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Abstract As the population of urban areas is 
increasing continually, analysis of the particulate con-
centration dynamics in these areas is crucial. There-
fore, this study investigated the temporal and spatial 
variabilities of  PM1,  PM2.5, and  PM10 over the urban 
area of Turin in the Po Valley, Italy, based on high-
resolution data from a monitoring campaign con-
ducted between 2018 and 2021 (including COVID-
19 lockdown period). The study also performed a 
source direction analysis of the urban observation 
using the conditional bivariate probability function 

(CBPF). The results showed substantial differences 
in  PM10 concentration at background (28–30 µg/m3), 
and traffic stations (36  µg/m3).  PM2.5 concentration 
was highest at traffic stations (24 µg/m3). During the 
day, the highest values occurred at 9:00–11:00 AM, 
and the lowest concentrations occurred at 4:00–6:00 
PM. The concentration peak position changed in a 
daily bimodal trend with the season. According to the 
CBPF, the relevant external particulate contributions 
to the Turin area are from the direction of the Po Val-
ley (N–NE) and the typical direction of Saharan dust 
transport (S–SW). The present study contributes to 
scientific understanding by providing information on 
one of the main European pollutant hot spots and dis-
cussing the trends of emerging pollutants, like  PM1.

Keywords PM1 · PM2.5 · PM10

Introduction

Air pollution, one of the nine planetary boundaries, 
is becoming a global threat to public health and wel-
fare (Brook et  al., 2017; ONU, 2015; Steffen et  al., 
2015). According to the World Health Organiza-
tion, air pollution causes 7 million premature deaths 
worldwide every year, and citizens of urban areas are 
most affected (Juginović et  al., 2011; Kuehn, 2014). 
Because the population in urban areas will grow by 
2050, the air pollution problem will become even 
more important (Michetti et al., 2022; UN, 2018).
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Rapid economic growth has prompted the inten-
sive use of fossil fuels, which has increased particu-
late concentrations of  PM2.5 (atmospheric fine parti-
cles with an aerodynamic diameter less than 2.5 µm) 
and  PM10 (atmospheric coarse particles with an aero-
dynamic diameter less than 10 µm), as well as con-
centrations of gases such as nitrogen dioxide  (NO2), 
sulfur dioxide  (SO2), ozone  (O3), and greenhouse 
gases such as carbon dioxide  (CO2) (Atamaleki et al., 
2019; Bastola & Sapkota, 2015). Particulate matter 
plays an important role in public health, generating 
negative effects on organs such as the lungs, heart, 
and brain (Delgado-Saborit et  al., 2021; Lipfert, 
2018; Yao et al., 2022). It also has a strong influence 
on climate change, inducing a warming effect through 
the absorption of solar and infrared radiation (Ram-
anathan & Carmichael, 2008). High aerosol concen-
trations in the atmosphere above the limit values can 
have serious consequences for the environment, cli-
mate, and human health (Jung et al., 2019; Mehmood 
et al., 2021; Qayyum et al., 2021; Ur Rehman et al., 
2024).

Understanding how particulate matter varies 
through space and time in different areas is crucial 
to accurately evaluating the health risks associated 
with air pollution (Liu et al., 2022). Most epidemio-
logic studies of short-term exposure have used daily 
or hourly variations in concentrations measured at air 
quality monitoring stations (Atkinson et  al., 2016). 
Such estimates, in combination with forecasting mod-
els, can help decision-makers take appropriate actions 
to mitigate pollutant emissions. Moreover, spatiotem-
poral assessment of contaminants not yet subject to 
limitations, such as  PM1, will support institutions 
working to define future air quality standards (Chen 
et al., 2017).

The spatial variation of pollutant concentrations 
results from a dynamic process dominated by multi-
faceted interactions between local and global emis-
sions derived from human activities, natural emis-
sions, and transport phenomena (Dias & Tchepel, 
2018). Meteorological conditions such as rainfall, 
humidity, and wind speed also promote spatial vari-
ation of emissions (Tian et  al., 2020; Zhang et  al., 
2021). Spatial variation in concentrations is moni-
tored according to the criteria of the European Envi-
ronment Agency. Air quality measurement stations 
are classified by the characteristics of the measur-
ing area. Specifically, traffic, urban, and background 

stations refer to the different contexts characterizing 
the location where the measurement takes place (Fil-
igrana et al., 2020). According to the European Direc-
tive 2008/50/EC, background measurements refer to 
a context not influenced mostly by specific sources 
(such as industries or traffic) but affected by the inte-
grated contribution of all sources. The traffic context 
refers to locations with a high street density and traf-
fic congestion. The concentrations at these locations 
are affected strongly by traffic emissions. Finally, the 
urban context refers to urban areas, in which concen-
trations are affected by a population high density and 
residential and work activities.

The temporal variation of pollutants can be evalu-
ated at multiple time scales. Observing the seasonal 
scale, Hu et al. (2014) and Ma and Jia (2016) found 
that particulate matter and gaseous pollutant concen-
trations were higher in winter than in other seasons, 
with the exception of ozone, which reached a maxi-
mum in the summer. According to Chen et al. (2020), 
investigations of the diurnal patterns of air pollutant 
concentrations and the differences in days with differ-
ent emission scenarios have crucial importance. They 
facilitate understanding of specific emission sources 
and pollutant formation mechanisms. Specifically, 
workdays and weekend days are generally affected 
by different pollutant concentrations because they are 
characterized by different traffic activity. Therefore, 
by disaggregating the high-resolution data, it is pos-
sible to understand the contribution of traffic to pol-
lutant concentrations (Lonati et al., 2006). Batterman 
et al. (2015) and Zhang et al. (2016) both emphasize 
the importance of high-resolution data in understand-
ing the spatial and temporal patterns of traffic-related 
air pollutants.

The combination of inter-site concentration dif-
ferences and temporal variations is often used by 
researchers to identify the contribution of differ-
ent sources based on a receptor approach (Li et  al., 
2017a, b). Several studies have approached analysis 
in different continents, including Europe (Chen et al., 
2020; Galindo et al., 2018; Lonati et al., 2011) Asia 
(Kuerban et al., 2020; Zhao et al., 2018), and North 
America (Chang et  al., 2015; Filigrana et  al., 2020) 
and at the city level (Giugliano et al., 2005), regional 
level (Galindo et  al., 2018), and country level (Fan 
et  al., 2020). Despite several studies having per-
formed such analyses in the Po Valley, Italy (Gilar-
doni et al., 2020; Giugliano et al., 2005; Lonati et al., 
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2011; Tositti et  al., 2014), no study has focused on 
the urban area of Turin.

