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ABSTRACT: Electrochemical reduction is a promising way to
make use of CO2 as feedstock for generating renewable fuel and
valuable chemicals. Several metals can be used as the electro-
catalyst to generate CO and formic acid, but hydrogen formation is
an unwanted side reaction that can even be dominant. The lack of
selectivity is, in general, a significant problem, but silver-based
electrocatalysts have been shown to be highly selective, with
faradaic efficiency of CO production exceeding 90%, when the
applied voltage is below −1 V vs RHE. In this voltage range, only a
small amount of hydrogen and formate is formed. We present
calculations of the activation free energy for the various elementary
steps as a function of applied voltage at the three low index facets,
Ag(111), Ag(100) and Ag(110), as well as experimental
measurements on polycrystalline electrodes, to identify the reason for this high selectivity. The formation of formic acid is
suppressed, even though it is thermodynamically favored, because of the low coverage of adsorbed hydrogen and kinetic hindrance
to the formation of the HCOO* intermediate, while *COOH, a key intermediate in CO formation, is thermodynamically unstable
until the applied voltage reaches −1 V vs RHE, at which point the kinetics for its formation are more favorable than for hydrogen.
The calculated results are consistent with experimental measurements carried out for acidic conditions and provide an atomic scale
insight into the high CO selectivity of silver-based electrocatalysts.

In the pursuit of carbon neutrality, a key strategy entails
balancing emissions by capturing anthropogenic carbon

dioxide and converting it into valuable products. One of the
most promising transformative approach relies on the electro-
chemical reduction of carbon dioxide using engineered
electrocatalysts capable of efficiently enhancing reaction
kinetics, controlling reaction pathways, influencing product
selectivity, and ensuring stability under working conditions.1,2

A wide range of electrocatalysts have been proposed so far for
the CO2 reduction reaction (CO2RR).

3−10 The choice of a
specific catalyst determines the primary product of the
reduction, which can vary from formate/formic acid or CO,
generated through a 2e− reduction, to multielectron transfer
products like alcohols and hydrocarbons. Additionally, the
presence of competing reactions, such as the hydrogen
evolution reaction (HER), significantly influences the catalyst
selectivity. The complex mechanisms involved in electro-
chemical reactions depend upon several factors11,12 such as the
morphology of the electrocatalyst,13−15 the composition of the
electrolyte,16−18 its pH,12,19 the CO2 partial pressure,

12,20 the
cell dimensions,21 and, crucially, the applied potential. The
impact of these factors on CO2RR can be assessed and

predicted through theoretical modeling based on atomistic
simulations. In particular, Density Functional Theory (DFT)
provides valuable insight on the reaction mechanisms,
enhancing our understanding of both the thermodynamics
and kinetics of CO2RR. The DFT thermochemical model
(TCM)22 of electrocatalytic reactions has proven to be a
robust method for predicting central thermodynamic quanti-
ties. It can provide key understanding and predictions of
CO2RR mechanisms that closely align with experimental
observations and enable detailed examinations of the free
energy landscape.23−25 However, by focusing solely on reaction
thermodynamics, the TCM can only provide a lower bound on
the reaction overpotential. More recently, efforts have been
made to address the challenge of modeling and computing
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activation energies in electrochemical reactions. Several
studies26−33 have investigated the kinetics of CO2RR on
metallic surfaces, offering additional insight and introducing a
fundamental perspective on the problem that was previously
missing.
In this Letter, we investigate the selectivity of silver surfaces

toward CO2RR at varying applied potential. We show that a
combined theoretical study, encompassing both thermody-
namics and kinetics, can fully clarify some crucial aspects of the
behavior of silver electrocatalysts that still lack a fundamental
explanation. Silver-based electrocatalysts are widely employed
in the electrocatalytic conversion of CO2 to CO,

34−36 thanks to
their remarkable selectivity. They achieve Faradaic efficiencies
(FEs) for CO production exceeding 90% and current densities
suitable for industrial scale, reaching over 150 mA/cm2.34−38

