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Abstract

Motivated by the convenience, in some biomechanical problems, of interpreting the mass
balance law of a growing medium as a nonholonomic constraint on the time rate of a struc-
tural descriptor known as growth tensor, we employ some results of analytical mechanics to
show that such constraint can be studied variationally. Our purpose is to move a step forward
in the formulation of a field theory of the mechanics of volumetric growth by defining a La-
grangian function that incorporates the nonholonomic constraint of the mass balance. The
knowledge of such Lagrangian function permits, on the one hand, to deduce the dynamic
equations of a growing medium as the result of a variational procedure known as Hamilton—
Suslov Principle (clearly, up to non-potential generalized forces that are accounted for by
extending this procedure), and, on the other hand, to study the symmetries and conservation
laws that pertain to a given growth problem. While this second issue is not investigated in
this work, we focus on the first one, and we show that the Euler—Lagrange equations of the
considered growing medium, which describe both its motion and the evolution of the growth
tensor, can be obtained by reformulating a variational method developed by other authors.
We discuss the main features of this method in the context of growth mechanics, and we
show how our procedure is able to improve them.

Keywords Growth mechanics - Nonholonomic constraints - Quasi-velocities -
Hamilton—Suslov variational principle

Mathematics Subject Classification 74Axx - 74Cxx - 37J60 - 70Hxx - 74L.15

1 Introduction

The primary purpose of this work is to construct a quasi-variational theory of the mechanics
of volumetric growth. By “quasi-variational” we mean that, even though we formulate a field
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theory of growth, with its own Lagrangian density function and action functional, we also
need to consider peculiar interactions that do not admit a potential, not even in generalized
sense. These interactions can rather be described by force-like entities [29] (see also [15],
and [54, 55] for the rationale behind this approach), which have to be deduced constitutively
when they are regarded as internal, or assigned phenomenologically when they are rated
as external. In both cases, however, they can be so complicated and problem specific, that
they cannot be determined from a single scalar function. For this reason, such forces are
referred to as non-potential, or “polygenic” in the terminology of [67], while those that
can be obtained by differentiation of a generalized potential are said to be “monogenic”, or
“single-generated” [67].

While non-potential forces must be allotted in a model of growth to study biologically
relevant situations, the Lagrangian density function of a growing medium is “apodeictic”,!
i.e., it represents a model that is “true” by itself, since it is assigned on the basis of all the
hypotheses done on the body (see also [24]). In other words, the Lagrangian density func-
tion is constructed so as to account for all the items of information that can be “condensed”
in one (pseudo-)scalar quantity. Therefore, if the body is assumed to be hyperelastic, and if
one can find, or design, interactions that admit generalized potentials, such as inertial forces
(although they are often negligible), gravity, and forces acting on the body’s internal struc-
ture, then the Lagrangian function will consist of the body’s kinetic energy, strain energy,
and all the other potential terms that participate in the body’s dynamics.

1.1 Why a Lagrangian Theory of Growth: Advantages and Problems

Aside from mathematical elegance, a Lagrangian theory of growth has some advantages.
To mention a few: it is self-contained; up to non-potential forces, it encloses both the “di-
rect” and the “configurational” dynamics of a body [32, 54, 96], and it unfolds each of
them depending on the variations that are performed on the arguments of the body’s La-
grangian function (here, the adjectives “direct” and “configurational” are intended as in
[32], and [54], respectively); through Noether’s Theorem (see, e.g., [34, 53, 57, 85, 96]), it
provides the natural device for investigating the symmetries of a body, the related conserva-
tion laws, and the symmetry breaking brought about by growth along with its consequences
on the body’s overall dynamics [53]. In addition, a field-theoretical approach to growth can
be inherently geometrized [45, 108, 110], so as to account for the phenomenological as-
pects connected with the incompatibility of the distortions induced by growth [101], and it
supplies the basis for including other theories, like that of micromorphic media [59].

Yet, to benefit from all these advantages, one has to answer the question as to whether the
Lagrangian density function of a growing body is able to account also for the core feature
of the mechanics of volumetric growth, which is the presence of mass sources that, acting
in the body’s interior, trigger its variation of mass [104]. These sources are positive when
mass increases, as is the case for cell proliferation in tumors, and negative when mass is
depleted due to removal processes such as necrosis or apoptosis [6, 83]. In both situations,
they appear in the body’s mass balance law, and must be characterized very accurately in
order to capture the combination of the biochemical, biophysical, and mechanical stimuli
from which they originate (see, e.g., [28, 29]).

1We are thankful to Prof. Gaetano Giaquinta (1945-2016) for teaching us the meaning of this word in relation
to Lagrangian functions.
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1.2 Mass Sources: A Posteriori and a Priori Approaches

To our knowledge, two distinct paths can be followed for characterizing mass sources in ac-
cordance with experimental evidences. As reported in [48], the functional form expressing
a mass source is called “growth law”, and it can be determined by employing “a poste-
riori approaches” or “a priori approaches”. Both rely on the Bilby—Kroner-Lee (BKL)
decomposition of the deformation gradient tensor of the growing medium under study. The
anelastic factor of such decomposition, termed growth tensor, is identified with the descrip-
tor of the medium’s structural transformations accompanying its growth. A crucial aspect is
that the mass balance law of the medium can be recast in the form of a relationship between
the mass source active in it and the trace of the time rate of the growth tensor (see, e.g.,
[3,5, 32,73, 104]).

In the a posteriori approaches, an initial and boundary value problem is formulated for
determining both the motion and the growth tensor of the body, and, once the growth tensor
is known, the source of mass is obtained “a posteriori” [48, 49] by setting it equal to the
trace of the growth tensor time rate [3, 32, 53]. It should be noticed that, even describing the
evolution of the growth tensor very accurately, the growth laws obtained with the a posteriori
approaches, being calculated quantities, may exhibit discrepancies with the ones observed
experimentally.

In the a priori approaches, the growth law is prescribed by the modeler to reproduce
experiments [7, 9, 44], to comply with phenomenology [1, 2, 4-6, 20, 73], or to test the
response of a medium to a mass source designed to match some target biomechanical be-
havior. This may occur, for instance, in control problems, or when a specific medicament
is analyzed. In all these cases, using the knowledge of the given growth law in the mass
balance of the medium under study amounts to imposing a condition on the time rate of its
growth tensor. If the latter is viewed as a generalized kinematic variable [28, 29], this condi-
tion acquires the meaning of a constraint [47, 50]. In particular, unless very specific growth
laws are considered, this constraint can only be expressed as a differential relationship, and
is thus classified as nonholonomic [40, 67, 90, 94], i.e., it cannot be obtained by time differ-
entiation of a scalar function of the sole growth tensor, material points and time. We recall
that, on the contrary, a constraint is said to be holonomic when the converse is true [67].

As discussed in [47, 50], interpreting the mass balance of a growing medium as a non-
holonomic constraint on the growth tensor ensures that the evolution of this quantity com-
plies with the growth law taken as target, while granting the freedom of modeling other
interactions as necessary. Hence, no further restrictions are placed on the growth tensor, if
unneeded (see, e.g., [7, 9], and [47] for some remarks on this issue), and its dynamics is
dictated by the constraint and the balance of the configurational forces obtained through the
quasi-variational procedure outlined in the forthcoming sections.

1.3 Nonholonomic Constraints: Kozlov’s Method and Its Modifications

The considerations reported so far lead to the fundamental question as to whether a non-
holonomic constraint can be handled variationally. While the answer is affirmative for holo-
nomic constraints, which can be appended to the Lagrangian function of a given mechanical
system through the Lagrange multiplier technique (see, e.g., [67]), the extension of such
procedure to nonholonomic constraints is not trivial, and has been the subject of a whole
branch of literature. In particular, this was the main point of the works by Kozlov [61-65],
who developed a formulation of analytical mechanics in which it was claimed that Hamil-
ton’s Principle of stationary action can be employed also to Lagrangian functions augmented
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with the Lagrange multiplier method applied to nonholonomic constraints. In the literature,
Kozlov’s approach is termed “Vakonomic Method” (VM).

If, on the one hand, exploiting Kozlov’s idea would allow to cast the nonholonomic con-
straint on the growth tensor in the variational picture which we are looking for —and that, as
previously discussed, is the primary scope of our work—, on the other hand, a lot of caution
is necessary to “import” Kozlov’s method as is. Indeed, many critiques have been raised
towards it (see, e.g., [60, 69, 70]), because, in several cases, it has been proven to be incon-
sistent with the well consolidated results of the analytical mechanics of nonholonomic sys-
tems, based on Extended Hamilton’s Method or, equivalently, on the d’Alembert—Lagrange
Principle [38, 67]. In the sequel, we shall refer to both approaches as the “Traditional Non-
Holonomic Method” (TNHM) [95].

In spite of the problems related to the VM, a work by Llibre et al. [71] proposes a “Mod-
ified Vakonomic Method” (MVM) [71], which, for the class of constraints analyzed by the
authors, is able to save the idea of handling nonholonomic constraints variationally. This is
achieved by raising a technical issue: namely, the variations performed on the generalized
velocities restricted by the considered nonholonomic constraints should not be taken equal
to the time derivatives of the variations of the associated Lagrangian parameters. This non-
commutativity between time differentiation and variation of a given kinematic descriptor is
known as “transpositional relation” [58, 71, 90], and constitutes a fundamental concept of
the mechanics of nonholonomic systems.

Llibre et al. [71] employ transpositional relations in conjunction with a variational pro-
cedure referred to as Hamilton—Suslov Variational Principle [103, 106], which they apply
to a Lagrangian function augmented with the considered nonholonomic constraints, just as
Kozlov would do, but taking the variations on the system’s generalized velocities consis-
tently with the transpositional relations. Moreover, Llibre et al. [71] develop their MVM in
two ways, which they formalize in two corresponding theorems (see Theorem 1 and Theo-
rem 3 of [71]). In the present work, we are interested in comparing our approach with the
formulation of the MVM provided in their Theorem 1, and in studying how it applies to our
growth problem. Hence, from here on, Llibre et al.’s MVM [71] refers to their Theorem 1.

1.4 Main Novelties of Our Work

While the MVM has been recently reviewed in [95], in the present work we investigate
whether the MVM can be used for handling variationally the nonholonomic constraint
placed on the growth tensor. Although for this purpose we take much inspiration from [71],
we find that we need to reformulate it remarkably in order to reach our goal. Indeed, rather
than adhering to the theory presented in [71], we follow a different path, which, to a certain
extent, could be regarded as the “inverse” of the one developed in [71]. However, also other
noticeable differences arise, and the main novelties of our work are:

N1. Upon considering the mass balance law of the growing medium under study as a non-
holonomic constraint on the growth tensor [47, 50], we determine the transpositional re-
lations associated with it by having recourse to the concept of quasi-velocities [13, 90],
which we suitably adapt to the problem at hand. We remark that quasi-velocities con-
stitute a pillar of the analytical mechanics of nonholonomic systems, but, to the best of
our knowledge, they have not been employed to describe growth, yet. For our purposes,
we use the algebra of fourth-order tensors, as shown in Sects. 3.1 and 3.2.

N2. We show that, by means of our reformulation of the MVM by Llibre et al. [71], it is pos-
sible to obtain the full equivalence between our approach and the TNHM (see Sect. 4).
This is the core result of our work because, starting from the dynamic equations of a
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growing body, written in the system of the quasi-velocities (Sect. 4.1), it allows us to
conclude that one can determine a Lagrangian density function even in the presence of
the nonholonomic constraint on the growth tensor (Sect. 4.2).

N3. We analyze in detail the quasi-static case, since it is the most relevant one in the biome-
chanical problems of interest, and we show that our method is able to recover other
formulations [3, 29, 84, 92] (Sect. 4.3).

N4. We highlight the main differences between our results and those of Llibre et al. [71],
and we provide a theorem and a corollary to state the conditions under which the latter
ones can be used for modeling growth.

To present our results, we review some well-established formulations of growth mechan-
ics based on the Principle of Virtual Work [3, 18, 19, 28, 29, 48-50, 92] (Sect. 2.3.1) and the
Extended Hamilton Method [11, 53, 67] (Sect. 2.3.2). Although both of them are rather con-
solidated, it is important for us to recapitulate their most essential logical steps to compare
the resulting dynamic equations with those obtained in the present work (Sect. 4).

2 Growth and Nonholonomic Continuum Systems

To express the ideas presented in the sequel, it is convenient to start with the presentation of
the main notation used throughout this work.

2.1 Notation

Let us denote by # the reference placement of the medium under investigation (an open
subset of the three-dimensional Euclidean space .%), by 04 its boundary, and by .# the
time line [81].

In our setting, % is assumed to be a smooth differentiable manifold, endowed, for all
X € A, with the metric tensor G(X) : Tx# — Ty %, where Tx % and T4 % are the tangent
space and cotangent space of Z at X € 4, respectively. For future use, we also introduce the
tangent bundle 7% := Uxc 5 ({X} X TX%) and the cotangent bundle 7*% := Uy ({X} X
T3 %B).

By letting (Z%)3_, and (X*)3_, be a system of Cartesian and curvilinear coordinates,
and (®7)3_, the collection of real-valued C*-functions such that Z! = & (X', X2, X?), for
I = 1,2, 3, with non-singular Jacobian [dg CIDI];K:l [81], the components of G are given
by Gap = 8,59, D95 DX, where §; is the Kronecker Delta [81]. Together with G, 4 is
endowed with an affine connection, which, for our purposes, can be taken equal to the one
induced by the chosen curvilinear coordinates.