The present study focused on the Po Valley, with 
special attention to the metropolitan area of Turin. 
The Po Valley is one of the most important pollution 
hot spots in Europe (Gilardoni et  al., 2020; Trivelli 
et al., 2021) This region includes 40% of the popula-
tion of Italy, is densely industrialized, and produces 
50% of the national GDP (Bozzola & Swanson, 
2014). Because of the emission intensity and orogra-
phy of the valley, which is bounded by the Alps to the 
north and the Apennines to the south, the Po Valley 
of northern Italy is typically subjected to atmospheric 
subsidence, which facilitates stagnation of contami-
nants (Bo et al., 2020; Caserini et al., 2017; Pecorari 
et al., 2013). In metropolitan areas such as Turin, the 
second-largest city in Italy, the main problems are 
attributable to particulate matter concentrations. The 
legal limits of annual mean  PM10 and  PM2.5 and the 
number of high-pollution days are systematically 
exceeded. To reduce the impacts of acute pollution, 
traffic restrictions are usually adopted (Invernizzi 
et al., 2011).

The national lockdown in Italy was imposed from 
March 10, 2020, to May 17, 2020, with some dis-
parities in the restrictions enforced during this period 
(Conte et al., 2023). Many international borders were 
closed, and lockdown restrictions affected millions 
of people, leading to reduced transport and chang-
ing energy consumption patterns (Campanelli et  al., 
2021). While the agricultural sector remained unaf-
fected by the restrictions of the lockdown legal direc-
tives (Granella et al., 2024).

The particularities of air pollution in the Po Val-
ley can be attributed to the interplay of lockdown-
induced changes and (Campanelli et al., 2021) identi-
fied four different types of medium- and long-range 
transport events over Italy: fire plumes from Eastern 
Europe and Montenegro, dust from the Caspian area 
and the Sahara Desert, and pollution from the Po Val-
ley. These events were found to affect PM10, PM2.5, 
and NO2 concentrations, as well as aerosol optical 
depth (AOD).

The PM concentration, although reduced, remains 
within the variability of previous years (2016–2019), 
with a time trend that does not follow the gas trend. 
These data once again highlight the complex dynam-
ics of PM and the relationships between emis-
sions precursors and the transport, diffusion, and 

physico-chemical processes that determine the forma-
tion of secondary PM, which constitutes a significant 
part (in the order of 70%) of PM10 in the Po basin 
(Deserti et  al., 2020). The concentration of PM10 
showed a slight reduction in 2016–2019 (Deserti 
et al., 2020). Diémoz et al. (2021) state that the lock-
down effect is discernible both in the early confine-
ment phase and in late 2020 with a 9% increase in 
PM2.5, and a 12% decrease in PM10, relative to aver-
age conditions from 2015–2019.

The smaller decrease in PM10 emissions in Po 
Valley is mainly attributable to heating sources 
(Deserti et  al., 2020) and agricultural activities 
(Granella et al., 2024).

The data in this paper are consistent with the stud-
ies cited so far. Graphs comparing the measured 
concentrations in the spring period of 2019 (pre-
lockdown) and 2020 (lockdown) are given in the 
supplementary material section. The graphs show 
that there are no significant variations in PM2.5 con-
centrations and the monthly average graph for PM10 
concentrations indicates slightly higher concentra-
tions in 2020 compared to 2019.

The purpose of this research was to perform a spa-
tial and temporal investigation of atmospheric par-
ticulate concentrations  (PM1,  PM2.5, and  PM10) in the 
metropolitan area of Turin, one of the most critical 
European sites for air quality problems. Based on an 
analysis of a long-term dataset of urban observations, 
the study evaluated the spatiotemporal variations of 
concentrations of  PM1,  PM2.5, and  PM10. Annual, 
seasonal, monthly, and daily variations of pollutants, 
hourly patterns of concentrations, and the differences 
between weekdays and weekends were assessed. 
Finally, a source direction analysis of urban observa-
tions was conducted. The effects of local emissions 
and global dust transport were investigated by apply-
ing two statistical models considering particulate 
concentrations and wind speed and direction.

Methods

Study area

Turin, with a population of approximately 850,000 
inhabitants in the city center and more than 1.8 
million including the hinterland, is one of the 
largest cities in Italy. The Turin area is a strategic 
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point for spatiotemporal evaluation of particulate 
concentrations because it is one of the main cent-
ers of the Po Valley megacity, a known hotspot for 
atmospheric pollution (Finardi et al., 2014). The Po 
Valley includes approximately 15 million residents 
and has an area of approximately 47,800  km2. It is 
bounded by the Alpine chain to the north and the 
Apennine chain to the south. It is cleansed by the 
Adriatic Sea to the east.

The Po Valley deserves special research atten-
tion because of its unique climatological circum-
stances. It is characterized by sea, mountains, and 
valleys and is influenced by Mediterranean and 
Alpine climates, with rare Saharan contributions 
(Finardi et  al., 2014; Perrone et  al., 2012). Turin 
makes a significant contribution to the pollution of 
the Po Valley; however, it also suffers the effects 
of being at the lowest levels of the Po Valley (Bo 
et  al., 2020). Furthermore, its orographic context 
also holds scientific interest. Turin is exposed to 
the Po Valley in two directions and is surrounded 
by hilly relief on one side and the Alpine chain on 
the other. This setting affects the city’s atmospheric 
stability, which in winter contributes to the high 
number of pollution events (Pernigotti et al., 2012).

Measurement instruments

This study was based on observations of particulate 
matter concentrations at six stations located in the 
urban area of Turin. Five of the stations belonged to 
the monitoring network of the public environmen-
tal agency, and one was located at the University of 
Turin Polytechnic (Fig. 1).

The monitoring stations of the public agency pro-
vide measurements of particulate matter  PM10 and 
 PM2.5. All these stations refer to ZONE IT 0118 
and are identified as “urban agglomeration” stations 
according to the Public Agency characterization. In 
particular, Rubino Station 2 and Lingotto Station 3 
are classified as “background” while Grassi Station 
4, Consolata Station 5, and Rebaudengo Station 6 are 
classified as “traffic,” as the regional environmental 
agency defines.

