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Abstract 

Broadening current knowledge about the complex relationship at the blood-vessel wall interface 

is a main challenge in hemodynamics research. Moving from the consideration that wall shear 

stress (WSS) provides a signature for the near-wall velocity dynamics and vorticity is considered 

the skeleton of fluid motion, here we present a unified theory demonstrating the existing link 

between surface vorticity (SV) and WSS topological skeletons, the latter recently emerged as a 

predictor of vascular disease. In detail, the analysis focused on WSS and SV fixed points, i.e. 

points where the respective fields vanish, as they play a major role in shaping the main vector 

field features. The theoretical analysis proves that: (i) all SV fixed points on the luminal surface 

must necessarily be WSS fixed points, although with differences in nature and stability; (ii) a WSS 

fixed point is not necessarily a SV fixed point. In the former case, WSS fixed points are the 

consequence of flow patterns where only shear contributes to vorticity; in the latter case, WSS 

fixed points are the consequence of flow impingement to/emanation from the vessel wall. 

Moreover, fluid structures interacting with the wall characterized by zero or non-zero rotational 

momentum generate WSS fixed points of different nature/stability. High-fidelity CFD 

simulations in intracranial aneurysm models confirmed the applicability of the theoretical 

considerations. In conclusion, the presented unified theory unambiguously explains the 

mechanistic link between near-wall flow disturbances and the underlying intravascular flow 

features expressed in terms of vorticity, ultimately facilitating a clearer interpretation of the role 

of local hemodynamics in vascular pathophysiology. 

 

1. Introduction 

The pathogenesis of vascular diseases is modulated by a complex interplay of risk factors of different 

natures. This interplay among systemic, biological, and hemodynamic factors leading to vascular 
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pathology has been suggested acting as a triad, in analogy to Virchow’s triad of thrombosis 1. In 

particular, the pivotal role played by local hemodynamics in vascular pathophysiology has long been 

recognized 2–4, and it has been collecting more and more confirmation from studies on animal 

models and humans (not exhaustively, see 5–8).  

The emerged role of local hemodynamics has stimulated the need for an in-depth 

understanding of the existing link between blood flow disturbances and clinical observations, aiming 

at identifying the mechanisms of action of fluid forces on the endothelial machinery. In this regard, 

particular attention has been paid to the investigation of the hemodynamic environment in the 

near-wall region, which regulates (i) the local biotransport processes at the interface between 

streaming blood and arterial wall 4, and (ii) the mechanical stimuli to the endothelium 9. The actions 

exerted by fluid friction forces on the vessel luminal surface have been historically interpreted in 

terms of wall shear stress (WSS), a biomechanical quantity modulating the endothelial function 

through the activation of the mechanosensing and mechanotransduction machinery regulating 

endothelial cell gene expression and response via specialized mechanisms and signaling pathways 

10. In the attempt to unveil the mechanisms behind vascular pathophysiology involving local 

hemodynamics, a plethora of WSS-based quantities has been proposed over the years as potential 

markers, predictors, and/or localizing factors of vascular wall dysfunction. However, only moderate 

(and sometimes contradictory) associations between vascular disease and the proposed WSS-based 

quantities have emerged to date 11–13. Recently, the analysis of the WSS in terms of its topological 

skeleton has attracted a strong research interest 9,14–21 and has revealed the ability of WSS 

topological features to e.g. (i) identify local wall degeneration in the ascending thoracic aorta 22, (ii) 

predict long-term restenosis risk after carotid endarterectomy 23, (iii) predict plaque progression at 

an early stage in coronary arteries 8,24, (iv) provide a template of blood-wall mass transfer in vascular 

territories 9,25,26, (v) predict future myocardial infarction in coronary arteries 6.  
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Based on dynamical system theory, the WSS topological skeleton is composed of fixed 

points, focal points where WSS locally vanishes, and unstable/stable manifolds, i.e. regions linking 

fixed points where the WSS is expected to exert a contraction/expansion action on the endothelial 

cells 15. Stricto sensu, an analysis of the WSS topological skeleton is deemed biologically relevant 

because of its capability to reflect cardiovascular flow features like flow separation, stagnation, and 

impingement points that are known to be promoting factors for vascular disease 14,15.  

An aspect that has been scarcely explored in the study of cardiovascular flows, however, is 

related to the clear identification of those intravascular fluid structures that may leave their peculiar 

footprints on the vessel wall, thus unambiguously shaping the WSS topological features. To unveil 

the intravascular fluid structures that condition WSS topology interacting with the luminal surface, 

fluid mechanics theory as well as in vivo, in vitro, and in silico observation of cardiovascular flows 

point to vorticity as the ‘sinews and muscles of fluid motions’ 27. In this regard, vorticity transport 

and vorticity-derived quantities such as helicity have been suggested to play roles of remarkable 

physiological significance in terms of: (i) energetics, with beneficial impact e.g. in the hemodynamics 

of heart chambers 28,29, in redirecting blood flow in the total cavopulmonary connection 30, and in 

minimizing transition to turbulence in aorta 31,32; (ii) atheroprotective action exerted on the 

endothelium 33–35, in general contributing to properly balance blood transport and stresses on the 

surrounding tissues 36. In addition to these beneficial impacts, vorticity and derived quantities such 

as enstrophy signatures have been suggested to play a detrimental role in cardiovascular flows, e.g. 

in coronary arteries 37–39, in intracranial aneurysms 17,40–44, and in abdominal aortic aneurysms 45–47. 

Driven by the need to unveil how intravascular fluid structures shape WSS on the luminal 

surface of the vessel, in this study a unified theory is proposed to link vorticity and WSS topologies. 

