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A B S T R A C T

We consider formulations of the Shifted Boundary Method based on extrapolation operators
other than the Taylor expansion. In the specific case of the Poisson equation, we prove that
this approach is stable, provided some basic properties of well-posedness of the extrapolation
operator are verified.

1. Introduction

When computational mechanics problems involve complex geometries or geometries that are described in non-canonical formats
(i.e., STL geometric representations, etc.), the pre-processing phase of cleaning the geometry from spurious artifacts and generating
the computational grid may require an overwhelming part of the design and analysis cycle (up to 70%–90%).

In this context, immersed/embedded/unfitted computational methods may provide a more flexible approach to computing, as
they do not require fitting the grid to the geometrical features of the shapes to be simulated. In this class of methods are the Immersed
Boundary Finite Element Method (IBFEM) [1], the cut Finite Element Method (cutFEM) [2–18], the Finite Cell Method [19,20], and
related earlier and recent methods [21–25].

Most of these approaches require the geometric construction of the partial elements cut by the embedded boundary, which
can be both algorithmically complicated and computationally intensive, due to data structures that are considerably more complex
with respect to corresponding fitted finite element methods. Furthermore, integrating the variational forms on the characteristically
irregular cut cells may also be difficult and advanced quadrature formulas might need to be employed [19,20].

The Shifted Boundary Method (SBM) was proposed in [26] as an alternative to existing embedded/unfitted boundary methods
and belongs to the more specific class of approximate domain methods [27–35]. Specifically, the SBM was proposed in [26] for the
Poisson and Stokes flow problems and generalized in [36] to the advection–diffusion and Navier–Stokes equations, and in [37] to
hyperbolic conservation laws. An analysis of the stability and accuracy of the SBM for the Poisson, advection–diffusion, and Stokes
operators was also included in [26,36,38], respectively. A high-order version of the SBM was proposed in [39] with a traditional
Nitsche penalty stabilization and in [40] without penalties. Applications to solid and fracture mechanics problems were presented
in [41–45] and simulations of static and moving interfaces were developed in [46,47].
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The SBM is built for minimal computational complexity and does not contain any cut cell by design. In fact, the location where

oundary conditions are applied is shifted from the true to an approximate (surrogate) boundary, and, at the same time, modified
(shifted) boundary conditions are applied in order to avoid a reduction in the convergence rates of the overall formulation. In
particular, if the boundary conditions associated to the true domain are not appropriately modified on the surrogate domain, only
first-order convergence is to be expected.

In the original version of the SBM, the shifted boundary conditions are defined by means of Taylor expansions and are applied
weakly, using Nitsche’s method, leading to a simple, robust, accurate and efficient algorithm.

However, a Taylor expansion is not the only option to construct a shift in boundary conditions and we consider here an alternative
approach.

The new extension operators we develop in this work are in the general class of extrapolation operators based on clouds of
sampling points (e.g., moving least squares, gradient reconstruction, etc.) and are more naturally applicable when the SBM is paired
with meshfree/meshless Galerkin approximations [41].

Polynomial extension operators have been applied very recently by Burman et al. in [48] as an alternative to ghost penalties in
cutFEMs. In these developments, integration over cut cells of the governing equations was still performed. Our extension operators,
instead, are used in combination with the shifted boundary concept to completely avoid integration over cut cells.

Using these new concepts, we derive a Nitsche-type variational formulation and we develop its analysis of stability and
convergence, for the Poisson problem with Dirichlet boundary conditions.

A series of computational experiments is presented last, for both the Poisson and linear elasticity equations, including both
Dirichlet and Neumann boundary conditions.

This article is organized as follows: Section 2 introduces the general SBM notation; the SBM variational formulation for the
Poisson problem is presented in Section 3; the SBM variational formulation for the compressible elasticity equations is developed in
Section 4; the definition and properties of the extension operators are discussed in Section 5; the numerical analysis of stability and
convergence (for the Poisson problem) is provided in Section 6; numerical tests are presented in Section 7; and, finally, conclusions
are summarized in Section 8.

2. Overview of the shifted boundary method (without Taylor expansions)

Notation. Throughout the paper, we will denote by 𝐿2(𝛺) the space of square integrable functions on 𝛺. We will use the Sobolev
spaces 𝐻𝑚(𝛺) = 𝑊 𝑚,2(𝛺) of index of regularity 𝑚 ≥ 0 and index of summability 2, equipped with the (scaled) norm

‖𝑣‖𝐻𝑚(𝛺) =

(

‖𝑣‖2
𝐿2(𝛺)

+
𝑚
∑

𝑘=1
‖𝑙(𝛺)𝑘𝑫𝑘𝑣‖2

𝐿2(𝛺)

)1∕2

, (1)

where 𝑫𝑘 is the 𝑘th-order spatial derivative operator and 𝑙(𝐴) = meas𝑛𝑑 (𝐴)
1∕𝑛𝑑 is a characteristic length of the domain 𝐴 (𝑛𝑑 = 2, 3

indicates the number of spatial dimensions). Note, in particular, that 𝐻0(𝛺) = 𝐿2(𝛺). As usual, we use a simplified notation for
norms and semi-norms, i.e., we set ‖𝑣‖𝑚,𝛺 = ‖𝑣‖𝐻𝑚(𝛺) and |𝑣|𝑘,𝛺 = ‖𝑙(𝛺)𝑘𝑫𝑘𝑣‖0,𝛺 = ‖𝑙(𝛺)𝑘𝑫𝑘𝑣‖𝐿2(𝛺).

2.1. The true domain, the surrogate domain and maps

Let 𝛺 be a connected open set in R𝑛𝑑 with Lipschitz boundary. We consider a closed domain 𝒟 such that clos(𝛺) ⊆ 𝒟 and we
introduce a family 𝒯ℎ of admissible and shape-regular triangulations of 𝒟 . Then, we restrict each triangulation by selecting those
elements that are fully contained in clos(𝛺), i.e., we form the inner triangulation

𝒯ℎ ∶= {𝑇 ∈ 𝒯ℎ ∶ 𝑇 ⊂ clos(𝛺)},

which identifies the surrogate domain

�̃�ℎ ∶= int
⎛

⎜

⎜

⎝

⋃

𝑇∈𝒯ℎ

𝑇
⎞

⎟

⎟

⎠

⊆ 𝛺,

with surrogate boundary 𝛤ℎ ∶= 𝜕�̃�ℎ. We also denote by �̃� the outward-oriented unit normal vector to 𝛤ℎ. Obviously, 𝒯ℎ is an
admissible and shape-regular triangulation of �̃�ℎ (see Fig. 1). For reasons that will appear clear in what follows, it is also useful to
define the outer triangulation

𝒯ℎ ∶= {𝑇 ∈ 𝒯ℎ ∶ 𝑇 ⊂ clos(𝒟 ⧵𝛺)}, (2)

and the corresponding outer (inactive) domain

�̂�ℎ ∶= int
⎛

⎜

⎜

⎝

⋃

𝑇∈𝒯ℎ

𝑇
⎞

⎟

⎟

⎠

⊆ 𝒟 ⧵𝛺, (3)

with boundary 𝛤ℎ (the orange polygonal line in Fig. 1). The classical SBM relies on the construction of a map

̃

2

Mℎ ∶ 𝛤ℎ → 𝛤 ,
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Fig. 1. The true domain 𝛺 and its boundary 𝛤 , the surrogate domain �̃�ℎ ⊂ 𝛺 and its boundary 𝛤ℎ, the outer surrogate domain �̂�ℎ and its boundary 𝛤ℎ.

�̃�↦ 𝒙,

which associates a point 𝒙 = Mℎ(�̃�) on the physical boundary 𝛤 to any point �̃� on the surrogate boundary 𝛤ℎ [49]. Through Mℎ,
a distance vector function 𝒅Mℎ

can be defined as the difference 𝒅Mℎ
(�̃�) = 𝒙 − �̃� = [Mℎ − I](�̃�), where I is the identity map. In what

ollows, for the sake of simplicity, we will remove the subscript ‘‘Mℎ’’ from 𝒅Mℎ
and we will write 𝒅, instead.

With the purpose of imposing boundary conditions on 𝛤ℎ rather than 𝛤 , a shift operator can be defined on 𝛤ℎ through a Taylor
xpansion along 𝒅, namely Sℎ𝑣 ∶= 𝑣 + ∇𝑣 ⋅ 𝒅. With this approach, for example, a Dirichlet boundary condition 𝑣 = 𝑔(𝒙) on 𝛤 is
ransformed into a surrogate boundary condition Sℎ𝑣 = 𝑔(Mℎ(�̃�)).

2.2. Shifts by way of extension operators

The Taylor expansion, however, is not the only way to construct an extension to 𝛤 of a field 𝑣 defined on the surrogate domain
̃ℎ. We propose here an alternative strategy, more compatible with the typical data structures of mesh-free methods.

ssumption 1. We will assume that the grid is two-dimensional and composed of the union of triangles. With some adjustments,
he following results can be extended to the case of quadrilateral grids in two dimensions and also three-dimensional grids.

We start with three definitions that will be useful in what follows.

efinition 1. Let 𝛺𝛤
ℎ be the union of the elements between 𝛤ℎ and 𝛤ℎ, that is the union of the elements intersected by the true

oundary 𝛤 . Namely:

𝛺𝛤
ℎ = {𝑇 ∈ 𝒯ℎ ∶ 𝑇 ∩ 𝛤 ≠ ∅}.

efinition 2. Let �̃�+
ℎ = �̃�ℎ ∪𝛺𝛤

ℎ .

efinition 3. Let 𝑉ℎ(�̃�ℎ) ∶=
{

𝑣ℎ ∈ 𝐶0(�̃�ℎ)|𝑣ℎ|𝑇 ∈ 𝒫 1(𝑇 ),∀𝑇 ∈ 𝒯ℎ

}

be the space of globally continuous functions over �̃�ℎ

that are piecewise linear over each 𝑇 ∈ 𝒯ℎ. Let the space 𝑉ℎ(�̃�+
ℎ ) be defined in an analogous way, that is, 𝑉ℎ(�̃�+

ℎ ) ∶=
{

𝑣ℎ ∈ 𝐶0(�̃�ℎ)|𝑣ℎ|𝑇 ∈ 𝒫 1(𝑇 ),∀𝑇 ∈ 𝒯ℎ with 𝑇 ⊂ �̃�+
ℎ

}

With the previous definitions, the extension Eℎ can be described as the map

Eℎ ∶ 𝑉ℎ(�̃�ℎ) → 𝑉ℎ(�̃�+
ℎ ),

𝑣ℎ ↦ Eℎ𝑣ℎ.

In particular, we require the consistency property that (Eℎ𝑣ℎ)|�̃�ℎ
= 𝑣ℎ, for any 𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

3. The SBM for the Poisson equation

Let 𝛺 be a bounded and connected open subset of R𝑛𝑑 with Lipschitz-continuous boundary 𝛤 = 𝜕𝛤 , which is partitioned as
𝛤 = 𝛤𝐷 ∪ 𝛤𝑁 with 𝛤𝐷 ∩ 𝛤𝑁 = ∅. Specifically, 𝛤𝐷 is the Dirichlet boundary and 𝛤𝑁 is the Neumann boundary. The strong form of
the Poisson problem with a non-homogeneous Dirichlet and Neumann boundary condition reads
3
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−𝛥𝑢 = 𝑓 in 𝛺, (4a)

𝑢 = 𝑢𝐷 on 𝛤𝐷, (4b)

∇𝑢 ⋅ 𝒏 = 𝑔𝑁 on 𝛤𝑁 , (4c)

here 𝑢 is the solution field, 𝑢𝐷 its value on the Dirichlet boundary 𝛤𝐷, 𝑔𝑁 the value of the normal gradient along the Neumann
oundary 𝛤𝑁 , and 𝑓 a source term.

