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ABSTRACT
We present a unified model to describe the dynamics of optical frequency combs in quantum cascade lasers (QCLs), incorporating both
ring and Fabry–Pérot (FP) cavity configurations. The model derives a modified complex Ginzburg–Landau equation (CGLE), leveraging an
order parameter approach, and is capable of capturing the dynamics of both configurations, thus enabling a comparative analysis. This result
demonstrates that FP QCLs, in addition to ring QCLs, belong to the same universality class of physical systems described by the CGLE, which
includes, among others, systems in the fields of superconductivity and hydrodynamics. In the modified CGLE, a nonlinear integral term
appears that is associated with the coupling between counterpropagating fields in the FP cavity and whose suppression yields the ring model,
which is known to be properly described by a conventional CGLE. We show that this crucial term holds a key role in inhibiting the forma-
tion of harmonic frequency combs (HFCs), associated with multi-peaked localized structures, due to its anti-patterning effect. We provide
support for a comprehensive campaign of numerical simulations in which we observe a higher occurrence of HFCs in the ring configuration
compared to the FP case. Furthermore, the simulations demonstrate the model’s capability to reproduce experimental observations, including
the coexistence of amplitude and frequency modulation, linear chirp, and typical dynamic scenarios observed in QCLs. Finally, we perform a
linear stability analysis of the single-mode solution for the ring case, confirming its consistency with numerical simulations and highlighting
its predictive power regarding the formation of harmonic combs.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0213323

I. INTRODUCTION

Quantum cascade lasers (QCLs) stand as a pivotal technol-
ogy in the realm of semiconductor lasers,1,2 distinguished, among
other features, by their capability to spontaneously emit optical
frequency combs (OFCs) across the mid-infrared (mid-IR) and ter-
ahertz (THz) spectral ranges.3–6 Since their initial demonstration in
2012,4 the study of these OFCs has progressed rapidly, drawing a
keen interest from both theoretical and experimental perspectives.6,7

The spontaneous formation of OFCs in QCLs has been thor-
oughly examined for the ring and the Fabry–Perot (FP) con-
figurations. Remarkably, experimental techniques such as Shifted
Wave Interference Fourier Transform Spectroscopy (SWIFTS) and

Fourier transform analysis of comb emission (FACE) have enabled
the retrieval of periodic temporal profiles of amplitude and instan-
taneous frequency of the electric field, shedding light on the
coexistence of amplitude modulated (AM) and frequency modu-
lated (FM) behavior within these combs.5,8–12 Another significant
achievement is the experimental demonstration of spontaneous
harmonic frequency combs (HFCs), where the comb spacing is
a multiple of the laser cavity’s free-spectral range (FSR), in both
configurations.13–17

Parallel efforts have been directed toward theoretical investiga-
tions to elucidate the underlying physical mechanisms that govern
the formation of combs in QCLs.7 Spatial hole burning (SHB) and
linewidth enhancement factor (LEF, also named α factor) have
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emerged as key factors that trigger multimode dynamics close to the
laser threshold.6,18–22 Although both elements are present and col-
laborate to generate multimode emission in the FP configuration, in
the unidirectional ring cavity, SHB does not occur, and therefore,
the LEF serves as the physical mechanism responsible for multi-
mode dynamics.23,24 Then, the strong nonlinearity inherent in QCL
heterostructures plays a crucial role in the proliferation and lock-
ing of generated optical lines,25,26 competing with and compensating
for the group velocity dispersion (GVD) arising from material and
waveguide dispersion.26

Early theoretical studies utilized Maxwell–Bloch equations
(MBEs) to reproduce and characterize QCL comb generation,
although they lacked inclusion of the LEF,21,22,27–30 preventing the
theoretical reproduction of the near-threshold single-mode instabil-
ity observed experimentally in ring configurations.10,23 To address
this limitation, effective semiconductor Maxwell–Bloch equations
(ESMBEs) were introduced for ring24 and FP19 QCLs. Derived self-
consistently from a semiconductor optical susceptibility, ESMBEs
incorporate key semiconductor properties, including the non-zero
LEF. This model accurately reproduces typical characteristics in the
time and frequency domains for both THz24,31 and mid-IR19,26 QCL
combs.

However, the mathematical complexity of the MBEs and
ESMBEs hinders analytical treatment and the identification of dom-
inant mechanisms responsible for specific regimes, such as linear
chirp or HFC emission. Reduced models, which are based on fewer
equations and possess a lower mathematical complexity, have been
shown to be more suitable for this purpose.23,26,32–35

In this work, we present a unified theoretical framework for
describing the dynamics of QCL combs, unifying the dynamics of
ring and FP QCLs into a single spatiotemporal equation using an
order parameter approach proposed for Kerr combs and solitons
in Refs. 36 and 37. An order parameter reduction of the ESMBEs
leads to two coupled Ginzburg–Landau equations (CGLEs) for the
forward and backward fields propagating inside the FP cavity. Such
a pair is then modified to take the form of a modified complex
CGLE for an auxiliary field, incorporating a non-local integral term
accounting for the coupling between counterpropagating fields in
the FP configuration due to SHB. Through suppression of the inte-
gral term, thus neglecting the field coupling, we can configure the
model for the unidirectional ring case, described by a conventional
CGLE for the unidirectional field, aligning seamlessly with previous
investigations on this configuration.23,35,38–40

This approach not only offers a unified and concise description
of the dynamics in both systems but also enables simultaneous char-
acterization of the amplitude and phase dynamics of the field. This
offers the possibility of reproducing the coexistence between AM
and FM features observed in the experimental setup. Furthermore,
the proposed model allows for a comparative study between the ring
and FP configurations, highlighting differences in the formation of
localized structures associated with the presence or absence of the
non-local integral term.

Another advantage offered by the model is the possibility to
conduct systematic simulations, such as scans across the pump
parameter, which enable the reproduction of dynamic scenarios in
accordance with experiments. This includes capturing key charac-
teristics of QCL combs, such as the linear chirp and typical temporal
profiles, as well as the generation of harmonic states. Furthermore,

we emphasize that the reduction of the number of equations govern-
ing the dynamics of the two configurations holds significant promise
for deducing general properties, gaining insight into physical phe-
nomena, and conducting analytical treatments, such as deriving the
linear stability analysis (LSA) of the single-mode solution.

In Sec. II, we outline the derivation of the two coupled CGLEs
for the FP case from a full set of ESMBEs, and then we retrieve the
single CGLE for the ring configuration as a special case.

