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A B S T R A C T

The current study aims to assess the high cycle fatigue strength of sharply V-notched bars under mixed mode I/III
loading by applying the coupled Finite Fracture Mechanics (FFM) approach. FFM provides strength predictions
by simultaneously satisfying a stress condition and an energy balance. A novel semi-analytical implementation of
the FFM criterion is presented for the first time to account for a multiaxial fatigue loading by assuming that
fracture early propagates along the notch bisector plane through a circumferential-shaped crack. To validate the
model, fatigue strength predictions are then compared with a large variety of experimental data related to several
metals, V-notch configurations and different multiaxial loading conditions. Although the adopted hypotheses are
simplistic and do not fully encompass all the physical phenomena that occur in the multiaxial fatigue process, the
approach reveals to be a reliable tool for obtaining semi-analytical fatigue endurance limit predictions useful for
engineering design practice.

1. Introduction

Finite Fracture Mechanics (FFM) [1,2] is a coupled criterion that
enables obtaining strength predictions for notched components by
simultaneously satisfying a stress condition and the energy balance. The
FFM criterion is thus able to overcome the drawbacks of the Linear
Elastic Fracture Mechanics (LEFM) approach, which is limited to
investigate the brittle failure behavior of largely cracked elements.
Moreover, FFM is based on the assumption of finite crack advance in
contrast to LEFM, which assumes continuous crack growth. This char-
acteristic is common to other previously proposed nonlocal approaches,
which can be grouped under the framework of Theory of Critical Dis-
tances (TCD) [3,4]. In contrast to TCD approaches, where the critical
distance is solely considered as a material property, the FFM crack
advance becomes a structural parameter, as it depends not only on the
material but also on loading conditions and geometrical features under
investigation. Consequently, FFM is able to catch the failure size effect of
notched elements as the characteristic notch size changes [1]. Focusing
on sharp V-notches under static loading conditions, FFM was initially
applied to brittle materials under mode I loading by Leguillon [1], who
compared strength predictions with experimental results on PMMA
samples under three point bending. The same configuration was

investigated by Carpinteri et al. [5] by comparing failure predictions
with experimental data for polystyrene, duraluminum, and PMMA.
Later, Carpinteri et al. [6] analyzed semi-infinite and finite-size V-
notched plates subjected to remote uniaxial tension using the FFM
approach. Mittelman and Yosibash [7] instead investigated crack onset
in a sharply V-notched bar under torsion, considering finite crack
propagation both in the notch bisector plane and in planes inclined at
45◦. Applications of the FFM approach to notched configurations under
combined mode I/III loading will be discussed in detail in Section 2.

Despite initially being proposed and applied only to static problems,
FFM was later expanded to evaluate the fatigue endurance limit of
structural elements. It is important to note that recent giga-cycle fatigue
studies have observed fatigue failures in metallic materials beyond 107

loading cycles [8,9]. These failures occurred when the stress range
applied was below the conventional fatigue limit, suggesting that the
traditional concept of the fatigue limit might have limitations and ex-
ceptions. Despite this, the fatigue limit continues to be a valuable
parameter for the fatigue design of structural elements.

In the scientific literature, there is widespread acceptance that
linear-elastic approaches can be reasonably implemented to assess the
strength of structural components under fatigue endurance limit con-
ditions, as this typically entails low strain and stress amplitudes. In this
field, FFM has been applied to investigate the fatigue behavior of various
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structural configurations, considering several materials such as different
types of steels, cast aluminum alloys and titanium alloys. Taking into
account pure mode I loading conditions, the FFM approach was imple-
mented to assess the fatigue strength of tensile plates weakened by a
central circular hole [10,11] and crack [11], or by edge V- and U-
notches [12], focusing on the crack/notch sensitivity phenomena under
pure mode I loading. Furthermore, this approach has been applied to
assess the fatigue endurance limit of 3D structures, such as spheroidal
void in an infinite solid under remote tension [13], i.e. pure mode I. In
that study, the failure size effect was investigated for different spheroid
aspect ratios between 0.1 and 10 by considering an annular crack
originating from the void’s equator. Considering instead pure mode III
loading conditions, Campagnolo and Sapora [14] analyzed the fatigue
endurance limit behavior of V-notched bar subjected to torsion loading.
The analysis was developed by assuming a shear stress-governed failure
and a circumferential-shaped crack along the notch bisector plane. In
this context, the aim of the present study is to extend for the first time the
FFM approach to assess the fatigue endurance limit of V-notched com-
ponents subjected to a multiaxial loading condition, generating a local
mode I/III stress state. The study of multiaxial fatigue, in whichmode I is
combined with mode III, is crucial because it represents the most com-
mon scenario in practical engineering applications. The multiaxial local
stress state arises from the complexity of both the component geometry
(including the orientation of notches/defects as compared to the loading
direction) and the in-service loading conditions, which typically do not
consist of pure mode I, II, or III loads. Additionally, multiaxial loading
conditions are the most challenging to analyze due to both a limited
availability of experimental data in the literature and the lack of fatigue
approaches which demonstrated to be reliable over a wide range of
materials and geometrical/loading conditions [15].

2. Mixed mode I/III strength criteria

The multiaxial fatigue problem is a three-dimensional phenomenon
that poses significant challenges in study due to its complexity. Indeed,
the modeling of fatigue cracking behavior depends on a large number of
factors, such as material type, notch configuration (i.e. the stress/strain
distribution) and multiaxial loading conditions (e.g., loading ratio,
biaxiality ratio and phase shift between the normal and shear stress

components).
Various approaches have been developed to assess multiaxial fatigue

life by analyzing how external loads combine to generate stresses and
strains in a critical location. According to Socie and Marquis [15], these
approaches can be classified in stress-, strain- or energy-based models.
Typically, strain-based approaches are applied to investigate low cycle
fatigue life, where significant plasticity may occur. In this framework,
Brown and Miller [16,17] conducted combined axial and torsion tests
considering a constant shear stress range. They proposed a criterion that
considers both the shear and normal strains acting on the plane of
maximum shear. Furthermore, they introduced the concept of Case A
and Case B cracks. Cracks grow along the surface of the component in
Case A, whereas they propagate into the depth in Case B. Fatemi and
Socie [18], based on the work of Brown and Miller, suggested replacing
the normal strain term with the normal stress. In this way, they included
in their criterion the crack closure effects due to frictional forces induced
by irregularity of the crack surface during shear loading. Several energy-
based criteria have been proposed to investigate fatigue life under
mixed-mode loading conditions since the work of Morrow [19]. In
particular, the averaged Strain Energy Density (SED) criterion was
applied to investigate the fatigue strength of several notched configu-
rations subjected to different multiaxial loadings, e.g. [20,21,22]. Ac-
cording to this approach, the total strain energy density is evaluated
within a structural volume whose dimension is a property of the material
and loading mode.