.1. Existence, uniqueness and regularity of the infinite dimensional problem

Let us denote by 𝐻1∕2(𝛺) a fractional trace space (typically associated with 𝐻1(𝛺)), and 𝐻−1(𝛺) the dual (space) of 𝐻1
0 (𝛺).

he well-posedness of the infinite dimensional problem is discussed, for example, in [50] (Theorem 5.1, p. 80), with the following
esult:

heorem 1 (Well-Posedness of the Infinite-Dimensional Problem). Let 𝛺 be a bounded and connected open subset of R𝑛𝑑 with Lipschitz-
ontinuous boundary 𝛤 ≡ 𝛤𝐷 (pure Dirichlet problem). Given 𝑓 ∈ 𝐻−1(𝛺) and 𝑢𝐷 ∈ 𝐻1∕2(𝛤 ), there exists a unique solution 𝑢 ∈ 𝐻1(𝛺) of
roblem (4) with pure Dirichlet conditions. Furthermore, if the boundary 𝛤 is of class 𝒞 2, 𝑓 ∈ 𝐿2(𝛺) and 𝑢𝐷 ∈ 𝐻3∕2(𝛤 ), then 𝑢 ∈ 𝐻2(𝛺)
nd satisfies

‖𝑢‖2,𝛺 ≤ 𝐶
(

‖𝑓‖0,𝛺 + ‖𝑢𝐷‖3∕2,𝛤
)

(5)

or a constant 𝐶 independent of 𝑓 and 𝑢𝐷.

.2. Weak discrete formulation

We propose the following discretization of Problem (4), inspired by Nitsche’s method [51,52] for the weak enforcement of
oundary conditions:

Find 𝑢ℎ ∈ 𝑉ℎ(�̃�ℎ) such that, ∀𝑤ℎ ∈ 𝑉ℎ(�̃�ℎ)

(∇𝑢ℎ,∇𝑤ℎ)�̃�ℎ
− ⟨∇𝑢ℎ ⋅ �̃�, 𝑤ℎ⟩𝛤ℎ − ⟨Eℎ𝑢ℎ − 𝑢𝐷,∇(Eℎ𝑤ℎ) ⋅ 𝒏 − 𝛼ℎ−1⟂ Eℎ𝑤ℎ⟩𝛤𝐷

+⟨Eℎ(𝑤ℎ),∇(Eℎ𝑢ℎ) ⋅ 𝒏 − 𝑔𝑁 ⟩𝛤𝑁 = (𝑓,𝑤ℎ)�̃�ℎ
, (6)

here

ℎ⟂ ∶=
meas𝑛𝑑 (𝑇 )

meas𝑛𝑑−1(�̃�)
, (7)

with �̃� is an edge/face of the mesh lying on 𝛤ℎ such that �̃� ⊂ 𝜕𝑇 ∩ 𝛤ℎ and 𝑇 ∈ 𝒯ℎ. In what follows, besides the shape-regularity
of the grids, we will assume that there exist two global constants 𝜉1, 𝜉2 ∈ R+ such that 𝜉1ℎ ≤ ℎ⟂ ≤ 𝜉2ℎ, so that ℎ and ℎ⟂ can be
ssumed interchangeable.

emark 1. The proposed variational form bears some similarities with the work of Lozinski and co-authors [25,53]. However
n [25] the domain �̃�ℎ ⊃ 𝛺, the operator Eℎ is not introduced, and appropriate ghost penalty operators are required for the stability
f the discrete formulation. We prefer to introduce the operator Eℎ and avoid ghost penalties, which require additional used-defined
arameters in the variational formulation.

In the case when Neumann boundary conditions are present, in order to maintain optimal accuracy, we will also consider a mixed
ormulation inspired [42,46], which employs piecewise-linear, globally continuous interpolations for both the primary variable 𝑢
nd its gradient. Let

𝑽 ℎ(�̃�ℎ) ∶=
{

𝒗ℎ ∈ (𝐶0(�̃�ℎ))𝑛𝑑 |𝒗ℎ|𝑇 ∈ (𝒫 1(𝑇 ))𝑛𝑑 ,∀𝑇 ∈ 𝒯ℎ

}

(8)

e the space of globally continuous, piecewise-linear vector functions. The mixed variational form of the SBM with extension
perators reads:

Find 𝑢ℎ ∈ 𝑉ℎ(�̃�ℎ) and 𝜷ℎ ∈ 𝑽 ℎ(�̃�ℎ) such that, for any 𝑤ℎ ∈ 𝑉ℎ(�̃�ℎ) and any 𝝍ℎ ∈ 𝑽 ℎ(�̃�ℎ),

0 =(𝜷ℎ,∇𝑤ℎ)�̃�ℎ
− ⟨𝜷ℎ ⋅ �̃�, 𝑤ℎ⟩𝛤ℎ − (𝑓,𝑤ℎ)�̃�ℎ

+ (𝜷ℎ − ∇𝑢ℎ,𝝍ℎ)�̃�ℎ

− ⟨Eℎ𝑢ℎ − 𝑢𝐷, (Eℎ𝝍ℎ) ⋅ 𝒏 − 𝛼ℎ−1⟂ Eℎ𝑤ℎ⟩𝛤𝐷 + ⟨

(

Eℎ𝜷ℎ
)

⋅ 𝒏 − 𝑔𝑁 ,Eℎ𝑤ℎ⟩𝛤𝑁

+
(

∇ ⋅ 𝜷ℎ + 𝑓, 𝜏𝑢∇ ⋅ 𝝍ℎ
)

�̃�ℎ
−
(

𝜷ℎ − ∇𝑢ℎ, 𝜏𝜷
(

𝝍ℎ + ∇𝑤ℎ
))

�̃�ℎ
, (9)

where 𝜷ℎ is a new nodal variable that approximates the gradient of 𝑢. The last two terms in (9) are appropriate variational multiscale
stabilization terms that were originally introduced in [54]. In the numerical computations that follow, 𝛼 = 10.0, 𝜏𝑢 = ℎ𝑙(𝛺), and

̄

4

𝜏𝜷 = 1∕2, with 𝑙(𝛺) the largest dimension of the bounding box of 𝛺.
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4. The SBM for the linear elasticity equations

We will also consider the equations of (compressible) linear elasticity, which are more relevant in practical applications. Their
trong form is given as

−∇ ⋅ (𝝈(𝒖)) = 𝒃 in 𝛺, (10a)

𝒖 = 𝒖𝐷 on 𝛤𝐷, (10b)

𝝈𝒏 = 𝒕𝑁 on 𝛤𝑁 , (10c)

here 𝒖 is the displacement field, 𝒖𝐷 its value on the Dirichlet boundary 𝛤𝐷, 𝒕𝑁 the traction along the Neumann boundary 𝛤𝑁 , and
𝒃 a body force. The stress 𝝈 is a linear function of 𝒖, according to the constitutive model

𝝈(𝒖) = 𝑪𝜺(𝒖),

where 𝑪 is the fourth-order elasticity tensor. Recalling the definition (8), we will then consider the following variational formulation,
which can be considered a vectorial generalization of (6):

Find 𝒖ℎ ∈ 𝑽 ℎ(�̃�ℎ) such that, ∀𝒘ℎ ∈ 𝑽 ℎ(�̃�ℎ),

(𝑪𝜺(𝒖ℎ), 𝜺(𝒘ℎ))�̃�ℎ
− ⟨𝑪𝜺(𝒖ℎ),𝒘ℎ ⊗ �̃�⟩𝛤ℎ − ⟨(Eℎ𝒖ℎ − 𝒖𝐷)⊗ 𝒏,𝑪𝜺(Eℎ𝒘ℎ)⟩𝛤𝐷 + ⟨Eℎ𝒖ℎ − 𝒖𝐷, 𝛼|𝑪|ℎ−1⟂ Eℎ𝒘ℎ⟩𝛤𝐷

+⟨Eℎ𝒘ℎ, (𝑪𝜺(𝒖ℎ)) ⋅ 𝒏 − 𝒕𝑁 ⟩𝛤𝑁 = (𝒃,𝒘ℎ)�̃�ℎ
, (11)

here |𝑪| is the Frobenius norm of the tensor 𝑪.

emark 2. Observe that in the case in which �̃�ℎ ≡ 𝛺, that is 𝛤ℎ ≡ 𝛤 and Eℎ ≡ 𝑰 , (11) collapses to the canonical Nitsche’s variational
ormulation:

(𝑪𝜺(𝒖ℎ), 𝜺(𝒘ℎ))�̃�ℎ
− ⟨𝑪𝜺(𝒖ℎ),𝒘ℎ ⊗ 𝒏⟩𝛤𝐷 − ⟨(𝒖ℎ − 𝒖𝐷)⊗ 𝒏,𝑪𝜺(𝒘ℎ)⟩𝛤𝐷

+⟨𝒖ℎ − 𝒖𝐷, 𝛼|𝑪|ℎ−1⟂ 𝒘ℎ⟩𝛤𝐷 − ⟨𝒘ℎ, 𝒕𝑁 ⟩𝛤𝑁 = (𝒃,𝒘ℎ)�̃�ℎ
. (12)

. Extension operators

We will consider two different definitions of Eℎ. Consider the following definition of the extension operator:

Eℎ𝑣ℎ (𝒙) ∶=
∑

𝐴∈𝒩

𝑁𝐴 (𝒙)v𝐴 +
∑

𝐵∈𝒩

𝑁𝐵 (𝒙) v̂𝐵 , (13)

here 𝒩 is the set of nodes (vertices) of the grid that belong to �̃�ℎ, 𝒩 is the set of nodes of the grid on 𝛤ℎ, and 𝑁𝐴 and 𝑁𝐵 are
he finite element shape functions associated with nodes 𝐴 ∈ 𝒩 and 𝐵 ∈ 𝒩 , respectively. v𝐴 = 𝑣ℎ(𝒙𝐴) represent the nodal values of
ℎ over �̃�ℎ and the extension operator Eℎ is defined by the nodal values v̂𝐵 over 𝛤ℎ. Similarly the gradient of the extension Eℎ𝑣ℎ
f 𝑣ℎ is computed as:

∇(Eℎ𝑣ℎ) (𝒙) ∶=
∑

𝐴∈𝒩

∇𝑁𝐴 (𝒙)v𝐴 +
∑

𝐵∈𝒩

∇𝑁𝐵 (𝒙) v̂𝐵 , (14)

ext, we consider two different extension operators.

.1. An extension operator based on the average gradient

This first strategy for the construction of the extension operator relies on computing a discrete gradient G̃(⋅) = {G̃𝑑 (⋅)}
𝑛𝑑
𝑑=1 on

odes located along the boundary 𝛤ℎ by way of the (lumped) 𝐿2-projection of gradients from neighboring elements. We will describe
his approach for simplex-type elements (for which elemental gradients are constant), but similar derivations apply to quadrilateral
r hexahedral elements.

