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In chaotic dynamical systems, extreme events manifest in time series as unpredictable large-amplitude peaks.
Although deterministic, extreme events appear seemingly randomly, which makes their forecasting difficult.
By learning the dynamics from observables (data), reservoir computers can time accurately predict extreme
events and chaotic dynamics, but they may require many degrees of freedom (large reservoirs). In this paper, by
exploiting quantum-computer ansätze and entanglement, we design reservoir computers with compact reservoirs
and accurate prediction capabilities. First, we propose the recurrence-free quantum reservoir computer (RF-
QRC) architecture. By developing ad hoc quantum feature maps and removing recurrent connections, the RF-
QRC has quantum circuits with smaller depths. This allows the RF-QRC to scale well with higher-dimensional
chaotic systems, which makes it suitable for hardware implementation. Second, we forecast the temporal chaotic
dynamics and their long-term statistics of low- and higher-dimensional dynamical systems. We find that RF-
QRC requires smaller reservoirs than classical reservoir computers for higher-dimensional systems and the same
predictability. Third, we apply the RF-QRC to the time prediction of extreme events in a model of a turbulent
shear flow with turbulent bursts. We find that the RF-QRC has longer predictability than the classical reservoir
computer for extreme events forecasting. The results and analyses indicate that quantum-computer ansätze offers
nonlinear expressivity and computational scalability, which are useful for forecasting chaotic dynamics and
extreme events. This work opens new opportunities for using quantum machine learning on near-term quantum
computers.

DOI: 10.1103/PhysRevResearch.6.043082

I. INTRODUCTION

Data-driven prediction of chaotic dynamical systems has
gained significant interest in the last decade [1,2]. A data-
driven model learns the solution of a dynamical system
from data with the goal of predicting its temporal evolution.
Weather and climate predictions [3,4], financial time-series
forecasting [5], thermoacoustics [6], turbulence [7,8], among
many others, are examples of chaotic dynamical systems. The
use of data-driven methods for predicting nonlinear systems
has been motivated mainly by two reasons: (a) the availabil-
ity of large amounts of data for these systems, and (b) the
difficulty of predicting temporal dynamics due to chaos. In
chaotic systems, a small change in the initial conditions can
drastically change the dynamical system’s solution.

Because chaotic dynamics is a sequential-data problem,
recurrent neural networks (RNNs) are a natural choice for

*Contact author: o.ahmed22@imperial.ac.uk
†Contact author: l.magri@imperial.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

chaotic forecasting. RNNs are machine learning models
that introduce recurrence in conventional neural network
architectures. RNNs are employed in time-series forecast-
ing, modeling nonlinear dynamical systems and chaos, and
extreme event predictions [7,9–13]. On the one hand, the
computational capabilities of RNNs are excellent. On the
other hand, RNNs are difficult to train as they require back-
propagation through time at each time step [14]. Because
RNNs are designed to learn correlations using internal hid-
den states and long-lasting time dependences, the training
through backpropagation can be difficult for long time-series
forecasting [9].

Reservoir computing (RC) bypasses the problem of
backpropagation by introducing a static recurrence—the
reservoir—and training with ridge regression. This avoids
backpropagation at each time step. Reservoir computing is
a unified computing framework that was introduced as Echo
State Networks [15] and Liquid State Machines [16]. In this
study, we work with echo state networks, which are a type
of reservoir computing approach, because of their potential
in forecasting chaotic dynamics [9,11,17], extreme events
predictions [8,18,19] and the stability properties [6,12]. (For
brevity, we will refer to echo state networks as reservoir
computing in this work). Despite their excellent forecasting
abilities, the prediction capabilities of reservoir computers are
sensitive to the choice of hyperparameters and the reservoir
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size, which is constrained by the computational resources and
memory of current classical computers.

Improving the performance of reservoir computing typ-
ically requires higher computational resources. Quantum
computers hold the potential to provide exponential speed-
up over classical computers for certain computational tasks
[20]. This speed-up is also known as quantum advantage.
There are already algorithms that have theoretically proven
this concept. For example, the prime factorization problem,
which is the basis of most modern encryption and is NP-hard
(nondeterministic polynomial time hard) classically, can be
solved in polynomial time using quantum computing princi-
ples [21]. The second example is the matrix inversion problem
for solving linear systems of equations, which is a key step
in many numerical solvers. Proposed quantum algorithms
for matrix inversion have the potential to provide quadratic
speed-up over conventional classical methods [22,23]. The
underlying phenomena that enable the quantum advantage
are entanglement, superposition, and interference effects in
quantum computers. Recently, quantum computing has been
applied in the area of machine learning. The current quantum
hardware, however, is limited by the maximum number of
qubits in the order of ∼102 − 103 with environmental noise
and decoherence. In the current noisy intermediate scale quan-
tum (NISQ)-era [24], hybrid quantum-classical methods are
one of the leading candidates with prospects of achieving a
quantum advantage by employing methods such as variational
quantum algorithms and quantum circuit learning [25,26].
The hybrid quantum-classical methods that can be used for
the prediction of chaotic dynamics and extreme events are
inspired by classical machine learning architectures such as
RNNs.

Quantum reservoir computing (QRC) is a type of quan-
tum machine learning model that combines both frameworks,
including quantum computing and reservoir computing. The
idea of QRC is to use quantum dynamics to enhance the
reservoir implementation [27–29]. Some numerical imple-
mentations of QRC have shown that the quantum systems of
5–7 qubits have comparable computational capabilities to the
classical reservoir sizes of 100–500 [27]. Previous works have
proposed hybrid QRC architectures for time series predictions
and chaos modeling [30–33]. In hybrid QRC, the input data
is encoded in the form of Bloch-sphere rotation angles in
individual qubits along with reservoir states, which are the
probability amplitudes. The resulting quantum states undergo
a unitary operation at each time step [30]. In another approach,
a reservoir state is associated with the density operator of
the encoded quantum state, and reservoir states correspond to
measured expectation values for each qubit [32,34]. Although
it has been conjectured that quantum reservoir computers are
potential candidates for providing a quantum advantage in the
near-term NISQ era, only a few studies have been conducted
on analyzing higher-dimensional chaotic systems [35], and
long-term statistical predictions using QRC. The performance
of classical reservoir computers is often limited by classical
computers’ memory [9], which constrains the predictability of
these models. Reservoir computers require a high dimensional
feature space, which increases with the nonlinearity and the
dimensions of the physical system. Consequently, using QRC
to predict high dimensional nonlinear dynamical systems that

require a large reservoir size is key to realizing a quantum
advantage of QRC in predicting chaos.