Let us consider the list of the kinematic and space-time variables that are necessary for
our minimal description of the medium’s volumetric growth:

0:=(x. Dx. F.K: %.Dx = Grady. . K; X, 7). )

Each entry of f is a function defined over the Cartesian product # x .#, and valued in
an appropriate set of points, or in a vector or tensor space. To be specific, the following
identifications apply:

1. x : # x S — . defines, for varying time ¢ € .#, the one-parameter family of embed-
dings x(-.t) : ## — . mapping the points X € & in the three-dimensional Euclidean
space . attime t € .7 .
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2. For each pair (X,t) € # x S, Dx(X,t) : Tx%# — Tyx,n- is the two-point tensor
defining the Jacobian tensor of x(-,t) at X € #. Here, T, (x,- is the tangent space
of & at x(X,t) € .. The tensor D x (X, t) represents the deformation gradient tensor of
the body, and with respect to two local coordinate systems, covering a neighborhood of
X € % and a neighborhood of x = x (X, t) € .7, respectively, the components of Dy are
given by the partial derivatives [Dx]%s = 94 x“ = dx*/0X*, witha, A=1,2,3.

3. F isan “auxiliary” deformation gradient tensor field, which, for our purposes, is regarded
as a generalized kinematic variable on its own. Later, it will be identified with D y. This
is done in order to unfold a variational procedure similar to the Hu—Washizu variational
principle [14].

4. K is referred to as growth tensor (see, e.g., [5]), and represents the time-dependent
anelastic tensor field describing the structural distortions associated with growth [5, 45].
The tensor K (X, t) maps the vectors of Tx.Z into the linear vector space, denoted by
Nk (t) [26, 52], that defines the natural state of Tx 2 attime t € .7 (see, e.g., [18, 29, 45,
102]). Hence, we can write K(X, 1) : Tx# — Nx(t). We recall that Ty % is referred to
as “body element” in [29]. Fora given 1 € ., A (1) := Uxe ({X} x A% (1)) denotes the
bundle of linear spaces representing the natural state of the body at time z. Once .4/(¢) is
introduced, we indicate with K (-, t) the tensor field K(-,t) : Z — A4 (t) ® T*%. More-
over, we also define the collection of natural states .4 := U[e(g( Uxeas ({X} X Jl/;((t))).

5. x: B x I — T.7 is the (Lagrangian) velocity field associated with x, so that y (X, ¢) €
Ty (x,n-”. The superimposed dot means x (X, ¢) = 9, x (X, t). Analogously, F= 0; F and
K=3K.

6. X  ABx I - P and T: B xS — J denote the projections X (X,t) = X and
T(X,t) = t. For any physical quantity f defined as a function f of F and K, and ex-
hibiting explicit dependence on points and time, we write f = f o(F,K,X,T) and

fX,)=f(F(X,t),K(X,1), X, t) [36].

For any second-order tensor 7', we use the wordings “A-deviatoric part” and “A-
spherical part” of T, with A being an appropriate non-singular second-order tensor, to indi-
cate T — %tr(Ail T)A and %tr(Ail T)A, respectively.

To perform operations involving vectors, tensors, and their dual entities, we employ the
notation of duality pairs between a generic vectorial or tensorial quantity V and its dual
entity 2. Hence, we denote by (§2|V) the real-valued application of the linear map 2 to V.
For example, if V is a vector and  is a co-vector, we obtain (R|V) = Q4 V4. Similarly, if V
and  are mixed second-order tensors with components V¥, and ¢ in some coordinate
system, then we find (R|V) = Q8V4; = tr(RTV).

Given two fourth-order tensors I and K having components, e.g., L4 3¢ p and Kp? s,
we define the operation L ¢ K as the contraction of the second pair of indices of the first
tensor with the first pair of indices of the second tensor, i.e., in components, [IL ¢ K] grs :=
LA™ yKa Y gs.

By viewing a fourth-order tensor IL as a linear map IL : % — 7 between the spaces of
second-order tensors % and ¥, possibly of different kind, we write L[U] = V to denote
the application of L to U € % returning V € ¥'. For example, if L and U have components
LA5¢p and Up 2, then V has components given by V45 =1LAzM U, . The transpose of
L is defined through (R|L[U]) = (LT[R]|U), and LT has components [LT]¢ 4 5.

A glossary of the most important terminology and a table collecting the most recurrent
symbols are supplied in the Appendix.
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2.2 An Overview on Growth: From Geometric to Configurational Mechanics

The process of volumetric growth manifests itself through a source of mass, hereafter de-
noted by R, and yields a variation in time of the mass density of the body under study. This
is captured by the mass balance law, which, in the body’s reference placement 4, is given
by or = or R, With pr being the body’s mass density per unit volume of Z (see, e.g., [32]).

In general, the variation of pr represents a reorganization of the internal structure of the
body that is virtually independent of deformation. Moreover, it introduces inhomogeneities
[30, 85, 91] that do not amount only to nonuniform redistributions of mass within the body,
and that, similarly to dislocations [12, 66, 107], cannot be eliminated by deformation alone.

Growth can be accompanied also by other structural reorganizations, which, although
possibly related to R, do not directly induce changes of gg. All these structural processes
lead to incompatible rearrangements of the body elements, often termed anelastic. When
such rearrangements occur, the body elements tend to find themselves in a state in which
they do not “fit together” [45]. This produces residual stresses [86, 101], which are the
mechanical manifestation of incompatibility [86, 100].

Incompatibility is a geometric concept expressing that, in general, the above mentioned
rearrangements cannot be reduced to maps transforming % into other body material mani-
folds in the Euclidean space. For these reasons, a second-order tensor field —in fact, K—
that is not defined as the tangent map [81] of a deformation is a suitable descriptor for growth
and for the other structural reorganization processes related to it.

From the mechanical point of view, the residual stresses accumulated in the body ele-
ments in response to growth can be relaxed by virtually isolating each body element from
the other ones, and letting it grow alone. By doing this, the body element undergoing growth
will be in a stress-free state at each time r € .#. This state is, in fact, the linear space A% (t)
introduced in Sect. 2.1, and the ideal operation of relaxation is K (X, t) : Tx#Z — Ax(¢).

The incompatibility of K, i.e., its intrinsic non-integrability, leads to frame the mechanics
of growth within non-Euclidean geometry. Indeed, it allows to introduce a non-Euclidean
metric and affine connections by means of which several geometric settings can be studied,
such as the Riemannian, Riemann—Cartan, Weitzenbock, or Weyl manifolds (see, e.g., [45,
74-80, 108-110]).

By referring to configuration of a body as the manifold described by its deformation and
growth tensor K, one can augment its kinematics. This way, it is possible to resolve, aside
deformation, the structural changes due both to the mass variation and to the other reorga-
nization processes associated with it. This fact suggests that configurational mechanics [54]
is a natural framework to study growth.

In our work, we consider the minimal context of a theory of grade zero in K [29] (see also
[15] for plasticity). This choice is dictated by simplicity, but it allows to study the geometric
aspects of growth as “byproducts” of our theory, and is sufficient to handle growth as a
problem of configurational mechanics.

2.3 Growth Mechanics as a Constrained Field Theory

In this section, we review the peculiar points of some previous works [47-50].

The continuum theories of volumetric growth in monophasic media often adopt the
Bilby—Kroner-Lee (BKL) decomposition of F (see, e.g., [4,5,9,26,32,41,45,53,72,73)),
and recast the mass balance law in the form of a differential relationship between K and the
(rescaled) source of mass R, i.e.,

(K""|K)=tr(K~'K)=R. )
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In the BKL decomposition F = F.K, F. denotes the tensor field of the elastic distortions
that accommodate for the growth distortions, described by K. It follows that J :=det F > 0
is given by J = J.Jk, with J, :=det F, > 0 and Jg :=det K > 0. For details, see, e.g., [45]
and the references therein.

Starting from the mass balance law or = or R, and exploiting the BKL decomposition,
Equation (2) is obtained under the assumption that, for each X € Z andtime ¢t € .7, or(X, 1)
is “absorbed” by the volumetric part of the ideal relaxation process K(X,t) : Tx# —
% (t). To this end, we decompose K as K = Ié/ 3 K,, where Jg accounts for the volume
change of the body elements from the reference placement to the body’s natural state, and K,
describes the isochoric (volume-preserving) part of K. Then, if o is the mass density in the
current placement of the body, so that og := J o, we write gr as or = Jg 0., where g, := J.0
is such that g, (X, t) defines the mass density of the body element attached at X in its relaxed
state at time . However, due to the assumption that has been made, the function o, (X, -)
can be taken constant in time, and, thus, upon dropping the dependence on X, it holds that
Or = Jx 0. Finally, because of the chain of identities Jx = Jxtr(K~'K) = Jx (K~ T|K), we
obtain or = Jx (K~ "| K)o, = or (K~ T|K), which yields Equation (2).

Equation (2) places a condition both for K and for R, and it can be viewed either as a
way for defining R, once K is determined (see, e.g., [30, 32, 52, 53]), or as a constraint on
K [47, 50], if R is assumed to be given from the outset, for example, phenomenologically
[1, 4-6, 83, 84].

In the present work, we concentrate on the second point of view, which we refer to as
“a priori approach” [48]. Moreover, following the phenomenological framework developed
for tumor growth in [83, 84], we hypothesize that R can be expressed as a function of F and
K through an appropriate function of mechanical stress. In addition, R must be related to
chemical factors as well as to any other factor that enhances or hinders growth. Hence, we
set

R:=Rot,, 1, = (F,K; X,T). 3)

We view Equation (2) as a constraint. This way, one is sure of describing growth as
necessary, with the possibility of developing a dynamic model for the full tensor field K
[47, 50]. This procedure permits to consider the remodeling that accompanies growth for
any type of material, without the necessity of “guessing” the form of K on the basis of
material symmetries (see, e.g., [8, 9, 73]). Thus, we write:

Cc=Cole:=(K"|K)— Rot, =0, fei=(F. K: K: X, ). “

Remark 1 (Nonholonomic nature of the constraint) If R is zero, no variation of mass oc-
curs, and the constraint (4) becomes (K ’T|K ) = 0, which is holonomic. Indeed, one can
take h :=log Jg, to retrieve h= (K ’T|K ) = 0. In such a situation, K is constrained to be
isochoric, as is often assumed in the biomechanics of remodeling (see e.g. [6, 97, 98]). There
can also be other functional forms of R that make the constraint (4) holonomic (see, e.g.,
[47]), but they are rather special. Hence, with the purpose of virtually including any biolog-
ically plausible form of R, we regard the constraint (4) as nonholonomic with respect to K .
This means that no scalar function / := o i, exists, such that h=Co g = 0. In particular,
Co f. 1s affine in K.

Remark 2 (Biological scenario and differentiability of R) In some studies on tumor growth
(see, e.g., [83]), R depends on F and K through mechanical stress. More specifically, one is
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interested in capturing the inhibitory effect that compressive stresses exert on the cell prolif-
eration processes, like mitosis [16], which precedes vascularization. In this stage, the mass
variation of the tumor is mainly due to the accessibility of the tumor cells to nourishment,
which is supplied in the form of nutrient chemical substances, such as glucose and oxygen
[1,5, 6, 16, 83, 84]. The concentration of nutrients at each point X € % and time ¢ € .7,
hereafter denoted by c(X, ), evolves by following a diffusion-reaction equation coupled
with the other mechanical variables of the problem (see e.g. [5, 16, 49, 84]). To model the
inﬂuence of stress on growth, R can be related to the positive part of the mechanical pressure
P = tro where o is the Cauchy stress tensor of the medium, expressed as a function
of F and K, as is the case when the mechanlcal response of the tumor is hypothesized to
be elastic. Hence, upon setting (p), = 3 Lo + |p]) for the positive part of g, the effect of
mechamcal stress is switched off for g < 0, and switched on for g > 0 [83]. In partlcular
R decreases with i increasing . Finally, by expressing ¢ constitutively as p = o, Ris
made dependent on F and K. To account for these facts, and imitating an expression of R
prescribed in [83, 84], Grillo&Di Stefano [48, 49] suggested the functional form

o C—Ccr _ “(@Oﬂyh ]_ <_i>
R=R uy—§a< ccr>+[1 et Bot )y &l ol %)

Here, ¢, and ¢, are non-negative, constant material coefficients associated with mass “ac-
cretion” and “resorption”, respectively, having units of the reciprocal of time [48]; ¢, is a
constant threshold value of the nutrients’ concentration; ¢e,y > ¢ is a constant value of the
nutrients’ concentration in the tumor’s environment [48]; o > 0 is a non-dimensional ma-
terial constant; o, is a constant characteristic reference value of stress. Growth laws of the
kind given in Equation (5) render R continuous but not everywhere differentiable, because
() is not differentiable in g = 0. Thus, when the differentiability of R is needed, (p)4+ is
mollified, and R is taken to be at least C!.