In Sec. III A, we derive the single spatiotemporal equation for
the order parameter, while in Sec. III B, we analyze the practical
implications of the nonlinear integral term in the formation of mul-
tiple localized structures per round trip, corresponding to harmonic
combs.

Section IV is dedicated to the numerical results obtained by
integrating the reduced models for both the ring (single CGLE) and
the FP cases (two coupled CGLEs), enabling a comparison between
the two configurations and the replication of several experimentally
demonstrated features of the QCL combs.

In Sec. V, we develop the LSA of the single-mode solution for
the ring case, and we verify the consistency between the prediction
of the LSA and the numerical simulations.

Section VI draws the conclusion of the work.

II. DERIVATION OF THE REDUCED MODELS
FOR FP AND RING QCL
A. Two coupled complex Ginzburg–Landau equations
for the FP configuration

We start from a full set of ESMBEs for the FP configuration,
obtained by introducing scaling of the variables into the original
equations presented in Ref. 19,

∂F+

∂η
+ ∂F+

∂t′
= σ[−F+ − p+], (1)

− ∂F−

∂η
+ ∂F−

∂t′
= σ[−F− − p−], (2)

∂p+

∂t′
= Γ(1 + iα)[−p+ − (1 + iα)(D0F+ +D+1 F−)], (3)

∂p−

∂t′
= Γ(1 + iα)[−p− − (1 + iα)(D0F− +D−1 F+)], (4)

∂D0

∂t′
= b[μ −D0 + F+∗p+ + F−∗p− + F+p+∗ + F−p−∗], (5)

∂D+1
∂t′
= b[−D+1 + F−∗p− + F+p−∗], (6)

where η and t′ represent the dimensionless scaled space and time
variables, F+ and F− denote the forward and backward envelopes of
the electric fields, p+ and p− are the forward and backward polar-
ization terms, D0 stands for the zero-order density of carriers, and
D+1 and D−1 are the variables associated with the carrier grating due
to SHB. In addition, α represents the LEF, μ is the normalized pump
rate, σ is the ratio between the polarization dephasing time τd and
the photon lifetime τp, while b stands for the ratio between τd and
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the carrier lifetime τe, and Γ is a dimensionless constant propor-
tional to the homogeneous gain linewidth δhom, and it is defined as
Γ = δhomπτd. Typically, the value of Γ is around 0.1 for THz QCLs
and is greater than or equal to 0.5, reaching up to the unit for mid-
IR QCLs. Furthermore, we highlight that typical values of τe in QCLs
range from picoseconds to hundreds of femtoseconds, whereas
τd typically falls within the hundreds of femtoseconds range, and
τp spans tens to hundreds of picoseconds.6,7 Consequently, σ is on
the order of 10−2 to 10−3, while b ranges from 100 to 10−1. It is also
noteworthy that the ratio τe/τp is similarly small, in the order of 10−2

to 10−3. Moreover, we remark that D−1 is the complex conjugate of
D+1 and, therefore, the dynamical equation for D−1 is the complex
conjugate of Eq. (6). For all the details on the inclusion of D+1 and
D−1 , refer, e.g., to Ref. 41.

Equations (1)–(6) are completed with the boundary conditions
for the FP cavity,

F−(L′, t′) =
√

RF+(L′, t′), (7)

F+(0, t′) =
√

RF−(0, t′), (8)

where L′ is the scaled cavity length, and R is the reflectivity of the
QCL facets.

We remark that the form of Eqs. (1)–(6) [where, e.g., the term
p+ in the field equation Eq. (1) is preceded by a negative sign, and
similarly for p− in Eq. (2)] descends from the chosen scaling. Further
details are provided in the supplementary material, where the origi-
nal ESMBEs and the introduced scaling procedure are presented in
detail.

We introduce the smallness parameter,

ε =
√
σ, (9)

and we assume fast carriers and near threshold operations. There-
fore, we can write

F± = ε F(1)± +O(ε2), (10)

p± = ε p(1)± +O(ε2), (11)

D0 = 1 + ε2D(2)0 +O(ε3), (12)

D1
± = ε2 D1

(2)± +O(ε3), (13)

μ = 1 + ε2μ(2) +O(ε3). (14)

We have introduced the notation X(n) to denote the n-th order term
in the expansion of the variable X. The expansion of μ in Eq. (14)
corresponds to the implementation of the hypothesis of a near-
threshold operation. Furthermore, in order to have derivatives of
order O(1), we assume that the following Taylor expansions hold:

∂

∂t′
= ∂

∂t′(0)
+ ε2 ∂

∂t′(2)
+O(ε3), (15)

∂

∂η
= ∂

∂η(0)
+ ε2 ∂

∂η(2)
+O(ε3). (16)

By introducing the expansion Eq. (15), we can rewrite the equation
Eq. (1) for the forward field,

ε
∂F(1)+

∂η(0)
+ ε3 ∂F(1)+

∂η(2)
+ ε∂F(1)+

∂t′(0)
+ ε3 ∂F(1)+

∂t′(2)

= ε2[−ε F(1)+ − ε p(1)+]. (17)

At first order in ε, we have

∂F(1)+

∂η(0)
= −∂F(1)+

∂t′(0)
. (18)

Now let us consider the equation for p+, Eq. (3), and let us introduce
the expansions Eqs. (15) and (16) into it. We have a first order in ε,

ε
∂p(1)+

∂t′(0)
= Γ(1 + iα){−ε p(1)+ − (1 + iα)ε F(1)+}, (19)

and then

[1 + 1
Γ(1 + iα)

∂

∂t′(0)
]εp(1)+ = −(1 + iα)ε F(1)+. (20)

If we solve Eq. (20) in the Fourier domain, we obtain

[1 + iω
Γ(1 + iα)]p̂

(1)+ = −(1 + iα) F̂ (1)+, (21)

where ω is the frequency offset with respect to the reference fre-
quency (empty cavity mode closest to the gain peak; for further
details, see Refs. 19 and 24). By introducing the additional hypothesis
that ω/Γ≪ 1,

p(1)+ = −(1 + iα) F(1)+. (22)

We remark that the assumption ω/Γ≪ 1 is consistent with the near-
threshold operation hypothesis of our theory. Experiments have
shown that the emission spectrum width of QCLs increases with the
pump parameter, resulting in a much narrower range near the laser
threshold compared to farther above the threshold.42

