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Development of a Space-Grade Ka-Band MMIC
Power Amplifier in GaN/S1 Technology for
SAR Applications

Chiara Ramella™, Member, IEEE, Corrado Florian™, Member, IEEE, Maria Del Rocio Garcia, Iain Davies,
Marco Pirola™, Senior Member, IEEE, and Paolo Colantonio ', Fellow, IEEE

Abstract— This article presents the complete characterization
of a Ka-band monolithic (MMIC) high-power amplifier (HPA)
developed with a commercial 100-nm gallium nitride (GaN)/Si
process provided by OMMIC (now MACOM). The amplifier
was conceived for a space-compliant environment, focusing,
in particular, on pulsed radar applications, e.g., for synthetic
aperture radar (SAR) altimetry. The amplifier is designed
accounting for the critical reliability constraints posed by the
space environment. Due to the poorer thermal characteristics of
GaN/Si technologies compared with their GaN/SiC counterparts,
proper thermal-aware criteria are needed to be exploited during
the design process. The fabricated MMIC has been characterized
under different biasing and temperature conditions and finally
tested with a representative SAR signal. The amplifier achieves
at 36 GHz an output power of 10, 8.4, and 6.6 W when biased
with a drain voltage of 11.25, 10, and 9 V, respectively, with
an associated PAE around 20% and a linear gain of roughly
20 dB under all biasing conditions and with an MMIC backside
temperature ranging from —10 °C up to +80 °C. With a 9-V bias,
the designed MMIC is fully compliant with the maximum derated
junction temperature limit of 160 °C recommended for space
reliability in both pulsed and continuous-wave (CW) operations,
demonstrating performance well in line with the state of the art
for this technology when a space-grade design is required.

Index Terms— Gallium nitride (GaN), GaN-Si, high-power
amplifier (HPA), Ka-band, satellites, space derating.

I. INTRODUCTION

ALLIUM nitride (GaN) technology represents a break-
through in the field of high-power/high-frequency
electronics, from high-voltage switching applications to RF
and microwave power amplifiers, because of its high power
density and breakdown voltage, low ON-resistance, and fast
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switching [1]. Leading semiconductor foundries today offer
subquarter-micrometer gate-length GaN HEMT processes,
opening the way to millimeter-wave applications. In particular,
K a-band is regarded as the new reference frequency range for
both 5G new radio (SGNR) and satcom systems, as well as
for radar and remote sensing applications. This is because of
the potentially wide bandwidth achievable, allowing for high
data rates and high radar resolution [2], [3], [4].

While, up to 31 GHz, both traditional and advanced
high-power amplifier (HPA) architectures have been largely
demonstrated [5], [6], [7], [8], achieving high performance up
to 35 GHz or higher is still challenging and less reported.
Among the HPAs presented in the literature, several rely
on in-house or research processes, such as, for example,
the semidistributed amplifier proposed in [9], the 9-W HPA
in [10], and the 15-W HPA in [11]. Focusing on commercial
GaN processes only, the number of HPAs available in the
literature that are capable of providing more than 35 dBm
of output power up to at least 35 GHz is relatively low,
as reported in Table 1.

The highest frequency achieved with 200-nm gate-length
transistors is 36.5 GHz, as reported in [12], where an MMIC
implemented with the Northrop Grumman GAN20 GaN/SiC
process is presented. Note that the substrate was thinned
to 100 um. The Qorvo QGaN15 [13], [17] and the UMS
GH15 [14], [16] 150-nm GaN/SiC processes also proved to
be able to cover frequencies above 35 GHz, but with a sub-
strate thinned to 70 um or lower. The DO1GH and DOO6GH
GaN/Si processes [15], [18], [19], developed by OMMIC
(now acquired by MACOM), have 100- and 60-nm gate-length
devices, respectively, and OMMIC offers the possibility of
using both sized devices on the same MMIC [19], therefore
representing a very interesting option for applications targeting
the highest portion of the Ka-band. As can be seen from the
HPA comparison reported in Table I, because of the better
thermal dissipation of the substrate, GaN/SiC technologies
achieve sensibly higher output power densities (larger than
2.5 W/mm) than their GaN/Si counterparts, especially when
space-grade thermal constraints are considered [19], [20].
On the other hand, GaN/Si offers a neat advantage in terms of
fabrication costs and worldwide availability as well as future
potential integration with Si-based digital technology.