Focusing on stress-based criteria, Gough and Pollard [23] proposed
two empirical expressions, combining nominal normal and shear
stresses, derived from an experimental campaign carried out on shafts
subjected to in-phase bending-torsion loading:
(
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where Δσ, Δτ represent the nominal normal and shear stress ranges and
Δσ0, Δτ0 are the fatigue endurance limits under reversed plane bending
and torsional loadings, respectively. Eq. (1a) is valid for ductile

Nomenclature

a V-notch depth
c crack length at the notch root
ℓc critical crack advancement
R net-section radius of the V-notched bar
RL nominal load ratio
ΔKI mode I stress intensity factor (SIF) range
ΔKIII mode III SIF range
ΔKI

V mode I notch SIF range
ΔKIII

V mode III notch SIF range
ΔKI,th threshold value of the mode I SIF range for long cracks
ΔKIII,th threshold value of the mode III SIF range for long cracks
k1 dimensionless shape function for mode I notch SIF of V-

notched bar
k3 dimensionless shape function for mode III notch SIF of V-

notched bar
ΔP external axial load range
ΔMb external bending moment load range
ΔMt external torsion moment load range
α ratio between ΔKIII,th and ΔKI,th
ω V-notch opening angle
ρ notch root radius

(x, y, z) cartesian coordinate system
Ω nominal biaxiality ratio, i.e. Δτ/Δσ
φ phase shift angle between normal and shear stresses
λI mode I linear elastic eigenvalue
λIII mode III linear elastic eigenvalue
σUTS ultimate tensile strength
Δσ nominal normal stress range
Δτ nominal shear stress range
Δσ0 fatigue endurance limit range for plain samples under

reversed axial loading
Δτ0 fatigue endurance limit range for plain samples under

reversed torsion loading
Δσf critical value of Δσ at fracture initiation according to FFM
Δτf critical value of Δτ at fracture initiation according to FFM
Δσf,exp experimental fatigue endurance limit for sharply V-

notched bars under reversed mode I loading
Δτf,exp experimental fatigue endurance limit for sharply V-

notched bars under reversed mode III loading
Δσyy normal stress field at the tip of a V-notched bar under mode

I loading
Δτyz shear stress field at the tip of a V-notched bar under mode

III loading
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materials, whereas Eq. (1b) holds for brittle materials. Both expressions
were formulated for plain samples under in-phase bending and torsion
loadings, considering a load ratio RL = − 1. For notched components,
Gough and Pollard [23] suggested using Eq. (1b) for both brittle and
ductile materials, by substituting the notch fatigue endurance limits in
place of the plain fatigue endurance limits. An empirical expression for
out-of-phase loading conditions was proposed by Soon-Bok Lee (1985)
[24]. Starting from the Gough and Pollard criterion expressed by Eq.
(1a), they introduced an exponent dependent on the out-of-phase angle
φ:

[(
Δσ
Δσ0

)μ

+

(
Δτ
Δτ0

)μ ]1μ
= 1 with μ = 2(1+ βsinφ) (2)

where β = 0.3 for ductile materials and β = 0.15 for brittle materials
based on experimental results related to several materials.

In addition to these empirical formulations, multiscale criteria were
proposed by Dang Van [25] and Papadopoulos [26]. The fundamental
concept behind these approaches is that crack initiation is a microscopic
phenomenon occurring at the grain size. This idea is based on experi-
mental observations of metal fatigue behavior, conducted on both single
crystals and polycrystalline agglomerates. In particular, Papadopoulos
[26] formulated a criterion valid also for out-of-phase loadings, closely
resembling the arc of ellipse proposed by Gough and Pollard [23], as
expressed by Eq. (1b):
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Additional criteria for evaluating crack initiation focus on assessing the
stress state on a critical plane where fatigue damage reaches its
maximum.

Findley [27] proposed determining the orientation of the critical
plane based on a linear combination of the shear stress amplitude and
maximum normal stress. Later on, Matake [28] defined the critical plane
as the plane experiencing the maximum shear stress amplitude. Similar
to Findley [27], Matake used a damage parameter based on evaluating a
linear combination of the shear stress amplitude and the maximum
normal stress on the critical plane. McDiarmid [28] and Susmel and
Lazzarin [29] also defined the critical plane as the plane on which the
shear stress amplitude attains its maximum. Specifically, McDiarmid
[30] considered different material constants compared to Matake’s
model and incorporated the concept of Case A and Case B cracks
introduced by Brown and Miller [16]. Susmel and Lazzarin [29],
building on the theory of cyclic deformation in single crystals, proposed
a criterion based on evaluating both the shear stress amplitude and the
maximum normal stress acting on the critical plane. Another critical
plane-based criterion was introduced by Carpinteri and Spagnoli [31],
correlating the critical plane orientation with the averaged principal
stress direction. More recently, Liu and Mahadevan [32] proposed that
the critical plane not only depends on the stress state, but also on the
material. Moreover, it may differ from the actual fracture plane, which is
defined as the plane experiencing the maximum normal stress
amplitude.

The crack front shape under mixed-mode I/III loadings was exten-
sively investigated during the past decades. Under these loading con-
ditions, the initial crack front tends to fragment into multiple cracks,
called facets, thereby reducing mode III contribution and reaching a
pure mode I condition. Moreover, as the crack front grows, some facets
may merge resulting in a stepped fracture surface that gradually be-
comes coarser with crack growth [33]. Crack patterns under combined
mode I/III loading were studied experimentally since the pioneering
works by Sommer [34] and Knauss [35] who investigated facet nucle-
ation in glass and polymer, respectively. Such complex crack patterns
have also been observed in other materials, including metals [36,22,37],
rocks [38] and polymers [39,40,41]. However, the characterization of

the segmented crack front and the mechanism of facet nucleation re-
mains a challenging problem. Furthermore, as the crack propagates,
facets can merge and shield each other, leading to facet coarsening, as
pointed out by Pham and Ravi-Chandar [42].