The production of HCOOH is observed in minimal quantities
across varying applied potentials. Experimental evidence39−42

shows that the selectivity switches at intermediate over-
potentials. Hydrogen evolution is favored at applied potentials
U ≳ − 0.9 V vs RHE. As the bias is lowered, CO replaces H2 as
the favored product, accompanied by an increase in the current
density. A further change occurs at more cathodic potentials,
when the FE of CO production drops significantly and the
electrocatalyst selectivity switches back to HER. The analysis
of the experimental current densities suggested that, unlike the
former, this latter switch in selectivity can be attributed to mass
transfer limitations.42 While well-known experimentally, the
fundamental mechanisms behind this evident competition
between CO and H2 production at varying applied bias, as well
as the extremely low formate production have not been
extensively explored by atomistic modeling. In our DFT study
of various CO2RR pathways, along with the competing HER,
we find that while HCOO*, critical for formic acid production,
is the most thermodynamically stable reaction intermediate, it
is kinetically unfavorable across all applied biases. Crucially, we
show that the selectivity crossover between CO and H2
production at intermediate potentials emerges only from a
delicate interplay between reaction thermodynamics and
kinetics.
Three crystal surfaces, namely (111), (100) and (110) were

considered to model the silver electrode. We performed DFT
electronic structure calculations with the VASP code,43−46

following the constant-potential computational setup estab-
lished in refs 28 and 29 The Kohn−Sham equations were
solved using the PAW47 method and the RPBE functional,48

with Monkhorst−Pack grids for Brillouin zone integra-
tions.49,50 Explicit H2O molecules and the GLSSA13 implicit
solvent model,51 as implemented in the VASPsol52−54 plugin,
were included to account for solvation effects. The implicit
solvent model allows for the addition to the cell of a fractional
number of electrons, compensated by the implicit counterion
distribution. By varying the number of electrons in the DFT
calculations it is possible to adjust the potential of the silver
slab, obtained from its workfunction referenced to the bulk
electrolyte. Standard conversions were then performed to
obtain electrode potentials with respect to the RHE. The
implicit solvent model assumes a bulk dielectric constant of
water ϵbulk = 78.4 and a Debye length of 3 Å, corresponding to
1 M concentration of a monovalent symmetrical electrolyte.
This is in line with the strong acidic conditions that we plan to
study. Transition structures (TSs) were found as first-order
saddle points along the minimum-energy path by means of
nudged elastic band calculations followed by minimum-mode

following55−58 at constant potential. For further computational
details, we refer the reader to the Supporting Information.
A first thermodynamic study was performed to evaluate the

Gibbs free energy of the first reaction steps of CO2RR and
HER via standard TCM. Specifically, we considered the two
alternative proton-coupled electron transfer (PCET) reaction
paths of CO2RR, where CO2 is reduced to either CO through
the *COOH intermediate

* + *++

CO COOH2
H e

(1)

* +
++

COOH CO H O
H e

2 (2)

or to HCOOH through the HCOO* intermediate

* + *++

CO HCOO2
H e

(3)

* ++

HCOO HCOOH
H e

(4)

From Figure 1, reporting the Gibbs free energies of formation
calculated on the three silver surfaces, we can notice that the

formation of *COOH, eq 1, is thermodynamically less favored
than that of HCOO*, eq 3, on all silver surfaces. Interestingly,
the Gibbs free energy of HCOO* formation increases in the
order Ag(110) < Ag(100) < Ag(111), as the degree of surface
packing increases and the atoms at the surface are less
undercoordinated. Finally, we also considered HER, through
the successive Volmer and Heyrovsky steps, as

* *++

H
H e (5)

* ++

H H
H e

2 (6)

Figure 1 shows that the formation of *H is disfavored
compared to HCOO* on all surfaces, except for Ag(111),
where hydrogen is adsorbed on the fcc site with higher
stability. The results of this preliminary analysis confirm

Figure 1. Gibbs free energies of formation of *COOH (red bars),
HCOO* (purple bars) and *H (blue bars) computed with the TCM.
From left to right: Ag(110), Ag(100) and Ag(111) surfaces.
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previous theoretical findings: based on reaction thermody-
namics, silver electrodes should be expected to produce
HCOOH and H2, contrary to what is observed experimen-
tally.39,42,59,60 Clearly, the TCM alone cannot reliably predict
the selectivity of Ag surfaces and a more comprehensive
investigation, incorporating explicitly applied potentials and TS
searches, is necessary.
We identified the TSs relevant to CO2RR and HER under

constant external potential, obtaining the corresponding
activation grand-canonical energy,28 ΔΩ‡. In this study, we
focus on the kinetics of reactions occurring in acidic
conditions, where the proton donors are solvated hydronium
ions, H3O+. We also assume efficient mass transport, ensuring
that the hydronium concentration remains sufficiently high at
the interface to suppress reactions involving water as the
proton donor. This condition is indeed achieved in our
experimental setup (see Supporting Information).
The studied reaction pathways, TSs and intermediate states

are reported in the scheme in Figure 2. Beside the PCET

reaction in eq 1, the *COOH intermediate can be obtained
from a CO2 molecule and a surface-adsorbed hydrogen atom,
as

