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Super-resolution of fluorescence-
free plasmonic nanoparticles using 
enhanced dark-field illumination 
based on wavelength-modulation
Peng Zhang1, Seungah Lee2, Hyunung Yu3, Ning Fang4 & Seong Ho Kang1,2

Super-resolution imaging of fluorescence-free plasmonic nanoparticles (NPs) was achieved using 
enhanced dark-field (EDF) illumination based on wavelength-modulation. Indistinguishable adjacent 
EDF images of 103-nm gold nanoparticles (GNPs), 40-nm gold nanorods (GNRs), and 80-nm silver 
nanoparticles (SNPs) were modulated at their wavelengths of specific localized surface plasmon 
scattering. The coordinates (x, y) of each NP were resolved by fitting their point spread functions 
with a two-dimensional Gaussian. The measured localization precisions of GNPs, GNRs, and SNPs 
were 2.5 nm, 5.0 nm, and 2.9 nm, respectively. From the resolved coordinates of NPs and the 
corresponding localization precisions, super-resolution images were reconstructed. Depending on 
the spontaneous polarization of GNR scattering, the orientation angle of GNRs in two-dimensions 
was resolved and provided more elaborate localization information. This novel fluorescence-free 
super-resolution method was applied to live HeLa cells to resolve NPs and provided remarkable sub-
diffraction limit images.

Optical microscopy imaging is one of the most widely used techniques for biomedical and molecular 
biology research1. In contrast to other microscopic techniques such as electron microscopy, it shows 
high usability and feasibility for intravital detection2. However, until the development of super-resolution 
microscopy, conventional optical microscopy techniques were incapable of resolving sub-cellular struc-
tures smaller than one hundred nanometers due to the diffraction limitation of light; these structures 
include machinery/microtubules that are 25 nm in diameter, transport vesicles approximately 100 nm in 
size, and 30-nm-wide chromatin fibers3–5.

By modifying the point spread function (PSF) of emitters, stimulated emission depletion (STED)6, 
ground-state depletion (GSD)7, and saturated structured illumination microscopy (SSIM)8 have pro-
vided high-resolution images beyond the diffraction limit. On the other hand, with the benefit of 
single-molecule detection and localization, stochastic optical reconstruction microscopy (STORM) and 
photoactivated localization microscopy (PALM) can be used to resolve sub-cellular structures with bet-
ter than 20-nm resolution9–11. Since single molecule detection based-techniques can be carried out with 
conventional fluorescence microscopes, they have been widely used in molecular biology and biophys-
ics12–15. However, since these super-resolution optical microscopy techniques are highly dependent on 
photo-switchable fluorescent probes, the selection of adequate fluorescent probes has become one of 
the most critical challenges for researchers13,16,17. Even though many natural and synthetic fluorescent 
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probes have been developed, most of them are still not “bright” enough, i.e., they have low extinc-
tion coefficients and quantum yields, are highly sensitive to the environment, and are susceptible to 
photobleaching17–20. Therefore, development of “bright”, stable, and non-bleaching labeling agents is an 
urgent challenge to expand applications of super-resolution methods in biological research17. To over-
come this challenge, plasmonic nanoparticles (NPs) may serve as appropriate fluorescence-free labeling 
agents for super-resolution imaging. Plasmonic NPs such as gold nanoparticles (GNP), gold nanorods 
(GNR), and silver nanoparticles (SNP) have been used as labeling agents in biological and biomedical 
research due to their large contrast and refined optical scattering properties in the visible region of 
the spectrum21–23. So far, only the super-resolution of adjacent SNPs was achieved by deconvolution 
of their spectra24,25. Although recent research has reported sub-diffraction limited resolution of GNR 
based on their anisotropic scattering properties26, more general sphere plasmonic NPs could not be 
resolved using this methodology. Herein, we report a fluorescence-free super-resolution imaging method 
using EDF illumination based on wavelength modulation to resolve various single plasmonic NPs with 
sub-diffraction-limit resolution.