The work presented here discusses the potential and lim-
itations for space use of the DOIGH GaN/Si technology for
developing Ka-band HPAs. The work has been developed in
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TABLE I

Ka-BAND MMIC HPAS IN COMMERCIAL-GRADE GaN PROCESSES
WITH finax > 35 GHzZ AND Py >3 W

Manufacturer Frequency Output Gain PAE Pout
Ref. and range power density
Technology GHz dBm dB % W/mm
[12] NG V345365 | 377 | 25 | 41 | Na
0.2 GaN/SiC
- Qorvo oas | %05 [ 25 [ 35 | 35
0.15 GaN/SiC 37.1 17.5 34 3.2
(14] UMS 29536 | 395 | 19 | 20 | 28
0.15 GaN/SiC
MMI
(5] | OMMIC 34-38 | 364 | 30 | 295 | 27
0.1 GaN/Si
[16] UMS 26-35 39 | 23 | 265 | 25
0.15 GaN/SiC
[17] Qorvo 33-37 35 20 14 NA
0.15 GaN/SiC
MMI
(g | OMMIC 37-40 35 17 | 27 | 17
0.1 GaN/Si
(o | OMMIC T 35 36 35 | 25 | 16 | 117
0.1 GaN/Si
This | OMMIC 536 0 | 22 | 20 | 16
Work 0.1 GaN/Si 38* 20* 19* 1.0*

*Space-compliant results.

the framework of a European Space Agency (ESA) project
for remote earth observation, in particular, for a Ka-band
radar altimeter operating in the 35.5-36-GHz range, target-
ing the highest possible reliable output power (compatible
with the fixed MMIC dimensions of 4.5 x 4 mm?), and
efficiency, together with a large-signal (LS) power gain of
20 dB. Despite the challenges posed by space derating, the
designed HPA demonstrated in measurement an output power
between 38 and 40 dBm, depending on the maximum base-
plate temperature, with an associated gain in excess of 20 dB
and PAE around 20% in the 35-36-GHz bandwidth. The
achieved results are well in line with the state of the art at this
frequency, even considering terrestrial applications as reported
in Table I, demonstrating the suitability of this technology for
space applications. A larger bandwidth has been demonstrated
in [19], however relaxing the requirements on output power
and efficiency, or in [15] and [18], relaxing also requirements
on junction temperature.

This article is organized as follows. In Section II, the design
of the MMIC HPA, briefly introduced in [21], is detailed,
highlighting circuit topology and design choices adopted to
meet recommended space derating rules [22]. In Section III,
measurement results are provided and compared with simu-
lations along with a description of the MMIC test jig and
measurement setup. Conclusions and discussion of future
developments are then provided in Section IV.

II. MMIC DESIGN

The objective of the project was to develop a high-power
amplifier (HPA) suitable for space applications, adopting
GaN/Si technology at 36-GHz frequency, adhering to a max-
imum MMIC size of 4.5 x 4 mm?.
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The target application is an altimeter operated in synthetic
aperture radar (SAR) closed-burst mode [23]: a form of
closed-loop altimeter tracking where the pulses are transmitted
and received in bursts rather than interleaved radar operation.
In the specific case, the expected duty cycle is very high
(roughly 90%), hence very close to continuous-wave (CW)
conditions. Therefore, as a worst case for thermal stress, the
design has been developed, considering CW operation.

Considering the nominal process performance presented
in [24] (3.3-W/mm output power density) for the same tech-
nology and with the suggestions from the foundry regarding
space derating, an output power in the 8-10-W range was
targeted. The feasibility of this target for a space-grade HPA
was also confirmed by the simulations reported in [25] and
[26]. As in every payload circuit, efficiency maximization is
another critical and challenging constraint. In this case, the
radar altimeter required only one MMIC HPA, and not several
hundreds as in applications involving active antennas [27],
thus implying that the efficiency of the amplifier has not a
direct effect on the system performance. However, it is still
fundamental to maximize the efficiency, since the HPA output
power is limited by thermal reliability constraints as detailed
in the following description. Finally, a value of about 20 dB
was selected as the target LS gain.

