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We propose a physical model to predict indirect noise generated by the acceleration
of compositional inhomogeneities in nozzles with viscous dissipation (non-isentropic
nozzles). First, we derive the quasi-one-dimensional equations from the conservation laws
of multicomponent flows. Second, we validate the proposed model with the experimental
data available in the literature for binary mixtures of four gases. Third, we calculate the
nozzle transfer functions for different Helmholtz numbers and friction factors, in both
subsonic and supersonic flows with/without shock waves. We show that friction and
dissipation have a significant effect on the generation of indirect noise, for which the
physical mechanism is identified and explained. Fourth, we find a semi-analytical solution
with path integrals, which provides an asymptotic expansion with respect to the Helmholtz
number. Fifth, we introduce the compositional-noise scaling factor, which is applied to
quickly estimate compositional noise from the knowledge of only one single-component
gas transfer function. The approximation error is less than 1 %. The proposed low-order
model provides accurate estimates of the transfer functions and physical insight into
indirect noise for multicomponent gases. This opens up new possibilities to accurately
predict, and understand, sound generation in gas turbines.

Key words: gas dynamics

1. Introduction

As aeroengines and gas turbines become cleaner, the combustion process is becoming a
major source of noise emissions. This is because the reduction of air pollutant emissions is
achieved with lean flames, which, in turn, burn unsteadily to generate sound waves through
direct and indirect physical mechanisms. On the one hand, the sound generated by the
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unsteady heat released by the flame, which leads to a volumetric contraction and expansion
of the gas, is referred to as direct combustion noise (e.g. Ihme 2017; Mahmoudi et al.
2018). On the other hand, the sound generated by the acceleration of flow inhomogeneities
through the nozzles downstream of the combustor is referred to as indirect noise (e.g.
Williams & Howe 1975; Strahle 1976; Marble & Candel 1977; Cumpsty 1979; Polifke,
Paschereit & Döbbeling 2001; Morgans & Duran 2016; Magri, O’Brien & Ihme 2016).
These sound waves may have two detrimental effects: (i) they contribute to noise pollution;
and (ii) they can reflect back in the combustion chamber and, if they are sufficiently
in phase with the heat released by the flame, can cause thermoacoustic oscillations to
arise (e.g. Polifke et al. 2001; Goh & Morgans 2013; Motheau, Nicoud & Poinsot 2014).
Indirect noise caused by temperature inhomogeneities is referred to as entropy noise
(Cuadra 1967; Marble & Candel 1977; Bake et al. 2009; Duran & Moreau 2013), whereas
indirect noise caused by compositional inhomogeneities is referred to as compositional
noise (Magri et al. 2016; Magri 2017). The third type of indirect noise is vorticity noise,
which is generated by velocity gradients (Howe 1975; Hirschberg, Hulshoff & Bake 2021;
Hirschberg, Bake & Hulshoff 2022). In aircraft engine applications, however, the role
of vorticity noise is typically negligible (Dowling & Mahmoudi 2015). Although there
are many studies on direct noise, which make it a relatively well-understood mechanism
(Ihme 2017), a complete understanding of indirect noise is yet to be developed (Tam
et al. 2019). Experimentally, isolating the effect of indirect noise requires pressurised
experimental rigs and close-to-anechoic boundary conditions, which make the design of
experimental campaigns challenging (Rolland 2018). In this paper, we focus on entropy
and compositional noise.