This study did not consider industrial stations 
because they are intended to monitor specific sites 
affected by local emissions. Further information about 
the stations is listed in the table in the Supplementary 
Materials. The data provided by the regional agency 
for the protection of the environment are available on 
the web (https:// aria. ambie nte. piemo nte. it/#/). Each 
station includes instruments for measuring particu-
late concentrations and meteorological conditions. 
The data from the station located at the University 
of Turin Polytechnic (Station 1, Politecnico) were 

Fig. 1  Location of meas-
urement sites in the Po 
Valley and the city of Turin, 
respectively. The Polytech-
nic measurement station is 
depicted in the lower-left 
illustration

https://aria.ambiente.piemonte.it/
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comparable to urban “background” measurements, 
according to the European directive 2008/50/CE. This 
station is approximately 24 m above road level, and 
the measurement site is not affected by adjacent build-
ings. No commercial or industrial activity takes place 
on campus. On one side, there is a tree-lined roadway 
at a sufficient distance. The instrument probes are at a 
distance from the ground greater than 1.5 m and are 
spaced from each other according to manual specifi-
cations to avoid mutual interference. The following 
describes the instruments for particulate matter con-
centrations and meteorological monitoring of Station 
1, Politecnico. The Davis Vantage Pro2 (Davis Instru-
ments, Hayward, CA, USA) weather station provided 
pressure, temperature, relative humidity, wind direc-
tion and speed, rain intensity, solar radiation, and UV 
index data with an acquisition frequency of 1  min. 
The weather station acquires wind speed within a 
range from 0 to 89 m/s, with a precision of 0.4 m/s. 
The wind direction is measured with a range from 
1 to 360°, with 1° precision. The particulate matter 
measurement is by two optical analyzers: an APM-2 
(Comde-Derenda GmbH, Stahnsdorf, Germany) and 
Palas Fidas 200S (Palas GmbH, Karlsruhe, Ger-
many). Both analyzers exploit the Rayleigh scattering 
principle. Particles entering the analyzer are struck 
by a visible light beam, with a wavelength of 650 nm 
in the case of the APM-2 analyzer and multi-wave-
lengths for the Palas Fidas analyzer. The light scat-
ters on the particles’ surface and the recorded signal 
are converted into concentration data. More detailed 
descriptions of the instruments used are available in 
(Boanini et al., 2021).

Quality assurance and control

Quality assurance and quality control (QA/QC) pro-
cedures were performed periodically for data certi-
fication. The instruments were tested and calibrated 
periodically according to the operating manual and 
following the linear regression analysis method, with 
a slope of 1 ± 0.1, intercept of 0 ± 5 µg/m3, and cor-
relation coefficient between two groups of data larger 
than 0.95. In addition, a MicroPNS LVS16 gravity 
sampler (Umwelttechnik MCZ GmbH, Bad Nauheim, 
Germany) with 47-mm membranes installed at each 
measuring station was used to double-check the data. 
Reasons for anomalously higher concentrations of 
specific pollutants were identified, and high values 

of unknown causes were not discarded randomly. 
Additionally, the accuracy, logic, comparability, and 
rationality of the data were checked based on factors 
such as sampling location and comparisons with his-
torical data series and other station data of the public 
agency. As required by 2008/50/CE, hourly data were 
computed only when the sampling time was longer 
than 45  min in each hour. Each annual period of 
analysis had at least 324 daily mean concentrations. 
Furthermore, at least 25 daily mean concentrations 
were required to calculate monthly average concen-
trations of the particulate fractions. The data of this 
study covered the 3  years from September 2018 to 
September 2021. The time coverage of the data of 
each station was in the range of 87.9 to 97.4%, and 
this indicates the amount of data available in the time 
interval established above. For five of the six stations, 
the time coverage was greater than the 2008/50/CE 
threshold limit, which is set at 90%. There were no 
significant or continuous interruptions in the time 
series data. Missing data were randomly distributed 
through the 3  years. Data absence was often due to 
the shutdown of the control units for maintenance or 
invalid data.

Data acquisition and processing

The APM2 instrument measured the concentrations 
of  PM2.5 and  PM10 with a time resolution of 2 min. 
The Palas Fidas instrument measured the values of 
 PM1,  PM2.5,  PM4,  PM10, PTS, numerical concentra-
tion, and dimensional distribution with 1-min time 
resolution. The high resolution of the data acquisi-
tion allowed consideration of both daily and hourly 
trends. These station data represent the period from 
September 18, 2018, to September 17, 2021. All data 
were processed on an hourly basis. The seasonal, 
weekly, and daily variability of  PM1,  PM2.5, and 
 PM10 concentrations and their ratios were studied. 
For comparisons with public agency monitoring sta-
tions, only  PM10 and  PM2.5 are examined since  PM1 
is only available on the University of Turin Polytech-
nic site. Lastly, a study of hourly trends throughout 
the day was performed to verify the influence of 
traffic and planetary boundary layer height (PBLH) 
on concentrations. The data were processed through 
Python coding for pre-processing and quality control 
and for grouping according to temporal and spatial 
items. Moreover, R coding was used to perform test 



 Environ Monit Assess        (2024) 196:1251  1251  Page 6 of 23

Vol:. (1234567890)

statistics and carry out conditional probability func-
tion (CPF) and bivariate conditional probability func-
tion (CPBF) modeling.

Data analysis for CPF and CPBF

To compute CPF and CPBF, wind speed and the wind 
direction data recorded by the Davis Vantage Pro 2 
weather station were used. Wind speed and wind 
direction were checked by the station every 2.5  s 
and averaged every minute. For comparison with the 
hourly concentration data, the wind data were aver-
aged with hourly frequency.

According to Tiwari et  al. (2017) assessing the 
PM concentration with wind direction highlights the 
contributions of local and global emissions such as 
combustion from industries, biofuel burning, vehicu-
lar emissions, and dust transportation along plains. To 
do this, statistical tools such as the CPF and CPBF 
are used. Such models were introduced by Ashbaugh 
et al. (1985) and Kim et al. (2003) and applied in dif-
ferent contexts by Heo et  al. (2009), Squizzato and 
Masiol (2015), and Tiwari et al. (2014). With the CPF 
tool, the probability of exceeding a limit value is eval-
uated for each direction to identify preferential trans-
port directions. The CBPF was applied as an imple-
mentation of the CPF (Jain et al., 2020; Tiwari et al., 
2017). In this configuration, wind speed is added to 
the system as an additional variable. The probabilistic 
relationships combined with wind speed and direction 
are then utilized to deepen understanding of the spa-
tial distribution of sources.