Results
Wavelength-modulation EDF imaging of single plasmonic NPs. Far-field optical microscopy 
images of NPs are quite different from their true features (Supplementary Figs S1 and S2). Due to the 
diffraction limit, some intrinsic and specific details of these materials are lost, such as particle size and 
shape. Even worse, for NPs within a distance of 100 nanometers, recognition of these aspects from 
individual far-field microscopy images was impossible (Fig.  1A). Although the dark-field images pro-
vided specific color images depending on the material properties, which could help in the recognition 
of NPs, the cross-talk of scattered light from adjacent particles resulted in color-blended images (Fig. 1B 
and Supplementary, Fig. S3). However, these blurred and color-blended images were modulated with 
band-pass filters (Fig. 1C) based on the wavelength of the unique localized surface plasmon resonance 
(LSPR) scattering (Supplementary, Fig. S4). After modulation with band-pass filters, the cross-talk of 
scattering spectra was significantly suppressed (Fig. 1C). Therefore, the NPs could be detected at a dis-
tinct specific wavelength and resolved with sub-diffraction limit resolution.

Gaussian fitting of the center of individual NPs. When a point-like source is imaged, its projec-
tion on a detector is referred to as the PSF. For an isotropic point-like source, the PSF can be expressed 
as a Born-Wolf model with high precision and accuracy27. Even though several fitting/non-fitting-based 
PSF center localization algorithms have been reported, the least-squares criterion-based Gaussian fitting 
algorithm (Supplementary Fig. S5) is preferred due to its high localization precision, high fit speed, and 
need for few fit parameters5,28. The 2D Gaussian function for fitting the center of the PSF of each indi-
vidual NP at the intrinsic scattering wavelength is given by the following equation29–32:
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where I0 is a constant term from the background noise, A is the amplitude, x0 and y0 are the coordinates 
of the center, and σx and σy are standard deviations of the distribution in the x and y directions. The 
center coordinates (x, y) are recorded in Fig. 2B–D.

Sub-diffraction localization precision analysis. In practice, users often determine the experi-
mental localization precision in an experiment by measuring multiple localizations of the same single 
molecule and calculating the standard deviations (SD) of the Gaussian distributions of localization17,29. 
When calculating the lateral SD, the precision of localization values were as low as 2.9, 2.5, and 5.0 nm, 
respectively (Fig. 2E–G). Noticeably, the localization precision for GNR (5.0 nm) was much poorer than 
for GNP (2.5 nm) and SNP (2.9 nm). Depending on the single-particle localization theory, the best 
localization precision for an individual emitter in optical microscopy is determined by the root of the 
Cramér-Rao lower bound (CRLB), which is defined as the smallest possible variance any unbiased esti-
mation algorithm can provide29,33,34. The CRLB is given as
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Considering the two-dimensional Gaussian approximation of PSF and only shot noise, the CRLB in 
the x-direction (σx) can be simplified to
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where N is the number of detected photons and s is the standard deviation of the Gaussian function. 
The CRLB in the y-direction (σy) is a similar expression. The factors that can affect the detected photons, 
such as exposure time of the CCD camera, can affect the localization precision (Supplementary, Fig. S6). 
Interestingly, the localization precisions for GNR were much poorer than for GNP and SNP with any 
exposure time. According to Mie theory, the scattering cross-section of 40-nm GNR was much smaller 
than the 103-nm GNP and 80-nm SNP due to the size effect, which resulted in fewer detected photons 
(N) from GNR35,36. Therefore, the 40-nm GNR showed the poorest localization precision compared with 
the 103-nm GNP and 80-nm SNP. Due to the large scattering cross-sections and photo-stabilities of 
plasmonic NPs21, the localization precisions of all three types of NPs were better than most previously 
reported fluorescence-labeling super-resolution methods5,32.