Most of the studies in the literature consider the flow to consist of a single
component. However, due to factors such as dilution and imperfect mixing, the exhaust
gas has fluctuations in the mixture composition (Magri et al. 2016; Magri 2017). To
model multicomponent gases, the compact nozzle assumption for single-component
flows developed by Marble & Candel (1977) was extended to account for impinging
compositional waves by Magri et al. (2016), who showed the role of compositional
inhomogeneities in indirect noise generation in subsonic and supersonic compact nozzles.
These studies recovered the entropic–acoustic and acoustic–acoustic transfer functions
obtained by Marble & Candel (1977) in the limit of a homogeneous mixture. The
compact nozzle assumption and theory of compositional noise were generalised by Magri
(2017), who derived the governing differential equations, and identified the physical
sources in finite-length nozzles and impinging waves with non-zero frequency. They
found an expression for the density as a function of key thermo-chemical parameters,
which were shown to be significant dipole sources of sound. The frequency-dependent
behaviour of compositional noise was analysed in subsonic and supersonic nozzles.
Compositional noise was shown to monotonically decrease with the Helmholtz number
with a semi-analytical solution of the governing equations with a Dyson expansion, as
reviewed in Magri, Schmid & Moeck (2023). For aeronautical applications, compositional
noise was shown to be as great as, or larger than, entropy noise for a kerosene mixture in a
supersonic regime (Magri, O’Brien & Ihme 2018). Similarly to the case of entropy noise,
the compact nozzle overpredicted compositional noise. Compositional-noise sources in
a rich-quench-lean combustor were computed by a high-fidelity large-eddy simulation
in a realistic aeronautical gas turbine Giusti, Magri & Zedda (2019). They found
that compositional noise can have the same order of magnitude as entropy noise.
Recently, different studies proposed models for nonlinear effects (Huet & Giauque 2013),
multi-stream nozzles (Younes & Hickey 2019), heat transfer (Yeddula, Guzmán-Iñigo &
Morgans 2022a) and three-dimensional effects of the entropy field (Emmanuelli et al.
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2020; Huet, Emmanuelli & Le Garrec 2020; Yeddula et al. 2022b). In this work, we
assume the acoustics to be dominated by a quasi-one-dimensional dynamics.

Common to the aforementioned studies on compositional noise is the assumption that
the flow is isentropic. In reality, the energy dissipation due to viscosity and wall friction
makes the flow non-isentropic. With the compact nozzle assumption and the heuristic
argument of De Domenico, Rolland & Hochgreb (2019), Rolland (2018) and De Domenico
et al. (2021) derived the nozzle transfer functions with appropriate jump conditions for
non-isentropic multicomponent flows. They performed the analysis on a subsonic flow
through a compact nozzle. Rolland, De Domenico & Hochgreb (2018) experimentally
studied the compositional inhomogeneities of air–helium mixtures that are accelerated
through choked compact nozzles, for which a mass injection device was employed to
validate the model. Recently, the effect of non-isentropicity was validated experimentally
by injecting pockets of argon, carbon dioxide, helium and methane accelerating through
isentropic nozzles by De Domenico et al. (2021). The results were compared with the
transfer functions obtained with a low-order physics-based model for non-isentropic
nozzle flows, which relies on a semi-empirical parameter (De Domenico et al. 2019).
Huet, Emmanuelli & Ducruix (2021) studied the influence of viscosity on entropy-noise
generation and scattering. Additionally, Yang, Guzmán-Iñigo & Morgans (2020) and
Guzmán-Iñigo et al. (2022) modelled the effect of non-isentropicity in entropy-noise
generation in a sudden area expansion, which is a canonical flow with separation and
mean pressure losses. Recently, Jain & Magri (2022a) derived the governing differential
equations from first principles to model the non-isentropicity of nozzles with a spatial
extent, which provided physical interpretation of the indirect sound-generation process in
non-isentropic nozzles. A detailed parametric study of the nozzle and flow parameters
was carried out by Jain & Magri (2022b). However, the physics was modelled only for a
single-component flow.

The overarching objective of this paper is to derive the equations from first principles
to model multicomponent flows in nozzles with viscous dissipation. Specifically, the
goals are to (i) propose a physical model for a non-isentropic multicomponent nozzle
flow from conservation laws; (ii) investigate compositional noise in subsonic and
supersonic nozzle flows with/without shock waves; (iii) derive a semi-analytical solution
to calculate the transfer functions via an asymptotic expansion; (iv) introduce the
compositional-noise scaling factor to quickly estimate compositional–acoustic transfer
functions from single-component gases. For this, a converging–diverging nozzle is
numerically investigated. The results are compared with the experiments of De Domenico
et al. (2021), where available. The paper is structured as follows. Section 2 introduces
the mathematical model. Sections 3 and 4 show the nozzle response for the subsonic and
supersonic regimes, respectively. Section 5 presents the semi-analytical solution. Section 6
introduces the scaling factor. Conclusions end the paper.