Using Eq. (22), we get from Eqs. (5) and (6),

D1
(2)± = −2F(1)∓∗F(1)±, (23)

D0 = μ − 2(∣F+∣2 + ∣F−∣2). (24)

We solve Eq. (3) in the Fourier domain,

[1 + iω
Γ(1 + iα)]p̂

+ = ℱ[−(1 + iα) (D0F+ +D1
+F−)]. (25)

Then, using the Taylor expansion of (1 + x)−1 truncated at the sec-
ond order, anti-transforming both sides of the obtained equation,
and inserting into Eq. (17), we have
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∂F+

∂η
+ ∂F+

∂t′
= σ[(μ − 1 + iαμ)F+ − 2(1 + iα)

× (∣F+∣2 + 2∣F−∣2)F+ + ( 1
Γ2(1 + iα)

)∂
2F+

∂η2 ]. (26)

In order to investigate the role in the comb formation of the
coupling between F+ and F− due to the SHB, we introduce into
Eq. (26) a coupling coefficient K, which has no physical origin but
is a purely numerical element, which allows us to have control over
the effect of field coupling in the following simulations and evidence
their role in, e.g., comb formation. Under this apposition, Eq. (26)
becomes

∂F+

∂η
+ ∂F+

∂t′
= σ[(μ − 1 + iαμ)F+ − 2(1 + iα)

× (∣F+∣2 + 2K∣F−∣2)F+ + ( 1
Γ2(1 + iα)

)∂
2F+

∂η2 ].

(27)

Following the same mathematical treatment for the backward
field, we obtain

−∂F−

∂η
+ ∂F−

∂t′
= σ[(μ − 1 + iαμ)F−

− 2(1 + iα)(∣F−∣2 + 2K∣F+∣2)F−

+ ( 1
Γ2(1 + iα)

)∂
2F−

∂η2 ]. (28)

Equations (27) and (28) are the reduced models for the FP configura-
tion, with boundary conditions Eqs. (7) and (8). The components of
the linear term (μ − 1 + iαμ) on the right-hand side correspond to
gain, loss, and detuning associated with the presence of α, respec-
tively. The first nonlinear term describes self-phase modulation,
while the second nonlinear term represents cross-phase modulation.
The term with the second derivative accounts for dispersion.

We note that our model encompasses homogeneous broaden-
ing. The inclusion of inhomogeneous broadening will be addressed
in future works, e.g., following the approach used in Ref. 43.

The case K = 1 corresponds to the FP configuration, while for
K = 0 (no coupling between F+ and F−), we have the unidirectional
ring configuration if R = 1. For further convenience, we define the
normalized pump parameter p = μ

μthr
, where μthr is the threshold

value of μ.

B. Single complex Ginzburg–Landau equation
for the ring configuration

We can derive the dynamics of the unidirectional ring config-
uration as a special case of the FP configuration. In fact, by setting
F− = 0 in Eq. (27) and renaming F = F+, we obtain

∂F
∂η
+ ∂F
∂t′
= σ[(μ − 1 + iαμ)F − 2(1 + iα)∣F∣2F

+ ( 1
Γ2(1 + iα)

)∂
2F

∂η2 ]. (29)

We observe that Eq. (29) takes the form of a single CGLE for the
unidirectional field F, in agreement with previous studies on ring
QCLs.23,35,40 This ensures that, in the unidirectional limit and near
threshold, the variety of states emerging in ring QCLs, recently
reproduced using the CGLE,23,35 can also be found using Eq. (29).
The model is completed by the boundary condition for the ring
cavity,

F(0, t′) =
√

RF(L′, t′). (30)

III. SINGLE SPATIOTEMPORAL EQUATION FOR QCL
MULTIMODE DYNAMICS
A. Derivation

We can further reduce the two coupled CGLEs for the FP
configuration, Eqs. (27) and (28), to a single spatiotemporal equa-
tion for the dynamics of an auxiliary field. The approach used
for this derivation is analogous to that followed in Ref. 36 for
Kerr frequency combs in FP microresonators. We consider the
low transmission limit, assuming R = 1, and introduce the follow-
ing modal expansions for the fields F+ and F− in terms of modal
amplitudes f ′n:

F+(η, t′) =
+∞

∑
n=−∞

f ′n(t′)eiαnη, (31)

F−(η, t′) =
+∞

∑
n=−∞

f ′n(t′)e−iαnη, (32)

where αn = nπ/L′.
By exploiting Eqs. (31) and (32), we extend the domain of

definition of F+ and F− to the interval η ∈ [−L′; L′] by applying these
definitions in the interval [−L′; 0],

F+(η, t′) = F−(−η, t′), (33)

F−(η, t′) = F+(−η, t′). (34)

Therefore, the forward and backward fields satisfy periodic bound-
ary conditions in the interval [−L′; L′].

We can obtain the modal amplitudes using

f ′n(t′) =
1

2L′∫
L′

−L′
dηe−iαnηF+(η, t′)

= 1
2L′∫

L′

−L′
dηeiαnηF−(η, t′). (35)

If we use Eqs. (31) and (32), Eq. (26) becomes

d f ′n
dt′
+ iαn f ′n = σ[(μ − 1 + iαμ) f ′n

− 2(1 + iα)∑
n′ ,n′′

f ′n′ f ′∗n′′( f ′n−n′+n′′ + 2K f ′
−n+n′+n′′)

+ ( −α2
n

Γ2(1 + iα)
) f ′n]. (36)
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We now introduce the modal amplitudes fn related to the previously
defined f ′n by

fn = f ′ne+iαnt′. (37)

Inserting Eq. (37) in Eq. (36) and averaging the resulting equation
over a time interval longer than the cavity round trip and shorter
than the cavity decay time, we obtain

d fn

dt′
= σ
⎡⎢⎢⎢⎢⎣
(μ − 1 + iαμ) f n − 2(1 + iα)

×
⎛
⎝∑n′ ,n′′

fn′ f ∗n′′ fn−n′+n′′ + 2K∑
n′

fn′ f ∗n′
⎞
⎠

+( −α2
n

Γ2(1 + iα)
) fn

⎤⎥⎥⎥⎥⎦
. (38)

We highlight that the third order nonlinear term on the right-hand
side describes the four-wave mixing between the optical modes. We
now define the auxiliary field,

ψ(η, t′) =
+∞

∑
n=−∞

fn(t′)eiαnη. (39)