Let 𝒯ℎ;𝐴 ∶= {𝑇 ∈ 𝒯ℎ ∶ 𝑇 ∩𝐴 ≠ ∅} be the set of elements in �̃�ℎ that share node 𝐴, and 𝒩𝑇 the set of nodes that belong to element
. Then we define

(G̃𝑣ℎ)𝐴 = 1
∑

𝑇∈𝒯ℎ;𝐴
|𝑇 |

∑

𝑇∈𝒯ℎ;𝐴

|𝑇 |∇𝑣ℎ|𝑇 = 1
∑

𝑇∈𝒯ℎ;𝐴
|𝑇 |

∑

𝑇∈𝒯ℎ;𝐴

|𝑇 |
∑

𝐵∈𝒩𝑇

(∇𝑁𝐵)|𝑇 v𝐵 , (15)

here |𝑇 | = meas𝑛𝑑 (𝑇 ) is the measure of the element 𝑇 (area/volume in two/three dimensions). In plain words, we associate
o each node the area/volume-weighted average of the gradients of the elements that share it as shown in Fig. 2. More
pecifically, Figs. 2(a), 2(b), and 2(c) show which elements inside �̃�ℎ are involved in the calculation of the nodal gradient G̃

̃

5

ssociated with three different nodes on 𝛤ℎ.
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Fig. 2. Extension by average gradients. The blue, red and orange curves represent the true boundary 𝛤 and surrogate boundaries 𝛤ℎ and 𝛤ℎ, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

The extension of 𝑣ℎ to a node 𝐵 on 𝛤ℎ is then constructed as the weighted average of the linear extrapolations of 𝑣ℎ along each
edge 𝒆𝐴𝐵 connecting 𝐴 to 𝐵, where each weight is the inverse of the edge length |𝒆𝐴𝐵| = |𝒙𝐵 − 𝒙𝐴|. Namely:

v̂𝐵 ∶= Eℎ𝑣ℎ(𝒙𝐵) =
1

∑

𝐴∈𝒩𝐵
|𝒆𝐴𝐵|−1

∑

𝐴∈𝒩𝐵

|𝒆𝐴𝐵|−1
(

v𝐴 + (G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵
)

, (16)

here 𝒩𝐵 is the set of nodes on 𝛤ℎ that are connected by an edge 𝒆𝐴𝐵 to node 𝐵 and we used v̂𝐵 as the short-hand notation for
ℎ𝑣ℎ(𝒙𝐵), with 𝐵 ∈ 𝒩 . Fig. 2(d) depicts the final stage of the extension procedure, and all the elements and nodes involved in the
alculation of (16). For simplicity, we will rewrite (16) as

Eℎ𝑣ℎ(𝒙𝐵) =
∑

𝐴∈𝒩𝐵

𝛼𝐵𝐴
(

v𝐴 + (G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵
)

, with 𝛼𝐵𝐴 =
|𝒆𝐴𝐵|−1

∑

𝐴∈𝒩𝐵
|𝒆𝐴𝐵|−1

. (17)

emark 3. It is easily seen that ∑𝐴∈𝒩𝐵
𝛼𝐴𝐵 = 1 and that (Eℎ𝑣ℎ)|�̃�ℎ

= 𝑣ℎ, for any 𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

Similarly, (15) can be refactored as

(G̃𝑣ℎ)𝐴 =
∑

𝑇∈𝒯ℎ;𝐴

𝛽𝐴,𝑇 ∇𝑣ℎ||𝑇 , with 𝛽𝐴,𝑇 =
|𝑇 |

∑

𝑇∈𝒯ℎ;𝐴
|𝑇 |

(18)

and ∑

𝑇∈𝒯ℎ;𝐴
𝛽𝐴,𝑇 = 1.

5.2. An extension operator based on moving least-squares

A second extension operator we consider stems from meshfree numerical methods, such as the Diffuse Element Method [55],
and leverages a Moving Least-Squares (MLS) approximation of the field of interest.

We start by defining the cloud of sample nodes over which the least-square procedure will be used. Given a node 𝐵 ∈ 𝒩 , we
̃

6

consider the set 𝒩𝐵 of nodes that are connected to 𝐵 by a single edge, that is the first ‘‘layer’’ of neighboring nodes, shown in
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Fig. 3. Extension by MLS. The blue, red and orange curves represent the true boundary 𝛤 and surrogate boundaries 𝛤ℎ and 𝛤ℎ, respectively. For a seed node
on 𝛤ℎ, circled in gray, the figure shows the cloud of sample nodes utilized by the MLS extension operator. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3(a). The second layer in the cloud is the set of nodes in �̃�ℎ that are edge-neighbors of nodes in the first layer, as shown
in Fig. 3(b), and so forth. Note that the first layer of nodes lies on 𝛤ℎ, but all other layers may include also nodes that lie on the
interior of �̃�ℎ.

In order to obtain a well-posed (non-singular) MLS algebraic problem, the sample nodes must be in sufficient number and
distributed with some uniformity. These two requirements are normally met by immersed grids, which maintain good quality metrics
as they do not need to conform to the geometry of boundaries. In addition, depending on the order of the polynomial used in the
MLS approximation, there is a minimal requirement on the number of layers to be used: for first-order (linear) approximation, at
least two layers are required; for second-order accuracy, at least three layers are required; etc. In all numerical tests, we will always
choose the minimal number of layers necessary to achieve the accuracy of the interpolation utilized.

Let 𝒩 𝑀𝐿𝑆
𝐵 be the chosen cloud of sample nodes associated with 𝐵 ∈ 𝒩 . The MLS approximation takes the form

v̂𝐵 =
∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜔𝐵𝐴v𝐴, (19)

where the 𝜔𝐵𝐴’s are appropriate weights that must fulfill the partition of unity property ∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜔𝐵𝐴 = 1. These weights are
obtained by solving an appropriate least-square minimization problem, which we describe next in the case of first-order approxi-
mation. The procedure for higher-order approximations will be very similar. A linear approximation to 𝑣ℎ(𝒙) in a neighborhood of
he node 𝐵 (of coordinate 𝒙𝐵) can be cast in the form

𝑣ℎ(𝒙) ≈ c[𝐵]𝑇p(𝒙), (20)

here

p(𝒙) = [1, 𝑥, 𝑦]𝑇

n two dimensions, and

p(𝒙) = [1, 𝑥, 𝑦, 𝑧]𝑇

n three dimensions. Here the notation c[𝐵] indicates that the array of coefficients c depends on the seed node 𝐵. c[𝐵] is obtained
s the solution to the least-squares minimization problem

argmin
c[𝐵]∈R𝑛𝑑+1

∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜙(𝒙𝐴,𝒙𝐵)
(

c[𝐵]𝑇p(𝒙𝐴) − v𝐴
)2 , (21)

here we have introduced the Gaussian smoothing kernel

𝜙(𝒙𝐴,𝒙𝐵) = exp

(

−
|𝒆𝐴𝐵|

2(max𝐴∈𝒩 𝑀𝐿𝑆
𝐵

|𝒆𝐴𝐵|)2

)

,

hich adds more weight to the information near node 𝐵. Again, |𝒆𝐴𝐵| = |𝒙𝐵 − 𝒙𝐴| denotes the length of the segment 𝒆𝐴𝐵 connecting
ode 𝐴 and node 𝐵. The classic closed form of the minimization problem (21) is given by

c[𝐵] = M[𝐵]−1
∑

𝑀𝐿𝑆

𝜙(𝒙𝐴,𝒙𝐵)p(𝒙𝐴)v𝐴, (22)
7

𝐴∈𝒩𝐵
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Fig. 4. Integration over 𝛤 (in blue). The intersections of 𝛤 with the underlying grid (light blue dots), the piecewise-linear interpolate 𝛤ℎ of 𝛤 (light blue
segments), and the quadrature points associated with the mid-point quadrature integration rule (black crosses). (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

where M[𝐵] the Grammian matrix

M[𝐵] =
∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜙(𝒙𝐴,𝒙𝐵)p(𝒙𝐴)p𝑇 (𝒙𝐴).

Substituting (22) into (20) yields

v̂𝐵 ≈ p𝑇 (𝒙𝐵)M[𝐵]−1
⎛

⎜

⎜

⎝

∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜙(𝒙𝐴,𝒙𝐵)p(𝒙𝐴)v𝐴
⎞

⎟

⎟

⎠

,

hich is equivalent to setting

𝜔𝐵𝐴 = 𝜙(𝒙𝐴,𝒙𝐵)p𝑇 (𝒙𝐵)M[𝐵]−1p(𝒙𝐴)

n (19).

emark 4. The partition of unity property
∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜔𝐵𝐴 = 1 (23)

can be easily proved starting from (19) and using the property that the least-square extrapolation is exact up to linear fields by
construction. Hence considering the constant field 𝑣ℎ = 1 and substituting v̂𝐵 = 1 and v𝐴 = 1 in (19), we obtain (23).

Remark 5. Each coefficient 𝜔𝐵𝐴 only depends on the mesh and can be computed once and for all in a pre-processing stage of the
computations.

5.3. Integration of the variational terms involving the extension operators

One key aspect that has not yet been discussed is the integration of the variational terms defined over the boundary 𝛤 and
involving the extension operator. This procedure requires the definition of specific integration points along 𝛤 and corresponding
weights. We will describe it only in the two-dimensional case for triangular elements. The discussion can be generalized to
quadrilateral elements in two dimensions and tetrahedral or hexahedral elements in three dimensions.

Given a geometric representation of 𝛤 (e.g., a level-set, an STL surface, etc.), the integration procedure can be devised in multiple
stages (see Fig. 4 for reference):

1. Construct the extension operators over the cloud of points 𝒩 .
2. Compute the intersections of the true boundary with the underlying immersed grid (the light blue dots in Fig. 4), and

approximate the true boundary 𝛤 with a piecewise-linear polygonal curve 𝛤ℎ (the light blue segmented curve in Fig. 4),
connecting the intersection points with straight segments.

3. Define a quadrature formula on each of the segments composing 𝛤ℎ (e.g., the mid-point formula, depicted with black crosses
in Fig. 4).
8
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Fig. 5. Auxiliary sketch for the proof of Lemma 2.

The proposed interpolation and integration approach is second-order accurate, and therefore compatible with the order of
pproximation of the proposed SBM. Of course, one could use more general representations of the surface than just a polygonal
urve, and, analogously, one could use integration rules more general than the simple mid-point rule.

.4. Properties of the extension operator Eℎ

This section is devoted to the derivation of the main abstract properties of the extension operator Eℎ introduced in Section 2.2.
This is a very technical section and the reader could simply browse through it in a first reading of the article. The main results are
summarized in a number of lemmas and corollaries that will be used in the numerical analysis described in Section 6.

In what follows, the notation 𝑎 ≲ 𝑏, for some quantities 𝑎 and 𝑏 that depend on the triangulation 𝒯 ℎ, indicates that 𝑎 ≤ 𝑐𝑏, for
some positive real constant 𝑐 independent of 𝒯 ℎ. The first important result is the following fundamental lemma:

Lemma 1. Let 𝑇 be a triangular element contained in 𝛺𝛤
ℎ and let 𝒯

ℎ
𝒩 (𝑇 ) be the set of triangles in �̃�ℎ whose vertices influence the definition

of the extension operator Eℎ on the triangle 𝑇 . Then it holds:

‖∇Eℎ𝑣ℎ‖0,𝑇 ≲ ‖∇𝑣ℎ‖0,𝒯 ℎ
𝒩
(𝑇 ), ∀𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

Proof. The proof of Lemma 1 is based on the following technical lemma:

Lemma 2. Given any triangle 𝑇 with vertices 𝒙𝐴, 𝒙𝐵 , and 𝒙𝐶 then

∫𝑇
‖∇𝑣ℎ‖2d𝒙 ≃ |𝑣ℎ(𝒙𝐴) − 𝑣ℎ(𝒙𝐶 )|2 + |𝑣ℎ(𝒙𝐵) − 𝑣ℎ(𝒙𝐶 )|2, ∀𝑣ℎ ∈ 𝒫 1(𝑇 ),

where the symbol ‘‘≃’’ indicates equivalency up to a positive constant.

Proof. Both sides are invariant under affine transformations, so it is enough to map back to the parent (reference) element �̂� and
use the equivalence of the norms in 𝒫 1(𝑇 )∕R. □

We will now proceed with the proof of Lemma 1, distinguishing between the case of the gradient-based and the moving
least-squares extension operator.