In detail, since in wall-bounded (incompressible) flows the no-slip walls are a unique source of 

vorticity 48 and a vortex filament cannot end in a fluid (it must extend to the boundaries of a fluid or 
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form a closed path, according to the Helmholtz's second theorem), the link between the topological 

skeletons of WSS and surface vorticity (SV), i.e., the vorticity on the luminal surface of the vessel, is 

analyzed.  

Extending previous works proposing a methodology for studying the structure of turbulence 

in the boundary layer at the no-slip wall 49,50, here we link WSS and SV fields topologies in 

cardiovascular flows. In particular, here we distinguish the cases when the SV component locally 

normal to the vessel wall is null from cases when it is not. The rationale of our study is that clarifying 

the links between WSS and SV fixed points and manifolds can allow for unambiguous deciphering 

of the nature of the local interactions between intravascular hemodynamics and the vessel wall, 

thus providing a clear interpretation of the phenomena at the lumen-endothelium interface, and 

ultimately contributing to a less elusive definition of those “flow disturbances” associated with 

aggravating biological events. Here, high fidelity CFD simulations of the hemodynamics in 

intracranial aneurysms, typically characterized by complex and unstable intra-aneurysmal flow 51, 

are used as explanatory examples to (i) assess the veracity of the demonstrated theoretical links 

between WSS and SV topology, and (ii) unambiguously identify those intravascular flow patterns 

determining WSS topological skeleton onto the vascular luminal surface. 

 

2. Methods 

2.1. Theoretical remarks 

This section reports the background for a better understanding of the theory adopted in this study 

to demonstrate the analytical link between the topology of the WSS and SV in cardiovascular flows. 

2.1.1. Wall shear stress vs. Surface Vorticity 

In a domain Ω ⊂ ℝ3 representing the lumen of a vessel (here fixed in time), considering blood as a 

generalized Newtonian fluid, the WSS 𝝉 on the surface boundary 𝜕Ω is commonly defined as:  
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𝝉 = ℙ ⋅ (2 𝜇 𝑺𝜕Ω ⋅ 𝒏), (1) 

where 𝜇 is the dynamic viscosity, 𝒏 is the unit vector normal to the surface boundary 𝜕Ω, 𝑺𝜕Ω is the 

strain rate tensor at the surface 𝜕Ω, expressed in terms of the velocity vector gradient tensor ∇𝒖𝜕Ω: 

𝑺𝜕Ω = 
1

2
(∇𝒖𝜕Ω + ∇𝒖𝜕Ω

𝑇 ), (2) 

and ℙ is the tangential projection operator: 

ℙ = 𝑰 − 𝒏⊗𝒏.  (3) 

where 𝑰 is the identity matrix. In equations (1) and (2) the subscript 𝜕Ω denotes the restriction of a 

quantity on the luminal surface of the vessel. As the velocity gradient tensor ∇𝒖𝜕Ω at the surface 𝜕Ω 

can be expressed in terms of its symmetric (𝑺𝜕Ω) and skew-symmetric (𝐖𝜕Ω, the so-called spin 

tensor) parts:  

∇𝒖𝜕Ω = 𝑺𝜕Ω +𝐖𝜕Ω =
1

2
(∇𝒖𝜕Ω + ∇𝒖𝜕Ω

𝑇) +
1

2
(∇𝒖𝜕Ω − ∇𝒖𝜕Ω

𝑇), (4) 

it follows that ∇𝒖𝜕Ω
 𝑇 = 𝑺𝜕Ω −𝐖𝜕Ω, and so the strain rate tensor 𝑺𝜕Ω can be expressed in terms of spin 

tensor 𝐖𝜕Ω, i.e.: 

𝑺𝜕Ω = ∇𝒖𝜕Ω
 𝑇 +𝐖𝜕Ω. (5) 

By substituting eq. (5) in eq. (1), the WSS vector 𝝉 can be expressed as:   

𝝉 = ℙ ⋅ [2 𝜇 (∇𝒖𝜕Ω
 𝑇 +𝐖𝜕Ω) ⋅ 𝒏] = ℙ ⋅ [2 𝜇 (∇𝒖𝜕Ω

 𝑇 ⋅ 𝒏 +𝐖𝜕Ω ⋅ 𝒏)]. (6) 

For any generic vector 𝝃, the spin tensor 𝐖𝜕Ω satisfies the well-known relation: 

2𝐖𝜕Ω ⋅ 𝝃 = 𝛚𝜕Ω × 𝝃, (7) 

where 𝛚𝜕Ω is the SV, i.e., the vorticity on the luminal surface of the vessel. More details on the 

relation expressed by eq. (7) are presented in Appendix A. 
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According to eq. (7), and to the fact that the term ∇𝒖𝜕Ω
 𝑇 ⋅ 𝒏 in eq. (6) is equal to zero being 

that 𝜕Ω is a fixed surface (rigid wall) 52, then eq. (6) can be reformulated as follows: 

𝝉 = ℙ ⋅ ( 𝜇 𝛚𝜕Ω × 𝒏 ). (8) 

Finally, according to the definition of the tangential projection operator ℙ in eq. (3), eq. (8) can be 

reduced as follows: 

𝝉 = (𝑰 − 𝒏⊗ 𝒏 ) ⋅ ( 𝜇 𝛚𝜕Ω × 𝒏 ) 

    = (𝜇 𝛚𝜕Ω × 𝒏) − (𝒏⊗ 𝒏) ⋅ ( 𝜇 𝛚𝜕Ω × 𝒏 ) 

    = (𝜇 𝛚𝜕Ω × 𝒏) − [(𝜇 𝛚𝜕Ω × 𝒏) ⋅ 𝒏]𝒏 

    = 𝜇 𝛚𝜕Ω × 𝒏, 

 

 

 

(9) 

where (𝜇 𝛚𝜕Ω × 𝒏) ⋅ 𝒏 is equal to zero because vector (𝜇 𝛚𝜕Ω × 𝒏) and unit vector 𝒏 are orthogonal 

by construction.  