In this work, we build up on the concept of hybrid QRC
that encodes reservoir states as probability amplitudes of the
quantum system [30]. We use gate-based quantum computing
to implement this architecture and use it for high-dimensional
chaotic time-series forecasting and extreme-event predic-
tions. More specifically, we investigate the three-dimensional
Lorenz-63, ten-dimensional Lorenz-96 systems [36] and
the MFE (Moehlis, Faisst, and Eckhardt) [37] model for
time-accurate, statistical predictions, and extreme events fore-
casting. Extreme events are sudden and unmitigated changes
in the observables of chaotic flows, while long-term statistical
prediction is also an important metric in forecasting chaos.

We benchmark our classical and quantum reservoir net-
works by studying them for low-order models and then extend
our analysis to incorporate higher-dimensional dynamics.
Both classical and quantum networks are used for extreme
event predictions in a reduced order model of a shear flow
between infinite plates subjected to a sinusoidal body forc-
ing, also referred to as Moehlis, Faisst, and Eckhardt (MFE)
[37]. We assess the performance using multiple performance
metrics: first, by considering short-term time series prediction
capabilities that are quantified using the predictability horizon
(PH) and valid prediction time (VPT) [9,38], and, second,
by comparison of long-term statistics that are quantified us-
ing statistical measures such as probability density function
(PDF) and F-Score [12,13].

This paper is structured as follows. In Secs. II and III,
we present the classical and proposed quantum reservoir
architectures and their comparison. Different quantum reser-
voir architectures refer to the different ansätze chosen for
forming a reservoir. Second, we apply both classical and
quantum reservoir architectures on three-dimensional Lorenz-
63 and ten-dimensional Lorenz-96 systems. We increase the
dimensionality and complexity of the dynamical systems pro-
gressively for the analysis. Third, we compare the results of
the best quantum feature map with the best classical reser-
voir applied to the MFE model to analyze the extreme-event
prediction capabilities of both architectures. The numerical
models of different dynamical systems and the results for
the reservoir predictions are presented in Sec. IV. Finally, in
Sec. V, we conclude our findings by highlighting the poten-
tial of QRC in chaotic time series forecasting along with its
associated challenges and the direction of future works.

II. BACKGROUND

In this section, we explain and compare classical and
quantum reservoir computing algorithms and their schematic
representations. To be self-contained, we also outline the ba-
sic mathematical framework and building blocks of quantum
computers.

A. Classical reservoir computing (CRC)

Unlike other RNNs, reservoir computing is a type of
RNN framework that does not require backpropagation
through time, which represents a major computational advan-
tage [13,15]. As a result, the training cost is substantially
reduced and the objective function is minimized through
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FIG. 1. Schematic representation of a classical reservoir com-
puter [15]. The input data uin is mapped to the reservoir matrix via
W in. The reservoir neuron connections governed by W matrix allow
the flow of information between neurons. The linear readout layer
using the trained W out matrix is used to make output predictions up.

a simple linear ridge regression. The schematic representa-
tion of classical reservoir computer is shown in Fig. 1. Let
{û(t0), û(t1), . . . , û(tNtr )} be a training data set of a dynamical
state û ε RNu , which is known at Ntr + 1 steps in time. Gen-
erally, it is recommended to choose a set of variables that is
(re-)scaled by the range component-wise, which is indicated
by (̂) on the training data set [39]. In reservoir computing,
these states are mapped onto higher-dimensional reservoir
states of an Nr-dimensional vector space. For a randomly
chosen initial reservoir state r(t0), we recursively compute a
set of Ntr reservoir vectors r(t1), . . . , r(tNtr ) as

r̂(ti+1) = tanh (W inûin(ti ) + W r(ti )), (1)

r(ti+1) = (1 − ε) r(ti ) + ε r̂(ti+1). (2)

Here, the state r̂ ε RNr represent a state-vector containing
reservoir activation states, W in ε RNr ×Nu is the input matrix
and W ε RNr ×Nr is the reservoir weight matrix [15]. The tanh
function is applied componentwise to provide a nonlinear
activation. The matrices W in and W are pseudorandomly gen-
erated and constant throughout the training and prediction
phase. The elements of W in are sampled from a uniform
distribution in [−σin, σin], where σin is the input scaling.
The reservoir weight matrix W is an Erdös-Rényi matrix
(Erdös-Rényi is a model for generating random graphs or the
evolution of a random network in the field of graph theory),
with average connectivity between each neuron varied by
input reservoir density D. The spectral radius of the reservoir
state matrix ρ is given by its maximal eigenvalue. The ma-
trix W is rescaled such that ρ � 1 [15,39]. Effectively, this
guarantees a rapid decay of temporal correlations between
successive reservoir states and helps to avoid overfitting.
Whereas Eq. (1) is the nonlinear activation step, Eq. (2) com-
bines the linear memory of the reservoir with the nonlinear
activation, as parametrized by the leaking rate ε. This addi-
tional postprocessing step is known as memory nonlinearity
tradeoff [39].

Reservoir computing networks can be run in either open-
loop or closed-loop configurations (Figs. 2 and 3). In the
open-loop, we use the input data at each time step and com-
pute the corresponding reservoir dynamics r(ti ) according to

in

in

in

FIG. 2. Schematic representation of reservoir computers. Open-
loop training phase.

Eqs. (1) and (2). Because of the initialization process with
a randomly chosen reservoir state, it is necessary to dis-
card a small number Nw of the initial transients to satisfy
the echo state property (ESP) [15], which leads to dynam-
ics that are less sensitive to the initial random choice. The
process of discarding the initial transients is also called the
washout phase. After the washout interval, reservoir dynam-
ics at each time step r(ti ) are collected to form a reservoir
state matrix R ε RNr ×(Ntr−NW ). Reservoir computing in the
closed-loop prediction mode requires an output matrix W out

for forecasting the dynamics of the learned chaotic system.
The training of the output matrix W out involves minimizing
the mean square error between input and output data over the
training data set, consisting of Ntr number of training steps.
The simplicity of the reservoir network allows us to achieve
this by solving a linear ridge regression problem

(RRT + βI)W out = RUT
d , (3)

where β is a user-defined Tikhonov regularization param-
eter to prevent overfitting, I is the identity matrix, and
UT

d ε RNu ×Ntr is the horizontal concatenation of the out-
put data. Once the output matrix has been computed from
Eq. (3), it can be used to predict the evolution of dynamical
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FIG. 3. Schematic representation of reservoir computers.
Closed-loop prediction phase.

variables by

up(ti+1) = [r(ti+1)]T W out. (4)

In the closed-loop configuration, we recursively predict the
system’s dynamics from Eq. (4) without additional samples
from a training data set. Given an initial condition, this allows
for an autonomous prediction on the unseen data set. Because
reservoir computers have a symmetry [Eq. (1)], we add a con-
stant output bias of 1 to the reservoir activation states to break
the inherent symmetry of the reservoir architecture [40,41],
effectively replacing r → [r, 1]. A summary of the reservoir
computing procedure is shown in Fig. 4, and compared with
its quantum counterpart, which will be introduced in Sec. II C.
The performance of reservoir computers critically depends on
the set of chosen hyper-parameters. We, therefore, use grid
search and Bayesian optimization to tune the hyperparameters
[42]. We have used the scikit − learn library [43] and recycle
validation techniques [13] for hyperparameter tuning. The hy-
perparameters and performance metrics for different chaotic
systems are reported in Sec. IV.