The CPF statistical model is based on the follow-
ing formula:

According to this formula, for each angular sector 
Δθ, the CPF is equal to the ratio between the occur-
rences m of concentration greater than a limit value 
x and the number of overall values in the interval n. 
From a methodological point of view, 16 angular sec-
tors with an amplitude of 22.5° were selected. For the 
calculation of probabilities, all concentration values 
corresponding to a wind speed lower than 0.5  m/s 
were excluded (Tiwari et  al., 2017). This was done 
because low wind speeds typically have isotropic 
characteristics of direction (Ashbaugh et  al., 1985). 

(1)CPF
Δ� =

�
Δ�|c≥x

�
Δ�

The selected concentration limit value corresponded 
to the 75th percentile: 22, 26, and 37 µg/m3 for  PM1, 
 PM2.5, and  PM10, respectively.

To perform the CBPF statistical model, the rela-
tionship is as follows:

For each combination of Δθ and Δu intervals, the 
CBPF is equal to the ratio between the occurrences m 
of the concentration between the y and x limit values 
and the overall values n in the interval.

As suggested by Rai et al. (2016) and Uria-Tella-
etxe and Carslaw (2014), four concentration ranges 
(the four main quartiles, 1–25%, 25–50%, 50–75%, 
and 75–99%) were selected for  PM1,  PM2.5, and 
 PM10. To exclude outliers, the extreme percentiles 
were not considered in the analysis (Uria-Tellaetxe & 
Carslaw, 2014).

Results and discussion

Spatial distribution

Figure 2 shows the  PM2.5 and  PM10 mean concentra-
tions across the 3 years at the monitoring stations. All 
of the stations measured  PM10, but only four stations 
monitored  PM2.5. The interannual trend of  PM2.5 was 
similar at the Politecnico, Rubino, and Rebaudengo 
stations. However, the Lingotto station showed a per-
sistent decreasing trend. The concentrations at the 
Rebaudengo site were higher than those of the other 
stations. Unlike the other stations, Rebaudengo is a 
traffic monitoring station, adjacent to intensely busy 
urban streets. Its average concentration was highest at 
31.56% in the first year, 12.39% in the second year, 
and 11.65% in the third year.

Among the six stations that measured  PM10 con-
centrations, the trends at the Grassi and Rebaudengo 
stations, both traffic stations, over the 3  years were 
similar. A progressive reduction in concentration 
occurred. The Politecnico, Rubino, and Lingotto sta-
tions showed similar trends of second-year concen-
trations lower than the concentrations of the other 
2  years. The Consolata station had an increasing 
trend, with a peak in the second year.

(2)CBPF
Δ�,Δu =

m
Δ�,Δu|y≥c≥x

n
Δ�,Δu
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To analyze the spatial differences in concentra-
tions more effectively, a descriptive statistical anal-
ysis using box plots is shown in Fig. 3.

Overall, the 3-year mean  PM2.5 concentra-
tions were 20  µg/m3 at Politecnico, 10  µg/m3 at 
Rubino, 20 µg/m3 at Lingotto, and 24 µg/m3 at the 
Rebaudengo station. Although the Kruskal–Wallis 
test suggests a significant difference between con-
centrations among different measurement points 
 (chi2

(3) = 84.09; p < 0.001), the pairwise compari-
sons using the Mann–Whitney test underlined that 
only the Rebaudengo concentration was signifi-
cantly higher than other station (p < 0.000), while 

no difference was found between Politecnico, 
Rubino and Lingotto stations (p > 0.1).

All monitoring points had a mean lower than the 
annual limit, 25  µg/m3 according to 2008/50/EC. 
The box plots in Fig. 3 show similarities between the 
Politecnico and Lingotto stations, both background 
stations, in quartiles and upper and lower limits. 
However, the Rebaudengo station had a 3-year mean 
close to the legal limit. Its box plot reveals higher 
concentration levels in both means and quartiles than 
at the other stations.

The  PM10 concentrations of Politecnico Station 1, 
Rubino Station 2, Lingotto Station 3, and Consolata 
Station 5 were not statistically different mean values 

Fig. 2  a  PM2.5 and b  PM10 concentrations at the Turin stations during the 3-year period: Year 1 (Sept 2018–Sept 2019), Year 2 (Sept 
2019–Sept 2020), and Year 3 (Sept 2020–Sept 2021)

Fig. 3  Box plot of a  PM2.5 and b  PM10 concentrations at the Turin stations during Sept 2018 and Sept 2021
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equal to 29 µg/m3 at Politecnico, 29 µg/m3 at Lingotto 
(z = 1.42; p > 0.05), 30  µg/m3 at Rubino, and 31  µg/
m3 at Consolata (z = 1.84; p > 0.05).). Conversely, 
Grassi station 4 and Rebaudengo station 6 showed 
significantly different concentration levels (z = 18.83; 
p < 0.001) While the mean at the Grassi station was 
38  µg/m3, at the Rebaudengo station it was 34  µg/
m3. Considering box plots in Fig. 3b, the quartiles of 
these stations were higher positioned than those of 
the other stations. Although both stations are traffic 
stations, the Grassi station had higher overall concen-
trations, because of the different surrounding traffic 
conditions than at Rebaudengo. Combining the  PM10 
concentrations for the same kinds of stations, the 
Kruskal–Wallis test revealed statistically significant 
 (chi2(2) = 127.4; p < 0.01) differences among Politec-
nico and Lingotto (29  µg/m3), Rubino and Conso-
lata (30 µg/m3), and Rebaudengo and Grassi (36 µg/
m3)stations. This result confirms the observations of 
(Boanini et al., 2021; Lonati & Trentini, 2019) about 
concentrations measured in different spatial contexts.

Concentration distributions for different locations 
were constructed from the data of the six stations by 
averaging their daily data (Fig.  4). In this figure are 
shown curves derived from the data of the six sta-
tions: Politecnico and Lingotto in blue, Consolata and 
Rubino in orange, Rebaudengo and Grassi in green. 
The frequency distribution was calculated by group-
ing the data into 20 constant-step classes for  PM2.5 
and 24 classes for  PM10. The size of the classes for 
both was 5 µg/m3.

