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A B S T R A C T

Despite the emerging field of data-driven turbulence models, there is a lack of systematic high-fidelity datasets
at flow configurations changing continuously with respect to geometrical/physical parameters. In this work,
we investigate the possibility of using Delayed Detached Eddy Simulation (DDES) to generate reliable datasets
in a significantly cheaper manner compared to the DNS or LES counterparts. To do that, we perform 25
simulations of the geometrically-parameterized periodic hills test case to deal with different hills steepnesses.
We firstly check the accuracy of our results by comparing one simulation with the benchmark case of Xiao
et al. Then, we use such database to train the turbulent viscosity-Vector Basis Neural Network (𝜈𝑡-VBNN)
data-driven turbulence model. The latter outperforms the classic 𝑘 − 𝜔 SST RANS model, proving that our
generated dataset can be useful for data-driven turbulence modeling and opening the opportunity to exploit
DDES to create systematic datasets for data-driven turbulence modeling.
1. Introduction

Albeit the majority of industrial and daily-life flows are turbu-
lent, we are still lacking to fully understand and accurately model
turbulence. This aspect drastically impacts on Computational Fluid
Dynamics (CFD): resolving Direct Numerical Simulation (DNS) is com-
putational prohibitive and, thus, the usage of turbulence models is
almost mandatory.

Turbulence models can be divided into two main groups: (i) scale-
resolving models, such as Large Eddy Simulation (LES), where the
larger scales of turbulence are resolved and only the small ones are
modeled; (ii) completely modeling models, such as Reynolds-Averaged
Navier–Stokes (RANS) equations where all turbulence contribution on
the averaged fields is modeled. The former are usually more accurate
but still require considerable computational cost, making them unaf-
fordable for many industrial cases [1]. Consequently, RANS equations
are the most common choice to tackle highly turbulent flows with
complicated geometries.

Despite the long history of the RANS modeling field [2], RANS mod-
els are currently experiencing a stagnation period in terms of accuracy
improvements [3]. This consideration, combined with the increasing
interest in Scientific Machine Learning, has pushed researches to use
machine learning techniques in the RANS field [4–7].

While the common aim is to improve the accuracy of data-driven
RANS models compared to the classic ones, authors have investigated
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different aspects of this emerging field. For example, several works
focus on enforcing into data-driven models physical constraints such
as Galilean invariance or independence of the frame-reference coordi-
nates [8–10] or on dealing with the bad-conditioning of the resulting
RANS system [11,12]. Others analyze the target turbulent quantities
to be predicted through machine learning [13–16] or the machine
learning framework to be used [17–22].

As pointed out by Xiao et al. [23], while more and more LES and
DNS data are becoming available for various flow typologies, the field
still lacks of systematic datasets with fixed flow configuration and
parameterized by geometrical and/or physical parameters. Honorable
mention must be made to the Pinelli et al. [24] dataset of DNS results
of flows in a square duct at different Reynolds numbers. In an attempt
to fill the gap, Xiao et al. created a database by performing several
DNS simulations of the well-known and investigated Periodic Hill (PH)
case [25]. At the begging, this dataset contained data coming from 5
DNS simulations with different hill’s steepnesses and, since then, the
number of simulations available has increased. However, adding new
data coming from DNS simulations is computationally expensive and
makes prohibitive the generation of datasets spanning wide parametric
spaces, tackling complicate geometries or at high Reynolds numbers.

For this reason, in this paper we investigate the possibility to use
Delayed Detached Eddy Simulation (DDES) to generate such datasets.
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Fig. 1. Parametric hill shapes depending on 𝛼. Each geometry is obtained by multi-
plying the 𝑥-coordinates of the reference case by 𝛼.

DDES models, specific cases of Detached Eddy Simulation (DES) mod-
els, can be interpreted as hybrid RANS-LES models where a RANS
model is used in some regions while LES is used in the remaining
part of the domain. The switch among models is made by means of
a blending function [26]. The scope of using DDES models in this
ontext is to build cheaper but still reliable datasets. To investigate
he feasibility of this approach, we create a new dataset composed by
5 simulations of the PH case. The geometries of the simulations are
eometrically parameterized by a factor 𝛼: each geometry is obtained
rom the reference one (𝛼 = 1) by multiplying the 𝑥-coordinates of
he reference case by 𝛼, see Fig. 1. This parameter assumes values 𝛼 =
.4, 0.45,… , 1.55, 1.6. To our best knowledge, no similar one-parameter
overage has been presented in the data-driven turbulence models
iterature. We observe that, except for the 𝛼 = 1 case, the simulations
omains differ from the Xiao et al. ones. Indeed, in [23] the 𝛼 parameter

affects the hills steepness but not the length of the domain between the
wo hills. On the other hand, in the present study 𝛼 affects the shape of

all the domain. Successively, we exploit such data to train and test the
𝜈𝑡-VBNN [27] model. This model predicts through two neural networks
the turbulent viscosity 𝜈𝑡 and the Reynolds force vector, i.e. the diver-
gence of the Reynolds stress tensor, contribution not accounted in the
turbulent viscosity term. The particular architecture and inputs choice
of this approach guarantee both Galilean invariance and appropriate
otations under change of coordinates [10]. We show that the 𝜈𝑡-VBNN
odel trained with our dataset significantly outperforms the standard
− 𝜔 SST model.