A. Space-Compliant (Thermal-Aware) Design

Power amplifier design for space applications requires
special cautionary measures, due to both the stressing environ-
mental conditions at which the HPA will operate, which can
rapidly degrade its lifetime and reliability, and the necessity
to guarantee the mission timespan without failures due to the
impossibility of component replacement. To overcome such
issues, derating rules are applied to all onboard electronic
equipment: in particular, component oversizing and power
supply reduction are two derating procedures required by
space-grade HPA design. To avoid overderating, standard
regulations have also been developed worldwide [22], [28].
Thermal stress is a major concern for HPAs, since MMIC
cooling in space environment is particularly difficult. Conse-
quently, the chip must be conceived to work with reduced
maximum junction temperature, recommended by ESA to
be 160 °C for GaN technology [22]. This condition must
be enforced up to the maximum expected backside temper-
ature, which in space can reach the 75 °C-85 °C range,
which clearly results in an extremely small maximum allowed
dissipated power. A rough quantification of this limitation
with respect to a commercial application is helpful: for a
base-station product, typical HPA performance is given at
room temperature (25 °C) given the possibility to cool the
HPA base plate, and the maximum junction temperature is
typically 200 °C for commercial-grade reliability. This gives
an allowed temperature rise of 175 °C, which is more than
twice than the roughly 80 °C temperature rise allowed in space
(considering 80 °C base plate and 160 °C maximum junction
temperature). Even neglecting the typical thermal resistance
increase with temperature, from the previous considerations it
comes out that, for the same technology, a space-grade HPA
can typically target no more than half of the power density
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Fig. 1. Structure of the Ka-band MMIC HPA.

of a commercial-grade one [29], [30]. This limitation is more
pronounced in GalN/Si technologies, as they are further limited
by the poor thermal conductivity of the substrate (silicon in
this case), implying, with respect to the GaN/SiC counterpart,
a higher temperature rise for the same amount of dissipated
power. As detailed in previous works using this same tech-
nology [20], [21], [26], the maximum junction temperature
limit directly affects the choice of the optimum load, strongly
limiting the design space to a relatively small portion of the
Smith chart close to maximum efficiency point. To conceive a
space-compliant GaN/Si PA, the junction temperature must,
thus, be regarded as a key parameter that may drive the
designer toward different choices with respect to classical ones
for terrestrial applications.

B. Devices’ Thermal Model

As discussed in previous works [20], [26], a simplified
nonlinear model proposed by the foundry has been adopted for
the evaluation of the junction temperature (7). The formula,
recalled here for convenience, is (all temperatures are in
kelvin)

Run REF + Piss
T;=Tgs-e  IREF (1)
where Tps is the backside temperature, Py is the dissipated
power (more details follow), and Trgr is the temperature at
which the reference thermal resistance Ry rgr iS computed
(the foundry provides, for all allowed device peripheries, the
R rer at 20 °C). The maximum allowed dissipated power
Pgiss computed with this formula is around 2.1 W/mm.

The dissipated power is obtained from CW LS (harmonic
balance) simulations and computed as follows:
Pdiss=Pdc"l‘Pin_Poul:Pdc+Pin(1_Gp) (2)
where the input and output RF power should consider the sum
of all harmonic components. Due to the relatively low power
gain G, achievable at very high frequency, especially for the
larger transistors in the high-power stage, the input power is
not negligible, hence contributing to device heating. However,
the heating mechanism is different with respect to drain self-
heating, since most of the input power is dissipated across the
gate parasitics. To be conservative, in (2), we consider it as if
it were totally dissipated in the active channel.
The adopted model has been verified by means of Raman
measurements and 3-D electrothermal simulation with a finite-
element solver [20].

and accounting for the values reported in [15] and [24]
(2.4 and 2.7 W/mm obtained at K a-band) for terrestrial HPAs
implemented with the same technology, a total periphery of
6.4 mm is selected in order to achieve the target power
range. Considering then the available gain from different
device peripheries at the target frequency, as well as MMIC
dimension constraints, the final stage was implemented, com-
bining in parallel 16 devices, each of 4 x 100-um gate
periphery. The combination of such a huge number of devices
is not new in Ka-band [31], [32], but it clearly adds
challenges to the output power combiner (OPC) design in
terms of layout optimization, especially given a fixed chip
size, load balance, combiner losses, and risk of oscilla-
tions, as well as electromagnetic (EM) crosstalk and thermal
coupling.

