0.77

ICC (2,1) 0.89 ± 0.01 0.85 ± 0.01 0.89 ± 0.01 0.86 ± 0.01 0.91 ± 0.003 0.54 ± 0.24

The test set refers to Table 1 top panel. Values are presented as mean ± standard deviation.
RMSE rootmean square error, LR linear regression,RT regression tree,SVM support vectormachine,KNNK-nearest neighbors,XGBoost extreme gradient boosting, ICC intraclass correlation coefficient.
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two wearable devices, positioned at the pelvis and shank, our study
employed a single device placed on the lower back. Furthermore, Sabatini
et al. 55 involved a cohort of young and healthy participants, in contrast to
our model, which underwent testing across various age groups and condi-
tions, including PD, MS, and healthy subjects. Wang et al. 56 employed a

geometrical model utilizing four IMUs, tested on ten healthy subjects and
five with gait impairment. Our model exhibits enhanced accuracy, parti-
cularly for subjects with gait impairment, compared to Wang et al. 56.
Additionally, our model’s utilization of a single IMU located on the lower
back enhances practical convenience. Kose et al. 34 obtained an excellent

Fig. 1 | Comparison of step lengthmeasurements andXGBoost estimates: Bland-Altman plot and step length distribution. a, c–e Bland-Altman for 1, 3, 5, and 10 steps.
The middle line (red) represents the mean difference and the lower and upper lines (black) represent the 95% limits of agreement. b Step length distribution.
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result of less than 3% error for step length but it was only tested in nine
young and healthy participants. A study employing a deep neural network
achieved an impressive step length mean absolute error of 0.2396 cm but
utilized a limited dataset with only four participants. Furthermore, the
method’s reliance on five IMUs attached to the participants likely limits its
practical applicability57. Moreover, in the specific context of participants
with MS, the study presented byMotl et al. 58 included 51 participants with
MS anddemonstrated slightly inferior performance compared to ourmodel
(12 cm/sec). This highlights the robust generalizability of our proposed
model across diverse participant profiles and health conditions.

The recent study presented by Micó-Amigo et al. 40, which may be
considered the current state-of-the-art, reviewed the performance of several
step length estimators when they were applied to 108 participants with
various health conditions (including PD and MS). The best estimator
achieved stride length absolute errors of 15 and 17 cm for the healthy adult
group and PD group, respectively. The absolute error that we obtained for
stride length for both groups is 12 cm. In addition, the intraclass correlation
coefficients that were obtained were also lower than the intraclass correla-
tion coefficient that we obtained (0.58–0.60 vs 0.89–0.90). From this per-
spective, the XGBoost model outperforms the state-of-the-art model.
However, non-straightline trajectories and walking at everyday activities
were also included in theprevious study.Ontheotherhand, thedatasets that
we used included numerous participants with different conditions but were
only collected in laboratory settings in a controlled environment. Therefore,

our model still needs to be tested on more realistic walking patterns to
validate our method compared to state-of-the-art methods. In addition,
when applied to real-world walking, it needs to be combined with an
algorithm that detects turning. It is also important to recall that our model
underwent rigorous testing on two additional and separate datasets, yielding
consistent results. In contrast, prior studies36–39 relied onmethodologies like
5-fold cross-validation, leave-one-out, and train-test splits, whichmay limit
generalizability.

Overall, our results show that the described XGBoost model can be
used as an accurate step length estimator, even in people with relatively
impaired gait like that seen among older adults, people with PD or MS, a
capability that is currently lacking in most estimators. Locating wearable
devices on the lower back is relatively convenient for patients and offers
practical advantages59. It remains discreet (out of sight, out of mind) and
does not necessitate specific footwear, while still providing reliable accel-
eration and gyroscope signals that can be employed in a machine-learning
model. The simplicity of this method makes it a potential candidate for a
single-device solution in clinical settings, especially in controlled testing
environments. Future studies are needed to optimize the model in real-
world anduncontrolled settings. Inaddition, as discussed above, themodel’s
performance decreases when reaching relatively large or small step lengths
and still needs to be further improved, although the errors are still relatively
small at larger and smaller step lengths (recall Fig. 2). Moreover, a very
recent study by Baudendistel et al. 47 reported a step lengthMCID of 3.6 cm
in participants with PD, slightly lower than that RMSE achieved in the
present study. Nonetheless, reaching the current target of an error of 5 cm is
an important step forward, enhancing the ability to use a single sensor to
estimate step length and, ultimately, to bring wearable devices closer to
routine clinical use, potentially enabling more accurate monitoring of
patients in settings that are more relevant to them.

