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ABSTRACT
Generative diffusion models are gaining attention as a promising solution for synthetic data generation, offering
a distinct advantage over traditional statistical methods and basic generative models. This work focuses on
evaluating the effectiveness of such models in the context of estimating Lightpath Quality of Transmission
(QoT) in optical networks, especially when real data availability is strongly limited. Numerical results
demonstrate that leveraging diffusion models for data augmentation can significantly improve QoT classification
accuracy and F1-score when available data are limited to a few dozens of samples. These findings highlight the
potential of generative diffusion models in improving data-driven tasks for optical network management under
sparse data conditions.
Keywords: Quality of Transmission Estimation; Machine Learning; Diffusion Models; Dataset Augmentation;

1. INTRODUCTION
Assessing the Quality of Transmission (QoT) for prospective lightpaths is crucial for the strategic planning of
optical network infrastructures. Traditionally, QoT predictions were derived from precise mathematical models,
such as the split-step Fourier method [1], or through the use of margined formulas [2]. While the former offers
high accuracy, it suffers from scalability challenges in practical network environments. On the other hand,
margined formulas are computationally efficient but can lead to underutilization of network resources due to
their highly conservative assumptions.
Recently, Machine Learning (ML) algorithms have emerged as a promising solution for QoT estimation,
addressing the scalability issues while achieving high prediction accuracy [3]. However, these ML models
require substantial training datasets to achieve acceptable predictive capabilities. In the domain of optical
networking gathering large datasets can be difficult due to a variety of factors. For example, the telemetry
equipment already available in the network may be insufficient to monitor the totality of the deployed lightpaths
and the installation of additional equipment may be deemed too costly. Another possible motivation for data
shortage is that, in the early life stage of a network, the limited number of established lightpaths in greenfield
network deployments restricts the volume of data available for collection. To overcome the issues of data
scarcity, synthetic data generation methodologies are exploited to augment the training datasets. These
techniques learn how to model the probability distribution of a dataset, in turn allowing for the sampling of
synthetic data points, possibly conditioned to a given event (e.g., the probability distribution of lightpath’s QoT
conditioned on adopting a given modulation format for transmission).
Diffusion models [4] have recently emerged as a promising methodology for augmenting training datasets from a
smaller original set across various data formats, including tabular data [5, 6]. In this paper, we explore the
advantages of enhancing ML training sets with synthetic data generated by diffusion models under extreme data
scarcity scenarios. We focus on a QoT binary classification problem, i.e., determining if the Signal to Noise
Ratio (SNR) of a candidate lightpath falls below or exceeds a set threshold. We experiment with varying
proportions of real and synthetic data within the training sets, as well as with different training set sizes, and
assess the impact of training data augmentation on prediction performance in terms of classification accuracy
and F1 score. In particular, we focus on reducing the number of incorrect predictions where candidate lightpaths
that would yield unacceptable QoT are wrongly classified as acceptable. This type of prediction error has the
most severe consequences, as it would lead to the deployment of a lightpath with insufficient QoT, potentially
causing a violation of service level agreements by the network operator.
Results show that, when the amount of available field measurements is in the order of a few tens, dataset
augmentation via diffusion models improves QoT classification accuracy by up to 5% and F1-score by up to
54%. Such improvement is mainly due to the major reduction of false negatives, which drop on average by two
thirds thanks to the inclusion of synthetically-generated data in the training set.
The remainder of the manuscript is organised as follows: Sec.2 details the considered scenarios and defines the
QoT estimation problem under study, whereas Sec.3 describes the methodology we adopted for dataset
augmentation. Sec.4 reports the effectiveness of our proposed data augmentation procedure and Sec.5 draws
some conclusive remarks.



2. PROBLEM STATEMENT
We consider the problem of predicting the QoT achievable along a candidate lightpath before its actual
deployment in the network. Each lightpath is characterized by a set of features, such as total length, number of
spans, transmitted power, modulation format in use, etc. We assume the availability of a limited amount of field
measurements gathered from a paucity of already deployed lightpaths, where each lightpath is associated with a
binary label indicating whether the lightpath QoT is acceptable or not. Such a label is obtained by comparing the
SNR measured at the receiver to a given acceptability threshold: SNR values higher than the threshold indicate
that the lightpath QoT is acceptable, whereas SNR values below the threshold indicate unacceptability. We aim
at training a ML classification model capable of predicting the QoT binary class, providing as input the sets of
lightpath features and the associated QoT binary label. To enhance the predictive capabilities of the model, we
create a training dataset consisting of: i) the available field-measured samples; and ii) several synthetically
generated samples, produced by means of diffusion models according to the procedure described in Sec.3.