To fit the MMIC dimensions, it was necessary to share
source grounding via holes between adjacent devices to not
exceed the given area: this increases via inductance and ham-
pers thermal sinking, possibly increasing the transistor thermal
resistance, since adjacent devices can be thermally coupled.
To account for the latter effect, 3-D thermal simulations have
been adopted to assess the effective thermal resistance of
the transistors in the final stage, including, in the simulation,
a preliminary layout of the matching networks around them.
Indeed, the increase in the value of Ry, rpr to be considered
in the final stage due to cross heating was simulated to be as
high as 8% of the value for isolated devices with individual
via holes.

Extensive CW load—pull simulations were carried out to
find the optimum bias and load. According to space derating
rules [22], the drain supply voltage is set to 11.25 V [21]
in all simulations, while different gate voltages are explored,
corresponding to the class-AB bias points from 15% down to
2.5% of the maximum current (about 1 mA/mm). As antici-
pated in Section II-A, the optimum load for the 4 x 100 um
device adopted in the final stage is mainly determined by the
160 °C temperature limit. As shown in Fig. 2, the optimum
value is I' = 0.78 Z141° for all the tested biases [21].
As can be noted, it sensibly differs from the optimum load for
terrestrial applications, which is not allowed, as it would give
a junction temperature above 160 °C at full power, and lies
in a highly reflective region of the Smith chart, thus making
the output combiner bandwidth and sensitivity to process
variations particularly critical.

A deep class-AB bias current of 35 mA/mm, corresponding
in simulation to a gate voltage of Vg = —1.7 V, was finally
chosen, since, as detailed in Fig. 3, it allows for maximizing
the available junction temperature swing versus input power
and, hence, the achievable output power. Despite the relatively
low small-signal (SS) gain associated with this bias point,
device simulations show a sensible gain expansion with input
power (nearly 2 dB), and hence, saturated PAE values are in
line with those achievable at higher bias currents.
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Fig. 3. Impact of junction temperature on bias point selection. (a) Simulated

power gain and junction temperature versus input power at different biases.
(b) Simulated maximum achievable output power and MAG versus quiescent
current density.

Given a maximum available gain [MAG; see Fig. 3(b)]
of around 6 dB for the final stage, three driver stages have
then been added to achieve the target 20 dB of total gain.
As detailed in Fig. 1, eight 4 x 75-um devices are used for
the last driver stage, while the second stage is composed of
four 4 x 50-um devices. Finally, a single 4 x 75-um device
completes the MMIC as the input stage. It is to highlight that
the driver transistors have been deliberately oversized so as
to ensure linearity and power driving capability margins to
account for possible underestimation of the passive networks’
losses, trading off with PAE.

D. Output Combiner and Matching Networks Design

Given the high number of devices in the final stage, the OPC
and the last interstage matching networks are the most critical
and challenging of the entire design. In particular, the main
challenges are minimizing losses and sensitivity to process
variations and presenting balanced loads to all the devices.
The former goal is achieved by adopting the minimum number
possible of lumped elements (MIM capacitors). Moreover,
to minimize EM coupling effect, a relatively large structure
with simple RF-shorted quarter-wavelength bias lines has
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been conceived, and a careful layout EM optimization was
performed to achieve low losses and good matching.

However, despite the geometrical symmetry of the com-
biner, unequal load impedances (electrical asymmetry) were
observed during the EM simulations. To balance the
impedance levels at all drains, hence balancing and align-
ing their output voltages and currents, two straightforward
methods have been proposed so far: shunt connections, as,
for example, reported in [5], and geometrical symmetry
unbalances, as, for example, reported in [33]. These two
techniques can also be adopted jointly, as shown in [24],
if necessary. In this design, only shunt connections have been
adopted to force symmetrical operation of the final stage
devices. Low-impedance shunts between all adjacent input
ports of the combiner allow small differential currents to flow,
thus obtaining uniform drain voltages and almost equal load
impedances for all transistors (see Fig. 4). The magnitude
of such differential-mode currents is evaluated through LS
simulations so as to assess the feasibility of this solution (if the
current is too high, geometrical asymmetry must be added to
keep them under a reasonable limit) and to properly dimension
the shunts.