Figure 1. (A) EMCCD and (B) colored digital camera images of the mixture of GNPs, GNRs, and SNPs. 
(C) Scattering intensities of GNP, GNR, and SNP with various band-pass filters (473 ±  10 nm, 575 ±  15 nm, 
and 680 ±  10 nm) and the corresponding EDF images (inset). The scattering intensities of GNP, GNR, 
and SNP at 473 nm were 2979 ±  49.6, 4110.6 ±  63.7, and 15120.6 ±  155.0, at 575 nm were 7266 ±  91.1, 
3021.8 ±  107.3, and 2924.2 ±  85.8, and at 680 nm were 1703 ±  30.3, 4975.6 ±  92.1, and 1126.8 ±  6.8, 
respectively. The EMCCD camera exposure time was 91 ms. The EMCCD gain was varied from 0 to 1000. 
The scale bars represent 200 nm. The error bars represent mean ±  standard deviations (n =  5).
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Reconstruction of the super-resolution image based on Gaussian rendering. With the meas-
ured localization precision, images (pixel matrix) of GNPs, SNPs, and GNRs were rendered as pixel 
sizes of 2.5 nm, 3.0 nm, and 5.0 nm, respectively. The rendered GNP, SNP, and GNR images were merged 

Figure 2. 2D Gaussian fitting of wavelength-modulation images of GNPs, GNRs, and SNPs in a mixture 
sample at their specific scattering wavelengths to solve the center coordinates (x, y) of PSF. (A) Original 
blurred EDF image of adjacent GNPs, GNRs, and SNPs in the mixture sample, (B) wavelength-modulation 
EDF images of GNP at 575 nm, (C) GNR at 680 nm, and (D) SNP at 473 nm. The corresponding central 
coordinates after 2D Gaussian fitting were (5.05163, 5.69388), (5.69388, 5.89796), and (6.91837, 5.69388), 
respectively. (E, F, and G) Experimentally-recorded images of single NP illuminated by an EDF condenser 
with wavelength-modulation. The dots represent central position distributions of 499 measurements. σxy 
represents the lateral standard deviation.
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together to obtain the reconstructed image (Fig. 3D(b)). Compared with the blurred and unrecognizable 
original image (Fig. 3D(a)), the GNP, GNR, and SNP images were clearly resolved. The distance between 
the GNP and GNR was 75 nm, and the SNP was in the vicinity of the GNR with a distance of 105 nm. For 
adjacent GNP and SNP, the resolved distance was 105 nm. The value was comparable to the average size 
of the GNP and SNP, and it almost was the smallest distance to neglect the plasmonic coupling effect26. 
The measured distance of GNP and GNR was 75 nm which was less than the average size of two parti-
cles. In the case, the coupling of particles’ surface plasmon should be considered37. Due to the coupling 
of interparticles, the measured localization precisions of adjacent particles were lower than their free 
single-particle state (Supplementary, Fig. S7). However, the localization precision of GNP and GNR were 
still less than 15 nm. Therefore, even the measured distance value (75 nm) between GNP and GNR would 
contain the errors from plasmonic coupling effect, these errors should be tolerable. While, due to the 
plasmonic coupling effect of these 100-nm scale NPs, it would be difficult to achieve 10-nm resolution, 
which is comparable to recently reported fluorescence super-resolution microscopy14. In the future, to 
obtain better sub-diffraction limit resolution (i.e., less than 10 nm) for fluorescence-free detection would 
require much smaller size NPs (Supplementary, Fig. S8).

Analysis of GNR orientation angle. For an anisotropic object such as a GNR, apart from its 2D 
coordinates (x, y), its rotation state significantly affects its optical properties and bio-activities38–40. In gen-
eral, the nanorod in solution shows a free rotation state in 3D (Supplementary, Fig. S9(A))38. However, 
considering Supplementary Figs S1 and S2, most of the nanorods were “laying” on a 2D surface (i.e., 
polar angle θ =  90°). To simplify the model, the polar angle θ was assumed to be constant at 90°, and the 
rotation state of the GNR was therefore only related to its orientation angle, ϕ. Thus, a more precise local-
ization expression of the GNR should include its orientation angle on the x-y plane (ϕ, Supplementary, 
Fig. S8(B)). According to Gans theory, scattered light from a gold nanorod has an inherent polarization41. 
Additionally, under homogeneous illumination conditions, the scattering intensity (I) of a gold nanorod 
in one particular polarization direction is proportional to the square of the cosine of the angle ϕ between 
the rod and the polarization direction42,43, as expressed in equation (4):