Then, Eq. (38) becomes

∂ψ
∂t′
= σ[(μ − 1 + iαμ)ψ − 2(1 + iα)∣ψ∣2ψ

− 4K(1 + iα)ψ 1
2L′∫

L′

−L′
dη∣ψ∣2 + ( 1

Γ2(1 + iα)
)∂

2ψ
∂η2 ]. (40)

Equation (40) is a single spatiotemporal equation with periodic
boundary conditions for the auxiliary field ψ, which serves as the
order parameter and is equivalent to Eqs. (27) and (28) when
R = 1. Given this equivalence, if the spatiotemporal evolution of
ψ is known, it is possible to retrieve the dynamics of F+ and F− using
an appropriate reconstruction procedure. First, from the definition
of the field ψ Eq. (39), we can retrieve the coefficient fn,

fn =
1

2L′∫
L′

−L′
dηe−iαnηψ(η, t′). (41)

Then, inverting Eq. (37), we can retrieve f ′n from the coefficients fn,

f ′n = fne−iαnt′. (42)

Finally, we can replace the expression obtained for f ′n into Eq. (31),
to obtain the field F+; by replacing f ′n into Eq. (32), we retrieve F−.
A numerical test on the equivalence between the two approaches
is provided in the supplementary material, where for a given set
of parameters, the same comb regime was reproduced with good
agreement using the two different approaches.

We highlight that our model retains the dynamics of both field
amplitude and phase and, as presented in Sec. IV, can successfully
reproduce the typical amplitude modulations characteristic of QCL
combs, along with the modulation of the instantaneous frequency. In
fact, we remark that the AM features in QCL combs are significant
and non-negligible, as highlighted by various experiments utilizing
different techniques such as SWIFTS,9 FACE,11 and electro-optic
sampling combined with computational phase correction.12

In the CGLE form of Eq. (40), we note the role of the non-local
integral term (weighted by the coefficient K), which accounts for the
coupling between the counterpropagating fields F+ and F− in the
laser cavity due to SHB. Its implications for the formation of combs
will now be discussed.

This result demonstrates how FP QCLs belong to the univer-
sality class of systems described by nonlocal CGLEs. However, we
highlight that the coupling term in Eq. (40) is defined by an integral
average. This, apart from the theory derived for FP Kerr microcombs
in Ref. 36 and for bidirectionally pumped ring microresonators,44

represents a unique feature compared to other nonlocal CGLEs doc-
umented in the literature, where the coupling term typically takes
the form of either an integral kernel or a difference between order
parameters.45,46

A final note concerns the definitions (33) and (34) that allowed
for extending Eqs. (27) and (28) to the interval [−L′, L′]. This
enabled the use of periodic boundary conditions for the fields
F+ and F−, thereby allowing the utilization of traveling waves rather
than standing waves, leading to a significant simplification in the
derivation.36

B. Role of the non-local integral term
We discuss here the impact of the non-local integral term

appearing in Eq. (40) on the comb formation.
We begin by observing that Eq. (40) can be configured for the

ring case by suppressing this non-local integral term, i.e., by setting
K = 0. In that case, ψ reduces to the field F, and Eq. (40) becomes
Eq. (29).

Therefore, our formalism unifies in a single equation both ring
and FP QCL dynamics and, thus, offers the opportunity to study
the effect of the coupling between the fields on the formation of
the localized structures, allowing us to establish certain differences
between the two configurations.

To gain insight into this aspect, we solve Eq. (40) in the para-
meter sets α = 1.15, τd = 0.1 ps, Γ = 0.06, p = 1.8, σ = 4.5 × 10−4, and
with a cavity length of 2 mm. We remark that the considered value of
α is in agreement with experimental measures reported in the litera-
ture for this parameter (see, e.g., Ref. 47), while Γ = 0.06 corresponds
to a gain curve width of about 200 GHz, consistent with the values
of this quantity for single-stack THz QCLs.48

First, we solve Eq. (40) for K = 0, i.e., in the unidirectional
ring case. In Fig. 1(a), the reconstructed intensity ∣F+∣2 is plotted
as a function of time (left) along with the corresponding optical
spectrum (right). Note that in this case, F+ corresponds to the
unidirectional field F appearing in Eq. (29). We observe a regu-
lar repetition of field structures with a period of half the cavity
round-trip time (RT/2), which corresponds to a comb spectrum
with spacing twice the free-spectral range (2 FSR) of the QCL
cavity. Therefore, a second-order harmonic comb is reported for
K = 0. If we increase K to 0.25 and 0.5, we still observe second-
order HFCs, as depicted, respectively, in Figs. 1(b) and 1(c). A
significant observation regarding these HFC regimes is that in
Fig. 1(a), when K = 0, secondary peaks are noticeable between two
peaks of higher intensity, and, as K increases to 0.25 [Fig. 1(b)],
these secondary peaks diminish, eventually disappearing entirely at
K = 0.5 [Fig. 1(c)]. This serves as an initial indication supporting the
potential anti-patterning role of the integral coupling term.
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FIG. 1. The impact of the nonlinear integral term in Eq. (40) on the formation of multiple structures per round trip, associated with harmonic comb emission. Normalized
power as a function of time (left) and optical spectrum (right) for different regimes obtained by integrating Eq. (40) with K = 0 (a), K = 0.25 (b), K = 0.5 (c), K = 0.75 (d), and
K = 1 (e). The other parameters are α = 1.15, τd = 0.1 ps, Γ = 0.06, p = 1.8, σ = 4.5 × 10−4, and L = 2 mm. Second-order HFC emissions are reported for K = 0, 0.25, 0.5,
while fundamental OFCs form for K = 0.75 and K = 1. The case K = 0 corresponds to the unidirectional ring cavity, while K = 1 reproduces the FP configuration.

Furthermore, if the coupling strength is further increased by
setting K = 0.75, we report a transition to a dense comb regime, i.e.,
a comb with spacing corresponding to the cavity FSR [see Fig. 1(d)],
which is also observed in the effective FP case (when K = 1), as
presented in Fig. 1(e).

These results show how an increase in field coupling impacts
the formation of structures. In particular, the multiple structures
per round trip observed in the ring case, associated with the for-
mation of harmonic combs, disappear when K reaches a certain
magnitude and are replaced by fundamental combs. In this sense,
the results presented in Fig. 1 suggest an anti-patterning role of the
nonlinear integral term, implying a greater predisposition of the ring
configuration to form harmonic combs compared to the FP.