3. METHODOLOGY
Diffusion models [4] learn how to generate data by transforming a Gaussian distribution into the probability
distribution of a target dataset. They operate in two main phases. In the first phase, known as forward process,
the model incrementally adds noise to the data from the dataset, gradually making it indistinguishable from a
Gaussian distribution. In the second phase, namely the backward process, the model is trained to estimate the
score function, which is the gradient of the log probability distribution of the data at various noise levels. Once
trained, the diffusion model samples a data point from a Gaussian distribution and, using the estimated score
function, iteratively removes the noise, eventually obtaining a data point as if it was sampled from the target
distribution. In this work, we train a diffusion model to learn the probability distribution of lightpaths,
conditioned to the quality of the signal, classified as either acceptable/not acceptable (class 0/1, when the SNR
measured at the receiver is above/below a reference threshold value). The diffusion model is based on a neural
network architecture, trained to estimate the score function, that comprises an input layer, an intermediate layer
with 20 neurons employing sigmoid activation functions, and a final output layer with a single neuron using
linear activation.

4. EXPERIMENTAL SETTINGS

4.1 Data Description
We consider the dataset available in [7], consisting of 585 samples collected using a combination of laboratory
experiments and field measurements in real-world optical communication networks. The set of 12 lightpath
features considered in our experiments includes: signal launch power, modulation format and depth, lightpath
and span length, fiber attenuation coefficient, splice losses, optical amplifier gain, Polarization Mode Dispersion
(PMD) coefficient and compensation technique, external temperature and humidity levels. Each sample is
associated with a label indicating the QoT class. In total, the dataset includes 538 samples with label 0 and 47
samples with label 1, This reflects realistic conditions faced by network operators, who rarely maintain active
lightpaths with insufficient QoT, thus leading to shortage of samples in such class. In the following, samples
drawn from this dataset will be referred to as “real samples”.

4.2 ML Model Training and Testing
We train an XGB model for the classification task at hand. We perform our evaluations following an 80-20 split
of the dataset, where 80% of the available samples are used for training (note that, as explained in the next
subsection, the actual amount of real samples used depends on the considered scenario) and the remaining 20%
for testing. We repeat each experiment 100 times, randomly selecting the train/test split.

4.3 Scenarios
We consider two benchmark scenarios. In the first one, named All Real, the entire original dataset is assumed to
be available. This scenario represents an upper bound of the ML model’s performance for the classification task
at hand. In the second one, named Fraction Real, only a subset of the samples contained in the original dataset is
assumed to be available, thus simulating a condition of data shortage. We perform our experiments varying the
size of such subset from 5% to 30% of the original dataset size. Moreover, to validate our data augmentation
approach, we consider two additional scenarios, namely AUG_50% and AUG_80%, where we complement the
training dataset, which already includes the considered fraction of available real data as in the Fraction Real
scenario, by including synthetically-generated data samples starting from the available real ones. In the
AUG_50% scenario, the generation process considers an equal sampling of data points across the two classes,
whereas in the AUG_80% scenario a sampling skewed with a probability of 80% towards the less represented
class (i.e., class 1) is used. We perform a sensitivity analysis by varying the amount of synthetic data samples
generated, as detailed in the next Section.



5. NUMERICAL RESULTS

Fig. 1. Accuracy (left) and F1-score (right) achieved in the AUG-50% and AUG-80% scenarios depending on the amount of
available real samples, benchmarked against the All Real and Fraction Real scenarios.

Fig. 2. False Negative rate achieved in the AUG-50% and AUG-80% scenarios depending on the amount of available real
samples, benchmarked against the Fraction Real scenario (In the omitted All Real scenario the False Negative rate is 0).