Gradient-based extension. Consider the situation depicted in Fig. 5. Recalling (17) and (18), and using Remark 3, we have:

v̂𝐵 − v𝐶 =
∑

𝐴∈𝒩𝐵

𝛼𝐵𝐴(v𝐴 − v𝐶 − (G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵) =
∑

𝐴∈𝒩𝐵 ,𝐴≠𝐶

𝛼𝐵𝐴(v𝐴 − v𝐶 ) −
∑

𝐴∈𝒩𝐵

𝛼𝐵𝐴(G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵 .

Now, if the nodes 𝐴 and 𝐶 belong to the same triangle 𝑇 , then v𝐴 − v𝐶 = ∇𝑣ℎ|𝑇 ⋅ 𝒆𝐴𝐶 and

|v𝐴 − v𝐶 |
2 ≤ ‖∇𝑣ℎ|𝑇 ‖2‖𝒆𝐴𝐶‖2 ≲ ℎ2𝑇 |∇𝑣ℎ|𝑇 |

2 ≃ ∫𝑇
|∇𝑣ℎ|

2. (24)

Instead, if node 𝐴 and 𝐶 do not belong to the same triangle, but are connected by 𝑝 triangles, one has

v𝐴 − v𝐶 = (v𝐴 − v𝑀1
) + (v𝑀1

− v𝑀2
) + (v𝑀2

− v𝑀3
) +⋯ + (v𝑀𝑝−1

− v𝐶 )

and the previous estimate can be applied term by term. Thus,

⎛

⎜

⎜

⎝

∑

𝐴∈𝒩𝐵

𝛼𝐵𝐴(v𝐴 − v𝐶 )
⎞

⎟

⎟

⎠

2

≤
∑

𝐴∈𝒩𝐵

𝛼2𝐵𝐴

⏟⏞⏞⏟⏞⏞⏟

∑

𝐴∈𝒩𝐵

(v𝐴 − v𝐶 )2 ≤
∑

𝑇 ′∈𝒯 ′
𝐴𝐶 (�̃�ℎ)

∫𝑇 ′
|∇𝑣ℎ|

2

9

≤1
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for a set of triangles 𝒯 ′
𝐴𝐶 (�̃�ℎ) connecting node 𝐴 and 𝐶. On the other hand,

|

|

|

(G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵
|

|

|

2
=
|

|

|

|

|

|

|

∑

𝑇∈𝒯ℎ;𝐴

𝛽𝐴,𝑇∇𝑣ℎ|𝑇 ⋅ 𝒆𝐴𝐵

|

|

|

|

|

|

|

2

≤
∑

𝑇∈𝒯ℎ;𝐴

𝛽2𝐴,𝑇

⏟⏞⏞⏞⏟⏞⏞⏞⏟
≤1

∑

𝑇∈𝒯ℎ;𝐴

‖∇𝑣ℎ|𝑇 ‖2 ‖𝒆𝐴𝐵‖2
⏟⏟⏟
≃‖𝒆𝐴𝐶‖2

≲
∑

𝑇∈𝒯ℎ;𝐴
∫𝑇

|∇𝑣ℎ|
2, (25)

o that

⎛

⎜

⎜

⎝

∑

𝐴∈𝒩𝐵

(G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵
⎞

⎟

⎟

⎠

2

≤ card(𝒩𝐵)
⏟⏞⏞⏟⏞⏞⏟

𝑂(1)

∑

𝐴∈𝒩𝐵

(

(G̃𝑣ℎ)𝐴 ⋅ 𝒆𝐴𝐵
)2 ≲

∑

𝐴∈𝒩𝐵

∑

𝑇∈𝒯ℎ;𝐴
∫𝑇

|∇𝑣ℎ|
2.

Moving least-square extension. In this case, recalling (19) and Remark 4, we have

v̂𝐵 − v𝐶 =
∑

𝐴∈𝒩 𝑀𝐿𝑆
𝐵

𝜔𝐵𝐴(v𝐴 − v𝐶 ),

and arguments similar to the case of the gradient-based extension operator can be used. □

We consider next a number of important results that are consequences of Lemma 1.

Corollary 1. It holds

ℎ1∕2𝑇 ‖∇Eℎ𝑣ℎ‖0,𝑇∩𝛤 ≲ ‖∇𝑣ℎ‖0,𝒯 ℎ
𝒩
(𝑇 ), ∀𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

Proof . We have

ℎ𝑇 ‖∇Eℎ𝑣ℎ‖
2
0,𝑇∩𝛤 = |(∇Eℎ𝑣ℎ)|𝑇 |

2

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
constant

ℎ𝑇 ∫0,𝑇∩𝛤
d𝛤 ≲ |(∇Eℎ𝑣ℎ)|𝑇 |

2
∫𝑇

d�̃�ℎ = ‖∇Eℎ𝑣ℎ‖
2
0,𝑇 . □

Corollary 2. There exists a constant 𝑐∙, independent of the mesh size, such that

‖ℎ1∕2∇(Eℎ𝑣ℎ)‖0,𝛤 ≤ 𝑐∙‖∇𝑣ℎ‖0,�̃�ℎ
, ∀𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

Proof. This result easily follows from the scaled trace inequality (Theorem 5), together with Lemma 1. The constant 𝑐∙ is independent
from the mesh size, as it depends on the constants appearing in the statements of Theorem 5 and Lemma 1 □

Corollary 3. There exists a constant 𝑐⊛, independent of the mesh size, such that

‖𝑣ℎ‖0,𝛤ℎ ≤ 𝑐⊛

(

‖Eℎ𝑣ℎ‖0,𝛤 + max
𝛤ℎ

|𝒅|‖∇𝑣ℎ‖0,�̃�ℎ

)

, ∀𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

Proof. Observe that, by definition, (Eℎ𝑣ℎ)|𝛤ℎ = 𝑣ℎ|𝛤ℎ and, looking at the sketch of Fig. 6, notice that the following identity holds:

Eℎ𝑣ℎ(𝒙) − Eℎ𝑣ℎ(�̃�) = Eℎ𝑣ℎ(Mℎ�̃�) − Eℎ𝑣ℎ(�̃�) =
∑

𝑇 ′∈𝒯 (�̃�,𝒅)
(∇(Eℎ𝑣ℎ))|𝑇 ′ ⋅ 𝒅𝑇 ′ ,

where 𝒯 (�̃�,𝒅) is the set of all elements of the grid that are intersected by the distance vector 𝒅 that maps �̃� to 𝒙 and 𝒅𝑇 ′ are
vectors that subdivide 𝒅, that is 𝒅 =

∑

𝑇 ′∈𝒯 (�̃�,𝒅) 𝒅𝑇 ′ with 𝒅𝑇 ′ connecting the two edges of element 𝑇 ′. Hence 𝒅𝑇 ′ = 𝜂𝑇 ′𝒅 with
∑

𝑇 ′∈𝒯 (�̃�,𝒅) 𝜂𝑇 ′ = 1. Note that the cardinality of 𝒯 (�̃�,𝒅) is finite since the mesh must be regular and therefore the angles formed
by the corners of the elements must be uniformly bounded from below. The graphical sketch of Fig. 6 refers to the case in which
card(𝒯 (�̃�,𝒅)) = 2. Whence,

|Eℎ𝑣ℎ(�̃�)|
2 ≲ |Eℎ𝑣ℎ(Mℎ�̃�)|

2 +
∑

𝑇 ′∈𝒯 (�̃�,𝒅)
|𝜂𝑇 ′ |

2
|(∇(Eℎ𝑣ℎ))|𝑇 ′ |

2
|𝒅|2.

Integrating over 𝑇 ∩ 𝛤ℎ (recall that 𝑇 ∩ 𝛤ℎ may be just a vertex of 𝑇 ) for an element 𝑇 ∈ 𝛺𝛤
ℎ yields

‖𝑣ℎ‖
2
0,𝑇∩𝛤ℎ

≲ ‖Eℎ𝑣ℎ‖
2
0,𝑇∩𝛤ℎ

+

(

∑

𝑇 ′∈𝒯 (�̃�,𝒅)
|(∇(Eℎ𝑣ℎ))|𝑇 ′ |

2

)2

max
𝑇∩𝛤ℎ

|𝒅|2 ∫𝑇∩𝛤ℎ
d𝛤ℎ ≲ ‖Eℎ𝑣ℎ‖

2
0,𝑇∩𝛤ℎ

+ max
𝑇∩𝛤ℎ

|𝒅|2‖∇Eℎ𝑣ℎ|𝑇 ‖
2
0,𝑇 .

e conclude by summing over all 𝑇 ∈ 𝛺𝛤
ℎ . □

emark 6. From the inspection of the proof of Corollary 3, we actually have proven the following result:
10
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Fig. 6. Auxiliary sketch for the proof of Corollary 3.

Corollary 4. There exists a constant 𝑐⊛, independent of the mesh size, such that

‖ℎ−1∕2𝑣ℎ‖
2
0,𝛤ℎ

≤ 𝑐⊛

(

‖ℎ−1∕2Eℎ𝑣ℎ‖
2
0,𝛤 + max

𝑇∈𝛺𝛤
ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

)

‖∇𝑣ℎ‖20,�̃�ℎ

)

, ∀𝑣ℎ ∈ 𝑉ℎ(�̃�ℎ).

5.4.1. The extension operator Eℎ in 𝐻2(�̃�ℎ)
The purpose of this section is to extend some of the results of the previous section to the case in which a function is in 𝐻2(�̃�ℎ)

instead of 𝑉 ℎ(�̃�ℎ). These results will be instrumental to prove convergence of the proposed algorithms in Section 6.2.
Consider now the space 𝑉 (�̃�ℎ;𝒯ℎ) = 𝑉ℎ(�̃�ℎ) +𝐻2(�̃�ℎ) ⊂ 𝐻2(�̃�ℎ;𝒯ℎ), which extends 𝑉ℎ(�̃�ℎ) to function spaces that can represent

the exact solution of the infinite dimensional variational problem associated to (4). Consider also 𝐻2(�̃�ℎ;𝒯ℎ) =
∏

𝑇∈𝒯ℎ
𝐻2(𝑇 ) with

‘broken’ norm ‖ ⋅ ‖2,�̃�ℎ ,𝒯ℎ
=
∑

𝑇∈𝒯ℎ
‖ ⋅ ‖2,𝑇 . We associate to 𝑉 (�̃�ℎ;𝒯ℎ) the norm

‖𝑣‖2
𝑉 (�̃�ℎ ;𝒯ℎ)

= ‖𝑣‖2𝑎 + |ℎ𝑤|

2
2,�̃�ℎ ,𝒯ℎ

, (26)

where

‖𝑢ℎ‖
2
𝑎 = ‖∇𝑢ℎ‖20,�̃�ℎ

+ ‖ℎ−1∕2Eℎ𝑢ℎ‖
2
0,𝛤 , (27)

and we note that if 𝑣 ∈ 𝑉ℎ(�̃�ℎ), then ‖𝑣‖𝑉 (�̃�ℎ;𝒯ℎ) = ‖𝑣‖𝑎.

Definition 4. For any 𝑤 ∈ 𝑉 (�̃�ℎ;𝒯ℎ), let Eℎ𝑤 ∶= Eℎ(Iℎ𝑤), where Iℎ𝑤 is the piecewise-linear function that interpolates 𝑤 at the
nodes of 𝒯 ℎ(�̃�ℎ).