Methods
The methodology employed in this research involves the assembly of dei-
dentified database based on previously collected data, preprocessing, step
segmentation, feature extraction and selection, and a model that is able to
estimate step length. Figure 5 illustrates the process, with detailed expla-
nations provided in the subsequent sections. The secondary analysis was
conducted in compliance with all relevant ethical regulations, including the
Declaration ofHelsinki, as approved by the human studies committee of the
Tel Aviv Sourasky Medical Center. In the original data collection studies,
written informed consent was obtained from all human participants.

Database assembly
The data for training, testing, and validating the models were taken from
three projects. Data of the first project were obtained from a previously
described V-Time study48: 149 patients with PD (age 71.1 ± 6.1 yrs, Move-
ment Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-

Table 3 | Step length RMSE, RA, and intraclass correlations for different groups of participants in the test set (recall Table 1,
top panel)

OA participants (n = 81) MCI participants (n = 27) PD patients (n = 149)

RMSE [cm] RA [%] ICC (2,1) RMSE [cm] RA [%] ICC (2,1) RMSE [cm] RA [%] ICC (2,1)

Single
SL

6.39 ± 0.52 9.20 ± 0.61 0.90 ± 0.02 5.27 ± 0.93 8.22 ± 2.16 0.77 ± 0.15 6.64 ± 0.25 9.59 ± 0.48 0.89 ± 0.01

3-average
SL

5.26 ± 0.45 7.88 ± 0.57 0.92 ± 0.01 4.29 ± 1.12 6.90 ± 2.38 0.82 ± 0.13 5.27 ± 0.23 7.91 ± 0.50 0.92 ± 0.01

5-average
SL

5.06 ± 0.45 7.58 ± 0.58 0.93 ± 0.01 4.09 ± 1.17 6.65 ± 2.44 0.83 ± 0.13 5.03 ± 0.23 7.56 ± 0.49 0.92 ± 0.01

10-average
SL

4.88 ± 0.45 7.30 ± 0.57 0.93 ± 0.01 3.92 ± 1.22 6.43 ± 2.51 0.83 ± 0.13 4.83 ± 0.24 7.26 ± 0.48 0.93 ± 0.01

The test set refers to Table 1 top panel. Values are presented asmean ± standard deviation. RMSERootmean square error. The correlation is the Pearson’s coefficient between themodel estimate and the
reference value.
OA older adults, PD Parkinson’s disease, MCImild cognitive impairment, SL step length, RA relative error.

Fig. 2 | Correlation between the XGBoost estimated step length as a function of
the measured step length. The blue dots represent the estimated step length as a
function of the measured step length. The dashed black line represents the trend.
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Fig. 3 | RMSE and RA of different participant groups. a Test set. b Two validation
sets. The blue bars represent the RMSE, and the red bars represent the RA. The error
bars represent the standard deviation of thefivefolds. The test set refers toTable 1 top

panel (PD, MCI, OA) and the validation sets refer to Table 1 middle and bottom
panels (MS, HC, OA, PD).

Fig. 4 | RMSE and RA of different participants groups for n-steps average. a Test
set (recall Table 1 top panel) with n = 3. b Validation sets with n = 3. c Test set with
n = 5.dValidation sets withn = 5. eTest set withn = 10. fValidation sets withn = 10.