2. Mathematical model

The multicomponent gas mixture that accelerates through a nozzle is modelled under the
following assumptions: (i) the flow is quasi-one-dimensional, i.e. the area variation causes
a change in the flow variables, but the variables depend only on the axial coordinate;
(ii) the gas mixture consists of N species of Yi mass fractions and μi chemical potentials,
μi = Wi∂h/∂Yi = Wi∂g/∂Yi, where Wi is the molar mass of the ith species, g is the
specific Gibbs energy and h = ∑N

i=1 hiYi is the specific enthalpy. The gas composition is
parameterised with the mixture fraction, Z, as Yi = Yi(Z) (Williams 2018); (iii) the gases
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are assumed to be ideal with heat capacity cp = ∑N
i=1 cp,iYi, where cp,i is the heat capacity

of the ith species at constant pressure; (iv) the gases are assumed to be calorically perfect,
i.e. cp,i is constant, hence, the enthalpy is h = cp(T − To), where T is the temperature and
o is the reference state; (v) the flow is considered to be chemically frozen; and (vi) the walls
are adiabatic. With these assumptions, the equations of conservation of mass, momentum,
energy and species are, respectively (Chiu & Summerfield 1974),

Dρ
Dt

+ ρ
∂u
∂x

+ ρu
A

dA
dx

= Ṡm, (2.1)

Du
Dt

+ 1
ρ

∂p
∂x

= ṠM, (2.2)

T
Ds
Dt

= Ṡs, (2.3)

DZ
Dt

= ṠZ, (2.4)

where t is the time, x is the longitudinal coordinate, A is the cross-sectional area, ρ is the
density, u is the velocity, p is the pressure, s = ∑N

i=1 siYi is the non-mixing entropy and
D(·)/Dt = d(·)/dt + u d(·)/dx is the total derivative. The right-hand side terms, Ṡj, are the
sources of mass, momentum, entropy and species, respectively. Because we assume that
the flow is chemically frozen with no mass generation, Ṡm = 0 and ṠZ = 0. As shown in
Jain & Magri (2022a), the momentum and entropy source terms are

ṠM = −4f
D

u2

2
, (2.5)

Ṡs = RT
f
ζ

(
γ (1 − M2)

2Λ

)
DM2

Dt
, (2.6)

where the two-/three-dimensional dissipation effects, such as recirculation and wall
friction, are averaged across the cross-section and parametrised with a friction factor, f
(Jain & Magri 2022a), M is the Mach number, D is the diameter of the nozzle and R is
the gas constant. The compressibility factor, Λ, and competition factor, ζ , are defined,
respectively, as

Λ ≡ 1 + γ − 1
2

M2, ζ ≡ fγM2 − 2 tanα, (2.7a,b)

where γ is the heat-capacity ratio, and tanα = 1/2 dD/dx is the spatial derivative of the
nozzle profile (figure 1). The Gibbs equation

T ds = dh − dp
ρ

−
N∑

i=1

(
μi

Wi

)
dYi, (2.8)

closes the set of equations. The entropy of mixing is contained in the chemical potential.

2.1. Linearisation
We model the acoustics as linear perturbations that develop on top of a steady mean
flow. For this, we decompose a generic flow variable, v, as v → v̄(x)+ v′(x, t), where
v̄(x) is the steady mean-flow component, and v′(x, t) is the first-order perturbation.

963 A11-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

24
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.240


Compositional noise in nozzles with dissipation

π1
+

π1
–

σ1

ξ1

π2
+

π2
–

σ2

α

ξ2

D̃ (= D/L)

η(= x/L)

α = tan–1 ( 1

2

dD̃
dη

)

Figure 1. Nozzle schematic nomenclature.