The paper is structured as follows: besides this introduction, in the
next Section we make a brief overview on turbulence modeling aspects
useful to this work; successively, in Section 3 we describe the numerical
ramework of our DDES simulations and we carry out a careful analysis
sing the DNS benchmark results of Xiao et al. to check the accuracy
f the 𝛼 = 1 case; then, we discuss in Section 4 the data-driven RANS

framework employed in this work; in Section 5 we analyze the results
obtained with our data-driven model and study the effect of some
training parameters; finally, conclusions are drawn.

As a final remark, we share our DDES results on GitHub [28].

2. Turbulence models

Classic Navier–Stokes (NS) equations for incompressible flows read
{

∇ ⋅ 𝒖 = 0
𝜕𝒖
𝜕 𝑡 + 𝒖 ⋅ ∇𝒖 − 𝜈 𝛥𝒖 = −∇𝑝, (1)

where 𝒖 is the velocity field, 𝑝 the pressure field divided by the constant
mass density of the fluid and 𝜈 is the kinematic viscosity of the fluid.
2 
Additionally, we make the assumption that we deal with flows that are
steady in-average. While NS equations are perfectly suited to math-
ematically describe turbulent flows, they require a computationally
prohibitive discretization in both time and space to be able to describe
the smallest eddies [29,30]. As a matter of fact, turbulence models
are usually used to model the effects of all turbulence scales or small-
st turbulence scales to mitigate the constraint on the computational
iscretization.

In the following, we briefly describe three classes of turbulence
models: Reynolds-averaged Navier–Stokes (RANS) models, Large Eddy
Simulation (LES) and Detached Eddy Simulation (DES).

2.1. RANS models

Steady RANS equations for incompressible flows read
{

∇ ⋅ 𝒖 = 0
𝒖 ⋅ ∇𝒖 − 𝜈 𝛥𝒖 = −∇𝑝 − ∇ ⋅ 𝝉 ,

(2)

where, with an abuse of notation, 𝒖 and 𝑝 represent the time-averaged
velocity and pressure field respectively. 𝝉 is the Reynolds stress tensor
(RST), a symmetric second order tensor that takes into account the
correlation among the fluctuating components of the velocity field. This
tensor is unknown and need to be closed. We also define the Reynolds
force vector 𝒕 as the divergence of the RST [13].

Classically, RANS models define a set of partial differential equa-
tions to close the RST. Here, we focus on linear models based on the

oussinesq’s hypothesis

𝝉 = 2
3
𝑘𝑰 − 2𝜈𝑡𝑺, (3)

where 𝑘 = 1∕2 tr(𝝉) in the turbulent kinetic energy, being tr the trace
operator, 𝑰 is the identity tensor, 𝜈𝑡 is the turbulent viscosity and 𝑺 =
1∕2 [∇𝒖 + (∇𝒖)𝑇 ] is the mean strain rate tensor.

In this work we use both the 𝑘 − 𝜔 SST model [31] and 𝑘 − 𝜀
model [32]. In the former, we have 𝜈𝑡 = 𝑘∕𝜔, being 𝜔 the turbulence
specific dissipation rate, while in the latter we have 𝜈𝑡 = 0.09𝑘∕𝜀2. Two
transport equations for 𝑘 and either 𝜔 or 𝜀 are solved.

2.2. LES models

Large eddy simulation (LES) solve the equations
{

∇ ⋅ 𝒖 = 0
𝜕𝒖
𝜕 𝑡 + 𝒖 ⋅ ∇𝒖 − 𝜈 𝛥𝒖 = −∇𝑝 − ∇ ⋅ 𝝉𝑟,

(4)

where, contrarily to the RANS equations, 𝒖 and 𝑝 are the velocity and
pressure fields filtered in both time and space [33]. Because fields are
not time-averaged and being turbulence an intrinsically time-dependent
henomenon, LES equations contain the derivative of the velocity field
ith respect to time even for time-averaged steady flows. The second
rder tensor 𝝉𝑟 is the residual stress tensor and needs to be modeled.
ere, we focus only on Smagorinsky sub-grid scale models [34] where

the deviatoric part of 𝝉𝑟 in modeled as

𝝉𝑟 − 1
3

tr(𝝉𝑟)𝑰 = −2𝜈𝑡𝑺, (5)

being 𝑺 the symmetric part of the filtered velocity gradient and 𝜈𝑡 still
a turbulent viscosity.

2.3. DES models

Detached eddy simulation can be interpreted as a RANS model that
switches to a LES sub-grid scale model where turbulence length-scales
exceed the computational grid dimensions. Usually, RANS model is
used near wall while LES model is used far from wall. In this work
we use a delayed detached eddy simulation (DDES) [35], where the
transition from RANS to LES regions is performed through blending
functions.
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Fig. 2. Computational mesh on different domain boundaries.
Fig. 3. Time average of turbulence models region splitting. Blue regions correspond to regions where only RANS has been used while in red regions where only LES has been
used. Additionally, in white we show the streamlines of the time and spanwise averaged velocity field.
3. High fidelity simulations generation

The flow over periodic hills is a classic benchmark to access the per-
formance of turbulence models, e.g. [36,37], thanks to availability of
reliable both experimental and computational data [38–41] at different
Reynolds numbers ranging from 𝑅𝑒 = 700 to 𝑅𝑒 = 37000. Among the
benchmark references, Xiao et al. [23] built a dataset by performing
DNS simulations over a class of parameterized geometries where hills
steepness changes while keeping fixed the Reynolds number 𝑅𝑒 = 5600.
This data availability drove researchers to use such flow configuration
to test data-driven turbulence models [42–45].