Figure 3. Fluorescence-free super-resolution images of GNP, GNR, and SNP in a mixture sample 
using EDF illumination based on wavelength-modulation. The pixel sizes of the rendered images of (A) 
GNP, (B) GNR, and (C) SNP were 2.5 nm, 5.0 nm, and 3.0 nm, respectively. The original image (D(a)) was 
reconstructed to form the super-resolution image (D(b)). Distances between particles in the reconstructed 
super-resolution image were 75 nm and 105 nm, respectively (D(b)).
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ϕ= ( ) ( )I cos 4

This induces a polarization based twinkle for GNR (Fig. 4(A) and Movie S1). Therefore, the rotation 
angle is resolved from its polarized scattering intensity profile. Herein, the scattering intensity of GNR 
at its specific wavelength was measured with various polarization angles and was plotted in polar coor-
dinates (Fig. 4B). This plot indicated the orientation angle of the GNP was 173° relative to the polarizer 
direction. Furthermore, due to the periodicity of trigonometric functions, images at 7, 173, 187, 353 
degrees were the same under the polarized dark field, unless the nanorod had a significant tilt angle.

Application to live cells. To demonstrate the feasibility and usability of our super-resolution method, 
103-nm GNPs, 80-nm SNPs, and 40-nm GNRs were naturally endocytosed by HeLa cells after incubation 
for 4 h. The cells were imaged using the microscope system in EDF and DIC modes (Supplementary, Fig. 
S10 and Movies S2 and S3). Adjacent NPs were not resolved due to diffraction limits and the complex 
biological environment (Fig. 5A,B). However, by applying the wavelength-modulation super-resolution 
technique, adjacent NPs with sub-diffraction limit distances were resolved (Fig.  5C). In addition, the 
orientation angle of the GNR was resolved as 124° (Fig. 5C inset).

Figure 4. (A) The orientation angle dependent twinkle of GNR and (B) the root of normalized scattering 
intensity of GNR at 680 nm (I0.5) with various polarizer directions plotted in polar coordinates. The 
orientation angle relative to the polarizer direction was 173°. The scale bars represent 100 nm.

Figure 5. (A and B) Original EDF images of GNPs, GNRs, and SNPs in a live HeLa cell. (C) The 
reconstructed fluorescence-free super-resolution images of GNP, GNR, and SNP in the live cell and the 
resolved 124° orientation angle of GNR (inset).
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Discussion
Based on the wavelength-modulation EDF, super-resolution of fluorescence-free plasmonic NPs was 
achieved. Band-pass filters were used to modulate EDF illumination images of GNPs, GNRs, and SNPs 
based on their specific LSPR scattering wavelengths. By fitting their PSF with a 2D Gaussian function via 
a least-squares criterion algorithm, the coordinates (x, y) of each nanoparticle were resolved. The meas-
ured localization precisions of GNP, GNR, and SNP were 2.5 nm, 5.0 nm, and 2.9 nm, respectively, which 
were consistent with the CRLB and Mie theory. Finally, the super-resolution image was reconstructed 
based on the resolved coordinates of the NPs and the corresponding localization precisions. Furthermore, 
according to the spontaneous polarization of GNP scattering, the orientation angle of the GNR in 2D 
was resolved to provide more elaborate localization information. Subsequently, localization precisions 
of NPs at sub-diffraction limit resolution were applied to live cells using this novel fluorescence-free 
super-resolution microscopic method. Even though the LSPR scattering of plasmonic NPs were highly 
relying on the properties of the surrounding environment, such as refractive index of the medium and 
surface modifications, essentially, all these factors were only acting in the frequency domain of the scat-
tering, i.e. inducing the scattering spectral shift. In the spatial domain (particles’ position) and time 
domain (detection period), these factors were negligible. Therefore, this wavelength-modulation based 
super-resolution method was working well regardless of homogeneous or heterogeneous environment. 
Although larger numbers of NPs with different materials and/or sizes would be needed to easily apply 
this process to more complicated biological systems or samples, this novel technique demonstrated the 
potential of super-resolution microscopy with fluorescence-free material. This method should be applica-
ble to sub-cellular structure mapping after simple modifications. When the distance between individual 
NPs is much smaller than the particle sizes, the plasmonic coupling effect of the particles cannot be 
neglected, which will cause large localization errors. In this particular case, the plasmonic coupling effect 
should be considered to obtain better sub-diffraction limit resolution (i.e., less than a few nm).