We start by analysing the impact of the probability of sampling (i.e., the probability of augmenting the data of a
given class). In this experiment, we generate enough synthetic data points to complement the available real
samples to have as many data points as in the original dataset (i.e., 585). Fig.1 reports the accuracy (left) and the
F1-score (right) achieved by the ML model in the AUG-50% and AUG-80% scenarios. First, we highlight that
the ML model achieves an accuracy and an F1-score of 1.00 in the All Real benchmark, when the whole original
dataset is used. Conversely, in the Fraction Real benchmark, where only a fraction of the real data is used
(without any data augmentation), the ML model achieves an accuracy ranging between 0.92 (when using only
5% of the original dataset) and 1.00 (when 30% of the original dataset is used), and an F1-score ranging between
0.55 (with 5% of real data) and almost 1.00 (with 30% of real data). While the high accuracy indicates that the
model generally produces correct predictions, the trend of the F1-score shows that it may be biased towards the
majority class, thus lacking robustness in classifying samples of the minority class (unacceptable QoT). When
data augmentation is adopted, in both AUG-50% and AUG-80% scenarios, the ML model achieves an accuracy
ranging between 0.97 and 1.00, with a slight advantage for AUG-80%. Compared to the Fraction Real scenario,
employing data augmentation shows a larger advantage under higher data scarcity (accuracy of 0.97 instead of
0.92 when only 5% of real data is available). In terms of F1-score, the advantage of data augmentation is more
evident, as the ML model can achieve an F1-score of 0.85 in both data augmentation scenarios, when only 5% of
the original dataset is available. This shows that data augmentation via synthetic samples can be exploited at the
very early stages of the network deployment, when only a very limited number of lightpaths are installed (and,
consequently, monitorable).
In Fig. 2 we report the average number of false negatives achieved in three scenarios (AUG-50%, AUG-80% and
Fraction Real) for different fractions of real data utilized (0.05, 0.15 and 0.3). Results show that augmenting the
data, considering either AUG-50% or AUG-80%, can significantly reduce the number of false negatives (by 50%
to 70% for a fraction of real data of 0.05 and 0.15, respectively). This highlights the benefit for the network
operator in reducing the amount of wrong predictions that would lead to the establishment of lightpaths with
unacceptable QoT.
We now focus on the AUG-80% scenario and investigate the effect of varying the amount of synthetic data
samples on the performance of the ML model. This experiment differs from our previous experiments, where we
constrained the generation of synthetic samples to match the size of the original (real) dataset. Instead, we now



consider three settings, namely AUG-50, AUG-100, AUG-150, where we add to the real data 50, 100, and 150
synthetic samples, respectively. Fig. 3 reports the accuracy (Fig. 3(a)) and the F1-score (Fig. 3(b)) of the ML
model across the three above-mentioned settings, compared to the All Real and Fraction Real benchmarks.
Results show that, in terms of accuracy, increasing the amount synthetic samples from 50 to 150 does not yield
significant improvement, i.e., for a given fraction of real data, the accuracy achieved by the ML model in the
various settings varies minimally (0.96 accuracy for AUG-50 and 0.965 for AUG-150). Differently, in terms of
F1-score, the advantage brought by increasing the amount of synthetic samples is significant only under extreme
cases of data scarcity (e.g., for 5% of real data, the ML model achieves an F1-score of 0.8 in AUG-50, whereas
in AUG-150 the achieved F1-score is 0.86), However, the advantage is reduced when a larger fraction of real
data is used, i.e., for a fraction of real data of 15% or higher, the F1-score across the three settings differs only
slightly (variations within 1-2%).

Fig. 3. Accuracy (left) and F1-score (right) achieved in the AUG-50, AUG-100 and AUG-150 scenarios depending on the
amount of available real samples, benchmarked against the All Real and Fraction Real scenarios.

6. CONCLUSION
We addressed the issue of data scarcity for the problem of machine learning-based lightpath QoT estimation. We
leveraged diffusion models to generate synthetic samples and train machine learning with the aim of improving
lightpath QoT estimation accuracy. By effectively augmenting limited real training datasets with synthetic
samples, these models yielded a notable enhancement in classification accuracy and F1-score, obtained by
drastically reducing the amount of false negatives, when only a few dozens of training samples are available.
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