To access the quality of the DDES simulations used in this work
to generate our dataset, we describe the computational aspects and
compare the results to the benchmark simulation [23] for the 𝛼 = 1
case.

3.1. Numerical set-up

The Reynolds number is 𝑅𝑒 = 5600 based on the hill height 𝐻
and the bulk velocity 𝑈𝑏 at the hill crest. Periodic boundary conditions
are applied in the streamwise 𝑥 and spanwise 𝑧 directions and no-
slip conditions are applied at wall. The computational domain has
dimensions 𝐿𝑥 = 9𝐻 in the streamwise direction, 𝐿𝑦 = 3.036𝐻 in
the 𝑦 direction and 𝐿𝑧 = 4.5𝐻 in the spanwise direction following the
recommendation in [39]. The mean flow is two-dimensional being the
spanwise direction homogeneous.

The DDES equations have been discretized using a finite-volume
based solver using a hexahedral mesh, see Fig. 2. The height of the first
3 
Table 1
Numerical parameters for DDES simulation with 𝛼 = 1.
𝑅𝑒 𝛥𝑦ℎ𝑤∕𝐻 𝛥𝑦𝑡𝑤∕𝐻 𝑁𝑐 𝑒𝑙 𝑙 𝑠 𝑇𝑎𝑣𝑔 𝑈𝑏∕𝐿𝑥 𝛥𝑡 𝑈𝑏∕𝐿𝑥

5600 2 × 10−3 4 × 10−3 5.9 × 106 40 4.5 × 10−4

computational cell along the wall normal direction is 𝛥𝑦ℎ𝑤∕𝐻 ≈ 2 × 10−3
on the hill wall and 𝛥𝑦𝑡𝑤∕𝐻 ≈ 4 × 10−3 on the top wall. The expansion
ratios across the wall-normal direction are 1.05 and 1.1 respectively.
The computational mesh has been refined for 𝑦∕𝐻 < 1.2 with a higher
refinement for 𝑥∕𝐻 < 4.5 where flow recirculation is expected, see
streamlines in Fig. 3. The total number of computational cells is 𝑁𝑐 𝑒𝑙 𝑙 𝑠 ≈
5.9 × 106.

The flow is statistically steady and data are averaged after an initial
transient state. Firstly, a RANS simulation is performed for 6.7 𝐿𝑥∕𝑈𝑏
and used as initial condition of the DDES simulation. The latter covers
a time period 𝑇 = 60 𝐿𝑥∕𝑈𝑏 and fields are averaged in the last
𝑇𝑎𝑣𝑔 = 40 𝐿𝑥∕𝑈𝑏. Statistical convergence has been checked by carrying
a careful analysis on second order statistics such as Reynolds stresses.
A time step of approximately 9 × 10−4𝐿𝑥∕𝑈𝑏 is initially adopted for the
DDES run and decreased during the first stages of the transient period
to attain at 𝑡 = 13 𝐿𝑥∕𝑈𝑏 a value of 𝛥𝑡 ≈ 4.5 × 10−4 𝐿𝑥∕𝑈𝑏. Finally, the
time-averaged fields are averaged in the spanwise direction too. Table 1
summarizes all the aforementioned parameters.

3.2. Validation to reference results

Firstly, in Fig. 3 we can observe in which regions the RANS model is
prevalently used (blue regions) and in which LES is used (red regions).
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Fig. 4. Comparison of velocity profiles, being DNS profiles from Xiao et al. [23].
𝜈

As expected from a DDES model, near wall the RANS model is used and
it switches to LES moving far from wall.

To validate our results, we compare in Fig. 4 the velocity profiles
with the benchmark case of in Xiao et al. [23]. In addition, we show
the velocity profiles obtained using both the 𝑘−𝜔 SST and 𝑘− 𝜀 RANS
models on a 2D mesh. The DDES result shows good agreement with the
benchmark case, although significant discrepancies are observable for
the vertical velocity, in particular close to the hills crests. On the other
hand, among the two RANS models, the 𝑘− 𝜀 model gives a better pre-
diction of the recirculation region and of the vertical velocity but still
poorly predicts the horizontal velocity near the bottom wall, whereas
the 𝑘−𝜔 SST model significantly overestimates the backward horizontal
velocity in the bottom part of the domain and badly describes the
vertical velocity across the domain.

Fig. 5 compares the Reynolds stresses profiles. RANS stresses have
been computed starting from the 𝑘 and either 𝜀 or 𝜔 fields using the
Boussinesq’s assumption. For both RANS models, profiles completely
differ from the reference case while the DDES ones are closer. However,
also in this case significant discrepancies can be observed, especially
for the 𝜏𝑥𝑦 component. It is worth mentioning that the Reynolds stresses
will never be used in our machine learning approach, but their analysis
are still a good metric to verify the effectiveness of our simulations
and, in particular, the systematic improvement compared to the RANS
models.