Geometrical features such as the distance between the facets and
their twisting angles, are strongly dependent on loading conditions and
considered material. Eberlein et al. [43] investigated crack onset and
propagation by performing mixed mode I/III fatigue tests. Particularly,
they analyzed how the magnitude of mode III affected various geometric
features such as the projected length of the facets and their characteristic
angles. Moreover, they observed experimentally that in some configu-
rations the crack propagates continuously, without fragmentation in
multiple cracks. This behavior was registered for a threshold value of the
ratio between the mode III and mode I Stress Intensity Factors (SIF) KIII/
KI< 0.57. Cambonie and Lazarus [44] observed facets for 0.1< KIII/KI<

0.6 in three-point bending tests conducted on PMMA samples. Crack
growth under mixed-mode I/III loading was deeply investigated also by
Pham and Ravi-Chandar [42,45]. For this purpose, they tested specially
designed samples made of Homalite H-100 and glass evidencing the
presence of facets for KIII/KI = 0.58 [42] and KIII/KI = 0.001 [45].

Facets nucleation under combined mode I/III loading was investi-
gated through the numerical implementation of the FFM approach, by
considering fracture plane as the one experiencing the maximum normal
stress. Yosibash and Mittelman [46] predicted the initiation load of a
single facet from a sharp V-notch edge, assuming an idealized crack
shape. Doitrand and Leguillon [47] investigated the nucleation of a
periodic array of facets from a primary crack, assuming a crack profile
defined by stress isocontours. However, in both studies, the predicted
loads at facet initiation were larger than those obtained for straight
crack growth by implementing LEFM. Continuing within the FFM
framework, the competition between straight crack propagation and
facets nucleation from a primary crack front was investigated by Doi-
trand et al. [48]. This study accurately discussed the influence of the
mode mixity ratio KIII/KI and T-stress magnitude on crack segmentation.

In this context, the present study investigates the fatigue behavior of
sharply V-notched rounded bars subjected to combined axial/bending
and torsion loadings. The geometry under investigation is depicted in
Fig. 1. Key geometrical parameters include the notch opening angle ω,
the net-section radius R, and the notch depth a.

Given the complexity of the multiaxial fatigue problem discussed
previously, this study assumes that crack initiation and early propaga-
tion occur along the notch bisector plane. This assumption is adopted to
simplify the problem so that it can easily be treated in engineering
design practice. The schematization of the circumferential-shaped crack
in the cross-sectional area is depicted in Fig. 1. Under this hypothesis, a
semi-analytical implementation of the FFM approach will be presented
to assess fatigue endurance limit predictions.

3. FFM implementation

The FFM approach proposed by Leguillon [1] is able to provide
strength estimations based on the simultaneous fulfillment of a point-
wise stress condition and an energy balance. Both requirements must
be satisfied over a critical distance, which becomes a structural
parameter dependent on the material properties and the geometry under
investigation. In this study, inspired by Gough and Pollard’s formulation
(Eq. (1a)), we chose to express the stress condition as an ellipse surface
in the normal-shear stress space involving the expressions of the normal
Δσyy(x) and shearing Δτyz(x) stress field ranges referred to axial/
bending and torsion loadings, respectively. The energy balance is writ-
ten based on the simple empirical condition proposed by Hutchison and
Suo [49], considering a circumferential-shaped crack. These two con-
ditions yield:
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(
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where ΔKI(c) and ΔKIII(c) represent the mode I and mode III ranges of
the Stress Intensity Factors (SIFs) associated to a small crack c origi-
nating from the notch root, respectively. ΔKI,th and ΔKIII,th denote the
corresponding mode I and mode III threshold values of the SIFs ranges.
Following the approach proposed by Cornetti et al. [2], and thus
considering an averaged stress condition, the FFM criterion can be
reformulated as follows:

In Eqs. (4) and (5), we use a Cartesian coordinate system instead of
cylindrical coordinates. This choice enables Eqs. (4) and (5), under pure
mode III loading conditions, to revert to the formulations proposed by
Campagnolo and Sapora [14] to investigate the torsional fatigue
endurance limit of V-notched bars.

Both FFM approaches are defined by a system of two equations with
two unknowns: the critical crack advancement ℓc and the axial/bending
fatigue endurance limit range Δσf, implicitly embedded in the expres-
sion of the stress fields (Eq. (6a, b)) and the SIFs (Eq. (9a, b)). The
torsional fatigue endurance limit can be expressed as Δτf = Ω•Δσf,
where Ω indicates the nominal biaxiality ratio. For a specific value of Ω,
the systems are solved by using the nonlinear system solver fsolve
available in Matlab and considering a Trust-region-dogleg algorithm.
This function enables us to solve a system of two equations by starting

Fig. 1. Three-dimensional view and cross-sectional area schematization of a V-notched rounded bar under mixed-mode I/III loading. External loads are ΔP = Δσ⋅πR2,
ΔMb = Δσ⋅πR3/4 and ΔMt = Δτ⋅πR3/2.
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(5)
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from initial guesses for the variables and iteratively minimizing the sum
of squares of the equations.