The interstage matching between the driver and final stage
implements a 2:4 device power splitting: the eight driver’s
transistors (4 x 75 pum) are coupled in pairs; then, each pair
feeds four transistors of the final stage. Shunt connections are
also added between the drains of the paired device. This choice
provides lower losses and better compactness with respect to
the more classical 1:2 device power splitting, adopted instead
between the second and third stages. The interstage matching
network between the first and second stages requires a 1:4
device power splitting, yielding a rather large impedance trans-
formation, which has been addressed with multistep matching.
At the gate side, all the interstage matching networks include
RC stabilization, designed for wideband unconditional stabil-
ity also at large dc drain currents, and odd-mode resistors
to prevent differential-mode oscillations and force electrical
symmetry as well. To keep the structures conceptually simple,
all bias lines have been designed to be transparent in the
operating band: at the gates, RF chokes (inductive meandered
lines and/or spiral inductors) are used for this scope, while
for the drains, the same result is achieved by connecting the
dc-feed lines at short circuit points in the interstage matching
networks. All bias voltages are provided from both the north
and the south sides of the chip, yielding a fully symmetrical
MMIC. Fig. 5 shows the simulated losses for all the matching
networks and the input return loss of the MMIC, better than
—20 dB in the design bandwidth.

Fig. 6 reports the final schematic of the MMIC. The
simulated HPA achieves 19 dB of LS gain, which is considered
satisfactory, and is capable to provide nearly 12 W with 29%
PAE in the 35.5-36-GHz range, as shown in Fig. 7(a). The
maximum junction temperature obtained in CW only slightly
exceeds the 160 °C limit, as shown in Fig. 7(b), which is the
satisfactory results considering the very conservative approach
adopted in determining this value. Indeed, 3-D thermal sim-
ulations at 80 °C MMIC backside temperature performed on
the final MMIC layout, adopting 116 thermal sources (one
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per each transistor finger in the HPA), demonstrate that the
maximum temperature should be only 140 °C, as reported in
Fig. 8.

III. MEASUREMENTS

The on-wafer characterization of all the available samples
has been presented in [21], indicating very promising power
performance, however accompanied by relatively low effi-
ciency compared with simulations, and a large performance
spread at the nominal biasing condition, due to the thresh-
old voltage dispersion that prevented proper deep class-AB
operation. After a further preliminary characterization with
temporary (epoxy) mounting, a couple of chips were selected
and assembled (by eutectic mounting) in their final test jig.
In the following, the measurement setup and characterization
results of the best chip will be presented, together with the
test jig design.

A. Test Jig Design and Manufacturing

The mechanical structure of the designed test jig is illus-
trated in Fig. 9. The MMIC is mounted on a nickel/gold-plated
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Fig. 7. CW simulation results in the 34-37-GHz range at 80 °C backside

temperature and fixed input power (21.2 dBm). (a) Performance versus
frequency [21]. (b) Transistors’ junction temperatures according to (1).

Fig. 8.

Results of the 3-D thermal simulation of the final HPA.

copper carrier through the eutectic die attach technique (ser-
vice provided by an external company). Copper has been
selected to ensure good thermal properties (heat dissipation),
while coating is essential for the eutectic brazing procedure.
The eutectic layer is made of a 30-um-thick Au80Sn20 alloy.
X-rays inspection (Fig. 10) of both assemblies shows a void
rate below 10%.

The RF board is attached to the carrier using an electrical
conductive layer and thermal dissipative one. The center of
the structure is milled to ensure the same height for the
different parts to be connected with bonding wires. Additional
aluminum elements were adopted to reinforce the mechanical
strength of the thin RF substrate.