The concentrations of  PM2.5 and  PM10 showed a 
left-skewed distribution in all boundary conditions, as 
also shown by studies carried out at other locations 
(Fan et  al., 2020; Ma & Jia, 2016). The distribution 
shape is attributable to the impact of the summer 
period, which is characterized by low concentrations, 
on the distribution. Furthermore, dilution by rain and 
wind tends to reduce concentrations, contributing to 
a high frequency in the lower classes (Ouyang et al., 
2015). On the other hand, persistent pollution phe-
nomena and atmospheric stability help to increase the 
frequency of the higher classes, thus lengthening the 
tail of the distribution (Galindo et al., 2018). Among 
the  PM2.5 concentration distributions, Politecnico and 
Lingotto and Consolata and Rubino trends are simi-
lar (7 µg/m3 for Politecnico and Lingotto and 8 µg/m3 
for Consolata and Rubino). Based on the 3 years of 
observations, the probability of exceeding the daily 
limit (25  µg/m3) for these stations was 21.6%. The 
distribution mode in Rebaudengo and Grassi stations 
(10 µg/m3) was more centered than in the other condi-
tions. For these stations, the probability of exceeding 
the legal limit was 27.1%. The  PM10 concentrations 
showed three different distributions for all six sta-
tions. In Politecnico and Lingotto stations, the mode 
occurred at 12 µg/m3. For Consolata and Rubino sta-
tions, the mode was 17  µg/m3; for Rebaudengo and 
Grassi stations, it was 20  µg/m3. The probabilities 
of exceeding the threshold value for Politecnico and 
Lingotto, Consolata and Rubino, and Rebaudengo 
and Grassi stations were 14.31%, 17.59%, and 

Fig. 4  a  PM2.5 and b  PM10 concentration distribution at the six stations Politecnico and Lingotto in blue, Consolata and Rubino in 
orange, and Rebaudengo and Grassi in green
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23.14%, respectively. Unlike the case of  PM2.5, for 
 PM10, there was a noticeable difference between the 
different conditions. This difference could be attribut-
able to the more significant influence of local condi-
tions on  PM10 than  PM2.5, as the authors evidenced in 
(Boanini et al., 2021).

Temporal variation

Monthly variation of pollutants

Figure 5 shows the monthly variations of  PM1,  PM2.5, 
and  PM10 concentrations and the monthly ratios of 
 PM1/PM10,  PM2.5/PM10, and  PM1/PM2.5. The data 
were derived from the mean of the background sta-
tion at Turin Polytechnic in the period between Sep-
tember 2018 and September 2021. The overall means 
over the 3  years for  PM1,  PM2.5, and  PM10 were 
20 µg/m3, 20 µg/m3, and 29 µg/m3, respectively. In all 
3 years, the maximum limit of daily  PM10 exceedance 
(35  days/year for  PM10 > 50  µg/m3) was surpassed. 
The mean  PM1/PM2.5 ratio was 0.85, and the  PM2.5/
PM10 ratio was 0.69.

The figure reveals a noticeable V-shaped varia-
tion in concentrations and ratios over the months. 
This trend is similar for all three particulate frac-
tions. The highest concentrations were recorded in 
the winter months, at the beginning and end of each 
year. The peaks occurred in January and February, 
which are generally characterized by haze pollution 
due to atmospheric conditions favorable to accumu-
lation in the lower layer of the atmosphere (Mau-
rizi et  al., 2013). Furthermore, in these months, the 
 PM2.5/PM10 ratio is generally higher, reflecting the 
difference in sources between summer and win-
ter conditions (Choi et  al., 2013). Several studies 
have evaluated the impacts of typical winter heating 
sources, such as domestic boilers, in the area under 
study (Pognant et al., 2017) and the entire Po Valley 
(Gilardoni et al., 2020). The concentration was lowest 
in the summer months, especially in May. The spring 
months showed a gradual reduction in concentrations, 
whereas the autumn months showed an increase. The 
same trend was also found by (Chen et al., 2016; Xu 
et al., 2017). The monthly variations of the  PM1/PM10 
and  PM2.5/PM10 ratios were more sensitive than the 

Fig. 5  Monthly variations 
of  PM1,  PM2.5, and  PM10 
concentrations and their 
ratios at the Polytechnic 
station between September 
2018 and September 2021. 
The gray bar represents the 
oscillation range
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variation of the  PM1/PM2.5 ratio. The latter had an 
almost constant trend throughout the months, with 
only a slight reduction in the summer. The first two 
ratios showed a summer month reduction with respect 
to the annual mean of 17.11% and 15.62%, respec-
tively. However, the  PM1/PM2.5 ratio had a reduction 
of 4.76%. To determine the statistical significance 
of the observed seasonal variation, a Kruskal–Wal-
lis H test was performed among the seasons. The 
test confirmed significant differences for PM1/PM10 
(H = 206.41, p < 0.000), PM2.5/PM10 (H = 194.65, 
p < 0.000), and PM1/PM2.5 (H = 225.75, p < 0.000). 
Further, Dunn’s tests identified a significant reduc-
tion in PM1/PM10 (p < 0.000) and PM2.5/PM10 
(p < 0.001) during the summer months compared to 
the winter. The observed differences in winter and 
summer particulates can be explained by the different 
sources, and atmospheric conditions have a greater 
impact on the coarse fraction than the fine fraction 

(Pecorari et al., 2013; Pernigotti et al., 2012). To pro-
vide additional details, the correlations of  PM1 with 
 PM2.5 and  PM10 were studied on the basis of different 
seasons.

In all seasons, the correlation between  PM1 and 
 PM2.5 was greater than 0.95 (p < 0.01), as shown 
in Fig.  6. Moreover, the regression line had a simi-
lar slope in winter, autumn, and spring. However, 
in summer, the regression line had a lower slope. 
The  PM1/PM10 coefficient of determination varied 
from a maximum of 0.91 in winter to a minimum 
of 0.88 in summer. Similarly, the  PM2.5/PM10 ratio 
reached its maximum value during winter. Autumn 
and spring showed a similar slope, but summer had 
the minimum value (0.41, p < 0.01). The latter was 
attributable to the greater involvement of fine par-
ticles in photochemical reactions (Carbone et  al., 
2010; Wang et al., 2016). In autumn and winter, some 
points deviated from the global trend, showing higher 

Fig. 6  Correlations between  PM1 concentration and  PM2.5 concentration (orange) and between  PM1 concentration and  PM10 concen-
tration (blue) on a seasonal basis a winter, b spring, c summer, and d autumn. R2 = R-squared
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concentrations of  PM10 in correspondence with low 
values of  PM1. This is a typical behavior of a large 
pollution circumstance, as also noted by X. Li et al., 
(2017a, b) and Xue et  al. (2020). Our results align 
with Davtalab et al. (2023), who found higher PM2.5 
and PM10 concentrations in winter, peaking in Janu-
ary and February, and the lowest in summer. They 
attributed April PM10 peaks to road dust from winter 
tires. They also noted the highest PM2.5/PM10 ratios 
in winter and lowest in summer, consistent with our 
findings, indicating a higher proportion of fine parti-
cles in winter due to increased combustion and sta-
ble atmospheric conditions (Davtalab et  al., 2023). 
Further, Bamola et  al. (2024) found that the lowest 
concentrations of both PM2.5 and PM10 occurred 
during the monsoon season (July and August) due to 
precipitation and higher wind speeds aiding pollutant 
dispersion. The highest concentrations were recorded 
in November and December, similar to our findings, 
attributed to increased biomass burning.