B. Qubits and quantum states

To be self-contained, we provide a brief outline of the key
elements of quantum computers. A detailed introduction can

be found in Ref. [44]. In quantum computers, the internal
state of the machine can be represented by a complex vector
in a Hilbert space. The time evolution during computation
is described by a matrix multiplication of this vector with a
unitary operator.

In most quantum hardware architectures, the elementary
building blocks, known as qubits, are microscopic systems
that can be described by a complex-valued, normalized,
two-dimensional vector in a Hilbert space, in which the com-
putational basis states |0〉 and |1〉 (kets) can be associated with
the Cartesian basis vectors, and the complex-valued ampli-
tudes α and β are normalized as |α|2 + |β|2 = 1

|ψ〉 = α|0〉 + β|1〉=̂
(

α

β

)
∈ C2. (5)

States of n qubits occupy the tensor product Hilbert space of
the individual two-dimensional Hilbert spaces

|ψn〉 =

⎛
⎜⎜⎝

a1

a2
...

a2n

⎞
⎟⎟⎠ ∈ C⊗n

2 , (6)

where the computational basis states are tensor products of
the single qubit basis states. The state-vector dimension scales
exponentially with the number of qubits n. Unentangled pure
states can be written as a single product of individual qubit
states

|φn〉 = (α0|00〉 + β0|10〉) ⊗ (α1|01〉 + β1|11〉)

⊗ . . . ⊗ (αn|0n〉 + βn|1n〉). (7)

Most quantum states [Eq. (6)] are entangled and therefore
cannot be decomposed into such a product. Unitary evolution
amounts to a matrix multiplication, i.e., the final quantum state
after a computation is

|ψ f 〉 = U |ψi〉. (8)

Quantum hardware architectures provide elementary sets of
unitary operators, known as gates that can be used to assemble
any arbitrary desired unitary operation. The final output of
the computation is revealed by measurements of the quantum
state, which provide estimates of the modular squared ampli-
tudes (|a1|2, |a2|2, . . .).

C. Hybrid quantum-classical reservoir computing

Hybrid quantum-classical reservoir computing [30] is
based on principles that are similar to classical reservoir com-
puting introduced in Sec. II A. In QRC, the exponential size of
n-qubit Hilbert spaces is utilized to encode and process classi-
cal reservoir state vectors, r(ti ). Thus, the classical reservoir is
replaced by a quantum counterpart. More specifically, within
a single loop of the training phase, the reservoir state r(ti ) is
mapped onto an n-qubit unitary operator P(r(ti)), that takes
|0〉⊗n to the state |ψ (ti )〉 = P(r(ti))|0〉⊗n. The explicit form
of P is given by the quantum circuit architecture that char-
acterizes the specific QRC framework. Circuits are generally
parametrized by single-qubit rotation angles and a number of
entangling CNOT gates (Appendix A).
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FIG. 4. Classical and quantum reservoir computing algorithms.

For a training data set {û(t0), û(t1), . . . , û(tNtr )}, the input
time series is encoded in the quantum circuit using single-
qubit rotation angles. With this encoding, a second unitary
operator 
(uin(ti )) is applied to the quantum state |ψ (ti )〉.
Thereafter, a third unitary operator V (α) given by a random
parameterized circuit with n parameters α is applied. The
combined action for each time step is in Fig. 6:

|ψ (ti+1)〉 = V (α) 
(uin(ti )) P(r(ti ))|0〉⊗n. (9)

Similarly to classical reservoir computing, we derive a
preprocessed reservoir state vector r̂(ti+1) from measured
probabilities of |ψ (ti+1)〉 in the computational basis. This
requires sampling and measuring the state |ψ (ti+1)〉 multiple
times for each time stepping.

Following the postprocessing of r̂(ti+1) to r(ti+1) [Eq. (2)],
the reservoir state matrix R is formed by concatenating the
reservoir state vectors. As in classical reservoir computing,
the initial reservoir state is chosen randomly, which in turn,
necessitates the washout of a few initial time-stepped reservoir
vectors. In the training phase, QRC is run in an open-loop
and the output matrix W out is computed by a linear ridge
regression [Eq. (3)]. When operated in a closed-loop, QRC
is used to predict the system dynamics [Eq. (4)]. We compare
the elementary steps of classical and quantum reservoir com-
puting algorithms in Fig. 4. The open-loop and closed-loop
configurations of the hybrid quantum-classical architecture

are presented in Fig. 5. Each reservoir update r(ti ) in both
the open-loop and closed-loop requires the input of the pre-
vious reservoir state r(ti−1), similarly to the classical reservoir
update (dotted feedback loop in Fig. 5). In Sec. III, we pro-
pose a quantum-classical architecture, which is independent
of this feedback loop, thereby allowing for parallelization of
the training phase of QRC.

Although QRC exploits the exponential size of the state
space of the quantum register, there is a practical limitation
due to the limited connectivity of the employed quantum
processors (e.g., neighbor-neighbour interactions only on 2D
superconducting qubit processors). The performance of QRC
generally depends on the degree of the entanglement present
in the circuit [45]. Therefore, we investigate the performance
of structurally different architectures.

III. RECURRENCE-FREE QUANTUM RESERVOIR
COMPUTING (RF-QRC)

The gate-based quantum reservoir computing framework
of [30] (Sec. II C) is in principle equivalent to its classical
counterpart. It has been used to study thermal convection
flows and the turbulent Rayleigh-Bernard flow [30,46]. In this
section, we propose an ansätze for the circuit architecture
in QRC. To do so, a specific quantum feature map must be
chosen and we therefore start by briefly reviewing a number
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FIG. 5. Quantum-classical reservoir architecture schematic representation (a) open-loop training to produce W out matrix (b) closed-loop
autonomous predictions starting from an arbitrary point in the unseen data set. The dotted line in both figures indicates the recurrence involved
in conventional reservoir architectures. In RF-QRC architecture, we remove this recurrent feedback layer of reservoir states.

of common choices. Following that, we present the RF-QRC
architecture, which will be employed to study low and high-
dimensional chaotic flows in Sec. IV.