+ * *CO H COOH2 (7)

Similarly, CO2 can be also directly transformed into HCOO−

with an adsorbed *H and a transferred electron, as

+ *CO H HCOO2
e

(8)

HCOO− then readily transforms into HCOOH in a strongly
acidic environment. Finally, formic acid can also be obtained
from the *COOH intermediate as

* ++

COOH HCOOH
H e

(9)

The geometries of three representative TSs on Ag(111) at U
= −0.8 V vs RHE are shown in Figure 3. The geometries of the
other investigated TSs are reported in the Supporting
Information. The ΔΩ‡s at the three studied potentials, U =

Figure 2. Diagram of the studied reaction pathways, TSs and intermediate states for CO2RR and HER. Carbon, oxygen and hydrogen atoms are
represented by black, red and white circles, respectively. Gray rectangles represent the silver slab.

Figure 3. Geometries of three representative TSs on Ag(111) at U = −0.8 V vs RHE. Left panel: HER step in eq 5. Central panel: CO2RR step in
eq 1. Right panel: CO2RR step in eq 3. Carbon, oxygen, hydrogen and silver atoms are represented by black, red, white and gray spheres,
respectively. Lighter colors are used to mark spectator water molecules.
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Figure 4. Grand-canonical activation energies ΔΩ‡ of the studied steps of HER and CO2RR. Top to bottom: Ag(110), Ag(100) and Ag(111)
surfaces. Each group represents a reaction step and consists of three bars, corresponding to the three studied potentials, arranged from left to right
(darker to lighter shades): U = −1.1, − 0.8, − 0.4 V vs RHE.

Figure 5. (a) and (b): Grand-canonical free energy variations ΔG on Ag(111) along CO2RR and HER at U = −0.4 V vs RHE (a) and U = −1.1 V
vs RHE (b). The inset in panel (b) shows a zoom on the activation grand-canonical free energies of *H production in HER (blue line) and
*COOH formation in CO2RR. (c) Comparison of reaction (upper panel) and activation (lower panel) grand canonical free energies for reaction
steps in eqs 1 (red bars) and (5) (blue bars). (d) Experimental FEs of CO2RR to CO (red bars) or to HCOOH (purple bars) and HER (blue bars)
of a synthesized polycrystalline Ag electrocatalyst in a pH 2 electrolyte.
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−0.4, − 0.8, − 1.1 V vs RHE, are reported in Figure 4.
Comparing the activation grand-canonical energies, it appears
that for CO2RR the formation of HCOO− via reaction
mechanism (8) enjoys the lowest kinetic barriers on all
investigated silver surfaces. On the contrary, the PCET
mechanism favors the formation of the *COOH intermediate,
while the activation energy for the formation of HCOO*
remains higher than 0.5 eV on all surfaces at all studied
potentials. Consequently, considering PCET mechanisms,
CO2RR tends to proceed through the *COOH intermediate,
eq 1, followed by CO production, eq 2, which has much lower
barriers than the step in eq 9, forming HCOOH. Finally, the
mechanism in eq 7 exhibits the highest activation energies on
all silver surfaces, indicating that this reaction pathway is highly
disfavored. Considering HER, the Volmer step in eq 5 exhibits
a decreasing activation barrier from approximately 1.0 eV at
−0.4 V vs RHE to around 0.4 eV when the cathodic potential
is lowered to −1.1 V vs RHE. Once hydrogen is adsorbed, the
Heyrovsky reaction in eq 6 proceeds with very low activation
energies across the entire potential range, becoming barrierless
on Ag(100) and Ag(111) at potentials lower than about −0.8
V vs RHE. The Volmer step of HER is therefore quickly
followed by the Heyrovsky step, producing H2, rather than the
CO2RR step in eq 8, where the adsorbed hydrogen from the
Volmer step reacts with CO2 to form HCOO−. Globally then,
the suppressed production of formate on Ag can be attributed
to two main factors. First, the high kinetic barrier for HCOO*
formation via the PCET in eq 3. Second, the very low *H
coverage,27 resulting from high hydrogen adsorption energy
and low Heyrovsky activation energy, which hinders the direct
HCOO− formation via eq 8. From the activation grand-
canonical energies in Figure 4 we can then conclude that on
silver surfaces the CO2RR proceeds to CO along the PCET
steps in eqs 1, (2), passing through the *COOH intermediate.
In competition, silver also produces hydrogen through the
Volmer-Heyrovsky mechanism. All other pathways appear to
be comparatively disfavored. From the analysis of ΔΩ‡ of HER
and CO2RR, we may conclude that the latter is the most
kinetically favored reduction reaction on all silver surfaces,
across the whole potential window. However, this finding
contradicts the experimental evidence mentioned in the
introduction, which indicates a predominant HER at low
overpotential.
To obtain a complete and comprehensive description of the