A consequence of eq. (9) is that WSS and SV vectors form an orthogonal pair (𝝉, 𝝎𝜕Ω) on the 

luminal surface 𝜕Ω. Moreover, based on eq. (9) the WSS vector 𝝉 can be interpreted in terms of 

vorticity 𝝎 in the near-wall, dictated by the shear viscosity and the no-slip condition. It must also be 

reminded here that fluid motion is characterized by the property that the vorticity 𝝎 in the domain 

Ω is a solenoidal vector field. This property still applies to the SV vector 𝛚𝜕Ω so that the following 

equation: 

∇ ⋅ 𝛚𝜕Ω = 0, (10) 

is always satisfied on the luminal surface 𝜕Ω. 

Eq. (9) suggests that a relationship exists between the topological skeletons of 𝝉 and 𝛚𝜕Ω. 

Clarifying the nature of this relationship would promote a deeper understanding of how the 

underlying blood flow vorticity field signatures shape topological skeleton features of the WSS, 
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which have been recently suggested as promoting factors of the onset and progression of vascular 

disease 6,23,24.  

 

2.1.2. The topological skeleton of a vector field 

The analysis of the topological skeleton allows us to identify the essential structure of a vector field, 

offering a simple way to highlight its fundamental features. Based on dynamical system theory, the 

topological skeleton of a vector field is composed of fixed points and stable/unstable manifolds 

connecting them, where a fixed point 𝒙𝑓𝑝 ∈ ℝ
𝒏 is a point where the vector field locally vanishes, 

and manifolds are directions along which the field lines condense or rarefy (Figure 1A).  

Fixed points play a major role in shaping the topological skeleton structure, in consequence 

of their stable or unstable nature, defined as follows: a stable (unstable) fixed point is characterized 

by a sink (source) configuration, and it attracts (repels) the nearby field lines 14–16. Moreover, fixed 

points can be classified as saddle points, nodes, foci or centres (Figure 1B): (i) a saddle point attracts 

and repels nearby field lines along different directions; (ii) a centre is encased within field lines 

forming closed loops; (iii) a stable/unstable node is characterized by converging/diverging field lines 

patterns; (iv) a stable/unstable focus is encased within converging/diverging and spiraling field lines 

(Figure 1B). 

 

2.2. Wall shear stress and Surface Vorticity fixed points  

In this section, we aim to analyze the relationship between fixed points of WSS vector 𝝉 and SV 

vector 𝛚𝜕Ω, also investigating their nature and stability proprieties.  

Let (𝑡1, 𝑡2, 𝑛) be a local coordinate system such that the unit vector 𝒏 is normal to 𝜕Ω, and 

thus 𝑡1 and 𝑡2 indicate the coordinates on the tangent plane, as illustrated in Figure 2. In general 
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terms, according to eq. (9) the WSS components can be expressed in the local coordinate system as 

a function of the SV components 𝝎𝜕Ω = (𝜔𝑡1 , 𝜔𝑡2 , 𝜔𝑛) (Figure 2) as follows:  

𝝉 = (𝜏𝑡1 , 𝜏𝑡2 , 0) = 𝜇𝝎𝜕Ω × 𝒏 =  𝜇 det (
𝑡1    𝑡2    𝑛

𝜔𝑡1  𝜔𝑡2   𝜔𝑛 

0       0     1
 ) = (𝜇𝜔𝑡2 , −𝜇𝜔𝑡1 , 0). (11) 

From eq. (11) it follows that:  

∀ 𝒙 ∈ 𝜕Ω ∶  𝝉(𝒙 ̃) = 0 ⇒ 𝝎𝜕Ω(𝒙 ̃) = (0,0, 𝜔𝑛). (12) 

The main implication of eq. (12) is that if  𝒙̃ ∈ 𝜕Ω is a fixed point of the WSS 𝝉, this does not 

necessarily imply that  𝒙̃ is a fixed point of the SV 𝝎𝜕Ω: a fixed point of 𝝉 is also fixed point for 𝝎𝜕Ω 

if and only if 𝜔𝑛 = 0. The subsections below deal with (i) the special case of flows where WSS and 

SV fixed points are coincident; and then (ii) the more general case where they may not be. 

2.2.1. Fixed points when the surface vorticity is purely tangential to the vessel’s wall  

Let us first consider the case when the SV is purely tangential to the vessel wall, i.e.:  

∃ 𝒙̂ ∈ 𝜕Ω ∶  (𝛚𝜕Ω ⋅ 𝒏)𝒙̂ = 0. (13) 

Stricto sensu, eq. (13) is satisfied when the velocity vector in the near-wall region is tangent to the 

wall 53. It is interesting to note that in fluid mechanics paradigms related to cardiovascular flows (e.g. 

fully developed flows like Hagen-Poiseuille and Womersley flows), the SV is always tangent to the 

wall, i.e. 𝛚𝜕Ω satisfies eq. (13) everywhere on 𝜕Ω.  