We consider four different feature maps for QRC. These
are the (a) Linearly entangling feature map, used in Ref. [30]
for QRC applications, (b) Product state feature map, which
was proposed in Ref. [47], and has been shown to offer a high
expressivity [48], (c) Fully entangling feature map, in which
CNOT gates entangle pairs of qubits, (d) Symmetric fully
entangling feature map, which only differs from (c) by an ad-
ditional data encoding layer following the CNOT gates. These
feature maps do not require anywhere-to-anywhere connec-
tivity (which would increase the computational overhead
on current superconducting quantum processors). Schematic
circuit diagrams of all four feature maps are shown in Ap-
pendix A. When the number � of encoded parameters of a
string of data (e.g., for r, � = 2n), exceeds the number of
qubits, the feature map encoding is applied multiple times. In
particular, this leads to exponentially growing circuit depths
of the unitary P and motivates the exploration of new efficient
QRC architectures, as displayed in Table I.

An example comparison of circuit depths corresponding
to the five architectures is shown in Fig. 7. Removing the
recurrence, i.e., by setting P to the identity, and by applying

 twice for stimulating the reservoir dynamics, yield circuits
depths that are independent of the reservoir size. The suit-
ability of this choice is justified a posteriori by an improved
performance of QRC in a range of prototypical model sys-
tems. Recurrence-free QRC is different than quantum extreme

learning machines [49], because of the use of a linear combi-
nation of the memory and nonlinearity of previous reservoir
activation states, as expressed by Eq. (2) (also known as the
leaky-integral reservoir computing approach [50]).

IV. NUMERICAL RESULTS

In this section, we analyze the dynamics of a number of
chaotic systems, such as Lorenz-63, Lorenz-96, and MFE
using CRC and QRC. Thereby, we can assess the prediction
capabilities of various architectures. More specifically, we
evaluate the short-term time-accurate and long-term statistical
predictions with performance measures. The sets of train-
ing, validation, and test data are generated by a fourth-order
Runge-Kutta numerical scheme. To emulate the quantum cir-
cuits, we have used the QISKIT [51] software package to
compute the noise-free evolution of the quantum register.

In a physical implementation, at each time step between
104 to 105 shots are required to reconstruct the reservoir
activation signal. A number of shots between 104 to 106 is
common in variational algorithms and other quantum machine
learning applications [52]. Mitigating the requirement of a
large number of shots in quantum computing is an area of
active research, which is beyond the scope of this paper. (QRC
and RF-QRC could be combined with the concept of weak and
projective measurements [52], classical shadows [53], resolv-
able expressive capacity [54], or artificial memory restriction
[55] to potentially reduce the number of required shots.)

043082-6
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in

out

FIG. 6. Schematic representation of gate-based quantum reservoir computer. The first two unitaries are used to encode previous reservoir
states r(ti ) and input time series uin (ti ), the third additional unitary provide randomization. Each unitary consists of a specific feature map. The
quantum circuit execution starts from the ground state |0〉 and measures the reservoir state activation for the next time step r̂(ti+1), which is
postprocessed classically before feeding the next time step. Each reservoir activation state r(ti+1) is saved classically to use for training and
predictions. In RF-QRC, we remove the feedback loop and the first unitary P.

A. Performance measures

The dynamics of chaotic systems can be characterized
by the leading Lyapunov exponent �1 [38]. This exponent
corresponds to the average exponential rate of divergence
for initially nearby trajectories. The Lyapunov exponent also
provides a time scale to assess the time-accurate prediction of
the chaotic systems. We have rescaled our time units to the
inverse of the Lyapunov exponent (�1), which is called the
Lyapunov time (1LT = �−1

1 ).

In this work, we choose the valid prediction time (VPT)
[9] as a performance measure of short-term time-accurate
predictions. For a given threshold value ε, VPT is defined
as the time for which the normalized root mean square error
(NRMSE) between the predicted and true values is less than
ε. In this work we take ε = 0.5, as in Ref. [9]:

NRMSE =
√∣∣∣∣

∣∣∣∣yt − ŷt

σ 2

∣∣∣∣
∣∣∣∣, (10)

TABLE I. Quantum reservoir computer - Different ansätze designs.

Reservoir states (P) Input (
) Variation (V )

QRC-C1 Linearly entangled Fully entangled Fully entangled symmetric
QRC-C2 Linearly entangled Linearly entangled Linearly entangled
QRC-C3 – Linearly entangled (x2) Linearly entangled
QRC-C4 (RF-QRC) – Fully entangled (x2) Fully entangled symmetric
QRC-C5 – Product states (x2) Linearly entangled

043082-7
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FIG. 7. Circuit depth of different ansätze for the ten-dimensional
Lorenz-96 input.

V PT = 1

�1
argmax [ t f | NRMSE < ε = 0.5, ∀t � t f ],

(11)

where yt is the true value and ŷt is the corresponding predicted
value, and σ is the standard deviation of the time series,
t f is the largest value of the time step at which NRMSE
is smaller than the threshold ε. High VPT values indicate
a high predictability. To assess the long-term statistical pre-
diction capabilities of our reservoir networks, we evolve the
trained networks autonomously in a closed-loop configuration
from an arbitrary point on the attractor and compare the state
variable distributions with the actual distributions. For each
configuration, we run simulations with five different sets of
optimal hyperparameters, which corresponds to different ran-
dom seeds.

B. Three-dimensional Lorenz-63 model

As a first test case, we start with the analysis of the three-
dimensional Lorenz-63 system [36]. The Lorenz-63 system is
a reduced-order model of a thermal convection flow, in which
the fluid is heated uniformly from below and cooled from the
top. This model is defined mathematically by

dx1

dt
= σ (x2 − x1),

dx2

dt
= x1 (ρ − x3) − x2,

dx3

dt
= x1x2 − βx3, (12)

where [σ , ρ, β] = [10, 28, 8/3] results in a chaotic behav-
ior of the system. For the Lorenz-63 system, � = 0.9 and
1LT = 1/0.9, [36]. The time series data set is derived by a
Runge-Kutta method for dt = 0.01s. The training time series
comprises data points over a total time of 20 LT for both the
classical and quantum reservoir networks. For the training,
both networks are executed in an open loop to evolve the
reservoir states and calculate the W out matrix. For predictions,
both classical and quantum networks evolve dynamically in
the closed-loop configuration from ensembles of points in

FIG. 8. Lorenz-63 system. VPT vs reservoir sizes for both clas-
sical and quantum reservoir configurations.

phase space, sampled on the attractor randomly, to quantify
the time accuracy. These points correspond to the points in
the unseen test data set.