Finally, in Fig. 6 we present the distribution of 𝑦+ at the hill wall
where 𝑦+ = 𝛥𝑦ℎ𝑤𝑢𝜏∕𝜈, being 𝑢𝜏 =

√

𝜏𝑥𝑦∕𝜌 the shear stress velocity. The
obtained 𝑦+ is consistent with [23,39].

To conclude this section, we want to summarize the outcome of the
analysis just carried out. DDES fields are in good agreement with re-
spect to the results of Xiao et al. with some discrepancies. However, the
latter results are obtained using high-order methods and significantly
finer discretizations in both time and space to avoid any turbulence-
scale modeling. We believe that DDES models can be useful to generate
datasets if the main objective is to cover wider parametric spaces with
significantly more simulations while still consistently improving the
accuracy of standard RANS models, as found out in the above analysis.

4. Machine learning environment

4.1. Machine learning model

In this work we use the 𝜈𝑡-Vector Basis Neural Network (𝜈𝑡-VBNN)
as machine learning setting to close the RANS equations. This model,
initially proposed in [10] and subsequently improved in [27], aims
to predict through two feed-forward neural networks the turbulent
viscosity 𝜈𝑡 and the component of the Reynolds force vector that is
not taken into account in the turbulent viscosity term, defined as 𝒕⟂ =
∇ ⋅ (𝝉 + 2𝜈 𝑺).
𝑡

4 
We deal with the Reynolds force vector (RFV) rather than the RST
motivated by [13]. In particular, the RFV can be computed from scale-
resolving simulations, like DNS or LES, using first-order statistics only.
Consequently, if the time-averaging window is not wide enough, the
RFV is less affected by errors compared to the Reynolds stresses, that
are second-order statistics [14]. The choice to predict separately 𝜈𝑡 and
𝒕 is driven by [11,12] where it is shown that this approach improves
the conditioning of the new RANS system and it less affected by the
intrinsic errors during the Machine-Learning regression step.

We opt to deal with 𝜈𝑡 = 𝜈𝑡∕𝜈 and 𝒕⟂ = 𝑘1∕2∕𝜀 𝒕⟂ to handle
dimensionless fields taking values of 𝑂(1) or 𝑂(10) and thus helping
the learning procedure [46,47]. Following the 𝜈𝑡-VBNN approach, 𝜈𝑡 is
directly predicted by its neural network while 𝒕⟂ is written as linear
combinations of a chosen vector basis and the learning targets of the
training process are the coefficients of such combination

𝑡̃ = 𝜈𝑡(𝜆1,… , 𝜆𝑁𝑖
), (6a)

𝒕⟂ =
𝑁𝑐
∑

𝑘=1
𝑐𝑘(𝜆1,… , 𝜆𝑁𝑖

)𝒗𝑘. (6b)

Both 𝜈𝑡 and the coefficients 𝑐𝑘, 𝑘 = 1,… , 𝑁𝑐 , depend on scalar
fields 𝜆𝑖, 𝑖 = 1,… , 𝑁𝑖, usually referred as invariants, obtained by
appropriate multiplications of the symmetric and antisymmetric parts
of the velocity gradient, 𝑺 and 𝑾 respectively, and ∇𝑘. The expression
of the invariants and of the vector basis is given in Appendix. The
invariants are the inputs of the neural networks where the outputs are
either the dimensionless turbulent viscosity or the coefficients of the 𝒕⟂
expansion. This particular setting enforces both Galilean invariance and
independence of the chosen frame of coordinates. We refer to [10,27]
for the discussion of the enforced physical properties of the 𝜈𝑡-VBNN.

Finally, in this work we changed the wall-distance based Reynolds
number 𝑅𝑒𝑑 = min(

√

𝑘𝑑
50𝜈 , 2) invariant [10,48,49] with

√

𝑘𝑑
2500𝜈 to avoid

discontinuities of its gradient. As a matter of fact, we observed that,
when using the former in the training of 𝜈𝑡, nonphysical peaks of the
predicted turbulent viscosity were obtained across the recirculation
region where the gradient of 𝑅𝑒𝑑 is discontinuous.

4.2. Dataset

A total of 25 pairs of RANS-DDES simulations have been performed
by spanning the geometrical parameter 𝛼 defined in Section 3 to assume
values 𝛼 = 0.4, 0.45,… , 1.55, 1.6. The 𝑘−𝜔 SST model has been chosen as
RANS model to challenge the 𝜈𝑡-VBNN approach with the worst RANS
model among the two investigated in the previous section. The RANS
simulations have been performed on 2D meshes coarser than the DDES
meshes projected in the 𝑥𝑦-plane, see Fig. 7(a). Indeed, we observed
that a coarser mesh could be used reaching already mesh conver-
gence. The invariants are computed from the RANS simulations while



D. Oberto et al. Computers and Fluids 288 (2025) 106506 
Fig. 5. Comparison of Reynolds stresses profiles, being DNS profiles from Xiao et al. [23].
Fig. 6. 𝑦+ distribution on the hill wall for 𝛼 = 1.

high-fidelity 𝜈𝑡 and 𝒕⟂ are obtained from the corresponding spanwise-
averaged DDES simulations interpolated on the 2D RANS mesh. In
particular, once 𝜈𝑡 is derived, the 𝒕⟂ field is computed indirectly [12]
as

𝒕⟂ = −𝒖∇𝒖 + ∇ ⋅ [(𝜈 + 𝜈𝑡)∇𝒖] − ∇𝑝, (7)

where 𝒖 and 𝑝 are the time averaged DDES fields. Finally, 𝒕⟂ is set
dimensionless using the turbulent fields 𝑘 and 𝜀 of the corresponding
RANS simulations.