In this case, it follows from eq. (12) that:    

∀ 𝒙 ∈ 𝜕Ω ∶  𝝉(𝒙 ̃) = 0 ∧ (𝛚𝜕Ω ⋅ 𝒏)𝒙̃ = 0 ⇒ 𝝎𝜕Ω(𝒙 ̃) = 0, (14) 

meaning that if 𝒙̃ is a fixed point of the 𝝉 and if eq. (13) is satisfied at 𝒙̃ ∈ 𝜕Ω , this necessarily implies 

that 𝒙̃ is also a fixed point of the 𝝎𝜕Ω and vice versa. It should be noted here that this bijective 
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implication for fixed points when eq. (13) is satisfied does not imply that WSS and SV fixed points in 

𝒙̃ share the same nature.  

As the nature of fixed points markedly influence topological skeletons, an in-depth 

investigation is necessary at this stage to clarify the relationship between the nature of the 𝝉 fixed 

point and of the  𝝎𝜕Ω fixed point at 𝒙̃. To do that, it must be observed that in the case eq. (13) is 

satisfied at 𝒙̃ ∈ 𝜕Ω, the orthogonal pair (𝝉, 𝝎𝜕Ω) lies on the 2D space 𝜕Ω. Thus, a two-dimensional 

analysis can be performed to identify and classify fixed points, determining their stability properties. 

Technically, the identification of fixed points can be carried out by computing the Poincaré index 54, 

a topological invariant index quantifying how many times a vector field rotates in the neighborhood 

of a point. The Poincaré index is equal to -1 at saddle point locations, 1 at node, focus or centre 

locations, and 0 otherwise. The Poincaré index allows identifying fixed points but does not provide 

information about fixed points’ nature and stability. Instead, the classification of fixed points can be 

carried out by analyzing the sign of the eigenvalues 𝜆i of the Jacobian matrix 𝐽 of the vector field 

16,53, as summarized in Table 1 (where a vector field lying in a 2D space has been considered).  

Table 1. Classification of fixed points based on the eigenvalues of the Jacobian matrix for a 2D 
vector field. 

Λ Fixed point 
𝝀𝟏 < 𝟎 < 𝝀𝟐 Saddle point 
𝝀𝟏, 𝝀𝟐 > 𝟎 Unstable node 
𝝀𝟏, 𝝀𝟐 < 𝟎 Stable node 

 𝝀𝟏,𝟐 = 𝜶 ± 𝜷𝒊 Unstable focus 
 𝝀𝟏,𝟐 = −𝜶 ± 𝜷𝒊 Stable focus 
𝝀𝟏,𝟐 = ±𝜷𝒊 Centre 

 

In general, the eigenvalues 𝜆i of the Jacobian matrix 𝐽 are the roots of the characteristic polynomial 

𝑝𝐽(𝜆) = det(𝐽 − 𝜆𝐼), where 𝐼 is the identity matrix. For a 2𝑥2 Jacobian matrix, the characteristic 

polynomial can be expressed in terms of trace and determinant as follows: 
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 𝜆2 − tr(𝐽)𝜆 + det (𝐽) = 0, (15) 

where tr(𝐽) = 𝜆1 + 𝜆2 and  det(𝐽) = 𝜆1𝜆2.  

According to eq. (15), the characteristic polynomial of the Jacobian matrix of 𝝉 at 𝒙̃ ∈ 𝜕Ω can 

be expressed as:  

 𝑝𝐽(𝝉)𝒙 ̃
(𝜆) = 𝜆2 − tr(𝐽(𝝉)𝒙 ̃)𝜆 + det (𝐽(𝝉)𝒙 ̃) = 0, (16) 

where: 

𝐽(𝜏)𝒙 ̃ =

(

 
 

𝜕𝜏𝑡1
𝜕𝑡1 

𝜕𝜏𝑡1
𝜕𝑡2 

𝜕𝜏𝑡2
𝜕𝑡1 

𝜏𝑡2
𝜕𝑡2 )

 
 

𝒙 ̃

= 𝜇

(

 
 

𝜕𝜔𝑡2
𝜕𝑡1 

𝜕𝜔𝑡2
𝜕𝑡2 

−
𝜕𝜔𝑡1
𝜕𝑡1 

−
𝜕𝜔𝑡1
𝜕𝑡2 )

 
 

𝒙 ̃

, (17) 

 

 is a symmetric matrix because it follows from eq. (10) that 
𝜕𝜔𝑡2

𝜕𝑡2 
= −

𝜕𝜔𝑡1

𝜕𝑡1 
. Similarly, based on eq. 

(10) and on the fact that tr(𝐽(𝝎𝜕Ω)𝒙 ̃) = ∇ ⋅ 𝝎𝜕Ω = 0,  the characteristic polynomial of the Jacobian 

matrix of the 𝝎𝜕Ω at 𝒙̃ ∈ 𝜕Ω, can be expressed as: 

𝑝𝐽(𝝎𝜕Ω)𝒙 ̃
= 𝜆2 + det(𝐽(𝝎𝜕Ω)𝒙 ̃) = 0. (18) 

Considering that (i) det(𝐽(𝝎𝜕Ω)) =
det (𝐽(𝝉))

𝜇2
 by construction, and that (ii) det(𝐽) = 𝜆1𝜆2, it follows 

that: 

• if det(𝐽(𝝎𝜕Ω)𝒙 ̃) =
det (𝐽(𝝉)

𝒙 ̃
)

𝜇2
< 0, then eigenvalues are real numbers but with different signs 

and thus the fixed point 𝒙 ̃is a saddle point (Table 1) for both 𝝎𝜕Ω and 𝝉 (Figure 3A); 

• if det(𝐽(𝝎𝜕Ω)𝒙 ̃) =
det (𝐽(𝝉)

𝒙 ̃
)

𝜇2
> 0, then eigenvalues are pure imaginary numbers for 𝝎𝜕Ω 

and real numbers with the same sign for 𝝉 (as a consequence of symmetry of the Jacobian 
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matrix of 𝝉) and thus fixed point 𝒙 ̃is a centre for 𝝎𝜕Ω (Table 1, Figure 3A) and a 

stable/instable node for 𝝉, according to the sign of quantities tr(𝐽(𝝉)𝒙 ̃)
2 − 4det(𝐽(𝝉)𝒙 ̃) and 

tr(𝐽(𝝉)𝒙 ̃) (Table 1, Figure 3A). 