The implementation of the FFM approach requires the knowledge of
the stress fields Δσyy(x), Δτyz(x) and SIFs ΔKI(c), ΔKIII(c) functions. As
concerns the stress fields, according to the pioneering works byWilliams
[50] for mode I and by Qian and Hasebe [51] for mode III, we know that
they are singular. The asymptotic expressions ahead the notch tip (along
the notch bisector) are:

Δσyy(x) =
ΔKV

I

(2πx)1− λI
(6a)

Δτyz(x) =
ΔKV

III

(2πx)1− λIII
(6b)

where ΔKI
V and ΔKIII

V are the mode I and mode III notch stress intensity
factor (NSIF) ranges and λI, λIII denote the mode I and mode III eigen-
values. The NSIFs are defined as:

ΔKV
I = lim

x→0

[
Δσyy(x)⋅(2πx)1− λI

]
(7a)

ΔKV
III = lim

x→0

[
Δτyz(x)⋅(2πx)1− λIII

]
(7b)

λIII can be determined by exploiting the expression provided by Qian and
Hasebe [51]:

λIII =
π

2π − ω (8a)

Meanwhile, the value of λI is given by the smallest, real and positive root
of the following equation:

sin[(2π − ω)λI ] − λIsinω = 0 (8b)

They range between 0.5 for ω = 0◦ and 1 for ω = 180◦, when the sin-
gularity disappears and a straight edge is present. Values are reported
every 30◦ in Table 1.

Considering the geometry under investigation, the NSIFs ΔKI
V and

ΔKIII
V were evaluated by Noda and Takase [52] and Zappalorto et al.

[53], respectively. Noda and Takase calculated the mode I NSIF using
the singular integral equation of the body force method. On the basis of
notation (7a) for the NSIF, ΔKI

V can be reformulated as:

ΔKV
I = k1(ω, a/R)a1− λIΔσ (9a)

where Δσ is the nominal normal stress range on the net cross-sectional
area. The shape functions k1 were determined for different values of ω
ranging between 15◦ and 90◦ and for 0 < a/Rgross < 0.9, being Rgross = R
+ a. k1 values are reported inAppendices A and B for axial and bending
loadings, respectively. Note that for a/Rgross → 0, the notch can be
considered shallow and the shape functions revert to the case of a V-
notch in a semi-infinite plate under tension.

Zappalorto et al. [53] evaluated the mode III NSIF through FEA and

proposed the following formulation:

ΔKV
III = k3(ω, a/R)R1− λIIIΔτ (9b)

where Δτ is the nominal shearing stress range on the net cross-sectional
area. Accurate expressions of k3(ω, a/R) were computed every 30◦ for 1/
20 ≤ a/R ≤ 1 using quadratic polynomials. For intermediate values of ω
a linear interpolation is considered as presented in Appendix C.

Regarding the ΔKI(c) and ΔKIII(c) functions, they can be approxi-
mated considering the following asymptotic expressions:

ΔKI(c) = ΛI(ω)ΔKV
I c

λI − 0.5 (10a)

ΔKIII(c) = ΛIII(ω)ΔKV
IIIc

λIII − 0.5 (10b)

Eq. (10a) was proposed by Norio and Jiro [54] and very accurate ΛI
values were provided lately by Philipps et al. [55] and Livieri and Tovo
[56] for every 30◦ increment. Additionally, for intermediate angle
values, Savruk and Rytsar [57] proposed an accurate analytical
expression, with deviations from the ΛI values determined by Philipps
et al. [55] being less than 1%. Considering α = π − ω/2 and the gamma
function Γ, the approximate analytical expression for ΛI(ω) in Eq. (10a)
yields:

ΛI(ω) =
(2π)λI

π
̅̅̅̅̅̅
2ψ

√
Γ(λI/ψ)

Γ(λI/ψ + 0.5)
(11a)

where:

ψ =
πξ2

2
(11b)

ξ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2γ + sin(2γ)
γ2 − sin2

(γ)

√

(11c)

Γ(λI/ψ) =
∫ ∞

0
tλI/ψ− 1e− tdt (11d)

approximating function was proposed by Duan et al. [58] for ΛIII. Ac-
cording to definition (7b) for the NSIF, it yields:

ΛIII(ω) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
π

λIII(2π)2(1− λIII)

√

(12)

Finally, it is worth noting that the FFM approach can be implemented by
using the asymptotic expressions of the stress field and SIF ranges only
when the finite crack advancement ℓc is small if compared to the net-
section radius R. Otherwise, the stress gradient would be not negli-
gible and should be included in Eqs. (4), (5).

4. Material properties

To implement the FFM approach and compare fatigue endurance
limit predictions with experimental results available in the scientific
literature, four material properties are necessary: Δσ0 and Δτ0, repre-
senting the axial/bending and torsional fatigue endurance limits of the
plain material; ΔKI,th and ΔKIII,th, denoting the threshold values of the
mode I andmode III SIF ranges of the cracked material, for the same load
ratio of the considered multiaxial data.

Regarding the fatigue endurance limits, they can be obtained by
testing cylindrical plain samples and considering the stress range at
2•106 or 107 cycles. Values of Δσ0 and Δτ0 are available in the literature
for different materials and will be presented and discussed in Section 5.

As concerns the values of ΔKI,th and ΔKIII,th, they are more complex
to determine experimentally. Ideally, ΔKI,th represents the value of the
SIF range below which crack growth is not observed [59]. Various
experimental techniques are available for determining the value of ΔKI,

Table 1
λI, λIII, ΛI and ΛIII values every 30◦. Note that the values of ΛI and ΛIII differ from
those presented in Philipps et al. [55] and Duan et al. [58] due to the different
definitions of the NSIFs expressed in Eqs. (7a, b).

ω
[◦]

λI λIII ΛI

(from Philipps
et al. [55])

ΛI

(from Savruk
and Rytsar [57])

ΛIII

(from Duan
et al. [58])

0 0.5000 0.5000 1.000 1.000 1.000
30 0.5015 0.5455 1.005 1.002 1.041
60 0.5122 0.6000 1.017 1.013 1.097
90 0.5445 0.6667 1.059 1.052 1.176
120 0.6157 0.7500 1.161 1.150 1.293
150 0.7520 0.8571 1.394 1.384 1.472
180 1.0000 1.0000 1.985 1.995 1.773
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th. For instance, these include the load reduction method, standardized
by the ISO 12108 [60] and ASTM 647 [61] testing protocols. This
method involves stepwise load reduction at a constant RL, in a pre-
cracked sample. Alternative procedures have been proposed such as
the Kmax constant method [62] and the far-field cyclic compression
procedure [63]. However, it is worth noting that the ΔKI,th values ob-
tained through these methods may differ due to the distinct mechanisms
involved in the test procedure, related for instance to the fracture sur-
face conditions and the plasticity induced at the crack tip [64,65].
Furthermore, Pearson [66] showed that small cracks may propagate
even below the large-crack threshold defined by the ASTM test
procedure.