The previous definition is consistent, since if 𝑤 = 𝑤ℎ ∈ 𝑉 ℎ(�̃�ℎ), then Iℎ𝑤 = 𝑤ℎ. Then Eℎ is well-defined on 𝑉 (�̃�ℎ;𝒯ℎ) and
Corollary 2 can be extended as follows:

Corollary 5. It holds

‖ℎ1∕2∇(Eℎ𝑤)‖0,𝛤 ≲ ‖𝑤‖𝑉 (�̃�ℎ ;𝒯ℎ), ∀𝑤 ∈ 𝑉 (�̃�ℎ;𝒯ℎ).

Proof . Applying Corollary 2, we have that

‖ℎ1∕2∇(Eℎ𝑤)‖0,𝛤 = ‖ℎ1∕2∇(Eℎ(Iℎ𝑤))‖0,𝛤 ≲ ‖∇(Iℎ𝑤)‖0,�̃�ℎ

≤ ‖∇𝑤‖0,�̃�ℎ
+ ‖∇(𝑤 − Iℎ𝑤)‖0,�̃�ℎ

≲ ‖∇𝑤‖0,�̃�ℎ
+

(

∑

𝑇∈𝒯 ℎ

ℎ2𝑇 |𝑤|2,𝑇

)1∕2

≲ ‖𝑤‖𝑉 (�̃�ℎ ;𝒯ℎ) □

Similarly, Corollary 4 can be extended as

Corollary 6. For any 𝑤 ∈ 𝑉 (�̃�ℎ;𝒯ℎ) it holds

‖ℎ−1∕2𝑤‖

2
0,𝛤ℎ

≲ ‖ℎ−1∕2Eℎ𝑤‖

2
0,𝛤 +

(

1 + max
𝑇∈𝛺𝛤

ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

))

‖𝑤‖

2
𝑉 (�̃�ℎ;𝒯ℎ)

.

Proof . We start by writing

‖ℎ−1∕2𝑤‖ ≤ ‖ℎ−1∕2I 𝑤‖ + ‖ℎ−1∕2(𝑤 − I 𝑤)‖ .
11

0,𝛤ℎ ℎ 0,𝛤ℎ ℎ 0,𝛤ℎ



Computer Methods in Applied Mechanics and Engineering 421 (2024) 116782R. Zorrilla et al.

a

Observing that on 𝛤ℎ one has Iℎ𝑤 = Eℎ(Iℎ𝑤) = Eℎ𝑤, then

‖ℎ−1∕2Iℎ𝑤‖0,𝛤ℎ = ‖ℎ−1∕2Eℎ(Iℎ𝑤)‖0,𝛤ℎ ≲ ‖ℎ−1∕2Eℎ(Iℎ𝑤)‖0,𝛤 + max
𝑇∈𝛺𝛤

ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

)1∕2

‖∇(Iℎ𝑤)‖0,�̃�ℎ

≲ ‖ℎ−1∕2Eℎ𝑤‖0,𝛤 + max
𝑇∈𝛺𝛤

ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

)1∕2

‖𝑤‖𝑉 (�̃�ℎ ;𝒯ℎ),

s in the proof of Corollary 5. On the other hand,

‖ℎ−1∕2(𝑤 − Iℎ𝑤)‖20,𝛤ℎ
=

∑

𝑇∈𝒯 ℎ ,𝑇∩𝛤ℎ=∅

ℎ−2𝑇 ‖ℎ1∕2(𝑤 − Iℎ𝑤)‖20,𝑇∩𝛤ℎ
≲

∑

𝑇∈𝒯 ℎ

ℎ−2𝑇
(

‖𝑤 − Iℎ𝑤‖

2
0,𝑇 + ℎ2𝑇 ‖∇(𝑤 − Iℎ𝑤)‖20,𝑇

)

≲
∑

𝑇∈𝒯 ℎ

ℎ−2𝑇
(

ℎ4𝑇 |𝑤|

2
2,𝑇 + ℎ4𝑇 |𝑤|

2
2,𝑇

)

≲
∑

𝑇∈𝒯 ℎ

ℎ2𝑇 |𝑤|

2
2,𝑇 ≲ ‖𝑤‖

2
𝑉 (�̃�ℎ ;𝒯ℎ)

,

which concludes the proof. □

5.4.2. Estimate of the approximation error
We wish to estimate

‖ℎ1∕2(Eℎ𝑤 −𝑤)‖0,𝛤 , ∀𝑤 ∈ 𝐻2(𝛺). (28)

To this end, we prove some technical lemmas:

Lemma 3. Let 𝑇 be a triangle in 𝛺𝛤
ℎ . Then ∀𝑧ℎ ∈ 𝑉ℎ(�̃�ℎ),

‖Eℎ𝑧ℎ − 𝑧ℎ‖0,𝑇 ≃ ℎ𝑇

(

∑

𝐴∈𝒩𝑇

|z̃𝐴 − z𝐴|
2

)1∕2

,

where z𝐴 = 𝑧ℎ(𝒙𝐴), z̃𝐴 = (Eℎ𝑧ℎ)(𝒙𝐴), and 𝒩𝑇 the set of nodes that belong to element 𝑇 .

Proof . A scaling argument and the equivalence of norms on the reference element �̂� yields the desired result. □

Lemma 4. If z𝐴 and z̃𝐴 are as in Lemma 3, one has

|z̃𝐴 − z𝐴| ≲
⎛

⎜

⎜

⎝

∑

𝑇 ′∈𝒯 ℎ
𝒩
(𝑇 )

‖∇𝑧ℎ‖20,𝑇 ′

⎞

⎟

⎟

⎠

1∕2

.

Proof . We recall that 𝒯 ℎ
𝒩 (𝑇 ) be the set of triangles in �̃�ℎ whose vertices influence the definition of the extension operator Eℎ on

the triangle 𝑇 . We split the proof in the case of the gradient-based extension and the moving least-square extension:

Gradient-based extension. We have

z̃𝐴 =
∑

𝐵∈𝒩𝐴

𝛼𝐴𝐵
(

z𝐵 + (G̃𝑧ℎ)𝐵 ⋅ 𝒆𝐵𝐴
)

.

and

z𝐴 =
∑

𝐵∈𝒩𝐴

𝛼𝐴𝐵

⏟⏞⏞⏟⏞⏞⏟
=1

z𝐴 =
∑

𝐵∈𝒩𝐴

𝛼𝐴𝐵
(

z𝐵 + ∇𝑧ℎ|𝑇𝐴𝐵 ⋅ 𝒆𝐵𝐴
)

,

where ∇𝑧ℎ|𝑇𝐴𝐵 is the gradient measured on either of the elements that share the edge 𝒆𝐵𝐴 (observe that the gradients on either
element have the same projection along 𝒆𝐵𝐴). Hence

z̃𝐴 − z𝐴 =
∑

𝐵∈𝒩𝐴

𝛼𝐴𝐵
(

(G̃𝑧ℎ)𝐵 − ∇𝑧ℎ|𝑇𝐴𝐵
)

⋅ 𝒆𝐵𝐴

and

|z̃𝐴 − z𝐴|
2 ≤

∑

𝐵∈𝒩𝐴

‖(G̃𝑧ℎ)𝐵 − ∇𝑧ℎ|𝑇𝐴𝐵‖
2
‖𝒆𝐵𝐴‖2 ≲

∑

𝑇∈𝒯ℎ;𝐴

‖∇𝑧ℎ|𝑇 ‖2ℎ2𝑇 ≃
∑

𝑇∈𝒯ℎ;𝐴

‖∇𝑧ℎ|𝑇 ‖20,𝑇 .

Moving least-square extension. In this case, in view of (19) and Remark 4, we have

|z̃𝐴 − z𝐴| ==
∑

𝐵∈𝒩 𝑀𝐿𝑆
𝐴

𝜔𝐴𝐵|z𝐵 − z𝐴|,
12

and |z𝐵 − z𝐴| can be bound by the sum of gradients of 𝑧ℎ as done in the proof of Lemma 1 (for the moving least-square case). □
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C

Now we can proceed to bound (28), as summarized in the following result:

orollary 7. Assume that 𝑤 ∈ 𝐻2(�̃�+
ℎ ), where �̃�

+
ℎ = �̃�ℎ ∪𝛺𝛤

ℎ . Then

‖ℎ1∕2(Eℎ𝑤 −𝑤)‖0,𝛤 ≲ ℎ2
𝛤ℎ
|𝑤|2,�̃�+

ℎ
,

with ℎ𝛤ℎ = max{ℎ𝑇 ∶ 𝑇 ∩ 𝛤ℎ ≠ ∅}.

Proof . Consider an element in 𝑇 ⊂ 𝛺𝛤
ℎ . Then

ℎ1∕2𝑇 ‖Eℎ𝑤 −𝑤‖0,𝑇∩𝛤 ≲ ‖Eℎ𝑤 −𝑤‖0,𝑇 + ℎ𝑇 ‖∇(Eℎ𝑤 −𝑤)‖0,𝑇 (29)

and

‖∇(Eℎ𝑤 −𝑤)‖0,𝑇 ≲ ‖∇(Eℎ𝑤 − Iℎ𝑤)‖0,𝑇 + ‖∇(Iℎ𝑤 −𝑤)‖0,𝑇 ≲ ℎ−1𝑇 ‖Eℎ𝑤 − Iℎ𝑤‖0,𝑇 + ℎ𝑇 |𝑤|2,𝑇 , (30)

where Eℎ𝑤 − Iℎ𝑤 ∈ 𝒫 1(𝑇 ). Substituting (30) into (29), we have

ℎ1∕2𝑇 ‖Eℎ𝑤 −𝑤‖0,𝑇∩𝛤 ≲ 2‖Eℎ𝑤 − Iℎ𝑤‖0,𝑇 + ‖𝑤 − Iℎ𝑤‖0,𝑇 + ℎ2𝑇 |𝑤|2,𝑇 ≲ ‖Eℎ𝑤 − Iℎ𝑤‖0,𝑇 + ℎ2𝑇 |𝑤|2,𝑇

Now observe that for an arbitrary 𝜏 ∈ 𝒫 1(𝑇 ), we have Eℎ𝜏 = 𝜏 (for both the gradient-based and moving least-squares extension
operators) and Iℎ𝜏 = 𝜏. Hence, setting 𝑧 = 𝑤 − 𝜏, we have Eℎ𝑤 − Iℎ𝑤 = Eℎ𝑧 − Iℎ𝑧 and, using Lemmas 3 and 4:

‖Eℎ𝑤 − Iℎ𝑤‖0,𝑇 = ‖Eℎ𝑧 − Iℎ𝑧‖0,𝑇 ≲ ℎ𝑇
⎛

⎜

⎜

⎝

∑

𝑇 ′∈𝒯 ℎ
𝒩
(𝑇 )

‖∇(Iℎ𝑧)‖20,𝑇 ′

⎞

⎟

⎟

⎠

1∕2

.

Now

‖∇(Iℎ𝑧)‖0,𝑇 ′ ≤ ‖∇𝑧‖0,𝑇 ′ + ‖∇(𝑧 − Iℎ𝑧)‖0,𝑇 ′

with

‖∇(𝑧 − Iℎ𝑧)‖0,𝑇 ′ = ‖∇(𝑤 − Iℎ𝑤)‖0,𝑇 ′ ≲ ℎ𝑇 ′ |𝑤|2,𝑇 ′ .