The complete stability analysis of the fixed point 𝒙̃ ∈ 𝜕Ω of SV and WSS when eq. (13) is satisfied 

(i.e., when the 𝝎𝜕Ω is tangent to the luminal surface), is summarized in Figure 3A.  

 

2.2.2. Fixed points when the surface vorticity is not purely tangential to the vessel’s wall  

Let us now consider the case when eq. (13) is not satisfied, i.e.: 

∃ 𝒙 ∈ 𝜕Ω ∶  (𝛚𝜕Ω ⋅ 𝒏)𝒙̂  ≠ 0. (19) 

From eq. (12) it follows that: 

  ∀ 𝒙̂ ∈ 𝜕Ω ∶ 𝝉(𝒙̂) = 0 ∧  (𝛚𝜕Ω ⋅ 𝒏)𝒙̂  ≠ 0 ⇒  𝝎𝜕Ω(𝒙̂) = 𝜔𝑛𝒏, (20) 

meaning that if 𝒙̂ is a fixed point of the 𝝉 and if 𝝎𝜕Ω satisfies eq. (19) at 𝒙̂ ∈ 𝜕Ω, then it follows that 

(i) 𝒙̂ cannot be a fixed point for 𝝎𝜕Ω, and (ii) the SV is purely normal to the wall. This contemplates 

that a not-null vorticity flux normal to the wall 𝜎𝑛 might be established as a consequence of the 

markedly three-dimensional flow field observable within complex vascular anatomies, in 

infinitesimal neighborhoods of flow disturbances. In detail, the vorticity flux 𝜎𝑛 normal to the 

luminal surface 𝜕Ω can be expressed as: 

𝜎𝑛 = −𝜈 ∇𝜋 ⋅ 𝝎𝜕Ω , (21) 

where 𝜈 is the kinematic viscosity and ∇𝜋  is the surface gradient tangent to the luminal surface 𝜕Ω.  

The classification of fixed points 𝒙̂ ∈ 𝜕Ω of 𝝉, also in this case, can be performed by solving 

the characteristic polynomial of the Jacobian matrix of 𝝉 at 𝒙̂ and by analyzing the eigenvalues: 
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 𝑝𝐽(𝝉)𝒙̂(𝜆) = 𝜆
2 − tr(𝐽(𝝉)𝒙̂)𝜆 + det (𝐽(𝝉)𝒙̂) = 0. (22) 

Contrary to the case where 𝝎𝜕Ω is purely tangent to the luminal surface 𝜕Ω, characterized by a 

symmetric Jacobian matrix 𝐽(𝝉)
𝒙 ̃

 (as shown in eq. (17)), a consequence of having 𝜎𝑛(𝒙̂) ≠ 0 is that 

𝐽(𝝉)𝒙̂ is no longer a symmetric matrix, since 
𝜕𝜔𝑡2

𝜕𝑡2 
+
𝜕𝜔𝑡1

𝜕𝑡1 
= ∇𝜋 ⋅ 𝝎𝜕Ω ≠ 0. In this case, we have:   

• if det(𝐽(𝝉)
𝒙̂
) < 0, eigenvalues are real numbers but with different sign and thus 𝒙 ̃is a saddle 

point for 𝝉 (Table 1, Figure 3B); 

• if det(𝐽(𝝉)
𝒙̂
) > 0, eigenvalues can be complex and conjugate or real numbers with the same 

sign and thus 𝒙 ̃ can be a stable/instable focus or node for 𝝉, according to the sign of 

quantities tr(𝐽(𝝉)
𝒙̂
)
2
− 4det(𝐽(𝝉)

𝒙̂
) and tr(𝐽(𝝉)

𝒙̂
) (Table 1, Figure 3B). 

The complete stability analysis of the fixed points of WSS when the SV is purely normal to the wall 

is summarized in Figure 3B.  

  

2.3. Computational Hemodynamics 

Intracranial aneurysm models from the Toronto Western Hospital aneurysm clinic were considered 

in this study to test results from the theoretical analysis. These cases were provided under Toronto 

Western Hospital’s Research Ethics Board Approval (REB #19-5823), which authorizes research 

analysis and publication of anonymized and de-identified patient imaging data from their aneurysm 

clinic. Exhaustive details regarding geometry reconstruction, meshing strategy and CFD settings have 

been extensively described in previous studies 15,55,56. In brief, 3D lumen geometries were 

reconstructed from 3D rotational angiography and 4D computed tomography angiography, and 

segmented using a morphological gradient-based watershed method 57. Tetrahedral meshes were 

generated by using VMTK software, and high-fidelity computational fluid dynamics simulations were 
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performed using a minimally dissipative solver developed within the open-source finite-element-

method library FEniCS 58. Fully developed Womersley velocity profiles were applied at inlet sections, 

and outflow divisions were based on a splitting method presented elsewhere 55. The Reynolds 

number (a dimensionless fluid dynamic quantity given by the ratio between inertial and viscous 

forces) at peak flow rate at the inflow section was 359 for model A1 and 337 for model A2 56. 