IV. NUMERICAL RESULTS
A. Comparative analysis of FP and ring configurations

One of the key advantages of the reduced models obtained in
Secs. II and III is that they allow for systematic sets of simulations.
This enables reproducing dynamic regimes and scenarios compat-
ible with experiments and characterizing the obtained comb states
while varying different QCL parameters, such as the gain curve
width, the α factor, and the pump.

For this purpose, we adopt the reduced models presented in
Sec. II, as they allow us to relax the assumption of periodic bound-

ary conditions, enabling us to use reflectivity values R close to those
reported in experiments. Therefore, we set R = 0.3 for all simulations
presented in this section.

Regarding the FP configuration, we numerically solve the two
coupled CGLEs Eqs. (27) and (28) with boundary conditions Eqs. (7)
and (8) with K = 1, σ = 4.5 × 10−4, τd = 100 fs, and L = 2 mm,
for different pairs (α, Γ), so that α ∈ [1.1, 1.3] and Γ ∈ [0.03, 0.15].
The chosen values for α agree with the experimental measurements
reported in Ref. 47, while the selected range for Γ corresponds to
gain bandwidth values between 100 and 500 GHz, typical for THz
QCLs based on a single-stack active region.48 For each pair (α, Γ),
we perform a scan of the normalized pump parameter p between
1.1 and 2, with an increment of 0.1. Then, we replicate these sim-
ulations for the ring configuration by solving the single CGLE (29)
with boundary condition Eq. (30), using the same parameters as in
the FP case. This allows for a comparison between the two config-
urations with respect to the characteristics of the reported OFCs.
We remark that to maintain the same free spectral range in both
schemes, we assumed for the ring a cavity length twice that of the FP.
We report that the typical duration for a single 1.5 μs long simulation
is about 5 h. To characterize the comb states that we found, we used
the maximum number of locked modes within the −30 dB spectral
bandwidth from the peak of the optical spectrum, denoted as N30,
and the maximum harmonic order of frequency combs, reported for
each pair (α, Γ). The results are summarized in Figs. 2(a) and 2(b),
where the values of the two figures of merit are plotted as a function
of α and Γ for both configurations.
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FIG. 2. (a) and (b) Histograms showing, respectively, the maximum number of locked optical modes in the −30 dB band N30 and the maximum comb harmonic order reported
for each pair (α, Γ), for both FP (left) and ring (right) configurations; α ∈ [1.1, 1.3] and Γ ∈ [0.03, 0.15]. The normalized pump parameter p is swept between 1.1 and 2
for each pair (α, Γ). The other parameters are σ = 4.5 × 10−4, and τd = 0.1 ps. The cavity length is L = 2 mm for the FP and L = 4 mm for the ring in order to have the
same FSR. (c) and (d) Harmonic combs reported in the FP and ring cases. In (c), a second-order FP HFC is shown with its temporal evolution of normalized power (top) and
instantaneous frequency (center) and its optical spectrum (bottom). In (d), the same quantities are plotted for a fourth-order ring HFC.

Upon examination of Fig. 2(a), it should be noted that the max-
imum number of comb lines N30 remains consistent across both
configurations, namely, 16. Furthermore, this value is attained for
the same pair α = 1.2 and Γ = 0.15. However, we can notice some
differences in the distribution of the number of modes between the
two histograms in Fig. 2(a). For example, for α = 1.2, in the FP con-
figuration, we observe a steady increase with Γ. However, in the case
of the ring resonator, N30 decreases from 11 to 5 as Γ varies from
0.06 to 0.09. Subsequently, it attains the value N30 = 12 for Γ = 0.12.
This phenomenon arises due to the occurrence of only harmonic
combs for Γ = 0.09 without any fundamental combs being present,
thereby resulting in a reduction in the number of modes. Indeed, in
harmonic combs, since some cavity modes are suppressed, the num-
ber of optical lines is lower compared to fundamental combs for the
same spectral width. Regarding the formation of harmonic combs,
in fact, the two configurations exhibit more pronounced differences,
as can be observed in Fig. 2(b). Overall, we document a higher
number of harmonic states within the unidirectional ring cavity
compared to the FP configuration. Moreover, the ring setup demon-
strates the ability to generate comb regimes with increased harmonic
orders. In particular, we report a maximum harmonic comb order of
2 in the FP case, whereas, in the ring configuration, HFCs of orders
3 and 4 can also be observed. An example of second-order HFC
within the FP configuration, depicted by the temporal evolution of
its power/instantaneous frequency and optical spectrum, is shown
in Fig. 1(c). This harmonic comb is characterized by a coexistence of

AM and FM features, exhibiting a regular repetition of both power
and instantaneous frequency structures with a period equal to half of
the round trip time of the laser cavity. Its dual representation in the
frequency domain corresponds to an optical spectrum with equally
spaced lines at twice the FSR. As mentioned, in the ring case, we
also observe fourth-order HFCs with a temporal period of RT/4 and
an optical line spacing equal to 4 times the FSR [see Fig. 1(d)]. The
numerical results presented in Fig. 2 are consistent with the analysis
conducted in Sec. III B on the anti-patterning role of the non-local
integral term in Eq. (40). Indeed, we have observed how the cou-
pling between forward and backward fields, characteristic of the FP
configuration and absent in the ring case, is detrimental to the for-
mation of multiple localized structures, which manifest themselves
in the form of harmonic combs. This could explain both the lower
occurrence of HFCs and the lower harmonic order in the FP case, as
reported in the simulations summarized in Fig. 2(b).