2.3.1 Principle of Virtual Work and Nonholonomic Constraint on K

Following the methodology outlined in [47, 50], which, in turn, is based on the approaches
developed in [15, 29], the constraint (4) has to be appended to the Principle of Virtual Work
(PVW), formulated for the growing body under study. To this end, it is necessary to intro-
duce the virtual variations of the basic kinematic descriptors x, F, and K. Thus, since the
present context is of grade one in x, and of grade zero in F and K [28, 29], we write

(x,Dx,F,K;8x,6Dx =GradSx,5F,5K; X, T). (6)

Within the “canonical doctrine” [50], the varied form of the constraint to be appended to
the PVW is supplied by the so-called Chetaev condition [35, 38, 40, 71, 94], which holds
true for “ideal” constraints [71], and reads [50]
Chy, (8K) := (34C o 1|6K) =0
= Ch, (6K)= (K "|sK)=(I"|K '6K)=tr(K'6K) =0, (7
where IT : T*% — T*2 is the transpose of the identity tensor [81].
In conjunction with Equation (4), and in order to postulate the PVW in a form a la Hu-

Washizu [14], we enforce the condition that F must be equal to D x at all times and at all
points, thereby introducing the auxiliary constraint C, := Dy — F = O, where O is the null
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second-order tensor field. By introducing the tensorial Lagrange multiplier 7', this condition
can be associated with the weak forms

(T|Dy — F) =0, (8T |Dx — F) + (T |Grads x — 8 F) = 0. (8)

By assuming that, in addition to the prescribed constraints, growth occurs under the ac-
tion of the generalized forces Y, and Z [15, 29], introduced by duality with the generalized
virtual displacement K ~'$ K, and interpreted as internal and external, respectively, the PVW
can be cast in the form [47, 50]

Wint + We = Wext, (9)

where Wiy, We, and W,y are the “internal”, “constrained”, and “external” virtual work,
respectively, and are defined by

Mﬁﬁ:/‘“PwF%+QUK‘%KH, (10a)

B

We:= [ {(nI"|K"'6K)+ (T|GradSx — 8 F) + 8pt.C + (3T|Cy)}, (10b)
gg

W :=f (1) + (ZIK '8 K)) +/ (xl8x). (100)
B ok

Here, P is the first Piola—Kirchhoff stress tensor; p is the real-valued Lagrange multiplier
associated with the Chetaev condition (7); i and 8T are the virtual variations of p and T';
t. is a strictly positive characteristic time introduced to make the term & 7.C dimensionally
homogeneous with all the other addends of Equation (10b); f and t represent the external
body forces and the external surface forces dual to §x. Note that 7 is defined over the
Neumann portion of 34, denoted by 35 %. In the sequel, .4 is partitioned as 0% = 3} B L
0% B, where 3% % is referred to as Dirichlet boundary.

The strong form of the dynamic problem associated with Equations (9) and (10a)—(10c)
is given by the set of equations

DivT + f =0, in A, (11a)
t—-TN=0, on 3% A8, (11b)
P=T, in 2, (11¢)
Y.+ul"—Z=0, in %, (11d)
C.=Dx—-F=0, in 2, (11e)
C=(K"IK)—R=0, in 8, (119)

which has to be completed with Dirichlet boundary conditions on y, and with all the nec-
essary initial conditions. As for the Hu—Washizu method (see e.g. [14]), Equation (11c)
identifies T' with P.

Because of the difference of formulation with respect to the one recently presented in
[47, 50], the physical quantities featuring in Equations (11a)—(11f) can be grouped as fol-
lows: 21 kinematic variables x, F, and K; 10 Lagrange multipliers i and T'; 18 constitutive
functions P and Y,; 15 external forces f, T, and Z. The kinematic variables and the La-
grange multipliers yield a set of 31 scalar unknowns to be determined by solving the 31
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scalar equations given by the balance laws (11a), (11c), (11d), and by the constraints (11e),
(111).

The presentation of the full boundary value problem (11a)—(11f) serves as comparison
for the dynamic equations that will be determined in the sequel.

2.3.2 The Hyperelastic Case and the Extended Hamilton Method

Although some biological tissues show viscoelastic behavior in certain dynamic regimes
[10, 39], a case of particular interest is when the growing medium under study can be as-
sumed to be hyperelastic [3-5, 27, 29, 32, 53, 73, 84]. Then, the constitutive representation
of P can be obtained as

P o (F,K; X, T)=1 od,
= —— 0 . =
9F , K5, K oF.

O(Fe;X,T)]K_T, 12)
where W := ¥ o (F,K; X, T)= JK[‘i/U o (F; X,7T)] is the strain energy density of the
medium per unit volume of its reference placement; WV, := \il o (Fe; X,7T) is the same
physical quantity, but expressed per unit volume of the medium’s natural state. Note that the
arguments of U are the same as the collection by, so that we can write ¥ = Uo by -

Typically, the growth of a biological medium, such as a tumor or a cellular aggregate,
occurs over time scales that allow to neglect its kinetic energy. However, nothing forbids, in
principle, to consider the “classical” kinetic energy density, L = %JKQ,, I %1%, and define the
medium’s Lagrangian density function Ly, := K — W [32].

The function £, can be generalized by including other interactions that the medium can
experience. These could be represented by the kinetic energy density associated with K
[105], and potential densities that may depend both on x and on K. Therefore, to include
such contributions, we consider, in lieu of £, a more general Lagrangian density function,
defined as £ := £ o 1. However, in the hyperelastic case, Fis ignorable, since it holds that
3L o= 0. We also notice that £ can be assumed to be formally independent of Dy,
since the dependence on the deformation gradient tensor is already accounted for through
F, which is one of the arguments of ¥, Hence, we set dpyLog=0

To imitate the Hu—Washizu formulation of the PVW [14] of Sect. 2.3.1, it is convenient
to augment £ with (T' | F — DY), so that one finds

Lo=Lao(;T)=Lot+(T|F— Dx), (13a)

A (x, F,K;T) ::/fln {/ La(0(X,1); T(X,t))dV(X)}dt. (13b)
t B

in

The Lagrange multiplier 7' has to be included among the arguments both of the augmented
Lagrangian density function L, and of the augmented action A,, obtained by integration
over the time interval [#,, #,]. Moreover, since F is regarded here as an independent kine-
matic variable, A, has to be defined as a functional of F as well as of y and K. Note that,
because of the hypothesis of hyperelastic material, L, and £ are independent of D, that is,
8D+X£ao(ﬂ; T)=aD;X.cou= (]

No matter how accurate £, can be, it is not sufficient, in general, to provide a com-
prehensive description of a growing medium. There are at least two reasons for this. First,
one should expect the presence of generalized forces for which no potential density exists.
Second, in the classical formulation of Variational Calculus, one cannot attach the nonholo-
nomic constraint (4) to £ or L,, as one could instead do if the constraint were holonomic
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(see e.g. [46, 67, 68, 90, 93]). Still, to obtain the dynamic equations of the problem under
study, one may have recourse to Extended Hamilton’s Principle [11, 67]. To this end, we
introduce a smallness parameter € € % (g(), where % (gy) is an open neighborhood of zero
with radius &y > 0, and we define the homotopies

X, 0; T(X, 1) = (X, 1,e); T(X,1,9)), (14a)
B(X,t,8)=0(X,t,0)+3.0(X,t,0) +o0(e), e—0, (14b)
T(X,t,e)=T(X,1,0)+ 3. T(X,t,0)e + o(e), e—0, (14¢)

with 5(X,#,0) = 6(X, 1), T(X,1,0) =T (X,1).

Since the Extended Hamilton Principle relies on “classical variations” [11, 67], we pro-
ceed as follows. By indicating with ¢ a generic variable of fj, ¢ (X, t) is varied into ¢(X, ¢, &),
and we denote by 5,(X, t) := 3.¢(X, 1, 0) the entity defining the direction (in a generalized
sense) along which the infinitesimal first-order variation of ¢(X,t) is computed, that is,
Sp(X,t,e) = anw(X , ). However, with a slight abuse of terminology, from here on we shall
refer to 5,(X, ) and 7, as the first-order increment and incremental field associated with
¢(X,t) and g, respectively (in fact, since in the sequel these quantities are attributed only
to first-order variations, we shall omit the specification “first-order””). Analogously, we call
np(X,t) = 9, T (X, t,0) the increment associated with T'(X, t). If @ is the time derivative
of another variable ¥ of f, i.e., if ¢ = 1&, then the hypothesis of “classical variations” im-
plies the commutative relationship #, = 7,,. Moreover, it holds that 5, = Grady,, and
N5, = p, = Gradp,. The incremental fields n, and 5y are required to vanish at #, and
Ifin, While , must be null also on the Dirichlet boundary of . Finally, we clarify that the
incremental fields associated with X’ and 7 are taken to be null.

Now, we let f,, and &,, be the non-potential forces dual to 3, and 5, respectively.
The former represents all the non-potential contributions to the balance of “deforma-
tional forces” [54], while the latter collects the non-potential contributions to the quantity
K~T[Z — Y,] that can be defined from Equation (11d). In addition, following Lanczos’ ap-
proach [67] to nonholonomic systems, we consider also the constraint (4), which contributes
to the overall virtual work through the term (K" | 5g), with u KT acquiring the mean-
ing of the associated reactive force, up to the sign. Therefore, by integrating the virtual work
produced by fnp, Sp, and nK ~T over [tin, tan], We write Extended Hamilton’s Principle
[11,24, 67] as

dAa tfin
0= [ [ [l + (= kT i )av s
€ [f B

in

—/ﬁ" ” (sz)dA}dz, (15)
tin Bﬁ@

with A, (e) == [ { [, L B(X,t,e); T(X,1,€)dV(X)}dr.
Computing the left-hand side of Equation (15), grouping together the terms dual to the
same variation, and localizing the resulting expression yield

EL+DIVT =~ f,, in 2, (16a)
TN=r1, on 3% B, (16b)
ErL+T=0, in 2, (16¢)
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F—-Dy=0, in 8, (16d)
ExL=—Gy+nKT, in 8, (16¢e)
(KTK)—R=0, in 2, (16f)

where, for a given variable ¢ of f, E(plf = Bw/f of— 8,(84,[3 o1f) denotes the associated Euler—
Lagrange operator applied to £ = £ o . In particular, we obtain £gL = dpL o i, since F is
ignorable for 2, and, thus, 8,‘,~EA of=0.

The sets of Equations (16a)—(16f) and (11a)—(11f) are equivalent to each other, and the
following identifications can be made:

F=EL+ fo (17a)
Z—Y,=K"[EkL + Sypl. (17b)

In the sequel, when we speak of “Traditional NonHolonomic Method” (TNHM) [95], we
refer equivalently either to Equations (11a)—(11f) or to (16a)—(16f).

2.3.3 A Note on the Configurational Generalized Forces Associated with Growth

In the paradigm of the Principle of Virtual Work [33, 42], the configurational forces Y,,, u1 T
and Z are the entities that represent the real-valued linear functional defining the growth part
of the virtual work [29], i.e.,

8K +— #4(8K) ::/ (FIK~'8K)=0, F=Z-Y,—ul"=0. (18)
B
By its own definition, #;(-) is dual to K (viewed as a fest tensor field), while § is dual to
the tensor field given by K~'6K.

Since growth requires an irreversible expenditure of energy, Y, must feature a dissipative
contribution, which we denote by Y 4. If Y,,4 can be expressed constitutively (see, e.g., [5, 15,
28, 29,47, 50, 51]); if the chosen constitutive representation is continuous and differentiable
in all the values of K~'K in which it is defined, including K ~'K = 0 if it vanishes for
K~'K = 0; and if one is interested in the evolution of K only in a small neighborhood of
K~'K = 0, then Y,q can be taken linear in K~' K. This yields a relation of the type Yuq =
T[K 'K, where T is a positive semi-definite fourth-order tensor field enjoying the major
symmetry, i.e., such that (T[K'K]|K~'K) > 0, for all K~'K, and T = T". Clearly, T
may depend on F, K, and other variables, apart from K. In fact, T represents a generalized
tensorial viscosity independent of K [18, 19, 4749, 92].

The study of dissipation permits to conclude that Y, consists also of a non-dissipative
term, given by the Eshelby stress tensor H. This is found also in many other approaches
to growth [3, 29, 32, 41, 72] and to configurational mechanics in general. It descends from
H being naturally conjugate to the kinematic variables describing the structural transfor-
mations of a body, such as plastic distortions [15, 22, 31, 56] and remodeling of biological
media [23, 43]. In all these situations, the pairing (H|K ¢ ) occurs, and, in the examined
case of growth, it holds that ¥, = H + Y4. In more general frameworks, tensors similar
to H arise, e.g., in the evolution of interfaces [25, 54] and of the chemical composition of
mixtures [51, 99].

For hyperelastic bodies, and in the quasi-static case, H can be expressed by differentia-
tion of the body’s strain energy density with respect to K (see Equation (82a) below). Thus,
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the physical meaning of Y4 and H is embedded in the constitutive relations by which they
are determined. In particular, since Y4 is a non-potential force, it contributes to the overall
non-potential force Syy,.

Quite differently, since Z is external, it may feature, in general, inertial-like terms as
well as other contributions that can be assigned phenomenologically either through the dif-
ferentiation of the Lagrangian density function with respect to K or as generalized forces
that generally do not admit a potential. The latter ones, in particular, should capture, at
least, how the most relevant chemo-mechanical processes occurring at lower scales influ-
ence growth at the scale of the body as a whole [29, 47]. Following [48, 49] (see Remark
2), when the inertial-like terms are negligible, and the contributions that stem from the La-
grangian density function are disregarded, one can supply Z as (in the sequel, C is the right
Cauchy—Green deformation tensor induced by F)

Gradc ® C~'Gradc

Z=LJBRIT + Jx O, ||Grade| -1 IT + Jk[Ove — O, ) 19
3k B + Jk QuillGrade| o—1 17 + Jg[Qve — Ol | Gradell o (19)

The first term on the right-hand side of Equation (19) is a purely volumetric contribution
that directly induces the mass variation within the body (8 > 0 gives the correct physical
dimensions); the second and third terms represent a configurational force driving the evolu-
tion of K in response to the material gradient of the nutrients’ concentration. In Equation
(19), the parameters Q,, and Q,, are strictly positive, and presumed, since we are aware of

no experiment determining them. For any material co-vector field @, || @]/ ,-1 := v ®C 1.