Linearising (2.1)–(2.4) around the mean flow and collecting the mean-flow terms yields
(Jain & Magri 2022a)

A2

A1
= M̄1

M̄2

(
Λ̄2

Λ̄1

)((γ̄+1) tanα)/(2κ) (
ζ̄1

ζ̄2

)(f γ̄−2 tanα)/(2κ)

, (2.9)

p̄02

p̄01
=
(
Λ̄2

Λ̄1

)f γ̄ (γ̄+1)/(2(γ̄−1)κ) (
ζ̄1

ζ̄2

)(f γ̄−2 tanα)/(2κ)

, (2.10)

	s̄
c̄p

= log
(
Λ̄1

Λ̄2

)f (γ̄+1)/(2κ) (
ζ̄2

ζ̄1

)((γ̄−1)/γ̄ )((f γ̄−2 tanα)/(2κ))

, (2.11)

where p0 is the stagnation pressure, κ = f γ̄ + (γ̄ − 1) tanα and 	s̄ is the mean-flow
entropy variation caused by dissipation. The mean-flow equations for multicomponent
gases are equal to the equations of single-component gases (Jain & Magri 2022a).
Physically, this is because the compositional inhomogeneities are assumed to be first-order
perturbations that disturb a homogeneous mean flow. If the flow has no dissipation, f = 0,
the stagnation pressure and entropy in (2.10)–(2.11) are constant throughout the nozzle.

2.1.1. Linearisation of Gibbs equation, density and multicomponent anisentropicity
factor

In order to gain physical insight into the key effects that dissipation has on multicomponent
gases, we linearise and take the material derivative of the Gibbs equation (2.8)

D
Dt

(
p′

γ̄ p̄
− ρ′

ρ̄
− s′

c̄p

)
+ c′

p

c̄p

D
Dt

(
s̄
c̄p

)
− γ ′

γ̄

D
Dt

(
p̄
γ̄ p̄

)
− (ℵ̄ + ψ̄

) DZ′

Dt
= 0. (2.12)

To track the density variation of a material fluid volume, (2.12) is integrated from an
unperturbed state along a characteristic line, which yields the density

ρ′

ρ̄
= p′

γ̄ p̄
− s′

c̄p
− K̄Z′. (2.13)

We introduce the compositional-noise scaling factor, K̄, as

K̄ ≡ ℵ̄ + ψ̄ + Ω̄ + φ̄, (2.14)
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where ℵ̄, ψ̄ and φ̄ are the heat-capacity factor, chemical potential function and γ ′ source
of noise, respectively (Magri 2017)

ψ̄ ≡ 1
c̄pT̄

N∑
i=1

(
μ̄i

Wi
−	ho

f ,i

)
dYi

dZ
, (2.15)

ℵ̄ ≡
N∑

i=1

(
1

γ̄ − 1
d log γ

dYi
+ To

T̄

d log cp

dYi

)
dYi

dZ
, (2.16)

φ̄ ≡
N∑

i=1

d log γ
dYi

dYi

dZ
log p̄1/γ̄ , (2.17)

where 	ho
f is the standard enthalpy of formation. The heat-capacity factor, ℵ̄ and

the chemical potential function, ψ̄ are evaluated at the nozzle inlet (Magri 2017). If
the flow has a homogeneous composition, the density depends only on fluctuations
of entropy (temperature), therefore, (2.13) tends to that of Marble & Candel (1977).
The chemical potential function, ψ̄ , is typically a large contributor to compositional
noise. Physically, when the flow is accelerated, the chemical potential energy of the
compositional inhomogeneities is converted to acoustic energy (Magri 2017). Integrating
the material derivative of the entropy fluctuation in (2.12), considering cp = γR/(γ − 1)
and γ ′ = ∑N

i=1(dγ /dYi)(dYi/dZ)Z′, yields the multicomponent anisentropicity factor

Ω̄ = 	s̄
γ̄R

N∑
i=1

d log γ
dYi

dYi

dZ
, (2.18)

where,	s̄ is the change in entropy of the mean flow because of dissipation. The dissipation
considered in this work is caused by friction effects, which are encapsulated in the friction
factor, f . Hence, by expressing the entropy variation with (2.11), the multicomponent
anisentropicity factor can be expressed as