Methods
Reagents and materials. The 103-nm GNP, citrate-capped 40-nm GNR, and 80-nm SNP colloidal 
solutions were purchased from Nanopartz™ (Salt Lake City, UT, USA) and BBI Life Sciences (Cardiff, UK). 
Cell culture medium was prepared using Dulbecco’s modified Eagle’s medium (DMEM, pH 7.4, GIBCO, 
Gaithersburg, MD, USA) containing 10% fetal bovine serum (GIBCO) and 1×  antibiotic-antimitotic 
(GIBCO). Dulbecco’s phosphate buffered saline (DPBS, GIBCO, pH 7.4) was used as a cell wash buffer.

Electron microscopy images. The true features of GNP, GNR, and SNP were observed with an envi-
ronmental scanning electron microscope (ESEM, Quanta FEG 650, FEI Company) with an accelerating 
voltage of 30 kV. The samples for SEM imaging were prepared by dropping a small portion of the sample 
suspended in distilled water onto a silicon wafer and then drying the wafer in a desiccator.

5 μ L suspension of the nanoparticles mixture (GNP, GNR, and SNP) was dropped onto a Cu-grid 
(carbon coated, 200-mesh, Ted Pella, Inc., Redding, CA, USA) and imaged by transmission electron 
microscopy (TEM) (2100F, JEOL Ltd, Tokyo, Japan) after the sample was completely dried. The Cu-grid 
was then placed on a microscope slide, immersed with protective fingernail polish and covered with a 
cover glass for EDF imaging26.

Optical properties of GNP, GNR, and SNP. UV-Visible spectra of aqueous dispersions of GNP, 
GNR, and SNP were measured using a UV-Visible spectrometer (MultiSpec-1501, Shimadzu, Tokyo, 
Japan). Absorption peaks for GNP, GNR, and SNP were at 577 nm, 663 nm, and 477 nm, respectively.

Lab-built microscopy system of wavelength-modulation enhanced dark-field illumination. A 
lab-built EDF illumination microscopy system (Supplementary, Fig. S11) was built on an Olympus BX-51 
upright microscope (BX-51, Olympus, Tokyo, Japan) equipped with a CytoViva EDF illumination device 
(CytoViva Inc., Auburn, AL, USA) and a 100×  objective lens (UPLANFLN, adjustable N.A., from 0.6 to 
1.3, Olympus, Tokyo, Japan). An electron multiple charge-coupled device (EMCCD) camera (QuantEM, 
512 SC, Photometrics, AZ, USA) and a color Nikon D3S digital camera (Tokyo, Japan) were installed on 
top of the microscope to simultaneously detect single-particle images. Band-pass filters of various wave-
lengths (473 ±  10 nm, 575 ±  15 nm, and 680 ±  10 nm) purchased from Semrock (Rochester, NY, USA) 
were used to modulate the detected scattering wavelength of the specimen. A 360° rotation analyzer 
(U-AN360P-2, Olympus) was installed before the cameras to analyze the orientation angle of the GNR. 
MetaMorph (Version 7.0, Universal Imaging, Sunnyvale, CA, USA), ThunderSTORM plug-in of ImageJ 
(NIH)44, and Origin (OriginLab) programs were used for image acquisition and data processing.

Localization precision measurement. 499 EDF images of the same single NP at the specific scatter-
ing wavelength were acquired. The particle center in each frame was analyzed using the ThunderSTORM 
plug-in of ImageJ. The localization precision was calculated using the following equations:
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Cell incubation with NPs. Cultures of HeLa cells were plated as previously described45, and were 
grown in cell culture medium. Cells were maintained in plastic tissue culture dishes (BD Biosciences, 
Bedford, MA, USA) at 37 °C with a humidified atmosphere containing 5% CO2. For single-cell imaging, 
cells were placed in a 22 mm ×  22 mm cover-glass (No. 1, Deckglaser, Freiburg, Germany) and were 
incubated for 24 h. Adherent cells were rinsed twice with DPBS, and were then added immediately to the 
medium containing NPs, followed by incubation for 4 h before being used in experiments. Cover-glasses 
with adherent cells were washed 3 times with DPBS to remove excess NPs and were then placed under 
the objective lens to obtain images.
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