The identification and classification of fixed points at the luminal surface of intracranial 

aneurysm models is performed by computing the Poincaré index and the eigenvalues of the Jacobian 

matrix 𝐽 as exhaustively detailed elsewhere 15. Here, however, a thorough characterization of the 

complex volumetric vortex structures in the intracranial aneurysm models was desired, since the 

final aim is the identification of those intravascular fluid structures whose interaction with the vessel 

wall determine WSS and SV topological features on the luminal surface. To achieve this, the CFD 

velocity data were used to implement the recently proposed vorticity vector decomposition 59: 

according to this approach, the vorticity vector can be decomposed into a purely rotational 

contribution 𝑹 representing the rigid-body rotation, and a non-rotational contribution, which is 

related to shear 60,61. Referring the reader to 59,60,62 for the basic theory underpinning such vorticity 

vector decomposition, here we focused on the rotational part 𝑹 of vorticity, which can be defined 

as 59:  

where 𝒓 is the unit real eigenvector of the velocity gradient tensor ∇𝒖, and 𝜆𝑐𝑖 is the imaginary part 

of the complex conjugate eigenvalues of ∇𝒖. Different from other vortex identification methods such 

as Q-criterion, λ2 or 𝜆𝑐𝑖, 𝑹 provides both the vortex local rotational axis and the rotational strength, 

being free from shear contamination 63. 

 

𝑹 = 𝑅𝒓 = (𝝎 ⋅ 𝒓 − √(𝝎 ⋅ 𝒓)2 − 4𝜆𝑐𝑖
2 )𝒓 ,  (23) 
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3. Results 

3.1. Wall shear stress and Surface Vorticity fixed points  
 

Instantaneous SV and WSS distributions at mid systolic acceleration point with their fixed points and 

field lines on the luminal surface of two explanatory intracranial aneurysm CFD models are 

presented in Figure 4 (model A1) and in Figure 5 (model A2). According to the developed theory 

summarized in Figure 3, it clearly emerges from Figures 4 and 5 that: (i) (𝝉, 𝝎𝜕𝛺) form an orthogonal 

pair on the luminal surface 𝜕Ω, and (ii) 𝝎𝜕𝛺 fixed points are always 𝝉 fixed points, but not vice versa. 

Looking at the luminal surface of aneurysmal sac of model A1, many theoretical topological feature 

configurations exposed by our theory appear, i.e. one saddle point for both 𝝉 and 𝝎𝜕𝛺, one unstable 

node for 𝝉 which is a centre for 𝝎𝜕𝛺 , one stable focus for 𝝉 which is not a fixed point for 𝝎𝜕𝛺  (Figure 

4A), and one saddle point for 𝝉 which is not a fixed point for 𝝎𝜕𝛺 (Figure 4B). Interestingly, it can be 

noted that the unstable and stable manifolds starting from the 𝝉 saddle point (i.e., the critical lines 

attracting and repelling neighbouring fluid elements depicted in Figure 1A) are rotated with respect 

to the unstable and stable manifolds starting from the 𝝎𝜕𝛺 saddle point. Moreover, we can 

appreciate that the diverging WSS pattern around the unstable node for 𝝉 colocalizes with SV field 

lines forming closed loops encasing the centre for 𝝎𝜕𝛺 (Figure 4A), confirming that the SV must be 

purely tangential to the luminal surface in a neighborhood of the point. In addition, it can be 

observed how the SV presents converging spiraling field lines where a stable focus for 𝝉 has been 

identified (Figure 4A), confirming that the SV 𝝎𝜕𝛺 must be purely normal to the wall at that point, 

to not violate eq. (10).  

The analysis of model A2 in Figure 5 allows us to present a case that is covered by theory but 

did not occur on the luminal surface of model A1. In fact, in the case of model A2, two fixed points 

that are saddle point for both 𝝉 and 𝝎𝜕𝛺 (Figure 5), one unstable node for 𝝉 (Fig 5) and one stable 
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focus for 𝝉 that are not fixed points for 𝝎𝜕𝛺 (Figure 5) are identified on the luminal surface of the 

aneurysmal sac. Contrarily to model A1, the source configuration of the WSS field lines around the 

unstable node for 𝝉 colocalizes with converging spiraling SV lines (Figure 5), indicating that a not null 

vorticity flux 𝜎𝑛 normal to the wall must occur, to not violate eq. (10) and as predicted by theory.  

 

3.2. Identifying the link between fixed points and intravascular fluid structures  

To clarify if fluid-mechanistic cause-effect relationships can be identified between WSS topological 

features and intravascular fluid structures, flow visualizations based on instantaneous streamlines 

and on the rotational part of vorticity 𝑹 (as introduced in eq. (23)) inside the explanatory intracranial 

aneurysm models A1 (Figure 6) and A2 (Figure 7) were adopted.   

From Figure 6, it emerges that: (i) a stable focus for 𝝉  is generated by a highly rotational fluid 

structure emanating from the wall (as highlighted by the combined instantaneous velocity 

streamlines, 𝑹 magnitude isosurfaces visualization in Figure 6, and 𝑹 vector directions in Figure 8); 

(ii) a saddle point for both 𝝉 and 𝝎𝜕𝛺 attracts and repels velocity field lines in the near-wall region 

(as highlighted by the visualization of instantaneous velocity streamlines in the near-wall region), 

while no vortex structures are present in a neighborhood of the fixed point location; (iii) an unstable 

node for 𝝉, which is also a centre for 𝝎𝜕𝛺, is characterized by diverging near-wall tangential 

instantaneous velocity streamlines, with non-rotating fluid structures interacting with the wall; (iv) 

a saddle point for 𝝉 which is not a fixed point for 𝝎𝜕𝛺 is generated by the interaction with the wall 

of two counter-rotating fluid structures (as highlighted by the isosurfaces of 𝑹 magnitude in Figure 

6, and by the near-wall 𝑹 vector directions, indicating the axis of rotation of the vortex structures, 

presented in Figure 8).   