The blue bars represent the RMSE and the red bars represent the RA. The error bars
represent the standard deviation of the fivefolds. The test set refers to Table 1 top
panel and the validation sets refer to the middle and bottom panels of Table 1.
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UPDRS) score 63 ± 21), 27 people with mild cognitive impairment (age
77.5 ± 6.3 yrs, Montreal Cognitive Assessment (MoCA) score 21.6 ± 3.9),
and 81 older adults (76.9 ± 6.2 yrs). All participants had a history of 2 or
more falls. Participants performed three 1-min gait tests in the same order:
(1) comfortable speed, (2) fast speed, and (3)while performing an additional
cognitive task (counting aloud backward and subtracting by 3 s). During the
testing, subjects wore an Opal sensor on the lower back, recording 3D
acceleration and 3D gyroscope signals at 128Hz (APDMInc, Portland, OR,
USA). As shown in Fig. 6, the X, Y, and Z axes align with the mediolateral,
vertical, and anterior-posterior directions, respectively. The authors affirm
that human research participants provided informed consent for publica-
tion of the image in Fig. 6. The subjects walked over a ZenoWalkway Gait
Analysis System (Protokinetics LLC, Havertown, PA) with a length of
7.92m, which served as the gold-standard measure of step length (and gait
speed). Participants were assessed four times during the study—before,

after, 1 month after, and 6 months after the intervention (the testing order
was the same at each time point). A total of 83,569 steps were evaluated.

In the second project, named ONPAR, data was collected in a similar
way to the methodology outlined earlier, involving the use of Opal sensors
and Zeno Walkway. It includes participants with similar ages
(68.35 ± 7.77 yrs): 75 patients with PD (age 67.98 ± 7.25 yrs, MDS-UPDRS
total score 31 ± 12), and 38 healthy adults (69.07 ± 8.71 yrs). The third
project, named MS-Watch, included a younger group of participants
(40.0 ± 11.1 yrs): 61 patients with MS (age 42.0 ± 11.3 yrs, expanded dis-
ability status scale, EDSS 2.24 ± 1.57, disease duration 10.12 ± 8.80 yrs), and
41healthy adults (37.0 ± 10.3 yrs). TheV-Timedatasetwas used for training
and testing of the model, using a fivefold cross-validation, and is referred to
as the test set. TheONPAR andMSdatasetswere used for the assessment of
the model and are referred to as validation set 1 and validation set 2,
respectively. This approach differs from previous studies that employed a
leave-one-out or utilized only a k-fold without a distinct validation set.

Signal preprocessing
The preprocessing phase involved two key steps. First, the linear accel-
eration and angular velocity signals were low-pass filtered using an FIR
filter with a cutoff frequency of 20 Hz. This step aimed to remove high-
frequency noise and unwanted artifacts. Then, the signal was segmented
into single steps using a step segmentation algorithm described in ref. 40,
which is based on the vertical acceleration signal. The step segmentation
process enabled subsequent feature extraction and machine-learning
algorithms to operate on distinct step intervals with varying lengths.
Finally, the Opal-segmented steps were synchronized to the Zeno
Walkwaymeasurements by minimizing the time difference between each
detected step from the two sensors.

Feature extraction and selection
Features were extracted as described in the Supplementary information. To
remove irrelevant data and to reduce the overfitting error in the examined
MLmodels, it is necessary to use a feature selection method that eliminates
those features and keeps only meaningful features. We used a stepwise
feature selection method60 in which, in each iteration, the features that
contributed most to the model’s accuracy were added. This process was
performed on a small portion of the data and validated using cross-
validation to ensure that the selected features are robust. Thirty-four features
were selected as the most important (described in Supplementary Table 1),
including the FFT coefficients of the acceleration signal, the acceleration’s
magnitude energy, and the second integration of the X and Y axes of the
acceleration.

Table 4 | Step length RMSE and RA for different gait conditions in the test set (recall Table 1, top panel)

Usual walking speed Fast walking speed Dual tasking Walking

RMSE [cm] RA [%] RMSE [cm] RA [%] RMSE [cm] RA [%]

Single
SL

5.70 ± 0.25 8.50 ± 0.37 6.72 ± 0.35 8.80 ± 0.42 6.26 ± 0.25 10.65 ± 0.45

3-average
SL

4.78 ± 0.28 6.96 ± 0.42 5.77 ± 0.35 7.47 ± 0.40 5.24 ± 0.23 8.86 ± 0.39

5-average
SL

4.59 ± 0.28 6.64 ± 0.43 5.55 ± 0.35 7.18 ± 0.39 5.00 ± 0.22 8.45 ± 0.38

10-average SL 4.43 ± 0.29 6.36 ± 0.43 5.35 ± 0.34 6.91 ± 0.36 4.78 ± 0.22 8.08 ± 0.36

The test set refers to Table 1 top panel. Values are presented as mean ± standard deviation. The correlation is Pearson’s coefficient.
RMSE root mean square error, RA relative error.