Determining the threshold value of the mode III SIF range ΔKIII,th is
extremely complex. Indeed, the comprehension of the mechanisms
influencing the torsional fatigue phenomenon is significantly behind
that of mode I, making it challenging to establish an analogous defini-
tion for mode III. Practical difficulties encountered in experimentally
deriving ΔKIII,th are primarily associated with:

• mode transition which occurs before crack arrest. According to many
researchers ([67,68,69,70]), fatigue crack propagation under torsion
loadings typically results in a macroscopically flat (mode III) fracture
surface for short cracks and high ΔKIII values. As the crack length
increases, the crack growth rate decreases due to friction between
the crack surfaces. Commonly, this frictional interference between
crack faces leads to a change from a macroscopically flat (mode III)
to a factory roof (mode I) type of fracture surface. This transition has
been considered to define ΔKIII,th [68]. However, the threshold value
thus defined is no longer comparable to that derived in mode I, as the
crack continues to grow in a different mode and does not arrest.
Moreover, this ΔKIII,th value is not a material property since the
frictional contact between crack faces makes it dependent on the
crack length;

• the extensive plastic region which can develop into small cracked
bars;

• the threshold value varies depending on the tested sample geometry
due to load dissipation on crack flanks and interference between
crack faces. For instance, slit samples yield lower ΔKIII,th values with
respect to pre-cracked samples in tension, while higher threshold
values are obtained from V-notched rounded bars, even with iden-
tical notch tip radii as the slit specimens [70].

To overcome these difficulties in determining the ΔKIII,th value,
several researchers attempted to establish a correlation between the
threshold value of the mode III SIF range and the ΔKI,th value through a
correlation factor α, such as ΔKIII,th = α • ΔKI,th.

Regarding the coefficient α, different values have been suggested in
the literature based on analytical investigations and experimental re-
sults. Initially, Pook and Sharples [71] proposed α = 1.35 based on
analytical considerations and α = 1.25 by considering ΔKIII,th values
obtained from experimental tests on mild steels. Later, Pook [72] sug-
gested implementing α = 1 on the basis of a larger database of experi-
mental tests conducted on metals. The same α value was proposed by
Richard et al. [73] based on experimental findings from ferritic steel,
which exhibited a propensity for mode III crack propagation. The same
authors suggested a higher coefficient α = 1.6–3 based on experimental
results obtained on austenitic steel and Al 7075-T651, metals that were
more prone to forming a factory roof type fracture surface. A lower value
of α = 0.85, always based on experimental results, was suggested by
different authors [74,75,76]. The value of the coefficient α was derived
also theoretically by Beretta and Murakami [77] by considering as mode
III threshold condition the non-growth of mode I branched cracks.
Finally, Tanaka [78], based on results obtained by torsional fatigue
testing of steel bars, suggested using a different coefficient value for
crack initiation (α = 1) and propagation (α = 2–2.4) thresholds.

Since there is no unanimous agreement in the scientific literature

regarding the α value, in this study α = 1 is considered, consistent with
the choice made by Campagnolo and Sapora [14], who investigated
mode III fatigue crack onset through the FFM approach.

5. Comparison with experimental data

To validate the accuracy of fatigue endurance limit predictions ob-
tained through the FFM approach, under the assumptions discussed in
the previous sections, a comprehensive database of 57 multiaxial fatigue
datasets is used. The data are extracted from the scientific literature
considering sharply V-notched rounded bars, subjected to multiaxial
mode I/III fatigue loading with a load ratio RL = − 1. Several materials
have been considered, including different types of steels (500 MPa ≤

σUTS≤ 1224 MPa), titanium alloys Ti-6Al-4 V (σUTS= 978 MPa) and cast
iron grades (378 MPa ≤ σUTS ≤ 485 MPa). Materials properties, along
with experimental fatigue endurance limit ranges Δτf,exp, Δσf,exp, and the
main geometrical features, are reported in Table 2. A wide range of
geometries (0.13 ≤ a/R ≤ 1 and 35◦ ≤ ω ≤ 90◦) and multiaxial loading
conditions (0.53 ≤ Δσf,exp/Δτf,exp ≤ 8.20) have been investigated.

In axial-torsion fatigue tests, multiaxial testing machines are typi-
cally used, combining an axial actuator that applies a given force ΔP
with a torsional actuator that applies a torque ΔMt ([15,22]). These two
actuators operate independently, enabling the desired values of Δσ and
Δτ to be achieved by adjusting the force and torque, with phase shift
angles φ if needed.

For bending-torsion loading conditions, multiaxial testing setups
usually consist of two independent actuators connected to one end of the
specimen via a load lever, while the other end of the specimen is fixed.
The load applied by each actuator can be defined based on the target
stresses and phase shift angles on the specimen’s net section (for more
details the Reader is referred to Refs. [15,79]).

Fatigue endurance limit data under in-phase axial-torsion loading for
a low carbon steel were obtained by Quilafku [80] through testing
samples with a notch opening angle ω = 35◦ and notch root radius ρ of
0.2 mm and 0.4 mm. The axial and torsional fatigue endurance limits of
the plain and notched samples were defined at 107 cycles, while the
values of ΔKI,th and ΔKIII,th were not measured in the paper. To apply the
FFM approach, we considered the ΔKI,th value determined for this
dataset by Susmel and Taylor [76]. In their study, Susmel and Taylor
proposed an implementation of TCD to investigate torsional fatigue
endurance limits in notched components. They determined the charac-
teristic material length L required for implementing the TCD approach
through a numerical procedure, which involved calculating the stress
field ahead of the notch tip using FE analyses. The characteristic mate-
rial length was then determined by identifying the distance from the
notch tip at which the stress equaled the plain fatigue endurance limit.
The value of ΔKI,th can thus easily be obtained from the value of the
characteristic material length by considering the following relationship:
L= 1/π (ΔKI,th/Δσ0)2. For this dataset, as well as the others, the value of
ΔKIII,th is set equal to ΔKI,th, as previously discussed in Section 4.