The RF board connects the MMIC to the external flanged
2.92-mm (K) coaxial connectors, which embed a glass-bead
core. It has been designed on the RT/Duroid 6002 (PTFE
Ceramic) substrate, which was (according to the information
received at the time of the design from the manufacturer) fully
qualified for space applications. A calibration (TRL) module
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Fig. 10. X-ray inspection of the mounted chips.

on the same substrate has been designed and mounted on an
identical carrier to de-embed the effect of the RF board from
MMIC measurements.

The dc board, made on a four-layer epoxy (FR4) PCB, was
specifically designed to complete the dc bias network, partly
integrated on the chip, with larger external capacitors up to
10 uF and to implement the fast-switching circuitry necessary
for pulsed measurements. The turning on and off of the HPA
are controlled through the drain voltage of all stages. This
technique has been preferred over gate voltage switching to
improve the efficiency and noise behavior of the system [34].

The carrier is then mounted on a Peltier plate to keep the
backside temperature of the chip constant. The carrier—MMIC
interface adopts a 5-mil graphite foil to ensure good ther-
mal contact, spreading heat along the entire contact surface.
Instead, a 10-mm aluminum plate serves as the interface
between the Peltier module and the carrier. As it is not possible
to measure the temperature right at the MMIC backside,
a sensor is attached to the carrier, acting as temperature
reference point (TRP). Extensive thermal simulations of the
test jig were performed to optimize the TRP placing and to
derive the relationship between the Peltier and MMIC backside
temperatures, as shown in Fig. 11.

B. Measurement Setup

Fig. 12 shows the HPA assembled on the test jig. The mod-
ule has been characterized both in SS and pulsed LS conditions
at different controlled temperatures and drain voltages to check
its performance under different operating conditions.

The S-parameters were measured by adopting a conven-
tional CW setup with constant dc bias, while the dc/RF pulsed
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Fig. 11. Thermal simulation of the carrier. (a) Thermal stack-up. (b) Results
at 75 °C Peltier and 50 °C ambient temperature.

Fig. 12.  Pictures of the assembled MMIC. (a) Bare MMIC. (b) Mounted
chip. (c) Complete test jig.

setup of Fig. 13 was used for power sweep characterization.
The pulsed RF signal has an on-time equal to 120 us and a
period of 12 ms (1% duty cycle). The dc drain supply is also
pulsed with an on-time of 130 us, namely, 5 us before and
5 ps after the RF signal, as detailed in Fig. 13(c). Rise and
fall times of the dc pulse are within 20 ns; thus, the dc value
can be considered fully stabilized after the 5-us prebiasing
margin adopted. To improve measurement accuracy, the dc
pulse generator triggers all the measuring instruments as well
as the RF generator. The drain current and voltage waveforms
are captured with an oscilloscope, and their average value
within the RF pulse is adopted to compute efficiency. Since
the high current driven by the switching circuitry introduced
considerable losses, a closed-loop control was added to ensure
the desired voltage at drain terminals. For both SS and LS
measurements, a higher quiescent current density (+45%)
with respect to the nominal one considered in the simulation
is adopted in all stages to guarantee that all devices are in
conduction, to avoid the detrimental effect of threshold voltage
spread observed with the on-wafer measurements [21].
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Fig. 13.  Pulsed LS measurement setup. (a) Block diagram. (b) Picture.
(c) Pulse waveforms on the oscilloscope.

C. Measurement Results

The results of the S-parameter characterization are shown
in Fig. 14. Compared with simulations predictions with the
same bias (i.e., increased to 50 mA/mm to avoid transistors
in off state as previously said), a frequency shift downward
of around 2 GHz is observed, as evidenced by the resonance
of S11, while gain is up to 5 dB higher in the 35.5-36-GHz
range, and, in general, higher at all frequencies. Despite a
larger resonant peak around 2 GHz (above 0 dB in mea-
surement compared with —8 dB in simulation), the MMIC
showed no low-frequency stability issues in the characteriza-
tion campaign.