In Table II, we compare the hyperparameters of both quan-
tum and classical reservoirs. Values inside square brackets
indicate that the parameters are optimized within this range,
multiple values indicate that we repeated the hyperparameter
search for each of these values and then selected the best
VPT out of them. The random rotation angles (α) in the
third unitary block can also be treated as a hyperparameter.
Alternatively, one could derive them from a uniform random
distribution, which we will do in this paper. For each en-
semble, we sample V (α) ε Rn from a uniform distribution
interval [0, 4π ] with a predefined seed, which we keep fixed
throughout the training and prediction of a particular realiza-
tion. This is similar to the classical input W in and reservoir
weight matrices W , which are also pseudo-randomly gener-
ated and fixed for any specific realization, as explained in
Sec. II A.

1. Time-accurate predictions

In Fig. 8, we present the VPT values derived with classical
reservoir computing and compare them with different config-
urations of quantum reservoir computers from Table I. The
error bars at each value indicate the variation arising from
different random seeds. We have tested five different seeds
for each value. These seeds correspond to randomly generated
weight matrices W and W in for the classical reservoir and
variation of V (α) values for quantum reservoir architectures.
For each of these choices, after training, we initialize the
closed-loop predictions from 20 different initial points for
quantifying VPT and its mean value.

The performance of different reservoir networks varies
with the reservoir sizes. We find that CRC outperforms all the
QRC architectures, for the same reservoir sizes. The reser-
voir size corresponds to the state-vector dimension, which
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TABLE II. Parameters for three-dimensional Lorenz-63 system.

Parameters Symbol Classical RC Quantum RC

Time step dt 0.01s 0.01s
Input scaling σin [0, 1] –
Spectral radius ρ [0.1, 1] 1
Tikhonov regularization β 1 × 10−6,1 × 10−9,1 × 10−12 1 × 10−6,1 × 10−9,1 × 10−12

Leak rate ε [0.05, 1] [0.05, 0.3]
Resevoir density D 0.1,0.6,0.9 Configurations C1-C5

scales exponentially with the number of qubits (n). The best-
performing quantum reservoir architecture, QRC-C4 with
9-11 qubits (n), can predict VPT values similar to the classical
reservoir sizes of 500-2000.

We emphasize that the three QRC configurations C3-C5 do
not have a feedback loop. These configurations evolve only
from the input time series and the information on reservoir
activation states from previous time steps is provided via the
classical update Eq. 2. In contrast, architectures QRC-C1 and
QRC-C2 involve an additional active feedback loop that en-
codes reservoir states to the quantum circuit at each time step,
which leads to an additional overhead in the quantum-classical
layer.

The prediction performance of the two RF-QRC config-
urations, QRC-C3 and QRC-C5, do not improve with the
reservoir sizes. The QRC-C4 architecture, however, shows
comparable performance to the reservoirs with feedback loops
(QRC-C1 and QRC-C2). These results highlight the impor-
tance of carefully choosing feature maps for QRC.

In Fig. 9, the VPT values normalized by the circuit depth
are compared between different QRC architectures. We find
that the proposed QRC-C4 architecture outperforms all other
architectures by demonstrating the best prediction capabilities
while requiring a smaller circuit depth.

Time-accurate predictions for the Lorenz-63 system are
shown in Fig. 10. We display the best-performing CRC

FIG. 9. Lorenz-63 system. VPT/circuit depth vs reservoir sizes
for different quantum reservoir configurations.

outcomes (reservoir size of 512), as well as predictions made
by the QRC-C4 architecture using 9 qubits. Notice that both
the quantum and classical reservoirs can accurately predict up
to ∼8.5 LTs. Beyond that, the prediction diverges from the
true solution due to the inherent chaotic nature of the system.

2. Long-term statistical predictions

We select the best-performing networks for which the
short-term predictions are shown in Fig. 10. We evolve the
networks autonomously in a closed-loop for 250 LT, starting
from an arbitrary point. The resulting statistics are shown in
Fig. 11 for each state variable. Both quantum and classical
reservoir architectures are able to predict long-term statistics
accurately.

C. Higher-dimensional Lorenz-96 model

In this section, we extend our comparison of classical and
quantum reservoirs to higher-dimensional chaotic systems.
We follow the same procedure defined in Sec. IV B and an-
alyze the Lorenz-96 model [36]:

dxi

dt
= (xi+1 − xi−2) xi−1 − xi + F, i = 1, . . . , m, (13)

where F is the external body forcing term which we set to
F = 8, to ensure chaotic behavior [9]. We apply periodic
boundary conditions, i.e., x1 = xm+1, and study the reduced
order model of Lorenz-96 with ten dimensions (m = 10).
The training set covers an evolution time of 200 LT for the
Lorenz-96 system with a leading Lyapunov exponent value of
�1 = 1.2. In Table III, we present the hyperparameters for the
ten-dimensional Lorenz-96 system. The set of hyperparame-
ters is derived by using the same procedure as discussed in
Sec. II.

1. Time-accurate predictions

We analyze the time-accurate prediction capabilities of
CRC and different QRC architectures for a ten-dimensional
reduced-order model of Lorenz-96. Fig. 12 shows the VPT
values of both networks. The QRC architectures C1, C2, and
C4 outperform the classical reservoir for increasing reservoir
sizes. To study the robustness of the model, the results are
averaged over five different sets of optimal hyperparameters
and 20 different starting points. For a particular realization of
hyperparameters and a starting point, at reservoir size 4096
the VPT value for CRC can be as large as ∼ 10 LT. However,
the performance is not robust and degrades quickly for other
hyperparameter choices and different initial points. Improved
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FIG. 10. Lorenz-63 system. Closed-loop time-series predictions. Comparison of true predictions with classical reservoir computing (CRC)
and emulated quantum reservoir computing (QRC).

performance scaling and robustness indicate a potential quan-
tum advantage in quantum reservoir computers.

Similar to the results in the Lorenz-63 system, the choice
of a feature map and quantum reservoir architectures is critical
for the performance. In Fig. 12, QRC-C4 and C1 have com-
parable VPT values at different reservoir sizes while QRC-C2
underperforms slightly. The performance of QRC-C3 and C5
do not improve with the reservoir size because there is no
feedback loop, and because the linear input feature map only
utilises a fraction of state space. By contrast, QRC-C4 (RF-
QRC), which also does not have a recurrent feedback loop,
has a fully connected input feature map that enriches the
reservoir dynamics and has a comparable VPT to QRC-C1
and C2.