Gough [81] generated a fatigue endurance limits dataset related to
different steels by testing sharply V-notched bars (0.005 mm ≤ ρ ≤ 0.03
mm) with ω = 55◦ and a ratio between the notch depth and the net
radius a/R = 0.13. These data were obtained by Gough under several in-
phase bending-torsion loading conditions (0.53 ≤ Δσf,exp/Δτf,exp ≤

8.20). Also in this case, fatigue endurance limits were defined at 107

cycles, and the threshold values of SIF ranges were not reported. To
implement the FFM approach, we considered the ΔKI,th values deter-
mined for these materials by Susmel and Taylor [76], as described
previously. Campagnolo and Sapora [14], investigating the mode III
fatigue crack onset in V-notched bars, adopted a different value of ΔKI,th
for the steels tested by Gough [81]. They derived ΔKI,th from an
empirical equation proposed by Atzori et al. [82], which expresses ΔKI,th
as a function of the axial fatigue endurance limit of the plain material
Δσ0 and the ultimate tensile stress σUTS. It is worth noting that the for-
mula proposed by Atzori et al. [82] provides a rough estimation of ΔKI,th
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suitable for engineering estimations, as clarified in the original paper
from the authors. For the sake of completeness, Fig. 2 illustrates the
experimental data obtained by Gough [81] by testing V-notched bars
under pure torsion, and the fatigue endurance limit predictions provided
by the avg-FFM approach defined by Eq. (5), considering pure mode III
loading conditions. Specifically, Fig. 2a compares theoretical pre-
dictions and experimental results considering the material properties

determined by Susmel and Taylor [76], while in Fig. 2b the material
properties implemented by Campagnolo and Sapora [14] are consid-
ered. Discrepancies between theoretical predictions and experimental
results are comparable in both scenarios.

Experimental fatigue data [83,84,22,79] were obtained by testing
90◦ V-notched bars, with a notch root radius ρ = 0.1 mm, under both in-
phase and out-of-phase axial-torsion [83,84,22] and bending-torsion

Table 2
Multiaxial fatigue endurance limit data (RL= − 1): material properties, main geometrical dimensions of the V-notched bars (Fig. 1), experimental fatigue endurance
limits Δτf,exp, Δσf,exp under multiaxial loading conditions and deviations computed as: [(Δσf − Δσf,exp) / Δσf,exp]× 100. For each experimental dataset Ω = Δτf,exp / Δσf,
exp. For further information on experimental procedures and data scatter, please refer to the respective references.

Material
Loading conditions×

Ref. φ σUTS
[MPa]

Δσ0
[MPa]

Δτ0
[MPa]

ΔKth
#

[MPa√m]
ω
[◦]

a/R Δσf,exp
[MPa]

Δτf,exp
[MPa]

FFM
Eq. (4)
Dev %

Avg-FFM
Eq. (5)
Dev %

Low carbon steel
A/T

[80] 0◦ 500 424 362 9.0* 35 0.67 200 100 − 17.8 − 18.7
      159 79 3.3 2.2

0.4 % C steel (normalized)
B/T

[81] 0◦ 639 664 414 12.4* 55 0.13 153
240

280
215

25.5
21.4

15.9
15.5

        297 149 14.7 11.4
        332 103 7.9 5.8
        361 55 1.8 0.4

3 % Ni steel
B/T

[81] 0◦ 518 686 410 14.6* 55 0.13 145 266 47.0 40.5
        253 213 37.1 30.5
        343 167 16.7 13.4
        391 114 8.0 5.9
        418 51 3.5 2.1

3/3.5 % Ni steel
B/T

[81] 0◦ 712 704 534 21.6* 55 0.13 351
429

307
217

41.5
35.5

34.2
31.2

         531 157 16.5 14.1
         572 80 10.9 9.3
Cr-Va steel
B/T

[81] 0◦ 740 858 516 15.2* 55 0.13 155 295 43.2 36.7
        275 234 32.7 26.5
        344 177 21.1 17.5
        421 116 5.4 3.5

         422 56 7.2 5.7
3.5 % NiCr steel (normal impact)
B/T

[81] 0◦ 882 1080 704 19.4* 55 0.13 206
340

376
291

42.4
37.3

36.6
30.8

        456 228 17.2 13.8
        522 154 7.9 5.9
        582 74 − 0.7 − 2.1

3.5 % NiCr steel
(low impact)
B/T

[81] 0◦ 883 1018 648 17.9* 55 0.13 336
397

295
199

26.8
24.2

20.7
20.6

        448 134 16.1 13.9
         471 64 13.1 11.5
NiCrMo steel
B/T

[81] 0◦ 1224 1188 686 18.2* 55 0.13 208 390 35.5 25.3
        340 295 28.9 22.9
        475 248 5.4 2.4
        506 151 4.9 2.9

         531 73 2.1 0.7
Ti-6Al-4 V
B/T

[79] 0◦ 978 1016 847 21.0+ 90 1.0 208 361 28.6 14.4
 90◦       202 350 32.7 18.0

A/T [22] 0◦ 978 951 777 16.9+ 90 1.0 188 113 43.6 34.3
  90◦       192 115 40.3 31.2
EN-GJS400
A/T

[84] 0◦ 378 301 291 14.9+ 90 0.7 148 148 27.9 16.1
 90◦       165 165 14.5 4.0
 0◦       199 118 7.2 − 0.7

  90◦       172 103 24.4 15.3
39NiCrMo3
A/T

[83] 0◦ 995 630 531 26.3+ 90 0.7 299 299 13.6 3.5
 90◦       234 234 45.3 32.3

  0◦       359 216 6.7 − 0.9
  0◦       246 394 11.0 − 0.9
C40
A/T

[20] 0◦ 715 528 392 23.5+ 90 0.7 202 202 46.7 33.4
 90◦       199 199 48.7 35.2

EN-GJS-600
A/T

[85] 0◦ 485 340 320 13.3+ 60 0.4 147 147 10.8 5.1
 90◦       186 186 − 12.5 − 17.0

EN-GJS-450
A/T

[85] 0◦ 476 360 300 12.6+ 60 0.4 131 131 18.1 12.1
 90◦       172 172 − 10.1 − 14.7