The obtained dataset consists of 4.51 × 105 computational cells.
Fig. 7(b) shows the number of cells with respect to 𝛼, being that the
higher is 𝛼, the larger the domain and, consequently, the more the
computational cells.

4.3. Reference training settings

We define a reference training setting to be able to analyze in the
second part of this section the effect of several training parameters. We
will denote this case as Ref.
5 
Data coming from all computational cells of every simulation except
for the 𝛼 = 1 one are used for a total of 4.33 × 105 cells. Data are then
split into 80% of them to train the two networks and 20% for validating
only. The splitting into the two groups is random and independent for
the two trainings.

The two neural networks have 8 hidden layers made by 30 nodes
each with ELU activation functions [50]. The two losses are the mean
square errors with respect to the target 𝜈𝑡 and 𝒕⟂ with a 𝐿2 regulariza-
tion factor of 10−4 and 10−5 respectively. The trainings are performed
using the pytorch library [51]. The Adam optimizer [52] is used with
initial learning factors of 10−3 that decrease up to 10−6 during the
trainings. Weights are updated using a mini-batching strategy with
a batch size of 64. The maximum number of epochs per training is
500 but the training can be stopped earlier if the validation loss does
not decrease for 80 consecutive epochs. For each network, 10 distinct
trainings are performed and the best one in terms of validation error is
kept.

5. Results

Once the 𝜈𝑡-VBNN model is trained, both 𝜈𝑡 and 𝒕⟂ can be predicted
using data coming from RANS simulations only, opportunely multiplied
by powers of 𝑘 and 𝜀 coming from the RANS and injected as fixed fields
into the momentum Eq. (2) until new convergence of the RANS solver
is reached.

To make the analysis more effective, we define an additional setting
denoted by 𝙵𝚒𝚡. In this case, we insert into the RANS equations the 𝜈𝑡
and 𝒕⟂ of the DDES simulation interpolated on the RANS mesh without
any data-driven model’s approximation. It is an ideal setting of perfect
data-driven model that does not make any error in the regression step
and it represents the target accuracy that our data-driven model can
attain.

In this section, we firstly investigate the velocity field obtained using
the turbulent fields coming from the Ref setting and observe the better
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Fig. 7. RANS mesh for 𝛼 = 1 (left) and RANS number of cells with respect to 𝛼 (right).
Table 2
Reattachment points 𝑥𝑎∕𝐻 .

DNS DDES RANS 𝙵𝚒𝚡 Ref

4.64 4.61 7.60 4.26 4.65

results compared to the 𝑘 − 𝜔 SST model. Successively, we investigate
the effect of several training parameters by systematically changing
them one-by-one.

5.1. Ref case

Fig. 8 compares the velocity field obtained using our DDES model,
the 𝑘−𝜔 SST model, the 𝙵𝚒𝚡 case and our data-driven 𝜈𝑡-VBNN model
using the Ref setting discussed above. We also show the DNS velocity
field to additionally test the accuracy of DDES results.

Regarding the 𝑢𝑥 component, the 𝑘−𝜔 SST model overestimates the
values in the upper part of the domain and drastically overestimates
the length of the recirculation region, being 𝑢𝑥 still negative at the
beginning of the second hill. Finally, it does not predict any maxima
region close to the top of the hills’ crests. On the other hand, the Ref
case alleviates all RANS drawbacks. The discrepancies with respect to
the DDES case (slight overestimation in the upper part of the domain
and smaller maxima region on the top of hill crests) are observed in
the 𝙵𝚒𝚡 case too, letting suppose that could not be completely removed
even with an ideal training setting.

Regarding the 𝑢𝑦 component, again the RANS model shows impor-
tant discrepancies with respect to the DDES case: the negative values
in the middle of the domain are underestimated as for the maxima
values after the first hill crest and before the downwinding hill crest.
In general, the Ref field is close to both the 𝙵𝚒𝚡 and the DDES cases.

In Fig. 9 we show the horizontal velocity at the first layer of cells
attached to the hill wall. This quantity is useful to detect the reat-
tachment point 𝑥𝑎∕𝐻 corresponding to the 𝑥∕𝐻 value with transition
from negative to positive 𝑢𝑥. The exact transition value is reported in
Table 2. The 𝑘 − 𝜔 SST curve completely differs form the others and
predict a late reattachment. On the other hand, the Ref curve predicts
a reattachment point close to the DNS and DDES one and, in general,
behaves like these two cases.