Ω̄ = 1
γ̄

log
(
Λ̄1

Λ̄2

)f γ̄ (γ̄+1)/(2(γ̄−1)κ) (
ζ̄2

ζ̄1

)(f γ̄−2 tanα)/(2κ) N∑
i=1

d log γ
dYi

dYi

dZ
. (2.19)

The components of the compositional-noise scaling factor analysed in the subsonic and
supersonic regimes (§§ 3 and 4) are shown in figure 2. The multicomponent anisentropicity
factor is a key term that arises from the linearisation of the Gibbs equation. It quantifies
the effect that dissipation,	s̄, has on the generation of indirect noise in a multicomponent
gas. The effect is nil when the flow is single component, but it becomes proportionally
larger as (i) the dissipation increases through	s̄, and (ii) the gas compressibility increases
through d log γ /dYi. In an isentropic flow, the multicomponent anisentropicity factor is
equal to zero, thus, (2.13) tends to the isentropic model of Magri (2017). To gain further
physical insight into the multicomponent anisentropicity factor, we analyse the variation
of the stagnation pressure

d log p0 = −γM2

2
4f
D

dx. (2.20)

For the same Mach number and friction factor, (2.20) shows that the flow inhomogeneities
experience a change in the stagnation pressure depending on their composition
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Figure 2. Components of the compositional-noise scaling factor, K̄, for binary mixtures of air and (i) methane,
(ii) carbon dioxide, (iii) argon, (iv) helium. The terms in (a) do not depend on the dissipation. (b–d) Subsonic
flow and (e–g) supersonic flow.

(i.e. γ = γ (Z)). The difference in the stagnation pressure between the compositional
inhomogeneity and the surrounding mean flow corresponds to a difference in pressure,
which can be quantified by p = p0/Λ

γ/(γ−1). This pressure difference propagates through
the nozzle as a sound wave. This mechanism for sound generation exists in flows
with dissipation, but it does not exist in isentropic flows, in which the multicomponent
anisentropicity factor is zero, i.e. Ω̄ = 0 in (2.19). This is the physical mechanism that
generates indirect noise because of dissipation.

2.1.2. Linearised governing equations
Collecting the first-order terms and using the density (2.13) yields the linearised governing
equations

D̄
Dτ

(
p′

γ̄ p̄

)
+ ũ

∂

∂η

(
u′

ū

)
− D̄

Dτ

(
s′

c̄p

)
− D(K̄Z′)

Dτ
= 0, (2.21)
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D̄
Dτ

(
u′

ū

)
+ 1
γ̄

(
ũ

M̄2

)
∂

∂η

(
p′

p̄

)
+
(

2
u′

ū
+ p′

γ̄ p̄
(1 − γ̄ )− s′

c̄p
− K̄Z′

)(
4f

D̃

ũ
2

+ ∂ ũ
∂η

)
= 0,

(2.22)

D̄
Dτ

(
s′

c̄p

)
= g( f , f 2, f 3, o( f 3)), (2.23)

D̄Z′

Dτ
= 0. (2.24)

The variables are non-dimensionalised as η = x/L, τ = tfa, D̃ = D/L and ũ = ū/cref ,
where L is the nozzle axial length, fa is the frequency of the advected perturbations of the
flow inhomogeneities entering the nozzle and cref is the reference speed of sound. The
non-dimensional material derivative is D̄/Dτ = He∂/∂t + ũ∂/∂η, where He = faL/cref
is the Helmholtz number. The Helmholtz number is the ratio between the wavelengths
of the advected perturbations and the acoustic waves. The nozzle is compact if the
wavelength of the perturbations is assumed to be infinitely larger than the length of the
nozzle, i.e. He = 0. The momentum equation (2.22) indicates that the interaction of the
inhomogeneities with the nozzle geometry and friction gives rise to noise. The dissipation
term 4f ũ/(2D̃) in (2.22) augments the effect of the acceleration of the flow. A similar effect
can be seen in (2.23). For an isentropic flow, the equations tend to that of Magri (2017) in
the limit of zero friction, f → 0. The right-hand side of (2.23) is shown in Appendix A.