reaction mechanisms, it is then essential to consider both
thermodynamics and kinetics together. Due to the similar
thermodynamic and kinetic results, we focus on the Ag(111)
surface. In Figure 5a,b we report the variation in grand-
canonical free energy, ΔG, along HER and CO2RR, including
intermediate and transition states. Reaction grand-canonical
free energies are computed at constant applied potential,
employing the described hybrid explicit-implicit solvation
setup. Activation grand-canonical free energies, ΔG‡, are
derived from the grand-canonical energies of the transition
states found with constant-potential calculations. In the
calculation of grand-canonical free energies we consider
hydronium ions in equilibrium in bulk water. Grand-canonical
free energies and activation free energies at U = −0.4, − 0.8−
1.1 V vs RHE are also reported in Figure 5c.
At low overpotential, U = −0.4 V vs RHE, as shown in

Figure 5a, the states with the highest grand-canonical free
energies, when considering full ΔG variations along the
CO2RR pathways, are the TSs of HCOO* formation, eq 3,

purple line, and HCOOH formation from *COOH, eq 9,
yellow line. Interestingly, for the *COOH formation, eq 1, red
line, it is the intermediate *COOH that shows the highest
grand-canonical free energy. This can also be seen in Figure 5c.
Here, at U = −0.4 V vs RHE, the activation grand-canonical
free energy ΔG‡ of *COOH production (red bar in the lower
panel), computed from the grand-canonical electronic energy
of the TS, is lower than the reaction grand-canonical free
energy ΔG (red bar, upper panel). Hence, no actual kinetic
barrier appear along the grand-canonical free energy reaction
path in Figure 5a. In this situation, the backward step, CO2 ←
*COOH, is then both thermodynamically favored and
kinetically barrierless. Consequently, at low overpotential,
CO2RR is overall suppressed: the production of *COOH is
hindered by the unfavorable thermodynamics, while the
formation of HCOO* is prevented by the large kinetic barrier.
In this range of applied voltage, HER dominates, even though
the ΔG‡ of the Volmer step remains above 0.5 eV, in line with
the value of ΔΩ‡ in Figure 4. As the bias is lowered to U =
−1.1 V vs RHE, Figure 5b, the intermediate state *COOH is
stabilized, its grand-canonical free energy of formation
becomes lower and a kinetic barrier emerges, see also Figure
5c. *COOH can then be formed and further reduced to CO
without kinetic barrier. At the same time, HCOOH formation
from *COOH still shows a nonzero activation energy, making
this step less favorable. Most importantly, as highlighted in the
inset of Figure 5b, the kinetic barrier for *COOH formation is
lower than that of the Volmer step of HER, resulting in a more
favorable CO production compared to H2. Therefore, at
intermediate potentials the selectivity switches from HER to
CO2RR, specifically with almost only CO production.
To validate our theoretical investigations, focusing specifi-

cally on reaction steps involving hydronium ions as proton
donors, we carried out electrochemical characterizations of
silver electrodes in an acidic environment. Indeed, most
CO2RR experiments in the literature were performed at neutral
or alkaline pH, and the acidic reaction has received minor
attention.61,62 A polycrystalline silver electrode was prepared
via sputtering,38 and tested in flow cell with an electrolyte at
pH 2. More details about the experimental procedure are
reported in the Supporting Information. As shown in Figure
5c, CO and H2 emerge as the primary gaseous products, with
small amounts of HCOOH. The expected trend is clearly
observable: a shift from HER, favored up to intermediate
potentials of about −1 V vs RHE, to CO production at more
negative potentials, accompanied by an increase in the current
density. The cumulative FE values for CO, H2, and HCOOH
approximate 100%, suggesting minimal formation of other
products. These results are in good agreement with our
proposed theoretical model which predicts a selectivity switch
at around the same applied potential values.
We conclude that, in critical cases such as the reactions

investigated on silver electrodes, simpler or partial approaches
may fail to provide a correct and complete understanding of
the reaction mechanisms. In these situations, only by
integrating the theoretical estimation of both reaction
thermodynamics and kinetics we can obtain a detailed and
satisfactory explanation of the observed selectivity in CO2RR.
Our focus on the case study of Ag electrocatalysts
demonstrates that comprehensive DFT modeling is essential
to reliably understand the underlying mechanisms of electro-
chemical reactions and derive meaningful predictions.
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