5.2. Analysis on some training parameters

We carry out a systematic analysis on some parameters regarding
the training stage both in term of predicted 𝜈𝑡 and 𝒕⟂ fields and on
resulting pressure and velocity fields.

To make an easier and more concise analysis, we define 6 different
regions in the domain, shown in Fig. 10, and compute the relative
errors of each field with respect to the DDES case. These regions are
physically of interest: the 𝙲𝚑𝚊𝚗 region focuses on the channel-like top
part of the domain containing maxima values of 𝑢 ; analogously for
𝑥
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Table 3
Training settings for the different cases. In the ‘‘Same 𝜈𝑡 as Ref’’ column we report if
the neural network for 𝜈𝑡 of the Ref setting is used or if a new one has been trained.
𝛼 = 1 is always excluded from training/validation dataset.

𝛼 values # cells 𝐿2-reg of 𝒕 Same 𝜈𝑡
as Ref

Ref all 4.33 × 105 10−5 True

𝚝⟂ − 𝙼𝚘𝚛𝚎𝚁𝚎𝚐 all 4.33 × 105 10−3 True

CoarserRange 0.4, 0.5,… , 1.5, 1.6 2.16 × 105 10−5 False

SmallerRange 0.7, 0.75,… , 1.25, 1.3 2.16 × 105 10−5 False

𝚕𝚎𝚜𝚜𝙳𝚊𝚝𝚊 all 2.04 × 105 10−5 False

𝙲𝚑𝚊𝚗𝙲𝚞𝚝 that focuses where 𝑢𝑥 is minimum in 𝙲𝚑𝚊𝚗 (see Fig. 8); 𝚁𝚎𝚌𝚒𝚛𝚌
corresponds to the recirculation region; 𝚁𝚎𝚌𝚒𝚛𝚌𝙻𝚘𝚗𝚐 on the bottom part
of the domain in general; 𝜈𝑡−𝙼𝚊𝚡 corresponds to the region of maximum
of the turbulent viscosity; finally 𝙽𝚎𝚊𝚛𝙷𝚒𝚕𝚕 collects all computational
cells near the hill wall depicted in Fig. 10(b). In the following, we
denote by 𝛺 the whole domain.

Given a training setting and a region , the errors for a scalar and
vector field, 𝑠 and 𝒗 respectively, are defined as

𝑒𝑠 =

∑

𝑖∈
𝑤𝑖

√

(𝑠𝑖 − 𝑠𝑖𝐷 𝐷 𝐸 𝑆 )2
∑

𝑖∈
𝑤𝑖

|𝑠𝑖𝐷 𝐷 𝐸 𝑆 |
, 𝑒𝒗 =

∑

𝑖∈
𝑤𝑖

√

∑

𝑗=𝑥,𝑦
(𝑣𝑖𝑗 − 𝑣𝑖𝐷 𝐷 𝐸 𝑆 ,𝑗 )2

∑

𝑖∈
𝑤𝑖

√

∑

𝑗=𝑥,𝑦
(𝑣𝑖𝐷 𝐷 𝐸 𝑆 ,𝑗 )

2
, (8)

where the apex refers to the single computational cell in the  region
and 𝑤𝑖 is the volume of the 𝑖-th cell.

To make a fair comparison among pressure fields, we define the
pressure coefficient

𝐶𝑝 =
𝑝 − 𝑝𝑟𝑒𝑓
0.5𝜌𝑈2

𝑏

, (9)

where 𝜌 is the constant fluid density and 𝑝𝑟𝑒𝑓 is the pressure at the
computational cell with coordinates (0.051, 1.92), located near the first
hill crest at middle channel height.

Finally, Table 3 summarizes all the cases that will be discussed in
the following. For the training settings that involve changes on the 𝒕
neural network only, we do not train a neural network for 𝜈𝑡 field and
we use the Ref field instead. In all settings, data coming from the 𝛼 = 1
case are kept out from the training process.

5.2.1. Regularization factor in losses
We investigate the effect of increasing the 𝐿2-regularization factor

in the 𝒕⟂ loss function from 10−5 of the reference case to 10−3. We
denote this case by 𝚝⟂ − 𝙼𝚘𝚛𝚎𝚁𝚎𝚐. It is well known that the higher this
parameter, the lower the risk of overfitting the training data but, at
the same time, the higher the risk of underfitting unseen data. For
this reason its value should be carefully chosen. The errors of the new
𝚝⟂ − 𝙼𝚘𝚛𝚎𝚁𝚎𝚐 case with respect to the DDES case compared to the RANS
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Fig. 8. 𝑢𝑥 and 𝑢𝑦 fields for DNS, DDES, RANS, 𝙵𝚒𝚡 and Ref cases.
Fig. 9. 𝑢𝑥∕𝑈𝑏 at the first layer of cells attached to the hill wall. Reattachment occurs where 𝑢𝑥 goes from negative to positive.
and Ref errors are depicted in Fig. 11. Because we use the same 𝜈𝑡
field, the errors of the Ref and 𝚝⟂ − 𝙼𝚘𝚛𝚎𝚁𝚎𝚐 are the same. We point
out that the 𝜈 error plot has a logarithmic scale on the 𝑦-axis due
𝑡

7 
to the high error for the RANS case. For all the remaining plots, a
linear scale is adopted. When looking at the velocity and 𝐶𝑝 fields,
comparison with the 𝙵𝚒𝚡 case is also included. To isolate the effect
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Fig. 10. Regions defined to investigate fields errors. They correspond to regions with important flow features.
Fig. 11. Relative error in the domain and in the several regions for 𝚝⟂ − 𝙼𝚘𝚛𝚎𝚁𝚎𝚐.
of the 𝒕⟂ regularization factor, we fix in the momentum equations the
same turbulent viscosity of the Ref case.