The results of the LS characterization are shown in Fig. 15.
Although the achieved output power is lower (0.3-0.8 dB) than
the predictions of the simulations, it is higher than 10.7 W in
the entire frequency range, thus exceeding the original target of
10 W, along with the desired 20-dB gain: a result comparable

32

—e—511 measured
- - -S11simulated
22 _o-521measured
- - -S21simulated

[S11] and [S21] (dB)

5 10 15 20 25 30 35 40
Frequency (GHz)

Fig. 14.  SS results at 11.25 V, 50 mA/mm.

to the state of the at the target frequency, as reported in
Table I. On the other hand, the measured efficiency is lower
(ten points) than expected, which, in turn, implies a dissipated
power higher than 45 W at full output power (peak value at
36 GHz). This value is 1.5 times the one predicted by simu-
lations (30 W); hence, it is extremely critical from a thermal
point of view. In fact, as shown in Section II, the maximum
simulated CW channel temperature was around 162 °C at
80 °C backside: under the same conditions, assuming that the
fraction of the total dissipated power actually dissipated in
the final stage is the same as in simulation, the expected CW
channel temperature from the measured dissipated power is as
high as 208 °C, unacceptable for a space application. Although
Fig. 8 shows that the predictions of the CW simulation are
pessimistic, the calculated 208 °C value is too high to be
considered safe. The discrepancy between simulations and
measurements is confirmed by the power sweep results shown
in Fig. 16(a): beyond the lower saturated power and efficiency,
the gain expansion predicted by simulations is not found
in measurements. A device model update was released by
the foundry in the meantime, and resimulating the HPA, the
discrepancy between simulation and measurement results was
sensibly reduced, as demonstrated in Fig. 16(b): the new model
is indeed able to predict the relatively poorer efficiency found
during the MMIC characterization, which can be ascribed to
short-channel effects, leading to a critical threshold voltage
control/uniformity in the wafer. Such effects can be neglected
when the dc operating point of the active devices is far enough
away from pinch-off (a condition where, in fact, the model
update produces no significant changes), but are evident in
the presented design due to the choice of a very deep class-
AB bias, aimed at enhancing saturation efficiency and power
density.

In order to reduce the dissipated power and find an optimum
space-compliant operating point, the MMIC was then char-
acterized at lower drain voltage values, namely, 10 V (11%
reduction) and 9 V (20% reduction of the supply voltage).
Fig. 17 shows that at an SS level, the use of a lower drain
voltage has no effect, while in Fig. 18, the results obtained in
pulsed LS characterization are reported. The designed HPA
is capable of providing 84 and 6.6 W at 10 and 9 V,
respectively, in both cases with the same 20-dB gain and
19% PAE achieved at the nominal drain voltage (11.25 V),
but with the maximum dissipated power reduced to 37 W
at 10 V and to 30.5 W at 9 V. The latter value, same as
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Fig. 16. Power sweep at 35.2 GHz with 11.25-V, 50-mA/mm bias:
comparison between measurements (circles) and simulations (dashed lines).
(a) Device model adopted in the design. (b) Updated foundry device model.

in the original simulations, is expected to bring a maximum
junction temperature well within the 160 °C thermal limit at
an 80 °C MMIC backside temperature, hence assuring that the
HPA biased at 9 V can be considered space-compliant. At this
bias, the MMIC achieved a still noticeable output power of
6.6 W, corresponding to an output power density of 1 W/mm.
As shown in Table I, compared with the work in [19], adopting
the same technology but working under shallow class-AB
bias where the stability issues encountered in this design are
mitigated, the achieved space-compliant output power density
and efficiency can be considered as state of the art for GaN/Si
technology. Compared with GaN/SiC counterparts, it clearly
suffers from the poor thermal properties of the Si substrate
when space-grade constraints are considered.

Because of the good results achieved at 9 V, the HPA was
fully characterized at this bias, including distortion character-
ization, shown in Fig. 19, measurement over temperature, and
performance at the actual operation conditions with SAR input
signals, reported in the following paragraphs.
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Fig. 17. 811 (no symbols) and S; (circles) of Sample 1 at two different
drain voltages.