EN-GJS-400
A/T

[85] 0◦ 378 290 280 14.3+ 90 0.7 139 139 30.4 18.4
 90◦       161 161 12.3 2.0

  0◦       173 104 18.4 9.7
  90◦       158 95 29.6 20.1

× A, axial; B, bending; T, torsion.
# ΔKth = ΔKI,th = ΔKIII,th since we considered ΔKIII,th = α • ΔKI,th with α = 1, as discussed in Section 3.
* ΔKI,th has been derived by Susmel and Taylor [76].
+ ΔKI,th has been determined by assuming the crack case equivalent to the sharp V-notch case with ω = 90◦ under mode I loading.
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[79] loading conditions, with a phase angle between axial/bending and
torsion loadings φ = 90◦. Specifically, Berto et al. [83] tested samples
made of 39NiCrMo3 steel. Berto et al. [84] generated data for a cast iron
grade EN-GJS400, while Berto et al. [22] and Meneghetti et al. [79]
tested samples made of titanium alloy Ti-6Al-4 V. In these studies, fa-
tigue endurance limits were assessed at 2•106 cycles and the value of the
high-cycle NSIF range ΔKIA was determined at NA = 2•106 cycles by
testing 90◦ V-notched bars under axial/bending fatigue loading. For
these materials, to implement the FFM approach, the value of ΔKI,th was
considered equal to ΔKIA, assuming the crack case equivalent to the
sharp V-notch case with ω = 90◦ under mode I loading.

Atzori et al. [20] conducted tests on 90◦ V-notched bars made of C40
carbon steel (in a normalized state), under both in-phase (φ = 0◦) and
out-of-phase (φ = 90◦) axial-torsion loading conditions. These samples
are characterized by a larger value of the notch root radius ρ = 0.5 mm
compared to the other datasets under consideration. Fatigue endurance
limits were evaluated at 2•106 cycles, while neither ΔKI,th nor ΔKIA were
reported in the original paper. The value of ΔKIA was thus evaluated
through Eq. (9a) by considering the uniaxial fatigue endurance limit of
the V-notched bar at 2•106 cycles. Considering the assumption adopted
before, ΔKI,th was set equal to ΔKIA, assuming the crack case equivalent
to the sharp V-notch case.

Finally, Pedranz et al. [85] generated axial-torsion fatigue data
related to three different cast iron grades: (i) EN-GJS-600 with pearlitic
matrix, (ii) EN-GJS-450 with ferritic matrix and high Si continent and
(ii) EN-GJS-400 with ferritic-pearlitic matrix. They tested V-notched
bars (with ω = 60◦ and ρ = 0.2 mm or ω = 90◦ and ρ = 0.1 mm) under
both in-phase (φ = 0◦) and out-of-phase (φ = 90◦) multiaxial loading
conditions. Regarding the samples made of EN-GJS-600 and EN-GJS-
450, axial fatigue endurance limits were assessed at 5•106 cycles
whereas the torsional fatigue endurance limits were evaluated at 3•106

cycles. Considering instead the cast iron grade EN-GJS-400, axial fatigue
endurance limits of plain and notched samples were evaluated at 3•106

and 2•106 cycles, respectively. Similarly, torsional fatigue endurance
limits of plain and notched samples were assessed at 2•106 and 5•106

cycles, respectively. To implement the FFM approach, the value of ΔKI,th
was determined by computing the NSIF range ΔKIA using Eq. (9a)
assuming the crack case equivalent to the sharp V-notch case, as dis-
cussed previously.

The deviations between fatigue endurance limit predictions provided

by the FFM and avg-FFM approaches defined by Eqs. (4) and (5),
respectively, and experimental results, are reported in the last two col-
umns of Table 2. The ratio between the critical crack advancement ℓc
and the net section radius R ranges between 0.01 and 0.09 for the FFM
approach and between 0.03 and 0.3 for the avg-FFM method. These
values of ℓc/R confirm that the theoretical approaches can be imple-
mented by using the asymptotic expressions of the stress field and SIF
ranges, as ℓc is considerably smaller than R.

The agreement between FFM fatigue predictions and experimental
data is deemed satisfactory, considering the many engineering as-
sumptions underlying the FFM approaches and the approximations
involved in determining ΔKI,th and ΔKIII,th values. Deviations are
generally under 35% andmore conservative predictions are provided by
the avg-FFM approach. This proves that the presented semi-analytical
approach is a reliable tool for obtaining fatigue life predictions for
different sharply V-notched bars (0.13 ≤ a/R ≤ 1 and 35◦ ≤ ω ≤ 90◦)
made of several materials (500MPa≤ σUTS≤ 1224 MPa) under different
multiaxial loading conditions (0.53 ≤ Δσf,exp/Δτf,exp ≤ 8.20). Further-
more, we observed good agreement between fatigue strength pre-
dictions and experimental results for both in-phase (φ = 0◦) and out-of-
phase (φ = 90◦) loading conditions. However, it is important to note that
for some datasets, especially for those generated by Gough and Pollard
[23], the FFM approach defined by Eq. (4) shows deviations greater than
40%. These discrepancies can be explained by the adopted assumptions,
which are simplistic and do not fully account for all the physical phe-
nomena influencing the multiaxial fatigue process. Furthermore, it is
worth noting that in previous studies the experimental data provided by
Gough and Pollard [23] were analyzed also in previous studies, such as
Refs. [76,86] where a linear elastic approach has been adopted. More in
detail, Ref. [76] was focused only on torsional fatigue endurance limits
and maximum deviations between theoretical estimates and experi-
mental data were between 30–35 %, while reduced deviations were
obtained in Ref. [86] since the material properties required to apply the
fatigue approach were fitted on the experimental results with the aim of
minimizing the deviations. A fitting of the material properties on the
experimental results has not been performed in this work to apply the
FFM, therefore the deviations between theoretical estimates and
experimental data remained rather high.