It immediately appears in Fig. 11(b) that a value of 10−3 of the
𝐿2-regularization term implies underfitting. As a matter of fact, the
error for 𝒕⟂ is significantly higher in all regions compared to the Ref
one. While this behavior does not affect the accuracy of the 𝐶𝑝 field, it
increases the velocity error, particularly in the recirculation and near
hill regions.

We carried the same analysis for the 𝜈𝑡 loss function and we noticed
less systematic trends with respect to 𝜈𝑡 errors in the different regions
and on resulting velocity errors. As a consequence, for the sake of
brevity, we omit the corresponding error plots. This behavior justifies
our conservative choice of setting a higher regularization factor of 10−4

for the Ref case.

5.2.2. 𝛼 values during training
We analyze the role of the parametric choice in the dataset. Specif-

ically, we investigate the case of a coarser training space with 𝛼 =
0.4, 0.5,… , 1.5, 1.6, denoted by CoarserRange, and of a smaller one
with 𝛼 = 0.7, 0.75,… , 1.25, 1.3, denoted by SmallerRange. In both
setting, the total datasets have cardinality of 2.16 × 105 cells (see
Table 3).

Regarding the CoarserRange setting, Fig. 12, we observe that
both learning targets 𝜈𝑡 and 𝒕⟂ are generally less accurate. RANS-like
errors are noticeable for the 𝜈𝑡 field in the 𝙲𝚑𝚊𝚗 and 𝙲𝚑𝚊𝚗𝚞𝚝 regions
while, in the other regions, the 𝜈𝑡 errors are slightly lower than the
Ref. On the other hand, the 𝒕⟂ error is systematically bigger that the
reference case. These behaviors reflect on the worse description of both
𝐶𝑝 and velocity in every region.

Regarding the SmallerRange setting, Fig. 13, we observe errors
very close to the Ref ones for both 𝜈𝑡 and 𝒕⟂, with a trend to slightly
reduce it. This is expected because the neural networks are trained
with a less variability of the data and are able to better specialize in
interpolation cases like this one. However, no significant improvements
can be noticed for the 𝐶𝑝 and velocity field and, consequently, a more
conservative approach of using a wider parameter interval is suggested
even in an interpolation regime like this one.
8 
5.2.3. Dataset cardinality
We investigate the role of the dataset cardinality by selecting ran-

domly 8.5 × 103 cells from each 𝛼 simulation (𝛼 = 1 excluded) to create a
new dataset. We call this setting 𝚕𝚎𝚜𝚜𝙳𝚊𝚝𝚊. In Fig. 14, we can observe
that the learning targets are less accurate in most of the regions and
equally accurate in fewer regions compared to the Ref case. The errors
associated to 𝐶𝑝 and 𝐮 are consequently slightly higher.

As a final remark, we point out that one training epoch for the Ref
case takes approximately twice the time of the 𝚕𝚎𝚜𝚜𝙳𝚊𝚝𝚊 case, having
the former a dataset that is roughly the double of the latter. Therefore,
this approach could be beneficial when interested to reduce the training
time if high accuracy is not foreseen.

6. Conclusions

In this paper we investigate the possibility of using Delayed De-
tached Eddy Simulation (DDES) to create datasets for data-driven tur-
bulence models. Specifically, we focus on the well-known and bench-
marked Periodic Hills (PH) flow case and create a dataset consisting
of 25 simulations with geometries parameterized by a factor 𝛼 that
determines the steepness of the hill’s profiles. We cover a wide 𝛼 range
obtaining a considerable number of 4.51 × 105 computational cells.

We firstly check the accuracy of our simulations by carefully com-
paring the 𝛼 = 1 results with the DNS benchmark of Xiao et al. [23] and,
successively, use them to train the 𝜈𝑡-VBNN data-driven model [10,27].

We define a reference training setting and show the improvements
compared to the baseline 𝑘 − 𝜔 SST RANS model in terms of velocity
field, reattachment point and pressure coefficient. We also investigate
the effects of 𝐿2-regularization in the losses, the choice of 𝛼 values in
the training phase and the dataset cardinality on the resulting fields
both in all the domain and in physically-relevant regions.