Fig. 5 | SLE flow chart. Schematic description of the proposed algorithmic steps.

Fig. 6 | Experimental setup. Subject walking over the ZenoWalkway with the IMU
placed on the lower back. Orientation of the IMU axes is illustrated.

https://doi.org/10.1038/s41746-024-01136-2 Article

npj Digital Medicine |           (2024) 7:142 9



Model selection and validation
We tested several traditional ML models, including linear regression,
regression tree, SVM, and KNN, due to their simplicity and their compu-
tational efficiency. In addition, the XGBoost model was tested, consisting of
gradient-boosted decision trees known for their state-of-the-art results on
many tabular datasets61. To further assess the performance and versatility of
our models, we also evaluated an inverted pendulum model51,62,63. This
biomechanical model estimates the step length using the changes of the
vertical position of the center of mass during gait and was included to
investigate whether it outperformed the ML models in estimating step
length accurately. We used a fivefold cross-validation to provide a reliable
estimate of the model’s performance. The hyper-parameters of the model
were optimized for each fold using the fold training set and according to the
hyper-parameters range specified in Supplementary Table 2. The V-TIME
dataset was used for training and testing while keeping each participant
either in the training setor validation set for each fold.TheONPARandMS-
Watch datasets were only used for validation (and not in training). Gait
speed was subsequently determined using the estimated step length and
duration. In addition, two completely independent datasets, named
ONPAR and MS-Watch, were used to further evaluate the generalizability
of the model.

Modifications
Several enhancements were made to improve SLE accuracy using the lower
back-mounted IMU. Firstly, an averaging techniquewas employed inwhich
themean of estimated andmeasured step lengths across several consecutive
steps was calculated. This approach aimed to minimize the effect of irre-
gularities in individual step estimation, by averaging the estimations and the
reference values and not the features themselves. On the other hand, it is
important to note that variability assessment may be compromised when
averaging multiple steps. Additionally, an innovative training method was
employed, where amodel was trained on an arbitrary walking segment that
could consist of more than one step. The walking segment length was fixed
to a constant time segment and the model was trained with two different
lengths—1 and 5-s segments, to find an appropriate segment length. Each
gait sequencewas randomly sampled at various time points to create several
gait segments, with the number of segments determined by the length of the
straight-linewalking segment. Rather than restricting the trainingprocess to
predefined step-based segments, our approach allowed for the inclusion of a
varying time segment, extending beyond the confines of a single step. This
approach eliminated the need for explicit segmentation of individual steps,
thus simplifying the data processing pipeline.

Statistical analysis
Asameasure of accuracy,weused the rootmean square error (RMSE) of the
step length, the RMSE of the gait speed, and the relative error (RA) of the
step length. Intraclass correlation coefficient (ICC (2,1))64 was calculated to
assess the association between the SLE and the step lengthmeasurements by
theZenoWalkway.Basedon ICCestimates, values less than0.5, between0.5
and 0.75, between 0.76 and 0.9, and greater than 0.90 were deemed to be
indicative of poor, moderate, good, and excellent reliability, respectively65.
Additionally, we employed Bland-Altman analysis and assessed the Limits
of Agreement (LoA) to further examine the agreement between the esti-
mated step lengths and those measured by the Zeno Walkway. R² was also
determined to measure how well the estimated step length matches the
reference values, showing how much of the variation in step lengths is
capturedbyourmodel. Pearson’s correlation coefficient greater than0.8was
considered a strong correlation66. To determine the effect of the averaging
technique on the RMSE, we performed a one-way analysis of variance
(ANOVA) with a P value of 0.05.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The data analyzed in this study will be made available upon reasonable
request and as allowed by human study committees.

Code availability
The underlying code for this study will be available at https://github.com/
assafzadka/XGB-SLE/tree/main.
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