As compared to QRC with recurrent connections, QRC-C4
achieves the highest VPT to circuit depth ratio for all of the
reservoir sizes as shown in Fig. 13. This is due to a lack
of recurrence. In comparison, QRC-C1 and C2 require expo-
nentially higher circuit depths at increasing reservoir sizes to
achieve similar performance.

2. Long-term statisitical predictions

In Figs. 14 and 15, we compare the long-term statistical
predictions. The displayed results show the best-performing
classical reservoir and quantum reservoir network (QRC-
C4) outputs. We evolve these networks for 400 LT in a
closed-loop, for the reservoir size of 1024. Both quantum and

FIG. 11. Lorenz-63 system. Closed-loop statistical predictions. The top panels present the result of the true and classical (CRC) network.
The bottom panels compare the true with the QRC predictions. The shaded region in both figures indicates the uncertainty associated with
different random seeds in both CRC and QRC.
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TABLE III. Parameters for ten-dimensional Lorenz-96 system.

Parameters Symbol Classical RC Quantum RC

Time step dt 0.01s 0.01s
Input scaling σin [0, 1] –
Spectral radius ρ [0.1, 1] 1
Tikhonov regularization β 1 × 10−6,1 × 10−9,1 × 10−12 1 × 10−6,1 × 10−9,1 × 10−12

Leak rate ε [0.05, 1] [0.05, 0.3]
Resevoir density D 0.1,0.6,0.9 Configurations C1-C5

classical reservoir networks can recover long-term statistics
of the chaotic model. The shaded region highlights the uncer-
tainty of different realizations. We find that QRC-C4 predicts
the statistical variables with smaller uncertainties when com-
pared to the classical reservoir with equal reservoir sizes.

D. Chaotic shear flow model for extreme event forecasting

In fluid mechanics, extreme events are sudden and unmit-
igated changes of observables. The forecasting of extreme
events is the first step towards the control and suppression of
these violent bursts. RNN’s and RC’s are used to study these
events qualitatively and quantitatively [7,8,18]. We consider a
qualitative low-order model of turbulent shear flows, which
is based on Fourier modes and describes a self-sustained
turbulent process. This model is also known as the (MFE)
model. The MFE model is nonlinear and it captures the relam-
inarization and turbulent bursts [37]. Owing to the nonlinear
nature of this model, the MFE model has been employed to
study turbulence transitions and chaos predictability [7,19].
Mathematically, the MFE system can be described by the
nondimensional Navier-Stokes equations for forced incom-
pressible flow

∂v

∂t
= −(v.∇) v − ∇ p + 1

Re
�v + F(y), ∇.v = 0, (14)

FIG. 12. Lorenz-96 system with ten dimensions. VPT vs reser-
voir sizes for both classical and quantum reservoir configurations.

where v = (u, v,w) is the three-dimensional velocity vec-
tor, p is the pressure, Re is the Reynolds number, ∇ is the
gradient, and � is the Laplacian operator. F(y) on the right-
hand side is the sinusoidal body forcing term and equals
F(y) = √

2π2/(4Re) sin(πy/2) ex. The body forcing term is
applied along the x, y direction of the shear between the plates.
We consider a three-dimensional domain of length Lx, Ly, Lz

= [4π, 2, 2π ] and apply free slip boundary conditions at
y = Ly/2, periodic boundary conditions at x = [0; Lx] and
z = [0; Lz]. The set of PDEs can be converted into ODEs
by projecting the velocities onto Fourier modes as given by
Eq. (15)

v(x, t ) =
9∑

i=1

ai(t ) v̂i (x). (15)

These nine decompositions for the amplitudes ai(t ) are substi-
tuted into Eq. (14) to yield a set of nine ordinary differential
equations as in Ref. [37]. The MFE system displays a chaotic
transient, which in the long term converges to a stable laminar
solution. We want to predict the turbulent burst of kinetic
energy and chaotic transients, which are extreme events.
Figure 16 shows the evolution of kinetic energy [k(t ) =
1
2

∑9
i=1 a2

i (t ) ] and the associated extreme event, and the long-
term statistical distribution of the kinetic energy. An extreme
event occurs when the kinetic energy k(t ) value exceeds the

FIG. 13. Lorenz-96 system with ten dimensions. VPT/circuit
depth vs reservoir sizes for different quantum reservoir
configurations.
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FIG. 14. Lorenz-96 system with ten dimensions. Closed-loop statistical predictions using CRC. The shaded region indicates the uncertainty
associated with different random seeds in CRC.

threshold (k(t ) � ke). In this work, we take ke = 0.1, as in
Ref. [18].

We solve the MFE system ODEs using an RK4 solver with
dt = 0.25s. The leading Lyapunov exponent is � = 0.0163
for MFE model [18]. Unlike the Lorenz-63 and Lorenz-96
models, generating a single long-time series for washout,
training, and test sets is not feasible for MFE because a single
long-time series eventually laminarizes and gives limited in-
formation about the chaotic transients. To address this issue,
first, we generate an ensemble of 2000 time series from differ-
ent random initial points. We take the length of a single time
series equal to 65 LT or 16000 time steps. Second, we dis-
card the time series whose maximum kinetic energy is larger
than the laminarization threshold kl = 0.48. This threshold is
selected to be close to the (asymptotic) laminarization value
of k = 0.5. Out of the 2000 time series, 27% of the series
laminarizes. We divide the remaining 1441 time series into

washout, training, and test sets. We train our network on a
25-time series, each of length 20LT . The test set consists of
500 time series. In Table IV, we present the range of hyperpa-
rameters for the MFE system. The set of hyperparameters are
derived by using the same procedure as discussed previously
in Sec. II. In Secs. IV D 1 and IV D 2, we compare the time-
accurate and statistical predictions for the classical reservoir
method against the best-performing quantum reservoir QRC-
C4.

1. Time-accurate predictions

In the MFE model, we are concerned about quantifying
the extreme event prediction capabilities of our reservoir net-
works. These capabilities are not accurately quantified by
VPT, because extreme events are difficult to predict due to the
chaotic nature of the attractor. This means that the network can
show good predictability in low kinetic energy regions while

FIG. 15. Lorenz-96 system with ten dimensions. Closed-loop statistical predictions using QRC. The shaded region indicates the uncertainty
associated with different random seeds in QRC.
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TABLE IV. Parameters for the MFE system.

Parameters Symbol Classical RC Quantum RC

Time step dt 0.25s 0.25s
Input scaling σin [0, 1] –
Spectral radius ρ [0.1, 1] 1
Tikhonov regularization β 1 × 10−6,1 × 10−9,1 × 10−12 1 × 10−6,1 × 10−9,1 × 10−12

Leak rate ε [0.05, 1] [0.05, 0.3]
Reservoir density D 0.1,0.6,0.9 Configuration C4 (RF-QRC)

showing smaller VPT values near extreme events. This may
produce an inaccurate representation of the predictability of
our reservoir networks.