To summarize: despite generating high-fidelity data with DDES
simulations instead of DNS or LES ones, we proved that the obtained
dataset is reliable in terms of accuracy with respect to the DNS refer-
ence and effective to train data-driven turbulence models that signifi-
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Fig. 12. Relative error in the domain and in the several regions for CoarserRange.
Fig. 13. Relative error in the domain and in the several regions for SmallerRange.
Fig. 14. Relative error in the domain and in the several regions for less_data.
cantly improves the classic 𝑘−𝜔 SST RANS model. Using DDES models
reduces significantly the computational cost of datasets generation,
thus giving the opportunity of creating datasets spanning wider ranges
of parameters.
9 
The DDES results of this work are available on [28].
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Appendix. Invariants and vector basis

In [27], the following assumption is made:

̃⟂ = 𝒕⟂(𝐬,𝐰, ∇̃ ⋅ 𝐒, ∇̃𝑘, 𝑅𝑒𝑑 ), (A.1)

where 𝐬 = 𝑘
𝜀𝑺, 𝐰 = 𝑘

𝜀𝑾 , ∇̃ ⋅ 𝐒 = 𝑘5∕2

𝜀2
∇ ⋅ 𝑺 and ∇̃𝑘 = 𝑘1∕2

𝜀 ∇𝑘 are the
imensionless counterparts of 𝑺, 𝑾 , ∇⋅𝑺 and ∇𝑘, respectively. Finally,
𝑒𝑑 = min(

√

𝑘𝑑
50𝜈 , 2) is the wall-distance based Reynolds number, where

is the wall distance.
With this assumption, we obtain (6b) [53], where the vector basis

reads
𝐯1 = ∇̃ ⋅ 𝐒, 𝐯2 = 𝐬 ∇̃ ⋅ 𝐒, 𝐯3 = 𝐬2 ∇̃ ⋅ 𝐒,

4 = 𝐰 ∇̃ ⋅ 𝐒, 𝐯5 = 𝐰2 ∇̃ ⋅ 𝐒, 𝐯6 = (𝐬𝐰 + 𝐰𝐬) ∇̃ ⋅ 𝐒,

𝐯7 = ∇̃𝑘, 𝐯8 = 𝐬 ∇̃𝑘, 𝐯9 = 𝐬2 ∇̃𝑘,

𝐯10 = 𝐰 ∇̃𝑘, 𝐯11 = 𝐰2 ∇̃𝑘, 𝐯12 = (𝐬𝐰 + 𝐰𝐬) ∇̃𝑘,

(A.2)

while the invariants are

𝜆1 = (∇̃ ⋅ 𝐒)𝑇 (∇̃ ⋅ 𝐒), 𝜆2 = tr(𝐬2), 𝜆3 = tr(𝐬3), 𝜆4 = tr(𝐰2),

𝜆5 = tr(𝐬𝐰2), 𝜆6 = tr(𝐬2𝐰2), 𝜆7 = tr(𝐬2𝐰2𝐬𝐰), 𝜆8 = (∇̃ ⋅ 𝐒)𝑇 𝐬(∇̃ ⋅ 𝐒),

𝜆9 = (∇̃ ⋅ 𝐒)𝑇 𝐬2(∇̃ ⋅ 𝐒), 𝜆10 = (∇̃ ⋅ 𝐒)𝑇𝐰2(∇̃ ⋅ 𝐒), 𝜆11 = (∇̃ ⋅ 𝐒)𝑇 𝐬𝐰(∇̃ ⋅ 𝐒),

𝜆12 = (∇̃ ⋅ 𝐒)𝑇 𝐬2𝐰(∇̃ ⋅ 𝐒), 𝜆13 = (∇̃ ⋅ 𝐒)𝑇𝐰𝐬𝐰2(∇̃ ⋅ 𝐒),

𝜆14 = (∇̃𝑘)𝑇 (∇̃𝑘), 𝜆15 = (∇̃𝑘)𝑇 𝐬(∇̃𝑘), 𝜆16 = (∇̃𝑘)𝑇 𝐬2(∇̃𝑘),
𝜆17 = (∇̃𝑘)𝑇𝐰2(∇̃𝑘), 𝜆18 = (∇̃𝑘)𝑇 ∇̃ ⋅ 𝐒, 𝜆19 = (∇̃𝑘)𝑇 𝐬𝐰(∇̃𝑘),
𝜆20 = (∇̃𝑘)𝑇 𝐬2𝐰(∇̃𝑘), 𝜆21 = (∇̃𝑘)𝑇𝐰𝐬𝐰2(∇̃𝑘), 𝜆22 = (∇̃𝑘)𝑇 𝐬𝐰(∇̃ ⋅ 𝐒),

𝜆23 = (∇̃𝑘)𝑇 𝐬2𝐰(∇̃ ⋅ 𝐒), 𝜆24 = (∇̃𝑘)𝑇𝐰(∇̃ ⋅ 𝐒),

𝜆25 = (∇̃𝑘)𝑇𝐰𝐬𝐰2(∇̃ ⋅ 𝐒), 𝜆26 = (∇̃𝑘)𝑇 (𝐬𝐰 + 𝐰𝐬)(∇̃ ⋅ 𝐒),
𝜆27 = 𝑅𝑒𝑑 .

(A.3)

The first 26 invariants are obtained from the dependencies on 𝐬,𝐰,
∇̃ ⋅ 𝐒, ∇̃𝑘. We observe that the invariant tr(𝐬) is neglected because of
the incompressibility constraint.

Finally, because 𝜈𝑡 is a scalar field, we directly use (6a) without
nvolving any linear expansion.
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Data availability

The data are shared through a GitHub link as indicated in the
anuscript.
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