3 Quasi-Velocities and Transpositional Relations

In Analytical Mechanics, the terminology quasi-velocities refers to the result of a “change
of variables” in the collection of the generalized velocities of a given mechanical system
[58, 71, 89, 90]. It is done to describe the system’s kinematics in a way that best “fits” the
system at hand [82]. This is because many important features of the constraints are made
explicit by the most appropriate choice of quasi-velocities.

Before studying how quasi-velocities work in growth mechanics, we refer the reader
to Supplementary Material for further details on their employment for discrete mechanical
systems.

Within our context, the generalized velocities are the time derivatives that feature in the
list of variables fj of Equation (1), i.e., x, Grady, F, and K. However, only K is constrained
through Equation (4), while all the other ones are unconstrained. In fact, the holonomic con-
dition Dy = F implies a posteriori that Grady = F, but these velocities are not restricted
a priori, and also Dy and F, in spite of their being constrained to be equal to each other,
are varied independently of one another at the price of introducing the tensorial Lagrange
multiplier T. For these reasons, and on the basis of the rationale outlined above, there is no
physical advantage in transforming x, Grady, and F. On the contrary, it is meaningful to
transform K.

3.1 Quasi-Velocities

Let us denote by Q%4 the generic component of the tensor of quasi-velocities €2, which
represents a “change of variables” performed on K, and let us define it through the transfor-
mation (cf. Supplementary Material)

QU= o (F,K;:K; X, T)=Q% o, a,A=1,2,3, (20)

where the arguments of 2, are the same as those of C.
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Together with the quasi-velocities, we introduce the quasi-coordinates and their virtual
incremental fields (cf. Supplementary Material) [58, 90]

O = Q% o, (21a)
Qe .
nel®a = (ﬁ o m)mK]ﬂB =458 01k’ 5. (21b)

Equation (21b) is, for each pair of indices o and A, a linear differential form in the virtual
incremental field n g of K, which defines explicitly the new virtual incremental field [5g]% 4.
Equation (21a), instead, defines quasi-coordinates implicitly, i.e., as the functions ©®* 4 that
solve the differential equations that it represents. Hence, for given « and A, there exists a
function ®“ 4 that satisfies Equation (21a), and is, thus, a primitive of Q%4 = Q"‘A ofl. in the
sense of the Fundamental Theorem of Calculus, i.e.,

t
@“A(X,t):@"‘A(X,tm)—i-/ Q¥4 (X, s)ds, VXeZB, (22)
I5

in

provided Q2“4 is continuous in time. However, as expanded in the Supplementary Material,
this does not imply a representation of ®* 4 of the form ol 2o0(F,K; X,T).

The functions ©% 4 and [ng]*4 can be identified with the components of the two two-
point second-order tensor fields defined by the right-hand sides of Equations (21a) and (21b),
respectively.

The non-singularity of the transformation (20) requires that the collection of functions

02%4

o B _ T B .
J¥ap” =T%ap" olic = 0KF,

o flc, o, A, B,B=1,23, (23)

gives the components of the non-singular fourth-order tensor J that represents the Jacobian
of the transformation itself. Hence, in compact notation, we write ng = J[ng], with J =

Jobe=0;Qot.
3.2 Transpositional Relations and Choice of the Quasi-Velocities

As anticipated in the previous section, the choice of the most appropriate system of quasi-
velocities permits to compute the associated “transpositional relations” (see, e.g., [58, 71,
90]), which express the fact that, in general, the operations of “virtual variation” and of “time
differentiation” are not commutative when nonholonomic constraints are featured [90].

To compute the transpositional relations characterizing our problem of growth mechan-
ics, we adapt a procedure reported in a work by Jarzebowska [58], and recently reviewed
in [95], that is based on the quasi-velocities and on the variations of the quasi-coordinates
introduced in Equations (20) and (21b). To recall the main steps of such procedure, we refer
the reader to the Supplementary Material, in which we explain it for the case of a generic
discrete mechanical problem. For our problem of growth mechanics, we introduce the ho-
motopies

F(X,0)> F(X,t,6)=F(X,1) +np(X, e +o(e), e—0, (24a)
KX, 1)~ K(X,1,8) = K(X,1) + g (X, e + o(e), g — 0, (24b)
KX, 1) V(X,t,6) =KX, 1)+ 14 (X, 0)e + o(e), £ — 0, (24¢)
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XX, D> X(X,t,8)=X(X, 1) =X, Ve e (s), (24d)
TX, ) TX, t,6)=T(X, 1) =t, Ve e (e, (24e)

where, as before, %/ (&) is an open neighborhood of zero having radius &y > 0, and 7,, is the
incremental field associated with the generic variable ¢ of ..

Within the present framework, the increment 9y (X, ) on the generalized velocity
K (X, 1) is allowed to be different from 7 (X, 7). Hence, in general, we set n; # . The
homotopies X and 7 are formal, since material points and time are not transformed. They
are introduced with the sole purpose of defining rigorously the varlatlon of a generic func-
tion f = f of as f f o e, with the understanding that fe = (F KV X, 7)), and

fX,t,6)= f@(X,t,8) = f(F(X,t,8), K(X,1,8); V(X,1,8); X, 1). (25)

Equation (25) permits to formalize the homotopy Q:=Qo B, and to write the increment
associated with it, i.e., 9o (X, 1) := 0. (X, ¢, 0), as

ELy) EL9) I
Ng = 3F © fe |[npl + 3K ° fe J[ng]+ K ofe J[ngl (26)
We also compute the time derivative of g, i.e.,
o= [ 2 (22 oo ) it + (22 o2 )i @7
= | — —— O o] N
776 ot Py % c "K Py % c 77K

so that the difference ng — jjg yields (cf. Supplementary Material)

. . I
g — e = ErR)nrl + (Ex )Nkl + (ﬁ o ﬂc>[ﬂk =kl (28)

where the Euler—Lagrange operators £ and Ex applied to Q are given by the following
fourth-order tensor fields

LY,
51:52:: a_F Ouc, (293)
xR 00 b 0 (0@ b (29b)
=—o0f——|—=o .
K aK ¢ ar\ak ¢

We remark that £ pfl reduces to 0 pfl o i because the variable Fis ignorable in the present
framework and has thus been excluded from the list .

According to [46, 58, 90, 93], Equation (28) can be simplified by assuming the vanishing
either of ng — g or of 5 — ). For our purposes, we consider here the case ng — g = O,
and, upon setting J = g o, we achieve the important result (cf. Supplementary Material)

ni —ig=—U " o & Dnpl — T 0 ExR)ng]
=Wgkrlnpl + Wgkngl, (30)

where the fourth-order tensor fields Wk p and Wg g are given by

Wiri=-J"o&rQ, Wik :=—J" o0& 31)
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Equatlon (30) is referred to as transpositional relation, since it shows that, if the quantities
£ FSZ and SKSZ are not null, 5 is different from i [58, 90].

3.2.1 Conditions on the Quasi-Velocities

By plugging the last sum on the right-hand side of Equation (30) into Equation (28), group-
ing together the factors of ny and 5, and setting ng — §g = O, we obtain the equality

0 ={ErQ+ToWkp)npl+ {ExR+T o0 Wi }ngl. 32)

Following the line of thought developed in [71], we can now use Equation (32) as a condi-
tion to compute Wy r and Wk, as done in Supplementary Material for the discrete case,
thereby requiring

ErQ+ToWgkp =0, ExR+ToWgg =0, (33)

where QO is the null fourth-order tensor. We remark that this can be done if 5 and ny are
linearly independent. In the present framework, they are regarded to be such, because the
Lagrange multiplier technique is employed.

The conditions (33) are thus equivalent to those in Equation (31), and are preferable since
they allow to determine W r and W g without directly inverting J (as will be seen later).
It is also worth to remark that Equations (33); and (33), can be viewed as characterizing
properties for Q[71].

3.2.2 Best Choice of the Quasi-Velocities

Let us decompose the growth tensor as K = J,i/ 3 K, where det K, = 1, and let us write the
rate K~'K in the form

K'K=K'K,+ (K" K)I = K. 'K, + L (Jg / Jx)1. (34)

Since it holds that tr(K "' K) = Jk /Jk, only the spherical part of K~! K is restricted by the
constraint (4), which, indeed, becomes C = J}g /Jk — R = 0. On the other hand, the time
derivative of the isochoric part of K, i.e., Ku, is not involved in the constraint. In fact, Ku is
subjected to no restrictions, except that it has to satisfy the property tr(K "' K,) =0, true by
construction, as can be deduced from Equation (34), or, equivalently, from the expression

K.=J 'K - oK' K)J ' PK. (35)

Hence, K, has only 8 independent tensor components. On the basis of these considerations,
we choose as quasi-velocities the constraint (4) itself and eight independent components of
K, . Thus, we set (cf. Supplementary Material)

Q' =Q' ot :=Cot.=tr(K'K)—Rot,, (36a)
Qlp=Q"pobc=Jg P[K's — dr(K'K)K '], B=2,3, (36b)
@ =QF o= 0 PIKP - Le(KTTKOKP ], B=23, (36¢)
Q=P ot i=Jg P[KPp — LK KK 5], B.B=2,3. (36d)
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We now employ the definitions (36a)—(36d) in the conditions (33), which, thus, acquire
a block-wise structure. Specifically, Equation (33); gives

352‘ Q!
( o m)awn) Lt = Lol

oK A aF“
08
= (WiplK DA = o, G7)
an 8Q]B
c W ll =- ¢
<3KA °h>( 2k 9Fe, "
3 1
= JK‘“{(WKF)IBaA—gKIB(W PIK D }z : (37b)
3f2ﬁl 8§2ﬁ1
0 c W » aA=_ c
<3K"Lou>( KL aFe, "
B 1
= JK'”{(WKF)‘*MA—gKﬁl(Wip[K*TDaA}=0, (37¢)
9 5
¢ W * a = ¢
<8KA U)( KF)'L 9Fe, of
_ 1
S 1/3{(w”)ﬂ3u/*—5K53<W2F[K*T])/‘}=0, (37d)

with 8, B=2,3, A, L =1,2,3,and a, A = 1,2, 3. The system (37a)—(37d) can be solved
by substituting the right-hand side of Equation (37a) in all other equations. This provides
all the components of W except (Wgp)'1,4. Hence, by using these results in the first
relation of Equation (33), Wk r becomes

1 IR
Wk 3K®<8F uy>. (38)

Next, we turn to Equation (33), to compute Wx . Since tr(K ™! K) in Equation (36a) is
the time derivative of log(detK ), it belongs to the kernel of the Euler-Lagrange operator
Ek, and, thus, we find SKSZ 1= —aKR o 1, . Analogously, since all the components of K
written explicitly in Equations (36b)—(36d) are time derivatives of functions of K, we find
ExQ'p =0, ExQP L = 0, and Ex QP 3 = 0. Therefore, Equation (33), yields

39' N
( ﬂc)(WKK) LM = —Exn, Q'

9K,
o F
T “T M _
= (WKK[K ])}l. = 9K, o Dyv (39a)
Q! , N
(81@ ° ﬂc) Wgr) ™M =—Exn,, 25
_ 1
= Uy 1/3{(WKK>IBMM - gKlg(W}K[K‘T]),LM} =0, (39b)
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AP, A
(W o ﬂc) (WKK))LLMM = _SK/‘MQﬂl

_ 1
= ”3{<WKK)5,,LM - gxmw}af[rﬁ)m} =0, (39¢)

Ik .
( £ ﬂc) Wrg) M= —Exu, 2P

— O
0K*,
_ 1 N
= Jg ”ﬂ(wmﬂgu“ — 3K s (WikIK T]M} =0, (39d)

with 8, B=2,3 and A, u, L, M =1, 2, 3. Also in this case, substitution of Equation (39a)
into (39b)—(39d) and using the second relation of Equation (33) lead to

1 IR
WKK=§K® ﬁOUy . (40)

3.3 Quasi-Coordinates and Their Variation for the Growth Problem

Comparing Equations (36a)—(36d) with the general definitions (21a), we notice that, apart

from Q‘] o f, all the other quasi-velocities are total time derivatives of K,, which is a
function of K, only. Accordingly, by virtue of the relations

0= =Cc=Cof.=tr(K'K)—Rob, =0, (41a)
Qlp=Q'po08. =18, "K' =04, B=23, (41b)
Q' =Qf ot =[0,(Jg P K, =6, =23, (41¢)
Q=g o0 =3,k K5 =0, B, B=2,3, (41d)

and with appropriate initial conditions, the quasi-coordinates are given by

O'1(X,1 -0 (X, ) :/ C(F(X,s),K(X,s); K(X,s); X,s)ds =0, (42a)

fin

0's=[K,]'s, ©° =[K,), ©fs=I[K]", (42b)

where, as above, 8 and B take on the values 2, 3, and ®' (X, #,) is to be provided by means
of suitable initial conditions. The nonholonomic nature of the quasi-velocity Q! = Co fe
implies that the quasi-coordinate ©'; has to be a functional of F and K and a function of
material points and time. Indeed, by exploiting Equation (41a), it follows from (42a) that