Let us set now 𝒮 (𝑇 ) =
⋃

{𝑇 ′ ∈ 𝒯 ℎ
𝒩 (𝑇 )} and observe that diam(𝒮 (𝑇 )) ≃ ℎ𝑇 ≃ ℎ𝑇 ′ , ∀𝑇 ′ ∈ 𝒯 ℎ

𝒩 (𝑇 ), since only a finite number of
elements, independent of ℎ, belongs to 𝒯 ℎ

𝒩 (𝑇 ). Hence

⎛

⎜

⎜

⎝

∑

𝑇 ′∈𝒯 ℎ
𝒩
(𝑇 )

‖∇(Iℎ𝑧)‖20,𝑇 ′

⎞

⎟

⎟

⎠

1∕2

= ‖∇𝑧‖0,𝒮 (𝑇 ) = ‖∇(𝑤 − 𝜏)‖0,𝒮 (𝑇 )

and choosing 𝜏 as the projection of 𝑤 upon 𝒫 1(𝒮 (𝑇 )) in the gradient norm, we have

‖∇(𝑤 − 𝜏)‖ ≲ ℎ𝑇 |𝑤|2,𝒮 (𝑇 ) ≃
⎛

⎜

⎜

⎝

∑

𝑇 ′∈𝒯 ℎ
𝒩
(𝑇 )

(ℎ𝑇 ′ |𝑤|2,𝑇 ′ )2
⎞

⎟

⎟

⎠

1∕2

.

In conclusion,

‖Eℎ𝑤 − Iℎ𝑤‖0,𝑇 ≲
⎛

⎜

⎜

⎝

∑

𝑇 ′∈𝒯 ℎ
𝒩
(𝑇 )

(ℎ𝑇 ′ |𝑤|2,𝑇 ′ )2
⎞

⎟

⎟

⎠

1∕2

,

which completes the proof. □

6. Numerical analysis of the method for the Poisson equation

In what follows, we perform the numerical analysis of the proposed method. Under a number of technical assumptions, we
prove numerical stability, continuity, asymptotic consistency, and optimal convergence of the variational formulation in the natural
norm. These are the main results discussed next and a reader more interested in the actual numerical performance of the proposed
approach can skip this section and move directly to Sections 4 and 7.

6.1. Well-posedness and stability

In the proofs of numerical stability and convergence that follow, we will make the following technical assumptions.
13

Assumption 2. The boundary conditions in problem (6) are only of Dirichlet type, that is 𝛤 ≡ 𝛤𝐷.
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Assumption 3. For some arbitrarily small 𝜁 ∈ R+, it holds

|𝒅| ∼ ℎ1+𝜁 . (31)

Remark 7. Assumption 3 will not be used in numerical computations, but is simply confined to the mathematical proofs. For
example, when nested grid refinement is employed, then 𝜁 = 0 in Assumption 3. The condition 𝜁 > 0 implies that the grids are
dapted after every refinement so that 𝛤ℎ is pushed slightly towards 𝛤 .

Under Assumption 2, (6) reduces to:

Find 𝑢ℎ ∈ 𝑉ℎ(�̃�ℎ) such that,

𝑎ℎ(𝑢ℎ, 𝑤ℎ) = 𝑙ℎ(𝑤ℎ), ∀𝑤ℎ ∈ 𝑉ℎ(�̃�ℎ), (32a)

where

𝑎ℎ(𝑢ℎ, 𝑤ℎ) = (∇𝑢ℎ,∇𝑤ℎ)�̃�ℎ
− ⟨∇𝑢ℎ ⋅ �̃�, 𝑤ℎ⟩𝛤ℎ − ⟨Eℎ𝑢ℎ,∇(Eℎ𝑤ℎ) ⋅ �̃� − 𝛼ℎ−1⟂ Eℎ𝑤ℎ⟩𝛤 , (32b)

𝑙ℎ(𝑤ℎ) = (𝑓,𝑤ℎ)�̃�ℎ
− ⟨𝑔,∇(Eℎ𝑤ℎ) ⋅ �̃� − 𝛼ℎ−1⟂ Eℎ𝑤ℎ⟩𝛤 . (32c)

emark 8. Because of the use of the extension operator Eℎ, the bilinear form 𝑎ℎ(𝑢ℎ, 𝑤ℎ) is not symmetric.

As a first step, we prove that the proposed method is stable, by a coercivity argument.

heorem 2 (Coercivity). Consider the bilinear form 𝑎ℎ(𝑢ℎ, 𝑤ℎ) defined in (32), under Assumptions 1, 2, and 3. Then, for 𝛼 sufficiently
arge, there exists a constant 𝐶𝑎 > 0, independent of the mesh size, such that

𝑎ℎ(𝑢ℎ, 𝑢ℎ) ≥ 𝐶𝑎‖𝑢ℎ‖
2
𝑎 ∀𝑢ℎ ∈ 𝑉ℎ(�̃�ℎ), (33)

here ‖𝑢ℎ‖𝑎 was defined in (27).

roof. By substitution, we have

𝑎ℎ(𝑢ℎ, 𝑢ℎ) = ‖∇𝑢ℎ‖20,�̃�ℎ
− ⟨∇𝑢ℎ ⋅ �̃�, 𝑢ℎ⟩𝛤ℎ − ⟨Eℎ𝑢ℎ,∇(Eℎ𝑢ℎ) ⋅ 𝒏⟩𝛤 + 𝛼‖ℎ−1∕2Eℎ𝑢ℎ‖

2
0,𝛤 . (34)

rom Cauchy’s inequality, Young’s 𝜖-inequality, we obtain

𝑎ℎ(𝑢ℎ, 𝑢ℎ) ≥‖∇𝑢ℎ‖20,�̃�ℎ
−

𝜖1
2
‖ℎ1∕2∇𝑢ℎ ⋅ �̃�‖20,𝛤ℎ

−
𝜖−11
2

‖ℎ−1∕2𝑢ℎ‖
2
0,𝛤ℎ

−
𝜖2
2
‖ℎ1∕2∇(Eℎ𝑢ℎ) ⋅ 𝒏‖20,𝛤 −

𝜖−12
2

‖ℎ−1∕2Eℎ𝑢ℎ‖
2
0,𝛤 + 𝛼‖ℎ−1∕2Eℎ𝑢ℎ‖

2
0,𝛤 . (35)

Corollary 4 then yields

𝑎ℎ(𝑢ℎ, 𝑢ℎ) ≥‖∇𝑢ℎ‖20,�̃�ℎ
−

𝜖1
2
‖ℎ1∕2∇𝑢ℎ ⋅ �̃�‖20,𝛤ℎ

−
𝑐⊛
2𝜖1

(

‖ℎ−1∕2Eℎ𝑢ℎ‖
2
0,𝛤 + max

𝑇∈𝛺𝛤
ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

)

‖∇𝑢ℎ‖20,�̃�ℎ

)

−
𝜖2
2
‖ℎ1∕2∇(Eℎ𝑢ℎ) ⋅ 𝒏‖20,𝛤 −

𝜖−12
2

‖ℎ−1∕2Eℎ𝑢ℎ‖
2
0,𝛤 + 𝛼‖ℎ−1∕2Eℎ𝑢ℎ‖

2
0,𝛤 . (36)

The discrete trace inequality (A.4b) in Appendix, Corollary 2, and the definition of the norm ‖ ⋅ ‖𝑎 yield

𝑎ℎ(𝑢ℎ, 𝑢ℎ) ≥

(

1 − �̃�𝐼
𝜖1
2

− 𝑐∙
𝜖2
2

−
𝑐⊛
2𝜖1

max
𝑇∈𝛺𝛤

ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

))

‖∇𝑢ℎ‖20,�̃�ℎ
+
(

𝛼 − 1
2𝜖1

− 1
2𝜖2

)

‖ℎ−1∕2Eℎ𝑢ℎ‖
2
0,𝛤

≥min

(

1 − �̃�𝐼
𝜖1
2

− 𝑐∙
𝜖2
2

−
𝑐⊛
2𝜖1

max
𝑇∈𝛺𝛤

ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

)

, 𝛼 − 1
2𝜖1

− 1
2𝜖2

)

‖𝑢ℎ‖
2
𝑎. (37)

Taking now 𝜖1 = 1∕(3�̃�𝐼 ), 𝜖2 = 1∕(3𝑐∙), 𝛼 = 1∕2 + 3∕2(�̃�𝐼 + 𝑐∙) and observing that, by Assumption 3, for a sufficiently refined grid,
max𝑇∈𝛺𝛤

ℎ

(

ℎ−1𝑇 max𝑇∩𝛤ℎ |𝒅|
)

< (9𝑐⊛�̃�𝐼 )−1, we obtain the asymptotic coercivity statement (33) with 𝐶𝑎 = 1∕2. □

6.2. Consistency and convergence analysis

From now on, we pose the following regularity assumption on the exact solution 𝑢 of our Dirichlet problem (see [49,56]):

Assumption 4. Assume that 𝛤 is of class 𝒞 2, 𝑓 ∈ 𝐿2(𝛺) and 𝑢 ∈ 𝐻3∕2(𝛤 ).
14
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i

w

As a consequence, Theorem 1 guarantees 𝑢 ∈ 𝐻2(𝛺) with the estimate (5). Actually, 𝑢 can be extended to a function, still denoted
by 𝑢, which belongs to 𝐻2(�̃�+

ℎ ) and satisfies

‖𝑢‖2,�̃�+
ℎ
≤ 𝐶

(

‖𝑓‖0,𝛺 + ‖𝑢𝐷‖3∕2,𝛤
)

. (38)

See, for more details [57]. This assumption allows us to keep technicalities at a minimum in the subsequent consistency and
convergence analysis. Note however that it can be weakened to include domains with a finite number of corners and/or edges
(see [49,56]).

Observe that the bilinear form 𝑎ℎ(⋅, ⋅) is well-defined also on the space 𝑉 (�̃�ℎ;𝒯ℎ)×𝑉ℎ(�̃�ℎ) introduced in Section 5.4.1. The proof
of convergence of the SBM for Problem (4) using the natural norm ‖ ⋅ ‖𝑎 defined in (27), relies on Strang’s Second Lemma, stated
without proof, as it is classic [50]:

Lemma 5 (Strang’s Second Lemma). If 𝑢ℎ ∈ 𝑉ℎ(�̃�ℎ) is the solution of (32), then

‖𝑢 − 𝑢ℎ‖𝑉 (�̃�ℎ ;𝒯ℎ) ≤
(

1 + 𝐶−1
𝑎 ‖𝑎ℎ‖𝑉ℎ(�̃�ℎ)×𝑉ℎ(�̃�ℎ)

)

𝐸𝑎,ℎ(𝑢) + 𝐶−1
𝑎 𝐸𝑐,ℎ(𝑢). (39a)

where

𝐸𝑎,ℎ(𝑢) = inf
𝑤ℎ∈𝑉ℎ(�̃�ℎ)

‖𝑢 −𝑤ℎ‖𝑉 (�̃�ℎ ;𝒯ℎ) (39b)

s the approximation error and

𝐸𝑐,ℎ(𝑢) = sup
𝑤ℎ∈𝑉ℎ(�̃�ℎ)

|𝑙ℎ(𝑤ℎ) − 𝑎ℎ(𝑢,𝑤ℎ)|
‖𝑤ℎ‖𝑉 (�̃�ℎ ;𝒯ℎ)

(39c)

is the consistency error.