Fig. 2. Fatigue endurance limit predictions obtained through the avg-FFM approach for pure mode III as a function of R/ℓth, where ℓth = (ΔKIII,th/Δτ0)2 represents
the mode III threshold crack length. In Fig. 2a, the material properties exploited by Susmel and Taylor [76] are implemented while in Fig. 2b the material properties
estimated by Campagnolo and Sapora [14] are considered.
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6. Conclusions

This work introduced a novel implementation of the FFM coupled
criterion to investigate fatigue endurance limits in sharply V-notched
bars under combined axial/bending and torsional loading conditions.
According to the FFM approach, both a stress condition and an energy
balance have to be simultaneously fulfilled to assess the fatigue strength.
In this study, the fracture was supposed to initiate along the notch
bisector plane with a circumferential-shaped crack. Moreover, to
implement the FFM criterion, we considered the threshold value of the
mode III SIF range ΔKIII,th equal to ΔKI,th. These hypotheses were thor-
oughly discussed. A semi-analytical implementation of the FFM
approach was then presented. Fatigue life predictions were compared
with a large dataset comprehensive of experimental results related to
several metals (500 MPa ≤ σUTS ≤ 1224 MPa). Different V-notched
structures were considered, presenting an opening angle ω ranging be-
tween 35◦ and 90◦ and a ratio between the notch depth and the net-
radius a/R varying between 0.13 and 1. This comparison proved that
the FFM approach can provide accurate fatigue endurance limit pre-
dictions for different multiaxial loading conditions, under both in-phase
and out-of-phase loading conditions. Although the assumptions adopted

are simplified and do not fully capture all the physical phenomena
affecting the multiaxial fatigue process, e.g. plasticity, friction between
crack faces, and mode I crack branching, the model demonstrates its
reliability as a tool for obtaining semi-analytical fatigue life predictions,
which are valuable for engineering design practice.
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Appendix A

Shape function k1(ω, a/R) values of the notch stress intensity factor (NSIF) range ΔKI
V, considering axial loading conditions, for different values of

the opening angle ω ranging between 15◦ and 90◦ and for 0< a/Rgross< 0.9. These values are obtained in agreement with the NSIF notation defined in
Eq. (7a).

Table A1
k1(ω, a/R) from Noda and Takase [52].

ω = 15◦ ω = 30◦ ω = 45◦ ω = 60◦ ω = 90◦

a/Rgross a/R k1(ω,a/R) k1(ω,a/R) k1(ω,a/R) k1(ω,a/R) k1(ω,a/R)
→ 0 → 0 1.9927 2.0026 2.0244 2.0563 2.1371
0.01 0.0101 1.9668 1.9705 1.9880 2.0213 2.1051
0.02 0.0204 1.9389 1.9465 1.9657 1.9946 2.0752
0.05 0.0526 1.8532 1.8624 1.8807 1.9082 1.9811
0.1 0.1111 1.7078 1.7142 1.7309 1.7561 1.8208
0.2 0.2500 1.4447 1.4519 1.4677 1.4888 1.5430
0.3 0.4286 1.2209 1.2296 1.2430 1.2605 1.3079
0.4 0.6667 1.0322 1.0393 1.0507 1.0672 1.1070
0.5 1.0000 0.8688 0.8751 0.8847 0.8986 0.9275
0.6 1.5000 0.7231 0.7269 0.7349 0.7464 0.7801
0.7 2.3333 0.5848 0.5868 0.5952 0.6046 0.6369
0.8 4.0000 0.4484 0.4506 0.4555 0.4647 0.4980
0.9 9.0000 0.2975 0.3024 0.3057 0.3126 0.3441

Appendix B

Shape function k1(ω, a/R) values of the notch stress intensity factor (NSIF) range ΔKI
V, considering bending loading conditions, for different values

of the opening angle ω ranging between 15◦ and 90◦ and for 0< a/Rgross< 0.9. These values are obtained in agreement with the NSIF notation defined
in Eq. (7a).

Table B1
k1(ω, a/R) from Noda and Takase [52].

ω = 15◦ ω = 30◦ ω = 45◦ ω = 60◦ ω = 90◦

a/Rgross a/R k1(ω,a/R) k1(ω,a/R) k1(ω,a/R) k1(ω,a/R) k1(ω,a/R)
→ 0 → 0 1.9927 2.0026 2.0244 2.0563 2.1371
0.02 0.0204 1.8732 1.8784 1.8969 1.9267 2.0089
0.05 0.0526 1.7317 1.7402 1.7572 1.7828 1.8508
0.1 0.1111 1.5244 1.5260 1.5447 1.5669 1.6221
0.2 0.2500 1.2116 1.2176 1.2288 1.2441 1.2844
0.3 0.4286 0.9864 0.9913 0.9981 1.0117 1.0472
0.4 0.6667 0.8130 0.8150 0.8219 0.8328 0.8655
0.5 1.0000 0.6716 0.6729 0.6802 0.6889 0.7224

(continued on next page)
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Table B1 (continued )

ω = 15◦ ω = 30◦ ω = 45◦ ω = 60◦ ω = 90◦

0.6 1.5000 0.5500 0.5527 0.5587 0.5675 0.6005
0.7 2.3333 0.4424 0.4446 0.4494 0.4565 0.4915
0.8 4.0000 0.3388 0.3404 0.3442 0.3516 0.3825
0.9 9.0000 0.2252 0.2263 0.2308 0.2365 0.2650

Appendix C

Shape functions k3(ω, η = a/R) proposed by Zappalorto et al. [53], following the NSIF notation defined in Eq. (7b), can be expressed as:

k3(30◦, η) = 5.2125⋅10− 4η− 2 − 2.6341⋅10− 2η− 1 + 0.7454
k3(60◦, η) = 3.6731⋅10− 4η− 2 − 2.1861⋅10− 2η− 1 + 0.8064
k3(90◦, η) = 1.9675⋅10− 4η− 2 − 1.5992⋅10− 2η− 1 + 0.8718
k3(120◦, η) = 0.1134⋅10− 4η− 2 − 0.7964⋅10− 2η− 1 + 0.9274

(B1)

These expressions are valid within the range 1/20 ≤ η ≤ 1. For intermediate opening amplitudes a linear interpolation based on λ3 can be considered:

k3,ω = k3,ω1 +
k3,ω2 − k3,ω1

λ3,ω2 − λ3,ω1

(
λ3,ω − λ3,ω1

)
(B2)

Data availability

Data will be made available on request.
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