Regarding the simulated fundamental combs, An illustrative
example within the FP configuration is showcased in Fig. 3(a).
We observe a hybrid AM–FM behavior in the temporal profiles
of power (top panel) and instantaneous frequency (bottom panel),
consistent with experimental findings9,11 and with the numerical
results obtained with the full model ESMBEs.19,31 In particular, the
power structures exhibit a recurring pattern with each round-trip
(top panel), characterized by a primary AM peak and two secondary
bumps. Furthermore, the trace of instantaneous frequency reveals
a sequence of features deviating from a linear chirp, comprising
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FIG. 3. Example of simulated fundamental combs in FP (a) and ring (b) QCLs:
normalized power (top) and instantaneous frequency (bottom) as a function of
time. The FP comb has been obtained for α = 1.2, Γ = 0.09, and p = 1.1. The
ring comb corresponds to α = 1.1, Γ = 0.03, and p = 1.5. Both regimes have been
extracted from the simulations presented in Figs. 2(a) and 2(b).

a primary peak and a quasi-flat region. Consequently, this comb
exhibits qualitative characteristics consistent with the experimen-
tally reported waveforms for THz-QCL OFCs utilizing the FACE
technique (see Fig. 5 in Ref. 11), and electro-optic sampling with
computational phase correction (see Fig. 5 in Ref. 12). This align-
ment is consistent with the used value of Γ, which corresponds to a
gain bandwidth of 300 GHz, typical for THz QCLs.48 On the other
hand, the temporal traces for a ring comb presented in Fig. 3(b)
are also consistent with those obtained in experiments using the
SWIFTS technique10 and closely resemble the ones reproduced with

FIG. 4. First beatnote observed in the power spectrum while varying the pump
parameter p in the FP configuration, with Γ = 0.03, α = 1.3, and other parameters
as specified in Fig. 2. We highlight in green the region of dense OFCs and in yellow
the region of HFCs.

the ring ESMBEs [e.g., see Fig. 6(a) in Ref. 24]. Furthermore, we
highlight that these reduced models allow us to reproduce dynamic
scenarios sweeping the pump, consistent with experimental evi-
dence. An example is shown in Fig. 4, where we present a power
spectrum map with a zoom on the first beatnote, corresponding to
one of the pairs (α, Γ) of Fig. 2. Here, we report the formation of fun-
damental OFCs, unlocked states characterized by a broad beatnote,
and harmonic regimes where the first beatnote is notably absent.
This scenario aligns with the experimental findings described, for
example, in Refs. 15 and 49, where the alternation between dense
combs, harmonic combs, and unlocked states was reported as the
bias current varied. Notably, it also qualitatively concurs with the
full model of ESMBEs. For instance, Fig. 531 illustrates a beatnote
map for a FP THz-QCL similar to Fig. 4(c).

B. Observation of linear chirp for large
gain bandwidth

Increasing Γ reduces the effective polarization dephasing time,
necessitating a corresponding decrease in the simulation time step.
This would significantly prolong simulation durations and make

FIG. 5. Simulated OFC in FP QCLs for Γ = 0.6: normalized power (a) and instan-
taneous frequency (b) as a function of time, and optical spectrum (c). The other
parameters are as shown in Fig. 3(a). Typical features of mid-IR combs are observ-
able, such as power spikes on a constant background and the linear chirp of the
instantaneous frequency.
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it impractical, within a reasonable timeframe, to run hundreds of
simulations. Therefore, for numerical reasons, the systematic simu-
lations presented in Sec. IV A were conducted for Γ values ranging
from 0.03 to 0.15. However, we have also examined comb properties
for some higher values of Γ.

An example of an FP comb for Γ = 0.6 is depicted in Fig. 5. It
is noteworthy that the power trace [Fig. 5(a)] bears resemblance to
the one obtained with the full model ESMBEs (see Fig. 2 in Ref. 19),
characterized by power spikes resting on an almost constant back-
ground. Furthermore, the instantaneous frequency [Fig. 5(b)] also
exhibits the typical linear chirp trend characteristic of the mid-IR
region (see Fig. 5 in Ref. 9), which was also reproduced in Ref. 19
with ESMBEs. The linear chirp is well-defined and present, although
we note that the frequency modulation bandwidth is slightly nar-
rower than reported in experiments.9 This is linked to the character-
istics of the optical spectrum, shown in Fig. 5(c). While consistent
with expectations, the spectrum features tens of modes spanning a
total width of 1 THz, but it is narrower around the main peak com-
pared to experimental results for mid-IR QCLs.9,42 We ascribe this
to the approximations introduced in the derivation of the reduced
model. In particular, the assumption ω≪ Γ inherently implies a
spectral width significantly narrower than the gain curve, and, in
the near-threshold hypothesis, the efficiency of four-wave mixing
is lower, affecting its role in seeding frequency combs. However,
despite the central region being narrower and, thus, limiting the
chirp bandwidth, the presence of numerous comb lines still allows
for the observation of linear chirp and temporal traces in good
qualitative agreement with both experiments and the full model on
mid-IR combs. This appears reasonable because mid-IR QCLs are
characterized by gain bandwidth values higher than 1 THz,3 and the
utilized value Γ = 0.6 corresponds to a gain bandwidth of 1.92 THz.
We also emphasize that all parameter values except Γ remain the
same as in Fig. 3(a), facilitating a direct comparison. With Γ = 0.09,
we observed temporal traces that resemble the experimental results
for THz QCLs, whereas for Γ = 0.6, typical features of mid-IR QCLs
are evident. This result suggests that the fundamental difference
between mid-IR and THz QCLs, enabling linear chirp observation
in the former but not in the latter, lies in the presence of a broader
gain curve in devices operating in the mid-IR.

Finally, we have also verified that, in the ring configuration,
linear chirp behavior is not observed with the same parameters as
shown in Fig. 5. This is consistent with experiments, which have
shown this peculiar behavior of the instantaneous frequency only
in the FP configuration.6,7 This also suggests that as Γ increases,
a clearer difference in the structure of the combs can be observed
between the two configurations.

V. LINEAR STABILITY ANALYSIS
FOR THE SINGLE-MODE SOLUTION
IN THE RING CONFIGURATION

In Sec. IV, we explored how the presented reduced models
allow for systematic numerical simulations. However, these mod-
els offer an additional advantage: due to their lower mathematical
complexity with respect to full models, they are more amenable
to analytical treatments, such as linear stability analysis (LSA). In
this section, we delve into how the LSA of the single-mode solu-
tion for the reduced model of ring QCLs, Eq. (29), holds significant

predictive power, providing further insights regarding aspects
addressed in the previous sections, such as the emergence of
multimode regimes and the formation of harmonic combs.

A. Steady state solutions
As an initial step, we calculate the steady-state solutions of

Eq. (29). Consider, for the field, the following CW expression:

F = a0e−iqη+iωt′. (43)

Here, a0 represents the amplitude of the field, which we can assume
to be real without loss of generality, while ω and q denote the dimen-
sionless angular frequency and wavenumber, respectively. Upon
substitution of Eq. (43) into Eq. (29), we derive

−iq + iω = σ[(μ − 1 + iαμ) − 2(1 + iα)∣a0∣2

+ ( 1
Γ2(1 + iα)

)(−q2)]. (44)

Taking the real part of Eq. (44), we obtain

∣a0∣2 =
1
2
[μ − 1 − q2( 1

Γ2(1 + α2)
)], (45)

which gives the laser intensity vs the pump and the continuous wave
wavevector.