Hourly and seasonal variations of pollutants

Several natural and anthropic factors affect the con-
centration levels of particulate matter during the 
day. The most important are direct emissions, sec-
ondary particulate formation, dilution or removal 
processes, and variation of the height of the PBL 
(Maurizi et al., 2013; Pecorari et al., 2013; Sullivan 
et al., 2016). Based on the 3 years of observations, 
the hourly data through the day were processed 
to obtain evidence of these processes affecting 

concentration. In addition, the season-based varia-
tion was studied to highlight the hourly evolution of 
PM concentration.

For the particulate fractions shown in Fig. 7, there 
was significant hourly variation throughout the day. 
The variation was more pronounced for  PM10 than 
for  PM2.5 or  PM1. In particular, the values of  PM2.5 
and  PM1 were substantially stable at night, and their 
morning increase was reduced compared to that of 
 PM10. The nocturnal decrease of  PM10 is attributable 
to dry deposition, as suggested by Li et  al. (2019), 
whereas the concentration increase from 7:00 to 9:00 
AM is typical of the traffic schedule (Chen et  al., 
2020). For all fractions, after the peak, there was a 
decline in the afternoon due to the height of the plan-
etary limit state (Du et al., 2013; Su et al., 2018). The 
dilution peak occurred at 5:00 PM. Subsequently, the 
evening increase in transport and nighttime stability 
caused concentrations to increase (Chen et al., 2016). 
The contribution of heating sources influences partic-
ulate concentrations with increases during the even-
ing and night periods. These results align with other 
studies that conducted a comprehensive analysis of 
the daily cycle of pollutants in urban areas. Elansky 
et  al. (2020) observed that night concentrations of 
PM10 decrease and reach their minima early in the 
morning (around 4:00–4:30 AM), followed by a rapid 
increase starting from 5:00 AM due to morning rush 
hour traffic. The peak concentrations were observed 
around 8:00–9:00 AM. This morning peak is attrib-
uted to the combination of heavy traffic and the 
breakdown of surface temperature inversions, which 

Fig. 7  Hourly mean variations of  PM1,  PM2.5, and  PM10 a concentrations and b ratios
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typically occurs around 7:00 AM in summer and 9:00 
AM in winter.

The  PM1/PM10 and  PM2.5/PM10 ratios shown in 
Fig. 7 had a fairly similar shape throughout the day. 
As confirmation, the  PM1/PM2.5 ratio had a very nar-
row fluctuation throughout the day, with an amplitude 
of 0.05, while the  PM1/PM10 and  PM2.5/PM10 ratios 
had amplitudes of 0.16 and 0.13, respectively. In 
comparison to the hourly concentration trend curves, 
the ratio trends are out of phase. More precisely, the 
absolute peaks for  PM1/PM10 and  PM10/PM10 were 
reached at 4:00 AM during the relative minimums 
of  PM10 concentration. This confirms a greater noc-
turnal removal of coarse fractions than fine particles 
(Galindo et  al., 2018). Finally, the ratio decreased 
from 7:00 AM to 9:00 AM and reached a maximum 
at about 1:00 PM. The maximum seemed to be attrib-
utable to the higher dilution rate of coarse particles 
than fine particles, as proven by (Lestari et al., 2003). 
Furthermore, this peak occurred at the time of maxi-
mum solar radiation, which affects the secondary 
formation processes of particulate matter. Typically, 
secondary training involves fine fractions to a greater 
extent (Squizzato et  al., 2017; Sullivan et  al., 2016; 
Wang et al., 2016).

To perceive the daily concentration variation more 
thoroughly, Fig. 8 illustrates the differences in trends 
during the four seasons, and Fig. 9 shows the differ-
ences between workdays and weekend days.

According to Fig. 8, and confirming previous anal-
ysis, the highest concentrations occurred in winter, 
the lowest occurred in summer, and autumn values 
were higher than spring values.

During the day, the intensity fluctuations varied 
according to season. Winter had the greatest fluctua-
tion, and summer had the least. The daily percent-
age variations of  PM1,  PM2.5, and  PM10 were 33.1%, 
30.44%, and 24.8% in winter and 25.4%, 20.4%, and 
20.9% in summer. This indicates that the height of 
the PBL, which is lower in winter than in summer, 
strongly affects the daily concentration fluctuation 
(Maurizi et al., 2013). As subsidence tends to increase 
concentrations, radiance produces daily variation 
in the accumulation and dilution of contaminants 
(Chen et  al., 2016). The fluctuations in spring and 
autumn were minor in comparison to those in winter 
but greater than those in summer. The daily oscilla-
tions in  PM1,  PM2.5, and  PM10 were 26.8%, 23.9%, 
and 21.7% in spring and 29.5%, 27.4%, and 23.9% 

in autumn, respectively. Autumn and winter had 
similar inter-day variation behaviors, as did spring 
and summer, confirming the observations of Chen 
et al. (2016), R. Li et al., (2017a, b), and Zhao et al. 
(2018). One of the most important aspects of these 
trends is the diurnal concentration peak. In winter and 
autumn, the peak occurred at 11:00 AM. In summer 
and spring, it occurs at 9:00 AM. This contrasts with 
studies in different contexts. For example, Bamola 
et al. (2024) observed that PM2.5 and PM10 concen-
trations were higher during the morning (around 9:00 
AM) and lower in the early evening (4:00–5:00 PM) 
without seasonal changes.