®' (X, 1) — 0" (X, fin)

g KD\ _ [T p : _
= log<JK(X7 m) f R(F(X,s), K(X,5); X, s)ds = 0. 43)

fin

In addition, the fulfillment of C = 0 implies ®';(X,t) — ©',(X, t;,) = 0, and, thus, that
©'1(X,t) equals its initial value ®' (X, t;,) at all times ¢ > #,,, which returns the formal
solution to Jx — Jx R =0, i.e., the constraint itself.
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From Equation (43), we notice that, if we take ©'|(X, ;,) = log Jx (X, #;n), and if we
assume that the body finds itself in an initial state for which Jg (X, t;,) = 1, then we obtain
©'1(X,t) =0 at all times ¢ > t;,, and for all X € 2. Thus, if we further suppose K = J,é/‘gl
(some authors [6] refer to this situation as “spherical growth”), then Equations (42a) and
(42b) give

0'1(X,H)=0" (X, ) =0, 0'p(X,1)=0, B =23, (44a)
ek (X,n=0, B=2,3, Ofp(X,1)=68%p, B, B=2,3, (44b)

which means that the matrix associated with the quasi-coordinates is singular in the just
analyzed case (whereas K is non-singular). This result is coherent with the fact that choosing
the quasi-velocity Q' as coincident with the expression of the constraint implies that, if the
constraint is fulfilled, the quasi-velocity Q! is zero. Consequently, the corresponding quasi-
coordinate defines a state of rest, which becomes equal to the “origin” ®'|(X, ;,) = 0 of
an appropriate reference frame, if Jgx (X, t;,) = 1. On the other hand, if one starts from a
perturbed state 0 < Jx (X, tiy) # 1, then ©' (X, ;) = log Jx (X, t;,) is different from zero
(it could be negative, if Jg (X, ;) < 1), and so is also ®' (X, ¢) at all times ¢ > £,. This
property descends from the fact that ®', (X, #,) represents J (X, f;,) in logarithmic scale.

In conclusion, the representation of quasi-velocities and quasi-coordinates amounts to
selecting a frame that co-moves with growth, in which, thus, no growth is perceived. For
this reason, the (virtual) incremental field associated with ©!, i.e., [179]11, must return
Equation (7) divided by ¢, that is,

<! aC
[ne]ll:(akﬁl Ouc)[’,K]ﬁB:<aKﬂ OHC>[”K][‘B:O7 (45)
B B

as can be deduced from Equation (21b).

4 Equivalence with the TNHM

In this section, we present the result that we deem most fundamental for our formulation
of growth. Specifically, we show that, although being nonholonomic, the constraint (4) can
be included in a suitably defined Lagrangian density function of the growing body. In other
words, one is able to handle the constraint “as if”” it were holonomic, thereby allowing for a
variational study of growth, up to the irreducible non-potential forces f,, and Sy,.

4.1 Dynamic Equations in the System of the Quasi-Velocities

Written in the system of the quasi-velocities £ = Qot,, the Lagrangian density function of
the growing medium becomes

Lohg=Loh=L, (46)

where fg is the same collection of variables as f, with the exception of K, which is replaced
with .

If ¢ is a variable of § such that neither ¢ nor ¢ are included in g, then (‘J«,Ev is identical to
é’(pﬁ. However, if v is a variable of § such that v itself and/or W are included in . (in fact,
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here v can be only K), then the chain rule implies the identities

2 3 i (o) (M) .
8'(/fou_8'(//ouﬂ aQaAouﬂ 8'()0' ouC7 (a)
oL (AL Qe ,

ﬁon—@mfug)( 7 u) (47b)

A

and the corresponding Euler—Lagrange operator £y L transforms accordingly. Since Equa-
tions (47a) and (47b) apply to F and K and K, we obtain

. oL . ~ [aL
EplL=—=of=E L+ (ErR)T| —= , 48
F aFOU FL+ (EF )[aﬂoﬂn] (48a)
Vs 3 (oL . . [aL
Exl=——of— —( = =J"Ex L]+ (Ex Q)T = 48b
K 3 of E)t(aKOu) J[Ex L]+ (Ek )[aﬂoug]’ (48b)

where we have exploited the definitions of EFQ = 8pfl ol and & Kfl given in Equations
(29a) and (29b), and we have introduced the notation

£F AL 4
Y ollg, (49a)
. AL 3 (L

= —T — _ ey 4
ExL:=T) [aK ODQ] at(aﬁ OHQ) (49b)

to denote the transformed Euler—Lagrange operators £ and Ex applied to the Lagrangian
density function £, expressed in the system of the quasi-velocities. On the other hand, the
quantity

aL
Tk = o oflg (50)

can be expressed in terms of the generalized momentum py = 34 £ o 1, dual to K through
L, by inverting the relationship

afz T T —I\T
pi=(ggok) rxd=1"rx] = wxk=0"OIpgl. Gh

We could refer to wg as quasi-momentum, since it is dual to the quasi-velocity 2 through
the duality relationship introduced by L.

Let us substitute Equation (51) into (48a) and (48b), and let us employ the definitions
(31) to see how the Euler-Lagrange operators £ and £k transform when switching from
the collection § to fig, i.e., to the one of the quasi-velocities, for describing the medium’s
kinematics. By employing the notation ¢ introduced in 2.1, we find (see also [46, 90])

ErL=ErL+ U " o &r)Tprl=ErLl — Wk Ipkl, (52a)
ExL=T"1Ex L1+ T o kD Pk ] =T [Ex L] — Wik [pg), (52b)

where Wg r and Wi are given in Equations (38) and (40), respectively.
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By virtue of the results (52a) and (52b), we rephrase the dynamic equations (16c) and
(16e) in the system of the quasi-velocities as (see [46, 90, 93] for the derivation of similar
equations for noholonomic discrete mechanical systems)

ErL —Wklpgl +T =0, (53a)
JEx L] = —Gup + (35 C o be) + Wik [pk1. (53b)

Before going further, the following remark is in order.

Remark 3 (The origin of the “extra terms”) Equations (53a) and (53b) are Hamel equations
[90], up to the reactive forces T and M(aké o flc). With respect to the “classical” Euler—
Lagrange equations, they feature the “extra” generalized forces W} rlpPk] and W} xlpkl,
which both descend from the adoption of the quasi-velocities. In general, these terms are
nonzero because the functions Q%4 = Qo A o g are not all the time derivatives of as many
functions of F, K, X, and T (note that the just mentioned list of variables coincides with
f,). Indeed, if for each pair of indices o, A =1, 2, 3 there existed a C! function F%, :=
f"”A ofl, such that 2% 4 = 9, F* 4, then the quantities é‘pfl and £k Q would vanish identically
(note that the first condition requires both Fe 4 and Qo 4 to be independent of F). In fact,
WT [px] and WE [ px] could be viewed as fictitious “polygenic forces” [67] generated
by the choice of the quasi-velocities. In other words, whereas the Euler—Lagrange dynamic
equations are form-invariant in every system of coordinates, they lose this property when one
switches to a system of generic quasi-velocities, and, as a result of this loss of invariance,
they acquire the extra forces W;( rlPk] and W% k[P k] However, these forces disappear
when one goes back to the original system of generalized velocities.

Based on Remark 3, we add W}F[p,(] and W}K[pK] to both sides of Equations (16c)
and (16e), respectively, thereby finding the modified dynamic equations

ErLA+Wrplpl+ T =Wilpkl, (54a)
ExLAWhglpgl= =6y +1u@3Cot) + Wkilpgl. (54b)

Note that, in doing this, we are taking inspiration from the “most general formulation of the
principle of stationary action” discussed in [90].

Although Equations (54a) and (54b) are a mere rewriting of (16c) and (16e), they unfold
important properties:

P1. While the left-hand sides of Equations (16c) and (16e) are obtained by varying the
action functional A, according to Hamilton’s Principle, the left-hand sides of Equations
(54a) and (54b) cannot be retrieved this way because of the extra forces W} rlPk]
and W% . [px]. However, they can be obtained by means of a variational procedure
known as Hamilton—Suslov Principle (see, e.g., [71]). In brief, the Hamilton—Suslov
method computes the variation of a given action functional by hypothesizing that, if
@ is a Lagrangian parameter of the theory under consideration, and ¢ is its generalized
velocity, then the incremental field »,, differs from the time derivative j,, of the variation
by the so-called transpositional relations (see, e.g., Equation (30)). It can be proven that,
if ¢ is not involved in any nonholonomic constraint, then the associated transpositional
relations are null, and one finds Ny = 1'1(/]. However, this is not true, in general, when
¢ has to comply with a nonholonomic constraint. This is indeed the case for K in the
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growth problem studied here, and the non-vanishing transpositional relations (30) are
naturally accounted for by the Hamilton—Suslov method. In particular, they result into
the extra forces W [ px] and W} [ p ], which are, thus, an output of the procedure.

P2. Similarly to the right-hand side of Equation (16e), which collects the non-potential
forces handled by means of the Extended Hamilton Principle [67], also the right-hand
sides of Equations (54a) and (54b) can be framed by “extending” the Hamilton—Suslov
method: the variation of .4, performed with the Hamilton—Suslov variations is set equal
to minus the integral in time of the work done on the variations associated with 55
and 5 by all the non-potential forces dual to them, including the extra ones W [ p ]
and WT . [pg] that feature on the right-hand sides. In doing this, one has to admit
the existence of these fictitious extra forces a priori. Although, on the one hand, this
may sound artificial, on the other hand, W% [px] and WE ,[px] do have a physical
meaning. Namely, they represent two rates of momentum introduced in the system by
the constraint. In the specific case of growth, upon recognizing that Pk := %tr(K Tpi)
is the spherical part of the fully material generalized momentum K" p = K" (03 L o1),
the results (38) and (40) are such that the extra forces

1 IR T R
Wirplpgl= {gK ® (a_F ° uy)} [pk]l= PK<8_F o Ey>, (55a)

1 aR T aR
W}gK[PK]Z{gK@(a—KONy)} [PK]ZPK<8—KON;/> (55b)

can be interpreted as momentum rates due to the coupling of the mass source R with the
system’s degrees of freedom represented by F and K. Moreover, since the constraint
(4) is made nonholonomic by R, the right-hand sides of Equations (55a) and (55b)
“measure” how nonholonomic the constraint is.

In the remainder of this section, we show that Equations (54a) and (54b) can be obtained
variationally by letting their left-hand sides originate from the Hamilton—Suslov Principle,
and interpreting the terms W;{ rlPx]and Wﬁ x [P k1 on the right-hand sides as non-potential
forces to be accounted for by means of an “Extended Hamilton—Suslov Principle”. We ac-
complish this task by (i) taking the weak forms of Equations (54a) and (54b) through mul-
tiplication with n5 and ng, respectively; (ii) combining the results with the weak forms
of the dynamic equations (16a) and (16b); (iii) integrating over 4, 8§ A, and [tiy, tan]; and
(iv) showing that one achieves the variation of the action according to the Hamilton—Suslov
Principle, set equal to minus the work done by the polygenic and the extra forces on their
respective dual variations.

If, on the one hand, doing so amounts to going back along the procedure designated by
Llibre et al. [71], on the other hand, our result seems to us more general and, to the best
of our understanding, capable of explaining when and why the method proposed in [71] is
equivalent to the TNHM. This seems to us a very important issue for the following reason.

According to our results, it seems that the constraint given in Equation (4) cannot be
studied by means of the MVM formulated in [71], since this version of the MVM produces
Equations (54a) and (54b) only up to the extra forces Wk .[px] and W} [px] featuring

2With reference to Equation (16e), this means that the variation of the action functional computed with
Hamilton’s variations, and through the derivative reported in Equation (15), is set equal to the time integral
of the negative of the work done by the “polygenic forces” [67] dual to ng on the variations associated with
N itself.
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on their right-hand sides. Hence, in our opinion, the MVM of [71] is not equivalent to
the TNHM for growth mechanics viewed as a constrained field theory. On the other hand,
W} ppg]and W} [ p ] on the right-hand sides of Equations (54a) and (54b) are necessary
to grant the equivalence with the TNHM, and such equivalence is necessary to make the
MVM applicable to the mechanics of growth. For this reason, the purpose of the forthcoming
calculations is to show how to accommodate for this issue.

4.2 The Lagrangian Density Function of a Growing Medium

We set aké o =K T in Equation (53b), as follows from Equation (4). However, the
procedure outlined in the sequel applies to any non-singular second-order tensor field 9;C o
f.. Moreover, we write

Skri=Wyplpkls Gk =Wiglpkl- (56)

Note that &y and Sk have components [Sg r],* and [Sgx .. It is also convenient to
introduce the fully material quantities FT& gy and K &g, and, accordingly, to transform
Equations (54a) and (54b) as

FUpL)+ F'Skp+ F'T = FTSgp, (57a)
K'[Ex L1+ K " Sxx =—K"Syy + pul" + K" Sgi. (57b)

In Equation (57b), the term 1T suggests to project the equation itself onto the space of
spherical tensors in order to compute /. To this end, we consider the summand K" &g on
the right-hand side of Equation (57b), and we decompose it as

K'Skk = 1tr(K"Sgg) I + Dev(K ' Skg). (58)
Then, by introducing the rescaled Lagrange multiplier
ki=p+ ttr(K"Sgg), (59)
and recalling that pg =0 K[‘, o, we rewrite Equation (57b) as
ExL+WhgldgLlotl=—6,, +k KT+ DEVSkk, (60)
with DEVSkg = K "Dev(K"'Skg) = Sgg — (K 'Skg)K ™" being the K '-
deviatoric part of Sgk.