Taking the imaginary part of Eq. (44) and replacing ∣a0∣2 with
its expression in Eq. (45), we have

ω = q + σα(1 + 2q2

Γ2(1 + α2)
). (46)

Equation (46) is the dispersion relation, i.e., the relation between the
wavenumber q and the pulsation ω. Equations (45) and (46) repre-
sent the steady state solutions of Eq. (29). We want to comment on
the role of α and σ. From Eq. (46), we can notice that if α = 0, we have
ω = q. Furthermore, since in QCLs τd ≈ 100 fs, while τp ≈ 100 ps,
σ ≪ 1, the second term on the right-hand side of Eq. (46) is small
or negligible. In addition, we observe that α appears in the last term
on the right-hand side of Eq. (45), indicating that its value influences
the lasing threshold for q ≠ 0.

B. Derivation of the linear stability analysis
We introduce a perturbation δa(η, t′) in the CW field expres-

sion,

F = (a0 + δa(η, t′))e−iqη+iωt′. (47)

Substituting Eq. (47) into Eq. (29), we obtain

− iq(a0 + δa) + ∂δa
∂η
+ iω(a0 + δa) + ∂δa

∂t′

= σ[−(a0 + δa) + (1 + iα)μ(a0 + δa)
− 2(1 + iα)∣(a0 + δa)∣2(a0 + δa)

+ ( 1 − iα
Γ2(1 + α2)

)((−q2)(a0 + δa) − 2iq
∂δa
∂η
+ ∂2δa

∂η2 )].

(48)
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If we use the steady state solutions Eqs. (45) and (46) and
neglect the terms O[(δa)n] with n ≥ 2, we have

− iqδa + ∂δa
∂η
+ iωδa + ∂δa

∂t′

= σ[−δa + (1 + iα)μδa − 2(1 + iα)(∣a0∣2δa + a2
0δa∗)

+ ( 1 − iα
Γ2(1 + α2)

)((−q2)δa − 2iq
∂δa
∂η
+ ∂2δa

∂η2 )]. (49)

We now assume the following Fourier expansions:

δa = (
+∞

∑
n=−∞

δa0ne−iknη)eλt′ , (50)

δa∗ = (
+∞

∑
n=−∞

δa0
∗

−ne−iknη)eλt′. (51)

Substituting Eqs. (50) and (51) into Eq. (49) and using the
orthonormality of the Fourier basis, we have

− iqδa0n − iknδa0n + iωδa0n + λ δa0n

= σ[−δa0n + (1 + iα)μ δa0n

− 2(1 + iα)(2∣a0∣2δa0n + a0
2δa0

∗

−n) + (
1 − iα

Γ2(1 + α2)
)

× (−q2δa0n − 2iq(−ikn)δa0n − kn
2δa0n)]. (52)

We also consider the complex-conjugate of Eq. (52),

iqδa0
∗

n + iknδa0
∗

n − iωδa0
∗

n + λ δa0
∗

n

= σ[−δa0
∗

n + (1 − iα)μ δa0
∗

n

− 2(1 − iα)(2∣a0∣2δa0
∗

n + a∗0
2δa0−n) + (

1 + iα
Γ2(1 + α2)

)

× (−q2δa0
∗

n + 2iq(+ikn)δa0
∗

n − kn
2δa0

∗

n)]. (53)

Since a0 can be assumed to be a real number without loss of gen-
erality, as mentioned in Sec. V A, we rewrite Eqs. (52) and (53)
as

δa0n(Wn + iYn + iω + λ) + δa0
∗

−n(σ(1 + iα)∣a0∣2) = 0, (54)

δa0n(σ(1 − iα)∣a0∣2) + δa0
∗

−n(W−n − iY−n − iω + λ) = 0,

(55)

where

Wn = σ[1 − μ + 4∣a0∣2 +
1

Γ2(1 + α2)
(q2 + 2qkn + kn

2)], (56)

W−n = σ[1 − μ + 4∣a0∣2 +
1

Γ2(1 + α2)
(q2 − 2qkn + kn

2)], (57)

Yn = σ[−αμ + 2α∣a0∣2 −
α

Γ2(1 + α2)
(q2 + 2qkn + kn

2)], (58)

Y−n = σ[−αμ + 2α∣a0∣2 −
α

Γ2(1 + α2)
(q2 − 2qkn + kn

2)]. (59)

If M is the characteristic matrix of the linear system composed by
Eqs. (54) and (55) and we calculate det(M) = 0, we obtain

(Wn + iYn + iω + λ)(W−n − iY−n − iω + λ)
− σ2(1 + α2)∣a0∣4 = 0. (60)

Equation (60) is the secular equation.

C. Numerical validation of the LSA
We consider Γ = 0.09, L = 4 mm, σ = 4.5 × 10−4, and τd = 0.1

ps, and we solve Eq. (60) for μ ranging from 1.005 to 3, and α ranging
from 0.015 to 2, calculating the maximum value of Re(λ) for each
pair (α, μ). Periodic boundary conditions have been applied in this
study. Since μthr = 1, we can consider μ instead of the normalized
pump parameter p.

The blue region on the map in Fig. 6 corresponds to nega-
tive values of Re(λ), indicating stable single-mode emission. To test
the self-consistency of the model, we conducted numerical simula-
tions, validating the predictions of the linear stability analysis. Some
cases of simulations are represented by red and black dots on the
map. The red dots, indicating single-mode states, are clustered in
the region where Re(λ) < 0, while the black dots (representing mul-
timode simulated states) are found for Re(λ) > 0, demonstrating
consistency between linear stability analysis and numerical simula-
tions. We particularly emphasize the consistency tested for α = 1.1,
where we observe single-mode emission for μ = 1.01 (P1) and mul-
timode emission for μ = 1.1 (P2). Notably, the dynamical regime
observed in P2 corresponds to a fundamental OFC. Other instances
of multimode dynamics, depicted as P3 and P4, illustrate a harmonic
comb and irregular unlocked dynamics, respectively.