D. Characterization in Temperature at 9 V

The HPA was characterized at —10 °C and 80 °C in
both SS and LS conditions. The performance of the HPA in
temperature is extremely stable in both SS and LS conditions.
The S-parameter characterization showed nearly no variations
in the return loss and around 1-dB SS gain difference between
the coldest (—10 °C) and hottest temperature (80 °C), as
shown in Fig. 20. The LS characterization was performed
from 34 to 36 GHz (the characterization band was extended
toward lower values according to the observed shift with
respect to simulations) and for two different values of the duty
cycle, namely, 1% and 30%, corresponding to an on-time of
120 us and 3.6 ms, respectively (maintaining the pulse period
of 12 ms). This comparison is intended to observe how the
larger on-time (more than 20 times the dominant thermal time
constant of the largest devices) impacts on performance. The
results are reported in Fig. 21. The worst case output power
variation with temperature for the 1% duty cycle case was as
low as 0.0029 dB/°C, while efficiency was practically the same
at the two temperatures. For the 30% duty cycle measurements,
the effect of temperature is only slightly more pronounced,
with a worst case output power variation with a temperature of
0.0041 dB/°C and a PAE drop of nearly 0.4 points. Compared
with state-of-the-art GaN/SiC commercial products [35], [36],
showing variations in the 0.02-0.033-dB/° range and up to five
points of PAE variation over 60 °C temperature variation, it is
clear that the thermal sensitivity of this GaN/Si technology is
a key strength over GaN/SiC counterparts.

E. Characterization in SAR Mode at 9 'V

The HPA was finally characterized with an SAR modulated
signal from 34 to 36 GHz, to assess pulse-to-pulse (P2P)
amplitude and phase stability, two important parameters for
radar applications [37], in a real-scenario operation. The input
signals are generated in the baseband and then upconverted
with a vector signal generator, adopting 500-MHz linear chirp
bandwidth. Both the interleaved mode, with concurrent RF +
dc pulses, and the closed-burst mode, keeping dc power on
for a number of consecutive RF pulses forming a burst [23],
were tested. Note that in the interleaved mode, dc pulses
may be critical for stability due to trapping effects, typically
pronounced in GaN technologies [38], [39]. On the other hand,
the closed-burst scenario suffers from thermal effects, affecting
also P2P stability [40].
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In particular, four different test cases have been considered:
two interleaved modes with different pulse duration and duty
cycles (d.c.), namely, 12 us with 20% d.c. IM1) and 18 us
with 30% d.c. IM2), and two closed-burst modes with 64
(CB1) and 16 (CB2) 49-us-long pulses per burst, correspond-
ing, with the 12-ms burst period, to a dc duty cycle of 30%
and 10%, respectively. For the SAR-mode characterization,
the HPA was biased at 9 V to ensure reliability, especially
considering the 30% burst duty cycle case, while the backside
temperature is fixed at the hottest value of 80 °C. The
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amplitude (S4) and phase (Sp) P2P stability were computed
from the amplitude and phase standard deviations (o) as
follows [37]:

02
Sa=10- loglo(_—/;) 3)
A

Sp =10-log,y(o7) “4)
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Fig. 22. P2P stability with SAR modulated signal characterization results at
9V, 80 °C.

where A is the average value of the pulse amplitude. The
results are shown in Fig. 22. For CB signals, the burst-to-
burst statistics are obtained considering a test sequence of five
bursts, while for IM signals, the P2P characteristics are taken
from ten sequential pulses.

The obtained amplitude stability is remarkable, being in the
75-dB range in all cases, while concerning phase, variations
up to 1° were observed, yielding to phase stability in the
35-45-dB range. These results can be considered very sat-
isfying. Note that most of the experimental results available
in the literature are at S-band [37], [38], [40], [41]; thus,
a direct comparison would not be totally fair, as the achievable
phase measurement accuracy at K a-band is not comparable to
what is attainable at S-band, even when resorting to high-end
instrumentation equipment.

IV. CONCLUSION

In this work, we reported the detailed design and full
characterization of a Ka-band power amplifier designed for
space SAR altimeter applications. Due to a critical bias choice
for the adopted technology, which, in turn, lead to inaccurate
simulation results, the designed HPA achieved in measurement
a PAE lower than expected at the target output power, in excess
of 10 W, and a gain of around 20 dB. Nonetheless, considering
a 20% reduction of the supply voltage, corresponding to
1.8-dB output power decrease, the designed HPA is capable
of providing 6.6 W, with the same gain and PAE, by keeping
the maximum junction temperature of the devices within the
160 °C limit posed by space derating, which is in line with
the state of the art for a GaN/Si space-grade amplifier.
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