By using Equations (54a) and (60) in lieu of (16¢) and (16e), respectively, in the system
(16a)—(16f), we can write

EL+DVT =—f,. in 2, (61a)
T—TN =0, on 3% B, (61b)
EpL+Wyp[dgLot]+ T = Skr, in 2, (61c)
F-Dx=0, in 2, (61d)
ExLAWygldgLlotl=—6,, +k KT +DEVSkk, in 4, (61e)
(K"T|K) — R =0, in A. (61f)
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Recalling that 5, (X, 1) = 0 for X € 3% and at all times, we consider the duality pairs
between Equations (61a) and 7,, and between (61b) and 5, , we integrate the resulting
expressions over % and 9% %, respectively, and we add them together. Then, after some
algebraic passages, integrating over the time interval [#,, #4,], and enforcing the conditions
0, (X, tin) =0, (X, tg,) = 0, for all X € %, we obtain

L[ o)+ (55

w Ja N\ ZH M ey °
Ifin Ifin

—/ /<fnp|nx>—// (<ln,). 62)
fin B tin BI)\(I'%

where we have used the abbreviated notations f::" Jul 1= ftf:" {[,[...1dV}dr and
ftf:“ fﬂﬁi@["'] = fl::“{faﬁg[...]dA}dt, and the identity #, = 5, which is true since the
velocity x is not involved in the constraint.

Next, we take the duality pairs between Equation (61c) and 5, and between Equation
(61e) and ng, and we integrate over % and [f,, ta,]. Then, by recalling the identity £ pﬁ =
BFE o f, the conditions ng (X, tin) = N (X, tan) = O for all X € %, and the transpositional

relation in Equation (30), we find
y L
Nk |+ 3K ° 0| ni

[

=/ f [(Skr 1) — (Sp—k KT~ DEVSk [n5)]. 63)
‘@

nx-> - (TIGraan)}

An important step forward is done if it is possible to find a C'-function of time, A,
such that A = x. We assume that this is the case, and, after rewriting K T as 05C o e,
performing some algebraic calculations, and invoking the relationship (30), we work out the

term (k KT |n) in Equation (63) as
aC 0 aC
(i K" ng) = <8K ncnK> atHaK hcnx>]
. aC . aC
+ )~<5FC +W};F|:ﬁ o hc] 71F> + )»<5KC +W};’K [ﬁ o hc}

NES ac n N ac n N aC n
— o fc —M—= ol — A —= 0ol
IF oK °|Mx oK

where EpC = 3pC o ..

Another important deduction stems from Equations (33), (37a) and (39a). Indeed, by
virtue of the identification of C with the quasi-velocity ', and since Equation (64) must
hold at this stage for any A, 5, and g, we obtain

)

'li(>7 (64)

ErC+WEo[04Cot]=0, ExC+WE [05xCot]=0. (65)

Moreover, by integrating Equation (64) over % and [#,, t5,], we find

f f (K1)
tin B
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f/ [( one) +{ g o) + <;IC( i oo

Now, we introduce the varied constraint C = Co Ec, where EC is the collection of the ho-
motopies defined in Equations (24a)—(24e), and we consider also the homotopy A(X, t)
X, 1, 8)=MX, 1)+ n(X,0)e + o(e), for e — 0, such that 3,A(X, ,0) = (X, 1) is the
increment of A(X, ¢). Then, by exploiting the fact that the product —m[CA o fi.] returns the
constraint up to the arbitrary factor 7, and is, thus, null, we can rephrase Equation (66) as

/ / K K—T | nK /Ih‘]/ a{}‘[c ° DC]}(X ‘. O) (67)

Granted (67), we introduce the constrained Lagrangian density function and the associ-
ated constrained action functional

Loi=Leo BT, A)=Lof+(T|F—Dy)+Ar[Cotl, (68a)
Ax, F,K;T, ) ::/ﬁ"/ Loo®; T, N, (68b)
in J B

and we write the varied action A, and its first derivative with respect to ¢, evaluated at £ = 0,
as

A:(e) _/ / LoB(X. 1, 8); T(X.1,8), M(X. 1, 8)), (69a)

d‘AC (0) / / w(x t,0). (69b)

Then, a direct calculation shows that the sum of Equations (62) and (63) is identical to the

Compact eXpreSSiOn
Ifin Ifin Ifin
_/ / (fnplnx)_/ / <T|nx)_/ / (an|"K>
tin B tin Bﬁ B tin /B

+/ / {(&xrn5) + (DEVSkx [15))- (70)
n JB

Equation (68a) defines the Lagrangian density function of the growing medium which we
were looking for. Furthermore, the dynamics of the growing body is obtained variationally
by “extending” the Hamilton—Suslov Principle at the price of considering the extra forces
Skr and DEVSg, due to the nonholonomic nature of the constraint, in addition to the
same non-potential forces f,, and &,, appearing also in the TNHM. This confirms what
has been said at the point P2 of Sect. 4.1. Thus, starting with Equation (70), taking the
first-order increment of K as N (which differs from 3 as specified in the transpositional
relation (30)), and going backward until (61a)—-(61f) are recovered, the dynamic problem
is entirely equivalent to the one stated in Equations (16a)—(16f), deduced from the TNHM.
This is, in fact, our reformulation for growth mechanics of the MVM by Llibre et al. [71].

4.3 Implications of Our Formulation of the MVM for Growth Mechanics

The introduction of £, and the whole procedure shown in Sects. 4.1 and 4.2 produce some
results that we consider noteworthy.
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4.3.1 The “True” Dynamic Equations

Since it holds that & SKF = =W% xrl0 Kﬁ o], Equation (61c) returns the well-established result
T = —&pL = —dpL o . Moreover, since Equation (61d) prescribes F = Dy, the replace-
ment of F with Dy in the arguments of £ (redefining £ accordingly) permits to write
Equations (61a) and (61b) as [85]

ac AL (AL .
01— 2 (5ro8) -Div(spot) =Sy (71a)
Y
T= ( 3Dy U) on 3% A. (71b)

Thus, Sk r does not contribute to the “true” dynamics of the system, although it is necessary
to formulate the variational procedure presented in Sect. 4.2.

We also notice that, if the Lagrangian density function £ is defined in such a way that its
partial derivative with respect to D x equals the negative of the partial derivative of the strain
energy density U with respect to the same quantity, then, from Equation (12), we obtain that
T coincides with the first Piola—Kirchhoff stress tensor of the material, i.e.,

P=ﬂo(F,K;X,73=T=— oc
oF aDy

o, F=Dy. (72)

Equations (71a) and (71b) must be solved together with those for K and the new La-
grange multiplier A. These, when deduced from Equation (70), are directly given by

ExL+Whgl0gxLotl=—6,,+ 1 KT+ DEVSkk, (73a)
(K~"|K)— R=0, (73b)
and replace (61e) and (61f) with x = . Recall that Sgg = W}K[akﬁ otl].

Left-multiplying by KT, and extracting the hydrostatic and the volumetric parts of Equa-
tion (73a) yield [47-50]

Dev[K"(€kL)] = —Dev[K &,y (74a)
A= LulK" (kL) + K" &yl + LK Sk, (74b)
(K"TIK)y—R=0. (74c)

Therefore, the deviatoric term DEV &g does not contribute to the “true” dynamics of the
problem, while only %tr[K T&kx] plays a role in it. However, this generalized force does
not influence directly the determination of K, and is indeed absorbed in W thereby quan-
tifying the entity of the reactive force AKTT predicted by the theory under consideration,
and necessary to maintain the constraint. Also, the term tr[K TSkk] constitutes a funda-
mental aspect of the procedure, since it defines the Lagrange multiplier of the MVM, which
is inherently different from the one characterizing the TNHM. Yet, Equation (74b) returns
the identification (59), and makes the MVM equivalent to the TNHM, provided the equality
n=3tr[K Tk L) + KT &,,] holds true, as can be deduced by extracting the hydrostatic
part of Equation (16e) left-multiplied by KT. Hence, this yields A= Jr %tr[KTG KKl
To our knowledge, this result represents a novelty in the context of growth mechanics, and
generalizes a result reported in [71] for the case of discrete nonholonomic systems.
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To gain further physical insight into the MVM, we deem it noteworthy to comment on
the explicit expression of the term %tr[K TSkk]. Indeed, looking at the definition of Skg
in Equation (56) and at the result reported in Equation (55b), we find

LK Sgx] = L Pxtu[ KT (9x R 0 5,)], (75)
so that only the hydrostatic part of K Tk R o f,) contributes to A

The nine tensor components of K are determined by Equations (74a) and (74c), equiv-
alent to eight and to one scalar equations, respectively (see also [47-50]). In addition, X is
determined by integrating Equation (74b) in time. This requires an initial condition for X,
i.e., A(X, tin) = Ain(X), for all X € £, and to assign A, (X) consistently with the constraint
at the initial time. Obtaining the Lagrange multiplier of the theory by solving a Cauchy prob-
lem constitutes a difference with respect to the TNHM, in which the Lagrange multiplier
is computed algebraically, and is a characteristic of the MVM [71].

As noticed in [47-50], Equation (74a) allows to evaluate the “remodeling part” of growth,
and frees one from guessing particular forms of K, as is often done in tumor growth, growth
in anisotropic media, or under the influence of interactions that define preferred growth
directions. All these particular cases are physically sound for the problems that they are to
model, but they also require to assume that some symmetries are maintained throughout
the dynamics of the system. However, when this restriction cannot be guaranteed, and no
a priori hypotheses are done on the generalized forces £x £ and &,p, Equations (74a) and
(74b) permit to compute K.

In conclusion, if the variational procedure defined by our formulation of the MVM is
applied to growth mechanics, the dynamic equations to be solved are (71a), (71b), and
(74a)—(74c), which have to be equipped with initial and Dirichlet boundary conditions for
x and with initial conditions for K and A.

4.3.2 Quasi-Static Case: The MVM Seems to Boil down to the TNHM

In almost all the biomechanical problems involving growth, the characteristic time scales
of this phenomenon are such that a quasi-static approach is amply justified. Hence, if £,
depends on y only through the classical kinetic energy density K = %JKQVH %1%, which
contributes to £ in the general setting, one can neglect the inertial force density —9, [0y Lof]
in Equation (71a). In fact, in the quasi-static case, L is defined without &, and, if we assume
that Equation (72) applies, the dynamic equations (71a) and (71b) become

9L

5, outDivP =—f,, in 4, (76a)
X

7= PN, on 3} A. (76b)

Then, if we indicate with f := f,, + f,, the total body force, where f, is given here by
f p = 0y Lo i, Equation (76a) returns the classical force balance f +DivP = 0 of Continuum
Mechanics. Note that f,, includes non-potential forces due to growth and describes sources
or sinks of linear momentum related to the variation of mass of the body under consideration
(see, e.g., [32, 72]). In addition, to maintain the quasi-static hypothesis, f np and T must be
taken accordingly. More details on f,, are provided in the Supplementary Material.

Further simplifications are obtained for problems that allow to neglect all body forces, so
that Equation (76a) reduces to DivP = 0.
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Similarly to the conclusions drawn for /C, even though it is possible to define a general-
ized kinetic energy density Kk := %(G[I'( ]|K ) associated with K, where G is some suitable
fourth-order inertial tensor field, the quantity Kx does not contribute to £ in the quasi-static
regime. Accordingly, if we further hypothesize that L depends on K only through g, then
the generalized momentum p g = 9 Kﬁ o §, which now reads px = G[K], does not appear at
all. Indeed, it disappears from Eg ﬁ, which reduces to 0 Kﬁ of], and so do also the extra forces
Skr and Sk, defined in Equation (56). Consequently, the dynamic equations deduced
by means of our formulation of the MVM, i.e., Equations (74a)—(74c), become identical to
those obtained with the TNHM in the quasi-static case, the only difference being that p is
replaced by A.

These results notwithstanding, there remains a methodological difference between the
two methods, which is reflected in the way in which the Lagrange multipliers © and A are
computed. Indeed, as remarked above, the multiplier u is determined algebraically in the
TNHM, while, in the MVM, one has to find A by solving an ordinary differential equation
in time also in the quasi-static case. One may say, in this case, that u is the rate of A.

On the basis of the considerations above, in the quasi-static approximation of growth, our
formulation of the MVM seems to boil down to the TNHM. However, this is not the case
because of an important conceptual and technical difference between the two approaches.
Such difference becomes evident by comparing the Extended Hamilton Principle, presented
in Equation (15), with Equation (70), which is the “heart” of our formulation of the MVM
and, in the quasi-static regime, becomes

d/{c Ifin Ifin
- <0>=—/ /{(fnp|nx>+<enp|nx>}—/ / (el ). (77
& tin 4B tin Bﬁ.%

Indeed, whereas in the TNHM the nonholonomic constraint is handled by regarding the
reactive force uK~T as “polygenic” [67], thereby giving rise to (K ~T|px) in Equation
(15), no such term is present in Equation (77), since the constraint is handled variationally
although it is nonholonomic.