In Fig. 6, we observe that initiating multimode dynamics
requires an α value greater than 1. This implies that if the coupling
between phase and field amplitude fails to reach a certain thresh-
old (corresponding to α = 1 in this case), the system cannot develop
multimode regimes and instead remains stable in single-mode emis-
sion regardless of the pump value. In addition, we note that for
α values between 1 and 1.2, distinct intervals of μ values can be
discerned on the map, where the ring QCL displays single-mode
behavior before transitioning to multimode as the μ increases. Con-
versely, for values of α greater than 1.2, the single-mode instability
occurs very close to the laser threshold (μ = 1). These observations
confirm the critical role of α in triggering multimode regimes and,
consequently, in observing frequency combs, and are consistent with
findings reported using the ESMBEs for the ring cavity.24 We also
highlight that the transition from single-mode to multimode with
increasing pump power has been experimentally observed in ring
QCLs,23 and the mentioned range of α values, where this behavior is
more evident in the map of Fig. 6, are consistent with measurements
reported in the literature for QCLs.23,47

We also investigate the role of the imaginary part of λ. Then,
we consider the value of Im(λ) corresponding to the maximum
of Re(λ) plotted in Fig. 6. After properly normalizing to have a
quantity with the dimension of a frequency in GHz, we obtain the
map in Fig. 7, where ∣Im(λmax)∣/(2πτd) is plotted as a function of
μ and α. The same case as in Fig. 6 is considered. It should be noted
that the values taken by ∣Im(λmax)∣/(2πτd) are integer multiples
of the QCL cavity FSR. These values are organized into regions in
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FIG. 6. Linear stability analysis map for Γ = 0.09, L = 4 mm, σ = 4.5 × 10−4, and τd = 0.1 ps. The maximum value of Re(λ) is plotted for pairs (α, μ), with α ranging from
0.015 to 2, and μ ranging from 1.005 to 3. Negative values of Re(λ), indicative of stable single-mode emission, correspond to the blue region in the map. The red and black
dots represent the numerical simulations performed, where the red dots signify single-mode states and the black dots signify multimode regimes. Below, four examples of
numerically simulated regimes are depicted, along with their temporal evolution of normalized power (top) and optical spectrum (bottom): P1: CW. P2: Dense OFC. P3: HFC.
P4: Irregular dynamics.

FIG. 7. Map showing the normalized imaginary part of λ corresponding to the solution with the maximum real part as a function of μ and α factors. The stability region of the
CW solution [Re(λ) < 0] is indicated by a dark blue color on the map. Points P2 and P3 in Fig. 6, corresponding to a dense OFC and an HFC, respectively, are represented
as black dots on the map.
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the α–μ plane, exhibiting boundaries shaped similarly to a hyper-
bola. We have verified that point P2 in Fig. 6, corresponding to
a dense OFC with a spacing of 22.7 GHz, lies within the region
where ∣Im(λmax)∣/(2πτd) achieves the specific value of 22.7 GHz.
Furthermore, point P3 in Fig. 7, corresponding to a harmonic comb
with a spacing of 45.4 GHz, exhibits a ∣Im(λmax)∣/(2πτd) value
precisely equal to 45.4 GHz. This clearly demonstrates that the per-
formed linear stability analysis not only identifies the stability region
of the single-mode solution by examining the real part of λ, but
also predicts the parameter space region where harmonic states can
occur.

VI. CONCLUSION
We derived a single spatiotemporal equation to describe the

multimodal dynamics of QCLs, following an order parameter
approach. Our model serves as a powerful tool for investigat-
ing the physical properties of QCL combs, particularly facilitating
comparative analyses between ring and FP configurations.

In this article, we emphasized the role of the integral term
appearing in the equation, which reproduces the coupling between
forward and backward fields in the FP cavity. The ability to
gradually vary the impact of this term by tuning a multiplica-
tive coefficient K allowed us to highlight how multiple local-
ized structures, which manifest without coupling between the
fields (ring), tend to disappear as K increases. This suggests the
adverse impact of field coupling on the formation of harmonic
combs.

This result is consistent with extensive numerical simulations,
revealing a higher occurrence of harmonic combs in the ring con-
figuration compared to FP. Furthermore, our simulation campaign
successfully replicated typical temporal power and instantaneous
frequency traces, facilitated by our model’s ability to describe both
amplitude and phase dynamics.

We note that the typical linear chirp characteristic of QCL
OFCs is not observed for gain curve widths of a few 100 GHz,
but it appears for larger values (>1 THz) of this parameter. This
allows us to highlight how the observed linear chirp, present in
experimental traces for mid-IR combs but not for THz combs,
may be linked to the wider gain curve characteristic of mid-IR
QCLs.3,7

Finally, we conducted a linear stability analysis for the single-
mode solution in the ring case, leveraging the fact that these reduced
models are particularly amenable to analytical treatment. We found
that this tool holds strong predictive power not only regarding
the destabilization of the CW solution but also for the forma-
tion of harmonic combs. This was observed through the analysis
of the imaginary part of the exponent λ within the perturbation
expression.

SUPPLEMENTARY MATERIAL

In the supplementary material, we provide the derivation of
the scaled effective semiconductor Maxwell–Bloch equations and
a numerical verification of the equivalence between the single
spatiotemporal equation and the two coupled CGLEs.
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26N. Opačak and B. Schwarz, “Theory of frequency-modulated combs in lasers
with spatial hole burning, dispersion, and Kerr nonlinearity,” Phys. Rev. Lett. 123,
243902 (2019).
27J. B. Khurgin, Y. Dikmelik, A. Hugi, and J. Faist, “Coherent frequency combs
produced by self frequency modulation in quantum cascade lasers,” Appl. Phys.
Lett. 104, 081118 (2014).
28P. Tzenov, D. Burghoff, Q. Hu, and C. Jirauschek, “Time domain modeling of
terahertz quantum cascade lasers for frequency comb generation,” Opt. Express
24, 23232–23247 (2016).
29C. Jirauschek and T. Kubis, “Modeling techniques for quantum cascade lasers,”
Appl. Phys. Rev. 1, 011307 (2014).

30P. Tzenov, D. Burghoff, Q. Hu, and C. Jirauschek, “Analysis of operating
regimes of terahertz quantum cascade laser frequency combs,” IEEE Trans.
Terahertz Sci. Technol. 7, 351–359 (2017).
31C. Silvestri, X. Qi, T. Taimre, and A. D. Rakić, “Multimode dynamics of
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