To quantify extreme event prediction capabilities, we use
the predictability horizon (PH) [18,19,56], which is defined
as the time interval during which the predicted kinetic energy
kpred and true kinetic energy ktrue are bounded by∣∣∣∣kpred(t ) − ktrue(t )

ke − k̄

∣∣∣∣ < 0.2, (16)

where ke is the extreme event threshold, which is equal to
0.1 here as in Ref. [18]. k̄ is the time average of the kinetic
energy, and 0.2 is the user-defined error threshold [18]. To
quantify the PH, we sample 100 different extreme events from
the unseen test set data. For each extreme event, we start the

FIG. 16. MFE time series kinetic energy and probability density
function (PDF) (a) single time series in which the kinetic energy
exceeds the extreme event threshold ke, highlighting the presence
of an extreme event (b) probability distribution of kinetic energy
calculated over an ensemble of time series.

predictions 12 LT before the extreme event and discard the
transients in the washout phase for 2 LT by running reservoir
networks in an open loop. This gives δke of 10 LT. After this,
we start autonomous closed-loop predictions with δke = 10.
The value of δke represents the time difference from the start of
closed-loop predictions to the extreme event. If the PH value
is greater than δke we take PH equal to δke . If the prediction
diverges before the extreme event occurs, or the PH value is
less than δke , we decrease the δke value by a factor of τe. We
take τe = 0.5 LT and the new δke value equals to 9.5 LT. For
the next step, we repeat the closed-loop predictions for the
extreme event occurring at 9.5 LT, i.e., δke = 9.5 LT. We repeat
the same method decreasing δke by τe until the PH is greater
than δke (Fig. 17). That is, the extreme event is predicted
correctly by the reservoir computers by the value of PH in
the future.

We calculate the PH for a set of reservoir sizes for both
quantum and classical reservoir networks. For a classical
reservoir, the number of neurons is varied from N = 256 to
N = 2048. We tune the hyperparameter for each reservoir and
calculate the corresponding PH value. We also perform the
same analysis for the quantum reservoir with qubits n = 8
to n = 11, which, in principle, corresponds to the classi-
cal reservoirs of N = 256 to N = 2048. The performance
of the quantum reservoir also improves with the reservoir
size. In Fig. 18, the comparison of classical and quantum
reservoirs for various reservoir sizes is shown. Both reservoir
networks have comparable performances for a reservoir sizes
N = {256, 512}, with the classical reservoir outperforming
quantum reservoir by a small margin. However, the PH value
of the classical reservoir converges with a median value of
around 5.5 LT. This convergence of PH value with increasing
reservoir sizes is due to performance saturation in CRC and
it is consistent with the results in Ref. [18]. In contrast, the
quantum reservoir outperforms the classical reservoir for in-
creasing reservoir sizes and has a median PH value of 8.09LT
with 11 qubits.

A second statistical measure to assess the extreme event
prediction capabilities is the F -Score [57], which measures
the model’s accuracy by combining metrics such as precision
and recall. To calculate the F score, we measure three dif-
ferent occurrences: (a) an extreme event occurs in the true
data set and the model also predicts the extreme event (True
Positive, TP) (b) there is no extreme event in the true data
but the model predicts an extreme event (False Positive, FP)
(c) an extreme event occurs in the true data set but the model
does not predict an extreme event (False Negative, FN) [18].
These three metrics are combined to calculate precision (p),
recall (r), and F score (F ) from 1000 different starting points,
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FIG. 17. Visualization of the prediction of extreme events for both reservoir domputing methods (RCMs), i.e., both CRC and QRC (PH=
5.89LT).

which span 20 different time series:

p = T P

T P + FP
, r = T P

T P + FN
, F = 2

p−1 + r−1
. (17)

FIG. 18. MFE system. Predictability horizon (PH) for predic-
tions with different reservoir sizes for the best performing CRC and
QRC-C4 (RF-QRC) networks.

We compare quantum and classical reservoirs for two dif-
ferent cases. First, we fix the reservoir size for N = 1024,
which is equals to 10 qubits for the quantum reservoir and
varies prediction time (PT). The PT is defined as the time
interval between the extreme event and the start of the pre-
diction. The PT value of 0 LT indicates that the prediction
interval is between 0 and 1 LT, and PT = 3 indicates the
prediction interval of 3–4 LT. The lower PT values have an
F -score value closer to 1 because the network predicts nearly
all the extreme events accurately, which are located within
1 LT of the start of predictions. As expected, the perfor-
mance deteriorates with increasing the PT value due to the
inherent chaotic nature of the model. The proposed quantum
reservoir architecture (QRC-C4) achieves a higher F score as
compared to the CRC for different PT intervals as shown in
Fig. 19.

Second, we fix the prediction time to 3 LT (PT = 3LT),
which indicates the model is predicting extreme events be-
tween 3 and 4 LT. After fixing the PT value, we vary the
reservoir sizes from N = 256 to N = 2048 and compare
the performance metrics. The performances are similar for
both quantum and classical reservoirs with reservoir sizes of
{256, 512}. Similar to the results shown for the predictability
horizon previously, the quantum architecture has a higher F -
score value for 10,11 qubits as compared to the classical reser-
voirs of the same sizes (Fig. 19). All the results are computed
for five different ensembles of networks and for 1000 different
starting points.
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FIG. 19. MFE system. 75th percentile of Precision, Recall, F-
score vs on the left side, prediction time (PT) for a constant reservoir
size (N = 1024). On the right side, reservoir size for a constant
prediction time (PT = 3LT).

2. Long-term statistical prediction

For the classical reservoir, we chose the reservoir size of
N = 512. For the quantum reservoir, we chose a reservoir that
corresponds to n = 9 qubits. We evolve the networks from
different starting points in the test set of 500 time series,
in which each starting point corresponds to a different time
series. As previously mentioned, we perform washout for each
time series and discard the time series whose kinetic energy
exceeds the laminarization threshold kl > 0.48. Finally, we
calculate the PDF.

Figure 20 presents the results for the statistical predictions
against the true value. Both reservoirs can predict long-term
statistics with high accuracy for the smaller kinetic energy

FIG. 20. MFE system. Long-term statistical predictions with
classical and quantum reservoir computing.