Differences between weekend and workday trends

An important aspect of the analysis of temporal vari-
ation, the differences between weekend days (Satur-
day, Sunday, and holidays) and workdays (all other 
days) are illustrated in Fig.  9. The mean daily con-
centrations of  PM1 (z = 42,281; p > 0.1) and  PM2.5 
(z = 42,695; p > 0.1) were not significantly different in 
weekend days and workdays.  PM1 had a very low dif-
ference in concentration (< 1  µg/m3) between week-
end days and workdays (both about 19 µg/m3). Also 
for  PM2.5, the difference between workdays (22  µg/
m3) and weekend days (21 µg/m3) was very low about 
1  µg/m3. On the other hand, for  PM10, there was a 
reduction (z = 17,142; p < 0.05) on weekend days 
(29  µg/m3) compared to workdays (31  µg/m3). The 
difference between the two classes of days was 2 µg/
m3.

For all fractions, the hourly trends through a day 
showed a greater amplitude on workdays than on 
weekend days. The morning hour increase and after-
noon decrease are more marked for workdays (orange 
curve). Unlike the results of Chen et  al. (2016), the 
concentration peak was about 2  h ahead on week-
ends. Furthermore, for  PM2.5 and  PM1, the relative 
and absolute minimum values were advanced by 1 h. 
Conversely, Zhang et  al. (2021) conducted a similar 
analysis in Shanghai and found a noticeable weekend 
effect on PM10 concentrations, with higher values 
observed on weekdays compared to weekends. While 
aligning with our findings on PM10, they observed 
also CO and NOx to trace differences in vehicular 
emissions and human activities between weekdays 
and weekends.



Environ Monit Assess        (2024) 196:1251  Page 13 of 23  1251 

Vol.: (0123456789)

The mean  PM1/PM10 ratio was 0.67 on week-
end days and 0.62 on workdays. The mean  PM2.5/
PM10 ratio was 0.75 on weekend days and 0.70 on 
workdays. Hence,  PM1/PM2.5 was 0.89 and 0.86 on 

weekend days and workdays, respectively. In each 
ratio, the weekend days had a higher value than the 
workdays. Generally, there is a prevalence of fine 
particles at night on workdays. In the other hours, 

Fig. 8  Hourly mean vari-
ations of a  PM1, b  PM2.5, 
and c  PM10. Different col-
ours represent the four sea-
sons winter (red), autumn 
(yellow), spring (green), 
and summer (blue). The 
shaded area represents the 
95% confidence interval. 
The black line represents 
the overall annual mean 
concentration
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the weekend day curve is higher. This means that 
the weekend days are affected by a higher propor-
tion of fine particles in comparison to  PM10 than the 
workdays. An interesting element of this evaluation 
is the different trends for the two cases, which were 

verified by all three ratios considered. From 9:00 
AM to 1:00 PM, there was an increase in workday 
ratios. This did not occur on weekend days, for 
which the line is U-shaped with a minimum in the 
afternoon.

Fig. 9  Top, hourly trends in weekend day (blue) and workday (orange) a  PM1, b  PM2.5, and c  PM10 concentrations. Bottom, hourly 
trends in the weekend day and workday d  PM1/PM2.5, e  PM1/PM10, and f  PM2.5/PM10 ratios
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The differences in the trends can be attributed 
to the different traffic flows on weekend days and 
workdays (Giugliano et  al., 2005; Lonati et  al., 
2011). Traffic is the only source that is reduced 
during the weekend (Chang et  al., 2015). As was 
observed recently by Filigrana et  al. (2020) in a 
traffic study in the Po Valley, and also in the pre-
sent case, the weekend-day traffic reduction pro-
vides reductions in concentrations and substan-
tial changes in the relationships between fine and 
coarse fractions. Additionally, Zhang et  al. (2021) 
observed that the weekend effect varied seasonally, 
with a stronger effect in spring and autumn. This 
seasonal dependence was linked to changes in pho-
tochemical activity and meteorological conditions 
as well, which is consistent with our findings that 
highlight the influence of atmospheric conditions on 
particulate concentrations throughout the year.

Figure  10 shows the percentage differences from 
the weekly mean value for each day of the week for 
each of the four seasons. Considering the differences 
between weekend day and workday concentrations, 
the objective was to verify how the concentrations 
were distributed throughout the week and which days 
were more polluted than the seasonal mean pollution.

PM10 concentrations had a similar pattern to  PM1 
and  PM2.5 fractions in summer and spring. However, 
the  PM10 concentrations in autumn and winter formed 
a different trend. In summer, Thursday had the high-
est mean values: + 10.64% for  PM10, + 11.91% for 
 PM2.5, and + 13.69% for  PM1. Saturday and Sunday 
had values below the mean, but the Sunday reduc-
tions were about 10% for  PM1 and  PM2.5 and 14.35% 
for  PM10. Mondays showed a substantial reduction 
of  PM1 and  PM2.5, but the coarse fraction concentra-
tion was consistent with the global mean. In spring, 

Fig. 10  Day-of-week trends of  PM1,  PM2.5, and  PM10 in the different seasons a winter, b autumn, c summer, and d spring. Error 
bars represent the 95% confidence interval. The red dot line represents the weekly mean value
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Thursdays and Fridays had increases compared to the 
mean of more than 15%. On the other hand, in addi-
tion to weekend days, Mondays and Tuesdays had 
concentrations 10% lower than the mean. In winter, 
the concentration peaks of  PM1 and  PM2.5 occurred 
on Sunday (+ 12.3% and 9.6%), followed by a linear 
reduction until Wednesday, when changes of − 8.8% 
and − 9.5% were recorded. The  PM10 fraction had 
fewer variations during the week, with two days at 
higher concentration. Similarly, in autumn, the mini-
mum occurred on Tuesday, and Thursday and Friday 
had the highest values.

Globally, summer and spring had lower values on 
weekends and higher values on workdays. In autumn 
and winter, the minimum was in the middle of the 
week, and the highest values occurred on the week-
end. As in Fig.  8, similar trends were observed in 
autumn and winter and in spring and summer. The 
findings of Peccarrisi et  al. (2024) corroborate our 
results. They observed that  PM2.5 and  PM10 concen-
trations exhibited higher values from Tuesday to Fri-
day and decreased over the weekend due to reduced 
human activities. Peccarrisi et  al. (2024) also high-
lighted that the weekly cycle of  PM2.5 concentrations 
showed seasonal variations. In winter and spring, all 
sites presented larger values on Friday, with a signifi-
cant increase from Tuesday to Friday, followed by a 
decrease during weekends. Additionally, some analo-
gies can be drawn from our evidence and the findings 
of Xue et  al. (2020), who investigated the day-of-
week patterns of  PM0.1, components such as organic 
carbon and elemental carbon. They found a simi-
lar trend in organic carbon, suggesting an increased 

impact of biomass combustion during the winter and 
autumn seasons. They found a similar trend in organic 
carbon, suggesting an increased impact of biomass 
combustion during the winter and autumn seasons. 
This observation is further supported by the evidence 
from Pognant et  al. (2017), who studied annual and 
seasonal concentrations of ultrafine particulate matter 
in a geographic context similar to ours. Their research 
highlighted the emissions of biomass boilers under 
different scenarios.