Regarding model A2, Figure 7 clearly shows, according to the theory and to what was 

observed in model A1, that (i) a stable focus for 𝝉 originates from the interaction between a 

rotational (emanating from the wall) fluid structure and the wall; (ii) a saddle point for both 𝝉 and 
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𝝎𝜕𝛺 attracts and repels velocity field lines in the near-wall region;  and (iii) an unstable node for 𝝉, 

which is not a fixed point for 𝝎𝜕𝛺, is the consequence of non-rotational fluid structure impinging to 

the wall (in this case generated by the impingement of a non-rotational jet flow entering the 

aneurysmal dome). 

4. Discussion 

Unveiling the mechanisms of flow disturbances in vascular disease is crucial for the advancement of 

our understanding of disease mechanisms, the identification of risk factors, the development of 

effective therapeutic strategies, and the enhancement of diagnostic technologies. Despite the 

efforts expended and the documented progress, the definition of cardiovascular flow disturbances 

remains elusive, severely hampering the clear interpretation of the role of local hemodynamics in 

vascular pathophysiology, as well as the consequent clinical impact. With the final purpose of 

deciphering the nature of the local interactions at the interface between cardiovascular structures 

and flows, and promoting the unambiguous identification of the hemodynamic patterns involved in 

vascular pathophysiology, a unified theory was presented in this study to demonstrate that the WSS 

topological skeleton on the luminal surface of a vessel is “sculptured” by specific intravascular fluid 

structures, and that this relationship between near-wall vs. bulk flow can be expressed in terms of 

blood flow vorticity. In detail, here it was theoretically demonstrated that: (i) all SV fixed points on 

the luminal surface must also be WSS fixed points, but different in nature and stability; (ii) 

contrariwise, a WSS fixed point is not necessarily a fixed point for SV. In the former case, we have 

shown that the WSS fixed point is the consequence of flow patterns where only shear contributes 

to vorticity (i.e. where the contribution of 𝑹 to the vorticity, eq. (23), is negligible). In the latter case, 

the SV must be solely normal to the luminal surface with an associated not-null vorticity flux, which 

in turn implies that the WSS fixed point is a consequence of flow impingement to or emanation from 

the vessel wall. Moreover, high-fidelity CFD data in intracranial aneurysm models confirmed the 
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emerged theoretical links between WSS and SV topology on the luminal surface, helping to clarify 

the cause-effect relationships between WSS topological features and intravascular fluid structures. 

A summary of the main findings of this study is presented in Figure 9. Briefly, a 

stable/unstable node for the WSS can have a twofold nature, namely, it can be a centre fixed point 

for the SV if it is determined by the interaction of the vessel wall with flow patterns characterized by 

solely shear viscosity (Figure 6), or it can be the consequence of a non-rotational fluid structure 

emanating from/impinging to the wall (Figure 7) and it is not a SV fixed point. Similarly, a WSS saddle 

point can also be a SV saddle point, with an associated 90 degree manifold rotation in the topological 

skeleton (Figures 6 and 7) as described by theory (eq. 9), or it can be generated by the presence of 

two counter-rotating fluid structures in the near-wall region (Figure 6) and it is not a SV fixed point.  

Interestingly, a WSS stable/unstable focus cannot be a SV fixed point and it is necessarily 

generated by a rotational fluid structure emanating from/impinging to the wall (Figure 6).  

Among the main fluid mechanical implications, the proposed analysis provides a method to 

unambiguously distinguish WSS fixed points on the luminal surface originating from the interaction 

between the vessel wall and solely shear vorticity, non-rotational or highly rotational fluid structures. 

The presented analysis is also of potential mechanobiological relevance, because an interaction of 

the luminal surface with solely shear flow rather than with rotational or non-rotational fluid 

structures differently shapes the WSS topological skeleton, which has emerged as a remarkable 

predictor of vascular disease 6,8,23,24. In this sense, linking WSS topological features with peculiar fluid 

structures on a theoretical basis will allow us to unambiguously define what can be considered flow 

disturbance in relation to a specific pathology or in relation to a specific vessel. The practical 

implications are that the here proposed analysis could provide a biomechanical tool to 

evaluate/predict the impact of cardiovascular surgical interventions or devices implantation on the 

near wall hemodynamics. Moreover, the application of the proposed theory could become a useful 
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tool supporting cardiovascular devices design and optimization. As an example, which is linked to 

the case study presented in our manuscript, we remind here that treatments of intracranial 

aneurysms involve the implantation of flow diverters or aneurysms coiling. Both the solutions aim 

at imparting a flow reduction within the aneurysmal sac, promoting progressive aneurysm 

thrombosis with subsequent healing of the disease. Since inaccurate flow diverter positioning and 

coiling both reduce the chances of sufficient exclusion of the aneurysmal sac from the circulation 

64,65, an in-depth knowledge of the hemodynamic changes occurring in intracranial aneurysms after 

flow diverter or coiling deployment is essential to evaluate their efficacy, and a flow topology-based 

analysis as the one proposed in this study might be adopted to clarify the reasons why devices 

implantation fail and to guide devices optimization, facilitating treatment and predicting treatment 

outcomes. 