From Theorem 2, we already have that 𝐶𝑎 is a constant independent of the mesh size. Hence, to estimate the discretization error
in the norm ‖ ⋅ ‖𝑉 (�̃�ℎ ;𝒯ℎ) we need to prove that ‖𝑎ℎ‖𝑉ℎ(�̃�ℎ)×𝑉ℎ(�̃�ℎ) is bounded from above and to estimate the approximation and
consistency errors in terms of the mesh size ℎ�̃�ℎ

. Recalling the notation at the beginning of Section 5.4.1, we have the following
result:

Proposition 1 (Boundedness). There exists a constant 𝐶ℬ > 0, independent of the mesh size, such that

𝑎ℎ(𝑢,𝑤) ≤ 𝐶ℬ‖𝑢‖𝑉 (�̃�ℎ;𝒯ℎ)‖𝑤‖𝑉 (�̃�ℎ ;𝒯ℎ), ∀𝑢,𝑤 ∈ 𝑉 (�̃�ℎ;𝒯ℎ). (40)

Proof. Using the Cauchy–Schwartz inequality we obtain:

𝑎ℎ(𝑢,𝑤) = (∇𝑢,∇𝑤)�̃�ℎ
− ⟨∇𝑢 ⋅ �̃�, 𝑤⟩𝛤ℎ − ⟨Eℎ𝑢,∇(Eℎ𝑤) ⋅ 𝒏⟩𝛤 + ⟨Eℎ𝑢, 𝛼ℎ

−1
⟂ Eℎ𝑤⟩𝛤

≤ ‖∇𝑢‖0,�̃�ℎ
‖∇𝑤‖0,�̃�ℎ

+ ‖ℎ1∕2∇𝑢 ⋅ �̃�‖0,𝛤ℎ‖ℎ
−1∕2𝑤‖0,𝛤ℎ + ‖ℎ−1∕2Eℎ𝑢‖0,𝛤 ‖ℎ

1∕2∇(Eℎ𝑤) ⋅ 𝒏‖0,𝛤

+ 𝛼‖ℎ−1∕2Eℎ𝑢‖0,𝛤 ‖ℎ
−1∕2Eℎ𝑤‖0,𝛤 , (41)

Using now the scale trace inequality (A.3b) in Theorem 6 of Appendix and Corollaries 5 and 6, we obtain

𝑎ℎ(𝑢,𝑤) ≲ ‖∇𝑢‖0,�̃�ℎ
‖∇𝑤‖0,�̃�ℎ

+ 𝐶𝐼‖𝑢‖𝑉 (�̃�ℎ ;𝒯ℎ)

(

‖ℎ−1∕2Eℎ𝑤‖

2
0,𝛤 +

(

1 + max
𝑇∈𝛺𝛤

ℎ

(

max𝑇∩𝛤ℎ |𝒅|
ℎ𝑇

))

‖𝑤‖𝑉 (�̃�ℎ ;𝒯ℎ)

)

+ ‖ℎ−1∕2Eℎ𝑢‖0,𝛤 ‖𝑤‖𝑉 (�̃�ℎ;𝒯ℎ) + 𝛼‖ℎ−1∕2Eℎ𝑢‖0,𝛤 ‖ℎ
−1∕2Eℎ𝑤‖0,𝛤

≲ ‖𝑢‖𝑉 (�̃�ℎ ;𝒯ℎ)‖𝑤‖𝑉 (�̃�ℎ;𝒯ℎ), (42)

hich can be restated by saying that there exists a positive constant 𝐶ℬ , independent of the mesh size, such that

‖𝑎ℎ‖𝑉 (�̃�ℎ;𝒯ℎ)×𝑉 (�̃�ℎ;𝒯ℎ) = sup
𝑢∈𝑉 (�̃�ℎ;𝒯ℎ)

sup
𝑤∈𝑉 (�̃�ℎ ;𝒯ℎ)

𝑎ℎ(𝑢,𝑤)
‖𝑢‖𝑉 (�̃�ℎ ;𝒯ℎ)‖𝑤‖𝑉 (�̃�ℎ;𝒯ℎ)

≤ 𝐶ℬ . □ (43)

Proposition 2 (Approximability). There exists a constant 𝐶𝒜 > 0, independent of the mesh size, such that

𝐸𝑎,ℎ(𝑢) ≤ 𝐶𝒜ℎ�̃�ℎ
|𝑢|2,�̃�ℎ

, ∀𝑢 ∈ 𝑉 (�̃�ℎ;𝒯ℎ), (44)

where ℎ�̃�ℎ
is the maximum ℎ𝑇 for 𝑇 ⊂ �̃�ℎ.

Proof. Let 𝑤ℎ = Iℎ𝑢 in (39b), where Iℎ𝑢 is the standard piecewise-linear Lagrange interpolate of 𝑢 on the triangulation 𝒯ℎ.
Consequently, the goal is to estimate

‖𝑢 − Iℎ𝑢‖𝑉 (�̃�ℎ;𝒯ℎ) = ‖∇(𝑢 − Iℎ𝑢)‖0,�̃�ℎ
+ ‖ℎ−1∕2Eℎ(𝑢 − Iℎ𝑢)‖0,𝛤 + |ℎ(𝑢 − Iℎ𝑢)|2,�̃�ℎ ,𝒯ℎ

≤ ‖∇(𝑢 − Iℎ𝑢)‖0,�̃�ℎ
+ ‖ℎ−1∕2Eℎ(𝑢 − Iℎ𝑢)‖0,𝛤 + ℎ�̃�ℎ

|𝑢|2,�̃�ℎ
. (45)
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We begin by stating a classical interpolation result

‖ℎ−1(𝑢 − Iℎ𝑢)‖0,�̃�ℎ
+ ‖∇(𝑢 − Iℎ𝑢)‖0,�̃�ℎ

≤ 𝐶1ℎ�̃�ℎ
|𝑢|2,�̃�ℎ

, (46)

where 𝐶1 is a positive constant independent of the mesh size, and we also observe that ‖ℎ−1∕2Eℎ(𝑢 − Iℎ𝑢)‖0,𝛤 = 0, by Definition 4.
Replacing (46) in (45) gives (44) with 𝐶𝒜 = 1 + 𝐶1. □

Proposition 3 (Consistency Error). There exists a constant 𝐶𝒞 > 0 independent of the mesh size and 𝑢 such that

𝐸𝑐,ℎ(𝑢) ≤ 𝐶𝒞ℎ𝛤ℎ |𝑢|2,�̃�+
ℎ
. (47)

Proof. Integrating by parts the bilinear form 𝑎ℎ(⋅, ⋅) given in (32b) and applying Corollary 7 yields

|𝑎ℎ(𝑢,𝑤ℎ) − 𝑙ℎ(𝑤ℎ)| = | − ⟨Eℎ𝑢 − 𝑢 + 𝑢 − 𝑔
⏟⏟⏟

=0

,∇(Eℎ𝑤ℎ) ⋅ �̃� − 𝛼ℎ−1⟂ Eℎ𝑤ℎ⟩𝛤 |

≤ |⟨Eℎ𝑢 − 𝑢,∇(Eℎ𝑤ℎ) ⋅ �̃�⟩𝛤 | + |⟨Eℎ𝑢 − 𝑢, 𝛼ℎ−1⟂ Eℎ𝑤ℎ⟩𝛤 |

≤ ‖ℎ−1∕2(Eℎ𝑢 − 𝑢)‖0,𝛤
(

‖ℎ1∕2∇(Eℎ𝑤ℎ) ⋅ 𝒏‖0,𝛤 + ‖𝛼ℎ−1∕2Eℎ𝑤ℎ‖0,𝛤
)

≲ ℎ𝛤ℎ |𝑢|2,�̃�+
ℎ
‖𝑤ℎ‖𝑉 (�̃�ℎ;𝒯ℎ). (48)

The proof is concluded by replacing (48) in (39c). □

Theorem 3 (Convergence in the Natural Norm). Under Assumption 4 and the condition that ℎ𝛤ℎ is sufficiently small, the numerical solution
𝑢ℎ of the SBM (6) satisfies the following error estimate:

‖𝑢 − 𝑢ℎ‖𝑉 (�̃�ℎ ;𝒯ℎ) ≤ 𝐶ℎ�̃�ℎ

(

‖𝑓‖0,𝛺 + ‖𝑢𝐷‖3∕2,𝛤
)

, (49)

where 𝑢 is the exact solution of Problem (4) and 𝐶 > 0 is a constant independent of the mesh size and the solution.

Proof. Combining Strang’s abstract error estimate (39a) with the stability bound (33), the error estimates in Propositions 2 and 3,
and the regularity estimate (38) gives (49). □

7. Numerical studies

We consider a series of two-dimensional tests to verify the main theoretical results obtained in the previous sections.

7.1. Poisson problem on an annulus

The computational domain is an annulus of inner radius 𝑎 = 1 and outer radius 𝑏 = 3. Strong Dirichlet conditions are applied
on the outer boundary, which is body-fitted (i.e., the nodes of the grid lie on the true boundary 𝛤 ), while weak SBM boundary
conditions of Dirichlet or Neumann type are applied on the inner boundary, which is immersed.

The exact solution �̄� to this problem is generated with the method of manufactured solutions, by applying an appropriate forcing
term 𝑓 compatible with the following analytical expression:

�̄� (𝑥, 𝑦) = 1
4
(

9 − 𝑥2 − 𝑦2 − 2 ln 3 + ln(𝑥2 + 𝑦2)
)

+ 1
4
sin 𝑥 sinh 𝑦.

7.1.1. Extension operator consistency and accuracy
This preliminary test aims at verifying the accuracy and consistency of the extension operators. In this test, the values of the

exact solution �̄� are initially imposed at all the nodes in �̃�ℎ and the two versions of the extension operator Eℎ are combined with
formulas (13) and (14), to compute Eℎ�̄� on 𝛤ℎ. The quality of the extension operators is quantified with the 𝐿2-norm of the error
‖Eℎ�̄� − �̄�‖0;𝛤 and the 𝐻1-seminorm of the error |Eℎ�̄� − �̄�|1;𝛤 , both evaluated over 𝛤 .

Fig. 7 depicts the convergence of the 𝐿2-error on the boundary 𝛤 for the two variants of the extension operator.
Both the MLS and the average gradient extensions feature optimal, quadratic convergence rate, with slightly lower errors for the

average gradient extension (see Fig. 7(a)). A similar behavior is observed for the 𝐻1-seminorm of the errors (see Fig. 7(b)), which
show optimal, linear convergence rates.

7.1.2. Dirichlet and Neumann boundary conditions convergence
In this test we assess the convergence rate of the 𝐿2-error ‖𝑢 − �̄�‖𝐿2(�̃�ℎ) (computed over �̃�ℎ), when imposing Dirichlet and

Neumann boundary conditions.
We present the results obtained with formulation (6), as well as the mixed formulation of the Poisson Eq. (9).
Fig. 8 depicts the results obtained when enforcing a Dirichlet boundary condition in the inner boundary of the annulus, with a

penalty parameter 𝛼 = 10.0. The proposed method exhibits optimal quadratic convergence of the 𝐿2-norm of the error, for both the
MLS and the average gradient extension operators. Convergence is also optimal (first-order) for the 𝐻1-seminorm of the error, as
shown in Fig. 9. Figs. 8 and 9 also demonstrate that similar results are obtained with the mixed form (9).
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Fig. 7. Accuracy test of the extension operators (annulus geometry). Convergence of the error norms for MLS and average gradient (labeled as ∇-based) extension
operators, for a given analytical solution field on �̃�ℎ. Dashed and dash-dotted lines represent linear and quadratic convergence rates, respectively.

Fig. 8. Poisson problem on an annulus domain with an unfitted Dirichlet boundary condition. Convergence of the 𝐿2-norm of the error, ‖𝑢ℎ − �̄�‖0,�̃�ℎ
, for the

MLS and average gradient extension operators. Results are presented for primal (irreducible) and mixed formulations. Dashed and dash-dotted lines represent
linear and quadratic convergence rates.

Fig. 10 shows the convergence results when Neumann boundary conditions are imposed over the inner boundary of the annulus.
In this case, the 𝐿2-error of the solution obtained with the irreducible formulation (6) is only first-order accurate, for both variants of
the extension operator. Quadratic convergence rates are reestablished using the mixed-form of the variational Eqs. (9) in conjunction
with the MLS extension (see Fig. 10(a)), but not the average gradient extension (see Fig. 10(b)). The 𝐻1-seminorms of the error
converge optimally for both irreducible and mixed formulations and both types of extension, as shown in Fig. 11.