4.3.3 Explicit Form of the Dynamic Equations in the Quasi-Static Case

Within the quasi-static regime, let us hypothesize that £ has expression

N

Lofg=—Vo(F,K;X,T)—V,0(K; X, T)+Uo (x,K; X,T), (78)

where —W defines the body Lagrangian density function Ly; \ilg is an energy density de-
pending solely on the growth tensor, material points, and time; while { is the potential
density that generates the body forces f,.

The energy density \i’g is introduced to highlight that a given configuration of the system,
defined by the triad (x, F = D x, K), may vary its energetic content in response to variations
of K, for fixed y and F (see, e.g., [47, 53], and a discussion on “Cauchy’s gauge” [30]).
We also notice that, in general, 4 must depend on K. Indeed, if U models, e.g., gravity, i.e.,

Uo (x, K; X, T) = ((det K)o,aulx — xo) = U, (79)

where ag; is the gravity acceleration (co-)vector, and o defines a referential position, i.e.,
Xo(X, 1) = x¢, for all (X,t) € # x .Z, then the dependence of U on K accounts for the
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redistribution of the mass density or = (det K)o, in the body’s reference placement due to
growth. Hence, we obtain

o (x.K; X, T)=0,Lo04=(detK)o,ae =: f,, (80a)
kU o (x, K; X, T)=[Uo (x,K; X, K, (80b)
and Equations (76a) and (76b) take on the form
(det K)oy + DivP = — f,, in 2, (81a)
7=PN, on 3} A, (81b)

with P given in Equation (12) or (72). The coupling with K emerges both through the
constitutive representation of P and through the body forces.

Switching to the dynamic sub-problem for the growth tensor, we notice that Equation
(78) and the discussion reported in Sect. 2.3.3 lead to

H=K"(0x Vo (F,K;X,T))=wI"-F"'P, (82a)
Zy= — K"(9x ¥, 0 (K; X, 7)) + K" (8l o (x, K; X, 7)), (82b)
K'S,y=2,, —TIK'K1=Zyy — Yu, (82¢)

where H is the Eshelby stress tensor, Z, and Z,, are the potential and non-potential con-
tributions to Z = Z, + Z,, introduced in Equation (10c), while T and Y,q are defined in
Sect. 2.3.3 (we recall that the inertial terms that, in general, would feature in Z are neglected
here). Thus, Equations (74a)—(74c) become

DevZ — DevH = Dev{T[K K]}, (83a)
h=—1uH+ 1wz — Le{TK K1}, (83b)
(K"T|K)— R =0. (83c)

The generalized force Z,, can be prescribed as in Equation (19). Moreover, if U/ is given as
in Equation (79), then the second term on the right-hand side of Equation (82b) reduces to
UIT, and does not contribute to DevZ, but to .

Looking at Equation (83b), we notice that, since %trZ is conjugated to tr(K 1K ), it
does not contribute to trigger the variation of mass. Yet, it does contribute to determine
the Lagrange multiplier associated with the constraint. On the other hand, DevZ guides,
together with DevH , the evolution of the volume-preserving part of K ! K, as indicated by
Equation (83a).

5 Differences with the MVM of Llibre et al. [71]

There are two differences between the MVM by Llibre et al. [71] and our reformulation of
this method. To analyze them, we abandon the quasi-static case, and return to the full system
of dynamic equations (61a)—(61f).

The first, and minor, difference is that, in its original conception [71], the MVM does not
consider any non-potential force. This amounts to switching off f,, and &,, in Equations
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(70) and (61a)—(61f). We maintain only t for including the case of non-vanishing tractions
imposed on the body’s boundary. Although eliminating f,, and &,, could be unphysical for
describing growth, especially for what concerns &,,,, we consider this situation to highlight
how our version of the MVM differs from the one by Llibre et al. [71].3

The second, and major, difference is that, to the best of our understanding, Llibre et
al. [71] do not consider the extra forces &gr and DEV&gg on the right-hand side of
Equation (70), although the variation of their action functional is performed by employing
the Hamilton—Suslov variational principle. Hence, with the procedure outlined in [71], our
dynamic equations would become

EL+DivT =0, in 8, (84a)
T—TN=0, on 3% A, (84b)
ErL+WkploxgLogl +T =0, in 2, (84c¢)
F—Dyx=0, in 2, (84d)
ExLA+Whi[0xLonl=AK™", in 2, (84e)
(K"T|K)—R=0, in 2. (841)

This formulation of dynamics produces important consequences, which require conditions
for the MVM formulated in [71] to be equivalent to the TNHM and, thus, to our version
of the MVM, as presented in Sect. 4. As we shall see in the two following sections, these
conditions place restrictions on admissible functional forms of the mass source R. In this
respect, we remark that no conditions of this type are required in our formulation of the
MVM (see Sect. 4), since it is constructed to be always equivalent to the TNHM.

5.1 First Restriction on the Mass Source Due to Equations (84a)-(84f)

By recalling the identifications EpL =0dpLofand 8,-{[3 ofl = pg,and using the results (38)
and (55a), Equation (84c) implies that T now reads

T=—0pLot—Wkplpgl=P— Px(drRot,), (85)

where, in the last equality, we have assumed —8F/f ofl=2 p\il o f, = P, thereby returning
the body’s first Piola—Kirchhoff stress tensor. Then, by plugging Equation (85) into (84a),
one can write the result as

&L +DIVT = f, — Div[Px (3R o 1,)] — 8,(3; £ o &) + DivP =0. (86)

Since, in Equation (84c), nothing compensates for W} rlod Kﬁ o f], it goes into Equa-
tion (84a), i.e., into the balance of linear momentum, where it generates the extra force
—Div[ Pk (0 pﬁ o ti,)]. Consequently, for the considered growth problem, the original proce-
dure by Llibre et al. [71] is equivalent to the well-consolidated TNHM only if Ris indepen-
dentof F,i.e., if 0 pﬁ o, = O, or in the quasi-static approximation, because P (0 FR olty,)

31n the quasi-static case, and in the absence of Gyp (specifically, under the assumption that Znp and ¥ yq
are both identically null), Equations (83a)—~(83c) become DevZ, — DevH = O; i= —%trH + %trZP; and
(K-T|Ky—R=0.
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is neglected, provided £ depends on K only through the generalized kinetic energy density
Kk.

To us, the comments reported above place the question as to whether the procedure stem-
ming from Theorem 1 of Llibre et al. [71] can be applied, as is, to the growth problem, at
least for arbitrary R. The “warning sign” for this applicability issue is the discrepancy of the
momentum balance law (86) with Equation (16a), which originates from the TNHM and in
which T = P.

5.2 Second Restriction on the Mass Source Due to Equations (84a)-(84f)

Let us consider the case in which the generalized kinetic energy density induced by K is
Kk = %(G[I.(] |K) = %JKmU | Lg||>, where m, > 0 is a mass-like material parameter, and
Lg% := tr(L,T{GLK G ") is the squared norm of the material rate of K, i.e., Lg := K 'K,
while G is the metric tensor associated with the body’s reference placement. In this formula-
tion, G is given by G = Jgm, bx' ® G™', i.e., in components, G, 4% = Jxm, [bg'l.s G*?,
with bg := KG~' K" being the left Cauchy-Green tensor generated by K.

If we further hypothesize that £ depends on K only through K, then, after differentiat-
ing Equation (84f) with respect to time, we can write

GIK1+ K "A=0gL ot — GIK]+ Skk, (87a)
(K"T|K)=trL} + R. (87b)

To formally analyze Equations (87a) and (87b), it is convenient to recast them in the
form of a block-wise system of second order ordinary differential equations. To this end, we
multiply Equation (87a) by b from the left, and by G from the right, thereby obtaining

Jxm, K + K\ =bg 0k Loh)G — b (GIK])G + by Sk G, (882)
(K~ "|K)=trL2 + R. (88b)

Then, we rewrite the resulting expressions as [95, 111]

& sl ®

where, by prescribing a convention for converting fourth-order tensors in 9 x 9 square ma-
trices and second-order tensors either in 9 x 1 matrices or column vectors (or, depending on
the situation, in 1 x 9 matrices or row vectors), we obtain that M = Jgm,| is proportional to
the 9 x 9 identity matrix I; N is the 9 x 1 matrix associated with K; Q' is the 1 x 9 matrix
representing K ~; k is the 9 x 1 column vector representing K; Ois the 1 x 1 null matrix;
b is the 9 x 1 column vector that represents the first two addends on the right-hand side of
Equation (88a); o is the 9 x 1 column vector associated with bx Sk g G; finally, c is the
1 x 1 column vector associated with trle( + R. Note that, although A is a scalar, in the Sys-
tem (89) we represent it with the 1 x 1 column vector }\, and we use the same convention
for trLy + R by renaming it c.

We remark that, although the system (89) is found by following a procedure similar to
those outlined in [95, 111], its form is different in that the matrix Q' is not the transpose of
N.
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By means of the Schur complement technique [95, 111], the system (89) becomes

k=M"'[I-Ns~'QM'Jo+M~'[I—=NS~'Q'M~']b+ M~ 'NS~c, 00)
A=s'aM'o+Ss'QM b - S lc,
where S := Q'M~!N is the Schur matrix. For the problem at hand, Sis a 1 x 1 matrix, and
represents the scalar

1 1

s=aQM 'N=Q : IN

= QtN = K_T K == . 91
JKmv JKmv JKmv ( | ) JKmv ( )
Consequently, Equation (90) simplifies to
{ k= 5o [1 = 3NQ'] o+ 55 [1 = sNQ'] b+ SNc, ©2)
3 1 1 Jgmy
A=3Q'c+ 3Q'b — EFrc.

Before proceeding, the following remark is in order.

Remark 4 (Consistency with the direct calculation of &) The products Q'c and Q'b are
scalars, and admit the identifications

Qo= (K "bxSkxG)=tr(K Sgg), (93a)
Qb = (K bk (3L o 1)G) — (K" |bx (GIK)G)
=tu[KT(@xLob)] — u[ K" (GIKD]. (93b)
Hence, A is given by
A=ttr(K"Sgk) + [ KT (9x L o)] — tu[ KT(GIKD)]
— LJgm,[trL} + R], ©4)
and, by recalling Equation (88b), we obtain
A=ttr(K"&Sgk) + [ K" (9x L o )] — tu[ KT (GIKD)]
— 1 Jgm, (K"|K). (95)
Finally, by considering the identity Jgm, (K~ T|K) = tr[K"(G[K])], obtained by assum-
ing G = JKm,,b,}l @G‘l, we rewrite the sum of the last two terms of Equation (95) as
—%tr[KTa, (G[K])], and, thus, as —%tr[KTa,(Bkﬁ o 1)]. Then, substituting this result into
Equation (95), and using the definition of the Euler—Lagrange operator lead to
A=ttr(K"Skx) + KT (Ex D)), (96)

which is identical to Equation (74b), up to the presence of &,,.

We notice that, since o (representative of bx Sk g G) would not appear if the problem
were formulated by means of the TNHM, Equations (16e) and (16f), rewritten in matrix
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formalism, become (if &,, is neglected)

C0)

Krniv = Toms [I— §NQ']b+ INc,
_ |Qt JKmuC

Hence, as reported in a theorem of [95] (which rephrases a result given also in [71]), the
MVM formulated by Llibre et al. [71] is equivalent to the TNHM if, and only if, it holds
that k = kpnypm and A= u+ %QtO'. While the latter condition is a direct consequence of
Equations (92) and (97), and is equivalent to Equation (59), provided the substitution x = i
is done, for the former one to be fulfilled it is necessary and sufficient that

L_[I-iNQ']o=0. (98)

Jgmy

This means that o must belong to the kernel of the operator | — %NQ'. This operator, in fact,
is the matrix representation of the fourth-order tensor

sQI"- KK, (99)

which extracts the K -deviatoric part (see Equation (100a) below) of a generic second-order
tensor @ with components ®“ 4, and has kernel spanned by all tensors of the type &y = ¢ K,
with ¢ € R (in Equation (99), § is the identity tensor associated with the body’s natural
state). These two properties can be verified by a direct calculation, which yields

{6@I" - 1K@ K "}[®]=® — 1tr(K'®)K, v, (100a)
{6@I"-1K® K "}[pK]=0, Vo. (100b)

From these results, it follows that, since the column vector o represents the second-order
tensor bx Sk G, Equation (98) requires the K -deviatoric part of bx Sk G to be null, i.e.,

{0@I" - 1K ® K~ "}[bxSkxkG] =0, (101)

which is equivalent to both of the following conditions
DEV&kk = Skk — sr(K'Skx)K ' =0, (102a)
Dev(K"Skk) = K"Skk — tu(K 'Sgx)IT = 0. (102b)

Equations (102a) and (102b) constitute the most important result of this section, and can
be summarized in the following theorem, which particularizes a theorem reported in [95].

Theorem 1 (The MVM by Llibre et al. [71] and the TNHM) Within the theory of growth under
consideration, the MVM formulated in [71], which leads to Equations (84a)—(84f), is equiv-
alent to the TNHM, and, thus, also to our formulation of the MVM, if, and only if, Sk has
vanishing K~ -deviatoric part (and Sgp = 0).

Proof To prove the necessary condition, we compare the systems (92) and (97), and we
notice that, if they are equivalent to each other, then Equation (98) has to be fulfilled. Since
this condition implies Equation (102a), or (102b), &g g must have null K ~T_deviatoric part.