The presented approach might suffer from the limitation that the emerged theoretical 

remarks could manifest sensitivity to CFD resolution, idealization, and assumptions. Although this 

remains to be determined for different cardiovascular territories and pathologies, results from the 

high-fidelity CFD simulations adopted in this study are in concordance with the theoretical 

considerations, and are further confirmation that the WSS topological skeleton analysis is feasible 

on computational hemodynamics models 14,15,23,24. 

5. Conclusion 

The theoretical framework presented in this study provides a key to interpreting and 

efficiently clarifying the cause-effect relationships linking intravascular fluid structures with WSS 

topological skeleton on the luminal surface of a vessel, thus allowing unambiguous identification of 

cardiovascular flow disturbances towards elucidating their mechanistic links with biological adverse 

events as well as with clinical observations. With the proposed theory-based interpretive key, future 
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studies exploring how WSS fixed points and manifolds generated by different intravascular flow 

patterns impact vascular mechanobiology are warranted and encouraged.  
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APPENDIX A 

Let us consider the spin tensor 𝐖𝜕Ω, defined as: 

𝐖𝜕Ω =
1

2
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2
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, (A1) 

 

and let 𝝃 be a generic vector 𝝃 = (𝜉𝑥 , 𝜉𝑦, 𝜉𝑧).  The inner product between the spin tensor and the 

vector 𝝃 is given by: 
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2
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Eq. (A2) is the well-known relation expressed in eq. (7). 
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FIGURES 

Figure 1 

 

Figure 1 A) Explanatory sketch of the theoretically possible stable/unstable manifold configurations 

connecting fixed points; B) theoretically possible configurations for a fixed point of a vector field in 

the T-D plane, where T and D refer to the trace and determinant of the Jacobian matrix of the vector 

field respectively. The dotted line represents the critical quadratic curve splitting the D>0 region in 

two subregions where the eigenvalues of the Jacobian matrix of the vector field are complex or real 

numbers. Inspired by Perry and Fairlie (1975) 66. 

Figure 2 

 

 

 

Figure 2 Sketch of WSS (red arrow) and SV (blue arrow) vectors forming an orthogonal pair (𝝉, 

𝝎𝜕Ω) on a stationary curved wall 𝜕Ω and the local coordinate system (𝑡1, 𝑡2, 𝑛) such that the 𝑡1 − 𝑡2 

plane identifies the local tangent plane to 𝜕Ω. 
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Figure 3 

 

 

Figure 3 A) Chart of the stability analysis of WSS and SV fixed points when the SV is purely tangent 

to the luminal surface; B) Chart of the stability analysis of WSS fixed points when the SV is not a fixed 

point.  



30 
 

Figure 4 

 

Figure 4 Visualization of instantaneous SV (left panel) and WSS (right panel) field lines and vector 

fields on the luminal surface of intracranial aneurysm model A1. Flow visualizations refer to mid 

acceleration phase in systole. SV and WSS fixed points are depicted. Two different views are 

displayed: A) front view and B) top view. Four insets zooming on fixed points locations are displayed 

to appreciate the field topology in their neighborhood. 
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Figure 5 

 

Figure 5 Visualization of Instantaneous SV (left panel) and WSS (right panel) field lines and vector 

fields on the luminal surface of intracranial aneurysm model A2. Flow visualizations refer to mid 

acceleration phase in systole. SV and WSS fixed points are depicted. Two insets zooming on fixed 

points locations are displayed to appreciate the field topology in their neighborhood.  
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Figure 6 

 

 

Figure 6 Instantaneous velocity streamlines and 𝑹 (the rotational part of vorticity) magnitude 

isosurfaces inside the intracranial aneurysm model A1. Flow visualizations refer to mid acceleration 

phase in systole.  Both streamlines and 𝑹 isosurfaces are coloured with the distance from the surface 

to highlight their contact with the wall. Four insets are displayed to appreciate the intravascular fluid 

structures interacting with the wall to shape the WSS topological skeleton. Two different views are 

displayed: one indicated by solid frames (left) and a complementary view indicated by dashed frames 

(right).  
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Figure 7 

 

Figure 7 Instantaneous velocity streamlines and 𝑹 (the rotational part of vorticity) magnitude 

isosurfaces inside the intracranial aneurysm model A2. Flow visualizations refer to mid acceleration 

phase in systole. Both streamlines and 𝑹 isosurfaces are coloured with the distance from the surface 

to highlight their contact with the wall. Three insets are displayed to appreciate the intravascular 

fluid structures interacting with the wall to shape the WSS topological skeleton. Two different views 

are displayed: one indicated by solid frames (left) and a complementary view indicated by dashed 

frames (right).  
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Figure 8 

 

Figure 8 Visualization of the 𝑹 vector field (the rotational part of vorticity) colored with the 𝑹 

magnitude inside the intracranial aneurysm model A1. Flow visualizations refer to mid acceleration 

phase in systole. Two insets are displayed to appreciate 𝑹 vectors direction, highlighting the 

presence of: (i) two counter-rotating vortex structures in correspondence with WSS and SV saddle 

points; (ii) a highly rotational fluid structure emanating from the wall where the WSS stable focus is 

located. lh: left-handed; rh: right-handed. 
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Figure 9 

 

Figure 9 Summary of the nature of the theoretically admitted relationships between WSS fixed 

points, SV fixed points and near-wall flow fluid structures when the SV (i) is purely tangent to the 

luminal surface, and (ii) when it is not. lh: left-handed; rh: right-handed.  

 