7.2. Poisson problem on a trapezoidal plate

This test was originally presented in [56] and is very well suited to prove that the proposed method is not affected by irregular
grid patterns in the surrogate boundary. The computational domain 𝛺 (Fig. 12) consists of a right trapezoid with unit height (𝑠 = 1.0),
top side of length 𝑏1 = 0.6, and bottom side of length 𝑏2 = 0.4. The exact solution

�̄� (𝑥, 𝑦) = 𝑦 sin(2𝜋𝑥) − 𝑥 cos(2𝜋𝑦),

is enforced using the method of manufactured solutions, by enforcing the source term

𝑓 (𝑥, 𝑦) = 4𝜋2 (𝑦 sin(2𝜋𝑥) − 𝑥 cos(2𝜋𝑦)) .

In order to create irregular patterns in the surrogate grid, we start by meshing the trapezoid with rectangular (quadrilateral) elements
of aspect ratio 5:1, which are subsequently divided into four triangular elements each. Hence the top, left, and bottom sides of the
17
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Fig. 9. Poisson problem on an annulus domain with an unfitted Dirichlet boundary condition. Convergence of the 𝐻1-seminorm of the error, |𝑢ℎ − �̄�|1,�̃�ℎ
, for the

MLS and average gradient extension operators. Results are presented for primal (irreducible) and mixed formulations. Dashed and dash-dotted lines represent
linear and quadratic convergence rates.

Fig. 10. Poisson problem on an annulus domain with an unfitted Neumann boundary condition. Convergence of the 𝐿2-norm of the error, ‖𝑢ℎ − �̄�‖0,�̃�ℎ
, for the

MLS and average gradient extension operators. Results are presented for primal (irreducible) and mixed formulations. Dashed and dash-dotted lines represent
linear and quadratic convergence rates.

trapezoid are meshed with a body fitted grid, while the right (oblique) side is immersed. The location of the oblique side is slightly
displaced according to the following definition of the distance function:

𝑑(𝑥, 𝑦) = sgn
(

𝑑
)

|

|

|

max
(

𝑑, 𝜀𝑑
)

|

|

|

,

where 𝑑 will be defined momentarily, and 𝜀𝑑 = 10−12. Assuming that the bottom left corner of the trapezoid is placed at (−0.5,−0.5)
in the reference coordinates, 𝑑 is given by

𝑑(𝑥, 𝑦) = −
5𝑥 − 𝑦
26

.

Dirichlet conditions are applied on the entire boundary. The computational results, described in Fig. 13 show optimal convergence
of the 𝐿2-error for both the MLS and average gradient extension operators.

7.3. Compressible Cook’s membrane

This last example extends the previous results to the case of compressible linear elasticity, using the formulation described in
Section 4 to solve the classical compressible Cook’s membrane benchmark.

The problem geometry and material properties are described in Fig. 14. The Young modulus and Poisson ratio are equal to 200
N/mm2 and 0.3, respectively. The problem is solved for a set of ‘‘structured’’ triangular meshes with size ranging from 0.75 mm to
18
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Fig. 11. Poisson problem on an annulus domain with an unfitted Neumann boundary condition. Convergence of the 𝐻1-seminorm of the error, |𝑢ℎ − �̄�|1,�̃�ℎ
, for

the MLS and average gradient extension operators. Results are presented for primal (irreducible) and mixed formulations. Dashed and dash-dotted lines represent
linear and quadratic convergence rates.

Fig. 12. Problem domain 𝛺.

12 mm. These grids are fitted to all sides of the membrane except the left vertical side, which is immersed. A vertical (tangential)
distributed load of 0.00625 N/mm2 is applied along the vertical right side of the membrane. Zero displacement is enforced on the
left vertical side, using the proposed unfitted method.

Since there is no analytical solution for this problem, we compare the results obtained with the proposed immersed method
against a reference solution obtained with a body-fitted grid and a piecewise-linear finite element formulation. The element size
of the body-fitted grid is chosen to be less than one tenth of the element size of the finest immersed grid used. Fig. 15 shows the
𝐿2-norm and 𝐻1-seminorm of the error, both converging with optimal rates.

8. Summary

We introduced and analyzed a new variant of the SBM method that utilizes general extension operators rather than Taylor
expansions to shift the location where boundary conditions are applied.

In particular, we analyzed how the properties of the extension operators affect the numerical stability and convergence of the
overall shifted formulation.

We considered two variants of the extension operator, one based on averaging the gradient of the solution on a patch of elements
near the surrogate boundary, and another based on a Moving Least Square technique.

Both approaches were tested in the context of the Laplace equation and the equations of compressible linear elasticity, in the
case of Dirichlet and Neumann conditions.
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Fig. 13. Poisson problem on a trapezoidal plate. Convergence of the ‖𝑢ℎ − �̄�‖0,�̃�ℎ
error norms for MLS and average gradient extension operators. Results are

presented for primal (irreducible) and mixed formulations. Dashed and dash-dotted lines represent linear and quadratic convergence rates.

Fig. 14. Compressible Cook’s membrane. Geometry, load and material properties.

Fig. 15. Compressible Cook’s membrane. Error norms for MLS and average gradient (labeled as ∇-based) extension operators. Dashed and dash-dotted lines
represent linear and quadratic convergence rates.
20
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Future research will be directed in the context of computational fluid dynamics and IsoGeometric Analysis (IGA), including the
xtension of the proposed method to thin-walled (i.e. shell-like) structures.
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ppendix. Some useful inequalities

Hereafter, we collect some well-known inequalities that are used in the mathematical proof of Section 3.

heorem 4 (Trace Theorem). Assume 𝐴 ⊂ R𝑛𝑑 is open and bounded and 𝜕𝐴 is Lipschitz. Then the trace operator 𝑇 ∶ 𝐻1(𝐴) → 𝐿2(𝜕𝐴)
uch that 𝑇𝑤 = 𝑤

|𝜕𝐴 satisfies

‖𝑤‖

2
𝐿2(𝜕𝐴)

= ‖𝑇𝑤‖

2
𝐿2(𝜕𝐴)

≤ 𝐶
(

𝑙(𝐴)−1‖𝑤‖

2
0,𝐴 + 𝑙(𝐴)|𝑤|

2
1,𝐴

)

, ∀𝑤 ∈ 𝐻1(𝐴), (A.1)

where 𝐶 is a constant that may depend on the shape of 𝐴 but not on its size, and 𝑙(𝐴) = meas(𝐴)1∕𝑛𝑑 is a characteristic length of the domain 𝐴.

Let 𝒯 ℎ be the regular triangulation introduced in Section 2.1, and let 𝐻𝑘(�̃�ℎ,𝒯 ℎ) =
∏

𝑇∈𝒯 ℎ 𝐻𝑘(𝑇 ) be the ‘broken’ Sobolev
pace of order 𝑘 ≥ 0 with semi-norm |𝑣|𝑘,�̃�ℎ ,𝒯 ℎ =

∑

𝑇∈𝒯 ℎ |𝑣|𝑘,𝑇 . For the sake of simplicity, here and in the rest of the paper we use
he symbol |ℎ𝑣|𝑘,�̃�ℎ ,𝒯 ℎ to indicate the scaled quantity ∑

𝑇∈𝒯 ℎ |ℎ𝑇 𝑣|𝑘,𝑇 . The general trace theorem above can be particularized to
unctions belonging to such spaces as follows.

heorem 5 (Scaled Trace Inequalities). There exists a constant 𝑐𝐼 > 0 independent of the mesh size such that for any element 𝑇 ⊂ �̃�ℎ
ith an edge 𝛾𝑇 ⊂ 𝛤ℎ one has

‖ℎ1∕2𝑇 𝑤‖

2
0,𝛾𝑇

≤ 𝑐𝐼
(

‖𝑤‖

2
0,𝑇 + |ℎ𝑇𝑤|

2
1,𝑇

)

, ∀𝑤 ∈ 𝐻1(𝑇 ). (A.2a)

Summing over all the elements with at least one of their edges on the boundary 𝛤ℎ, we obtain

‖ℎ1∕2𝑤‖

2
0,𝛤ℎ

≤ 𝑐𝐼
(

‖𝑤‖

2
0,�̃�ℎ

+ |ℎ𝑤|

2
1,�̃�ℎ ,𝒯 ℎ

)

, ∀𝑤 ∈ 𝐻1(�̃�ℎ,𝒯
ℎ). (A.2b)

Combining these inequalities component-wise, one gets analogous results for vector- or tensor-valued functions.

heorem 6 (Scaled Vector/Tensor Trace Inequalities). There exists a constant 𝐶𝐼 > 0 independent of the mesh size such that

‖ℎ1∕2𝑇 ∇𝑤 ⋅ 𝝂‖20,𝛾𝑇 ≤ 𝐶𝐼

(

|𝑤|

2
1,𝑇 + |ℎ𝑇𝑤|

2
2,𝑇

)

, ∀𝑤 ∈ 𝐻2(𝑇 ), (A.3a)

‖ℎ1∕2∇𝑤 ⋅ 𝝂‖20,𝛤ℎ
≤ 𝐶𝐼

(

|𝑤|

2
1,�̃�ℎ

+ |ℎ𝑤|

2
2,�̃�ℎ ,𝒯 ℎ

)

, ∀𝑤 ∈ 𝐻1(�̃�ℎ) ∩𝐻2(�̃�ℎ,𝒯
ℎ), (A.3b)

‖ℎ1∕2𝜺(𝒘)�̃�‖20,𝛤ℎ
≤ 𝐶𝐼

(

‖𝜺(𝒘)‖20,�̃�ℎ
+ |ℎ𝜺(𝒘)|2

1,�̃�ℎ ,𝒯 ℎ

)

≤ 𝐶𝐼

(

|𝒘|

2
1,�̃�ℎ

+ |ℎ𝒘|

2
2,�̃�ℎ ,𝒯 ℎ

)

, ∀𝒘 ∈ (𝐻1(�̃�ℎ) ∩𝐻2(�̃�ℎ,𝒯
ℎ))𝑛𝑑 . (A.3c)
21

n (A.3a) and (A.3b), 𝝂 denotes any unit vector field defined on the boundary.
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T

Using the equivalence of norms in a finite dimensional space, we obtain the following trace inequalities for piecewise-affine
unctions.

heorem 7 (Discrete Trace Inequalities). There exist constants 𝑐𝐼 , �̃�𝐼 > 0 independent of the mesh size, such that

‖

√

ℎ𝑇𝑤‖

2
0;𝛾𝑇

≤ 𝑐𝐼‖𝑤‖

2
0,𝑇 , ∀𝑤 ∈ 𝒫 1(𝑇 ), (A.4a)

and, for all vector functions 𝒘ℎ belonging to the space of piecewise-linear and globally continuous functions over the mesh 𝒯 ,

‖ℎ1∕2∇𝒘ℎ𝝂‖20,𝛤ℎ
≤ �̃�𝐼‖∇𝒘ℎ

‖

2
0,�̃�ℎ

, (A.4b)

‖

√

ℎ∇ ⋅𝒘ℎ
‖

2
0,𝛤ℎ

≤ �̃�𝐼‖∇ ⋅𝒘ℎ
‖

2
0,�̃�ℎ

, (A.4c)

‖ℎ1∕2𝜺(𝒘ℎ)�̃�‖20,𝛤ℎ
≤ �̃�𝐼‖𝜺(𝒘ℎ)‖20,�̃�ℎ

. (A.4d)

In the second inequality, 𝝂 denotes any unit vector field defined on the boundary.
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