To prove the sufficient condition, we assume that Equation (102a), or (102b), holds true.
Then, the system (92) returns (97), and, thus, the MVM formulated in [71] is equivalent to
the TNHM. |
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Hence, if the MVM by Llibre et al. [71] is to be used as is, then, in order for it to
be equivalent to the TNHM, only tensors &g proportional to K~T are admissible. More
specifically, on account of Equations (55b) and (102a), or (102b), to ensure the equivalence
with the TNHM, & gk must be such that

Sk = 1 Pxt[KT(3xRot,)|K " (103)

By virtue of Equations (103), let us write Sgg = %tr(KTGKK)K’T in Equation (84e).
Then, by multiplying it by KT, and projecting it onto the sub-spaces of deviatoric and spher-
ical tensors, we find

Dev[KT(ExL)] = O, (104a)

LelKT(Ex D)1 + 2K Skg] = 4, (104b)

thereby providing another expression of the fact that the dynamic equations are now equiv-
alent to those obtained via the TNHM or via our formulation of the MVM, up to the non-
potential forces.

This result can be formalized in the following Corollary to Theorem 1. Before enunciat-
ing it, we emphasize that, also in this case, the restriction that it places on the mass source
is not required in our formulation of the MVM.

Corollary 1 (Restriction on the constitutive form of the mass source) In order for Sk to
be proportional to K=, the functional form of the mass source, i.e., R, may depend on K
only through Jx = det K, i.e., on the volumetric part of the distortions induced by growth.

Proof To satisfy the first restriction on ﬁ, discussed in Sect. 5.1, let us take R independent of
F. Then, consistently with the hypothesis of this corollary, we write R=Ro (K; X, T) =
R o (Jk; X, T), and we calculate Sk as prescribed in Equation (55b), i.e.,

IR IR T
Sk = Pk —o(K; X, 7)) =JgPk| — o (Ug; X, T) | K. (105)
oK dJk

The tensor Sk g computed this way is, by construction, proportional to K ~T_and has, thus,
null K ~"-deviatoric part. This completes the proof and makes the growth law R = Ro
(K; X, T)= Ro (Jg; X, T) admissible in the sense of Theorem 1, since the tensor Sk g in
Equation (105) makes the MVM by Llibre et al. [71] equivalent to the TNHM. O

A final remark concerns the fact that, if the dependence of L on K is only through
the kinetic energy density Kk, then, in the quasi-static case, the MVM by Llibre et al.
[71] is equivalent to the TNHM because 8Kﬁ o f is neglected and, thus, the extra forces
W} F[3K£ of] and W}( K[8K[i o ] do not appear on the left-hand sides of Equations (84c)
and (84e). However, we deem it important to reformulate this version of the MVM as shown
in Sect. 4 because it allows to obtain the quasi-static limit in the correct way. In this regard,
we refer the reader to the Supplementary Material for the study of such quasi-static limit for
a simple benchmark problem [5, 49].
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6

Conclusions

This work is the latest of a series of studies [47-50] devoted to adapt concepts and meth-
ods of the analytical mechanics of nonholonomic systems [71, 90, 95] to the continuum
mechanics of volumetric growth in biological media.

Cl1

C2.

Our main conclusions can be summarized as follows:

. We have developed a quasi-variational theory of growth in which the growth law of a

body is assigned a priori, for example, in compliance with experimental evidences or
design choices. This compels to interpret the body’s mass balance law as an affine and
nonholonomic constraint on the time rate of the growth tensor, which is introduced by
means of the BKL decomposition. We have appended this constraint to the Lagrangian
density function of the body, and we have shown that the corresponding dynamic equa-
tions can be obtained variationally up to “polygenic forces” [67], which have to be
considered for a general and physically sound model of growth. To us, this result is
noteworthy, because it subsists even though the constraint is nonholonomic. To achieve
it, we have started from the dynamic equations supplied by Hamilton’s Extended Prin-
ciple [67] (which are equivalent to those predicted by the Principle of Virtual Work),
and we have modified them by introducing the extra forces Sk and Sk that stem
from the transformation rules of the Euler—Lagrange operators when passing from the
true velocities to the quasi-velocities of the body. By virtue of these forces, the modified
equations remain equivalent to the original ones. Then, we have found that the mod-
ified dynamic equations can be made descend from the variational procedure known
as Hamilton—Suslov Principle, “corrected” in a fashion similar to Hamilton’s Extended
Principle, as shown in Sect. 4.2, Equation (70). To do all this, we have taken the “Modi-
fied Vakonomic Method” MVM by Llibre et al. [71] as a point of departure, and we have
reformulated it by considering the extra forces &g and Sk . These forces must be
accounted for to ensure that our formulation of the MVM is consistent with the TNHM
[37, 38, 67]. In this regard, we have re-contextualized the work done by Llibre et al.
[71] in light of the results provided in [95].

We have compared our reformulation of the MVM with its original version [71] by
specializing the latter to the mechanics of a growing medium. Our conclusion is that
the original MVM disagrees with the TNHM for general growth laws employed in the
nonholonomic constraint on the time rate of the growth tensor (see Sect. 5). The dis-
crepancy is due to the fact that, if the procedure by Llibre et al. [71] is strictly followed,
the extra forces Wk z[94 L o il = Sxr and W, [04xL o §] = Sgx, which are pro-
duced by the Hamilton—Suslov procedure [71, 95, 103, 106] (cf. with WTp in [95]),
appear only on the left-hand sides of the dynamic equations (84c) and (84e). Therefore,
since no other term balances them, they lead, for an arbitrary growth law, to dynamics
that cannot be predicted by the TNHM (indeed, no extra force appears in the TNHM). In
particular, &g r is fully unbalanced, and, although the K ~T-spherical part of Sgx can
be incorporated into & [71], the K ~T-deviatoric part of &gk remains unbalanced. Ac-
cordingly, to restore the equivalence of the original MVM [71] with the TNHM, Sk
and DEV &k g must be null. This is the result of our Theorem 1. The requirement that
DEV &gk vanishes is coherent with the statement of a theorem [95] that supplies a
necessary and sufficient condition for the original MVM [71] to be equivalent to the
TNHM for discrete nonholonomic systems. In conclusion, when the Hamilton—Suslov
procedure generates extra forces that are both null or that comply with the conditions
stated previously, the equivalence between Llibre et al.’s MVM [71] and the TNHM is
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C3.

C4.

naturally fulfilled. In fact, the second case is true for the constraints studied in [71, 95],
but, in general, not for the constraint considered in this present work.

Since the constraint (4) is made nonholonomic by the mass source R, the equivalence
conditions between Llibre et al.’s MVM [71] and the TNHM depend entirely on the
functional form of R. Our corollary 1 states that such conditions require R to be inde-
pendent of F and to depend on K solely through Jg. The first restriction can be used
for some simple benchmark problems, but it is not realistic for many biological prob-
lems in which the growth law must depend on mechanical stress and, thus, on F, as is
the case for tumor growth models involving “mechanosensing” [17, 88] and “mechan-
otransduction” [83, 84]. The second restriction, instead, is often imposed when growth
is assumed to be isotropic, as in tumors (see, e.g., [6, 44, 84]), but it should be relaxed
when growth is not isotropic, as occurs in heart or skin mechanics (see, e.g., [9] for a
review), or, more generally, in fiber-reinforced tissues (see, e.g., [73]). Therefore, these
situations cannot be modeled by the original MVM. Nevertheless, our reformulation of
the MVM, as presented in Sect. 4, can be adopted, since it is equivalent by construction
with the TNHM, independently of the assigned growth law. Thus, in all the situations
mentioned above, our work is able to provide a quasi-variational theory of growth.
Since our theory is of grade zero in K, the geometric descriptors induced by K are all
determined as outputs of the dynamic problem. For example, if one solves Equations
(61a)—(61f) in a sufficiently general setting, then, once K is computed, one can de-
termine a Riemannian manifold characterized by the metric tensor associated with K,
and the corresponding Levi-Civita connection. This connection and the curvature that
it produces are consequences of the forces accounted for in the model and of the mass
source R given in the constraint, and are, thus, directly related to the bio-physics and
bio-chemistry of the body [26]. Analogous considerations hold true, for instance, for
the affine connection I'* 3¢ = (K1), (3K 5/3X°).

It is worth noticing that, for the majority of the cases of biological interest, R is such
that the constraint on the evolution of K cannot be reduced to a holonomic condition.
This nonholonomicity in time, in turn, induces the nonholonomicity of K in space,
and, thus, its incompatibility, especially with respect to its volumetric part, modeled by
Jk. In a previous work of some of us, we have called this type of models “a priori
approach” [49], since R is prescribed by the phenomenology. Yet, this is not the only
possible path. Indeed, one could put no constraints on K, and let it evolve according to
a dynamic problem in which the force Z contains the biological information necessary
to trigger and maintain growth [3, 18, 19, 29, 87]. This is what we called “a poste-
riori approach” [49]. In this case, the geometric descriptors depend on Z and on the
constitutive assumptions defining ¥4 and H. A similar situation occurs for those mod-
els of growth that consider K as an internal variable (see, e.g., [32, 73]), in which K is
introduced as the “implant” tensor within a theory of uniformity [30-32, 77, 109, 110].

However, a different situation is provided by theories of higher grade [21, 76, 110],
in which the geometric descriptors, like affine connection and curvature, are part of the
augmented kinematics and, thus, part of the solution of the dynamic problem. In this
case, these descriptors can lead to even more complicated manifolds.

As a final remark, we would like to emphasize that our formulation of the MVM can be

seen as based on an “Extended” Hamilton—Suslov Principle, since it augments the already

exi

sting theory by allowing for non-potential forces (cf. with Extend Hamilton’s Principle in

Sect. 2.3.2). In particular, the way in which the constraints are handled differs significantly
from how Extended Hamilton’s Principle operates. Indeed, whereas the latter binds the con-
straints to merely “polygenic” forces, and equates the first-order variation of the action to
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the time-integral of the virtual work done by the “reactive” forces, the Extended Hamilton—
Suslov Principle directly varies a Lagrangian function that comprehends the constraint by
operating variations that are of the Hamilton—Suslov kind [71, 95, 103, 106].

Moreover, it would be interesting to exploit the Extended Hamilton—Suslov Principle to
study “broken” symmetries due to growth, and the related loss of conservation laws, by
means of an appropriate formulation of Noether’s Theorem for nonholonomic systems [34].

Appendix: Glossary of Nonholonomic Mechanics and Notation

In this glossary, we summarize the main concepts of nonholonomic mechanics that are used
throughout this work. Moreover, the key variables of our work are reported in Table 1.

Table 1 Main variables used in this work, reported in alphabetical order

Notation Name

f Body force per unit volume of the reference placement
PK Generalized (tensorial) momentum associated with K
A Action functional

c=Co fc Growth constraint

F Deformation gradient tensor

F. Tensor of elastic distortions

H Eshelby stress tensor

J Fourth-order Jacobian tensor of the quasi-velocities

Jk Volumetric ratio due to growth

K Growth tensor

Ky Isochoric part of the growth tensor

L=Loy Lagrangian density function

T Lagrange multiplier associated with C, =0

P First Piola—Kirchhoff stress tensor

R=Ro iy Source of mass

Wgkr, Wkk Fourth-order tensors representing transpositional relations
Yu Active internal generalized force dual to § K

z External generalized force dual to § K

X Motion

A Lagrange multiplier associated with C = 0 for the MVM
n Lagrange multiplier associated with C = 0 for the TNHM
T Contact force

Y] Quasi-velocities tensor for the growth problem

)4 Strain energy density

Skr,. SKK Extra forces due to the MVM for the growth problem

o Quasi-coordinates tensor for the growth problem

Nonholonomic constraint: An a priori condition on the generalized velocities of a system
that is not a total time derivative of a function of the Lagrangian parameters, space variables,
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and time, only (note that, in the context of this work of ours we consider solely constraints
that are nonholonomic in time).

Chetaev conditions: Conditions fulfilled by the virtual displacements associated with the
Lagrangian parameters in order to be compatible with the considered nonholonomic con-
straints.

Traditional Nonholonomic Method (TNHM): A method for obtaining the dynamic equa-
tions of mechanical systems subjected to nonholonomic constraints which exploits the fact
that reactive forces due to ideal constraints produce zero virtual work (power) [67].

Vakonomic method (VM): A method developed by Kozlov [61-64], which aims to obtain
variationally the dynamic equations of mechanical systems subjected to nonholonomic con-
straints. It is based on the application of Hamilton’s Principle to a “constrained” Lagrangian
function defined by atfaching the constraints, multiplied by their associated Lagrange mul-
tipliers, to the Lagrangian function of the problem at hand.

Quasi-velocities: A system of quasi-velocities is a “‘change of variable” in the space of the
generalized velocities. They are used in nonholonomic mechanics to rephrase the kinematics
of a given mechanical system in terms of velocity variables that can automatically satisfy
the constraints.

Transpositional relations: Equalities expressing the non-commutativity that, in general,
occurs between the operations of “virtual variation” and “time differentiation” when non-
holonomic constraints are considered.

Hamilton—Suslov Principle: A generalization of Hamilton’s Principle [71, 95] in which
the Lagrangian parameters and the generalized velocities are varied according to two distinct
families of homotopies, and their first-order variations are reciprocally related through the
transpositional relations.

Modified Vakonomic Method (MVM) [71]: A variational method used for obtaining the
dynamic equations of mechanical systems subjected to nonholonomic constraints and based
on the Hamilton—Suslov Principle applied to a “constrained” Lagrangian [71, 95].
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