Source direction

The results of CPF are shown in Fig. 11. As shown, 
similar configurations were obtained for all three 
particulate classes. There is a low probability of con-
centrations greater than the 75th percentile in the 
N–NE–E angular sectors. High probabilities occur 
in the opposite S–SW–W angular sectors. This result 
has particular interest as these are typical directions 
for long-range particle transport involving Saha-
ran dust. For high concentration values, there are no 
significant influences in the direction of the Po Val-
ley (NE–E). This confirms that the phenomenon of 
major pollution due to subsidence is homogeneous 
and involves the entire Po Valley (Arvani et al., 2016; 
Diémoz et al., 2019).

The graphs in Fig.  12 show the combinations 
of wind speed and direction at the measurement 
site. The color intensity indicates the concentration 
recurrence probability for each selected concentra-
tion range. As shown, there were different results 
for the three analyzed particulate fractions. The finer 

Fig. 11  Conditional probability function (CPF) plots for the Polytechnic station for a  PM1, b  PM2.5, and c  PM10 concentra-
tions > 75th percentile
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Fig. 12  Conditional bivariate probability function plots for 
four intervals of  PM1,  PM2.5, and  PM10 hourly concentrations 
at the Polytechnic station. CBPF probability is indicated by 
the color scale. The interval shown below the graphs corre-

sponds to the four quartiles of the PM values 1–25%, 25–50%, 
50–75%, and 75–99%. Each circle represents the wind inten-
sity (from 2 to 8  m/s), and the perpendicular axis represents 
the compass (wind direction N, S, W, E)
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fractions  (PM1 and  PM2.5) showed a prevalence of 
low concentrations (first quartile) when the wind 
blows from the east with an intensity range from 4 to 
6. This phenomenon could be attributed to the aero-
sol contribution of the PM concentrations in the Po 
Valley which is in an easterly direction with respect 
to the measurement point according to Diémoz et al. 
(2019). On the other hand, the  PM10 prevalent in the 
first quartile occurred when the wind was from the 
NW–W with varying speeds (2–8 m/s). For the sec-
ond quartile, the highest probabilities were gathered 
around the origin, at low speeds (< 4 m/s) and with a 
slight prevalence of NE direction.

For the last two quartiles, the highest probabili-
ties for all the PM fractions are concentrated on the 
origin. Instead, there was a slight probability for the 
NE–SW line for  PM2.5 and  PM10. These directions 
represent the two major openings of the city of Turin 
toward the Po Valley. In fact, in the E–SE direction, 
the city is separated by a hill; on the opposite side, 
it is surrounded by the Alps. The S–SW direction is 
therefore the main arrival direction of particulates 
during Saharan events (fourth quartile) (Diémoz 
et  al., 2021; Tositti et  al., 2014). This also confirms 
the result illustrated in Fig. 11 regarding the prepon-
derance of concentrations in the fourth quartile in the 
S–SW direction.

Conclusion

The present study analyzed the spatial and temporal 
variations of  PM1,  PM2.5, and  PM10 concentrations 
in the metropolitan city of Turin from 2018 to 2021. 
The study also provided an analysis of the direction 
of sources through a conditional probability analysis. 
Although the study focused on a specific area of the 
Po Valley, it is representative of different conditions 
of diffusion of contaminants in urban environments 
that were investigated.

In this environmental context, as the urban context 
changed were substantial differences in  PM10 concen-
tration. In particular, the lowest concentrations were 
recorded in the background environment (29 µg/m3), 
and the maximum occurred at traffic stations (36 µg/
m3).  PM2.5 concentrations in the background envi-
ronment were about 20 µg/m3. However, at the traf-
fic stations, concentrations were significantly higher 
(24 µg/m3). Large fluctuations in concentrations were 

observed across the seasons and throughout the day. 
Due to the predisposing atmospheric conditions and 
a greater contribution of sources (such as domes-
tic heating and biomass burning), the winter months 
had higher concentration values of the three observed 
PM fractions  (PM1,  PM2.5, and  PM10). Furthermore, 
the central hours of the day and the evening were 
affected by higher concentrations. Daily variation in 
concentrations was more pronounced in the winter 
and autumn than in the summer and spring. The traf-
fic effect on particulate concentration was assessed by 
observing the differences in concentration between 
weekend days and workdays.  PM1,  PM2.5, and  PM10 
values were 1.81%, 1.84%, and 6.14% lower on week-
end days than on workdays. Furthermore, the hourly 
trends through the day differed in times of relative 
maximum and minimum concentrations. Finally, 
applying CPF and CBPF to pollutant concentrations 
and wind speed and direction highlighted the ways in 
which the local pollution of the city of Turin is condi-
tioned by global phenomena. The major external par-
ticulate contributions, observed in the first and second 
quartiles (Fig. 12), were from the N–NE, direction of 
Po Valley. However, for all PM fractions, there was a 
contribution from the S–SW, the typical direction of 
Saharan dust transport.

The results of the present study could help deci-
sion-makers adopt restrictive policies and measures 
to reduce pollution in specific areas or specific time 
periods. Furthermore, the study provides researchers 
with a general framework of particulate concentra-
tions in different contexts. Similar findings have been 
reported globally, highlighting the need for tailored 
air quality management plans that consider specific 
urban contexts (Karagulian et  al., 2015). Additional 
studies will be needed to evaluate the influences of 
meteorological phenomena that contribute to the dilu-
tion of contaminants (such as rain and wind) to the 
spatial and temporal variations of particulate con-
centrations. For instance, in-depth investigations on 
seasonal variations and the role of meteorological 
conditions can provide further insights into effective 
pollution control measures (Briggs & Long, 2016). 
Finally, in a geographically adverse context such as 
the Po Valley, an assessment of how emission reduc-
tion policies (e.g., traffic blocks) would affect the spa-
tial and temporal variations of contaminants could 
be a useful further line of research. This is in line 
with other studies calling for studying how targeted 
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policies, including traffic restrictions and improved 
public transportation, can lead to significant reduc-
tions in particulate matter concentrations and improve 
overall air quality (Vyas & Varia, 2023).
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