FIG. 21. MFE system. The time average of the square of the
midplane velocity along x. (a) True data (b) QRC-C4 predictions
(c) CRC predictions for the best-performing networks with a reser-
voir size of 512 (9 qubits).

values. Particularly, for k < 0.15 the prediction agrees with
the true value of the statistics. This analysis provides a statisti-
cal measure of the prediction of extreme events. Both quantum
and classical reservoirs can predict most of the extreme events
(k < 0.10) in the test set. For the higher kinetic energy values,
the log scale amplifies the difference between true value and
predictions. The accuracy in the prediction of extreme events
could be improved by considering a larger reservoir size,
which scales better for QRC as compared to CRC, as shown
previously in Figs. 18 and 19.

To further visualize the statistical predictions and compare
CRC and RF-QRC, we predicted the velocity components
of the flow fields from the predicted Fourier modes. In
Fig. 21 the results of the average streamwise velocities are
shown for the true data, and compared against classical and
quantum reservoir predictions on the test data set. The pre-
dictions of RF-QRC approximate the true flow field better
than the predictions from CRC, which have larger deviations.
We conjecture that RF-QRC can be used to reconstruct flow
fields with better accuracy than CRC with similar reservoir
sizes. The prediction of flow fields with a better accuracy
also allows the RF-QRC model to predict turbulent bursts of
relaminarization and thus kinetic energies (extreme events)
with better prediction horizon as previously shown in Figs. 18
and 19.

V. CONCLUSION

By exploiting quantum-computer ansätze and entangle-
ment, we analyze and design reservoir computers to predict
chaotic dynamics and extreme events from data. First, we
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show that the design of a feature map, which encapsu-
lates entanglement and data-encoding layers, is key to the
reservoir’s performance. Second, we design the RF-QRC,
which has a small circuit depth that does not scale with
the number of qubits (reservoir size), unlike previous pro-
posals of QRC. RF-QRC also does not have recurrent
connections at each time step. This enables the training of
the network without an additional classical feedback loop,
which makes the implementation suitable to current noisy
intermediate-scale quantum devices. Third, we numerically
analyze quantum reservoir computers and the proposed RF-
QRC on prototypical chaotic dynamical systems, from low-
to higher-dimensional. We show that (a) the forecasting ca-
pability of state-of-the-art classical and quantum reservoir
computers increases with the reservoir size until saturation;
(b) for low-dimensional chaotic systems, classical reservoir
computers have larger predictability than quantum reser-
voir computers for the same degrees of freedom; (c) for
higher-dimensional chaotic systems, RF-QRC has larger pre-
dictability than classical reservoir computers for the same
degrees of freedom; and (d) RF-QRC can predict extreme
events while scaling better than state-of-the-art reservoir
computers. The RF-QRC requires smaller reservoir sizes as
compared to classical reservoir computers for the same per-
formance. The RF-QRC can be used to encode classical and
quantum data on a quantum computer to make time-series
predictions. This work opens new opportunities for the pre-
diction of chaotic dynamics and extreme events with quantum
reservoir computing. Current work is focused on the analy-
sis of hardware and environmental noise, and finite-sampling
errors.
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APPENDIX A: QUANTUM CIRCUITS
FOR DIFFERENT ANSÄTZE

Figures 22–25 represent the quantum circuits for different
ansätze presented in Table I. The rotation angles X� represent
the mapped classical data rescaled to the interval [0, 2π ].

FIG. 22. Quantum circuit for linearly entangled qubits.

FIG. 23. Quantum circuit for fully entangled qubits.

APPENDIX B: MEMORY
OF THE RESERVOIR NETWORKS

In this section, we discuss the empirical metrics including
fading memory and linear memory capacity (MC) [58–62]
for different reservoir architectures. In order to efficiently
reconstruct the reservoir dynamics, reservoir computers must
satisfy the ESP [15,39]. In classical reservoir networks, ESP is
enforced by scaling the hyperparameter ρ (Sec. II A). In quan-
tum reservoir networks, unitary evolution is norm-preserving,
i.e., (U †U = I ), and therefore no tuneable hyperparameter ρ

exists. In both, quantum and classical reservoir computing, we
perform a washout interval by discarding a limited number of
initial reservoir states.

The short-term MC is a performance measure that is used
to characterize the linear memory capacity of reservoir com-
puters [62]. MC quantifies the maximally possible linear
correlations between the current reservoir states and previous
input data, u(t − d ), and can be computed as

MC =
dmax∑
d=1

MFd , MF d = cov2(ud (t ), u(t − d ))

σ 2(ud (t ))σ 2(u(t ))
(B1)

where cov(·, ·) is the covariance, σ 2(·) is the variance, d is
the delay, u(t − d ) is the delayed prediction for a particular

FIG. 24. Quantum circuit for fully entangled symmetric qubits.
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FIG. 25. Quantum circuit for product feature map qubits.

d value and ud (t ) is the current true input value. Although
the total MC comprises infinitely many terms (dmax = ∞), for
practical reasons it is sufficient to truncate the sum at a finite
dmax. For a comparison of the memory capacities of CRC
and QRC we choose dmax = 25. While the MC quantifies the
linear memory of the reservoir, the dynamical system itself
has some correlations that can increase the MC. To quantify
the memory of the reservoir itself, we train our quantum and
classical reservoir networks on statistically independent (i.i.d)
uniform distributions. In Figs. 26 and 27, we compare the lin-
ear memory capacity of the classical reservoir with QRC-C1
(architecture with recurrence) and QRC-C4 (recurrence-free
architecture). The global MC is bounded by the size of the
reservoir and is sensitive to the choice of hyperparameters
[59]. We compute our MC for various hyperparameter values
and reservoir sizes (N = 32, 512).

FIG. 26. Linear memory capacity (MC) of reservoir networks,
mean and standard deviation with hyperparameters. For a summary
of hyperparameters cf. Table II. For a reservoir size (N) = 32.

The results in Figs. 26 and 27 demonstrate that CRC ex-
hibits the highest MC value followed by QRC-C1 and then
QRC-C4. A high memory capacity in CRC highlights that
the reservoir contains linear information about the input time
series for a larger delay value d . In contrast, QRC-C4 does
not have any recurrent or feedback loop. Due to the removal
of the recurrence reservoir memory is lost. We emphasize that
the higher MC value is not indicative of better predictability.
This is because of two reasons: (a) The short-term memory
capacity quantifies only the linear memory of the reservoir.
(b) Maximizing the linear memory and nonlinear functional
approximation are mutually exclusive and are referred to as
the memory nonlinearity trade-off [63]. We find comparable
performances in short and long-term prediction tasks, irre-
spective of the MC value, for both classical and quantum
reservoirs.

FIG. 27. Linear memory capacity (MC) of reservoir networks,
mean and standard deviation with hyperparameters. For a summary
of hyperparameters cf. Table II. For a reservoir size (N) = 512.
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