As a solution strategy, first, the primitive variables are decomposed in travelling waves
(figure 1)

π± = 1
2

(
p′

γ̄ p̄
± M̄

u′

ū

)
, σ = s′

c̄p
, ξ = Z′. (2.25)

Second, the partial differential equations (2.21)–(2.24) are converted into ordinary
differential equations by Fourier decomposition (·)(x, t) → (·)(x) exp(2πiτ), where (·)
denotes a generic variable. (For brevity, we do not use a different notation for
Fourier-transformed variables. All the variables from here on are to be interpreted as
Fourier transformed.) Third, the equations are cast in compact form as a linear differential
equation with spatially varying coefficients

dr
dη

= (2πiHeF + G) r, (2.26)

where r = [π+,π−, σ, ξ ]T is the state vector that contains the travelling waves. The
matrices F and G are reported in Appendix B. Finally, (2.26) is solved as a boundary
value problem with the bvp4c solver of MATLAB (Shampine et al. 2000), as detailed in
Jain & Magri (2022a). The boundary conditions are specified according to the transfer
function that is being calculated. The gradient, dr/dη is calculated at each spatial location
from (2.26), which is used to update the value of r. The process is repeated until the
boundary conditions are satisfied (figure 1). Direct noise is quantitatively measured by the
acoustic–acoustic reflection and transmission coefficients, respectively,

R = π−
1 /π

+
1 , T = π+

2 /π
+
1 . (2.27a,b)

Indirect noise is quantitatively measured by the entropic–acoustic reflection and
transmission, respectively,

SR = π−
1 /σ 1, ST = π+

2 /σ 1, (2.28a,b)
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Compositional noise in nozzles with dissipation

Regime Transfer function Parameters Key figure §

Compositional–acoustic (Rξ ,Tξ ) Mt, f , K̄ 3
Subsonic Entropic–acoustic (SR, ST ) He, f 4 3

Compositional–acoustic (Rξ ,Tξ ) He, f , K̄ 5
Supersonic (without shock) Compositional–acoustic (Rξ ,Tξ ) He, f , K̄ 7 4
Supersonic (with shock) Compositional–acoustic He, f , K̄ 8

Table 1. Summary of the cases under investigation.

and the compositional–acoustic reflection and transmission coefficients, respectively,

Rξ = π−
1 /ξ1, Tξ = π+

2 /ξ1. (2.29a,b)

Numerically, in the computation of the entropic–acoustic transfer functions, the entropy
input is assumed to be unity, σ1 = 1, whereas the compositional input is assumed to be
zero and ξ1 = 0 at the inlet. On the other hand, ξ1 = 1 and σ1 = 0 in the computation of
the compositional–acoustic transfer functions. In both cases, both the right propagating
acoustic wave at the inlet and the left propagating wave at the outlet are zero, π+

1 = 0
and π−

2 = 0, respectively (figure 1). Because of the Fourier transform, the quantities in
(2.25)–(2.29a,b) are complex (they have a magnitude and a phase) unless the nozzle is
compact (He = 0). In this work, we investigate the transfer functions for binary mixtures
of four gases with air, i.e. carbon dioxide, methane, argon and helium for flows in the
subsonic regime (§ 3) and supersonic regime (§ 4). Table 1 summarises the cases that are
being investigated.

2.1.3. A note of caution on terminology
The advected wave σ = s′/c̄p is referred to as the entropy wave. At the nozzle inlet, by
neglecting the pressure fluctuation (Eq. (3) in Morgans & Duran 2016), this is prescribed
as a function of the temperature fluctuation only

s′

c̄p
= T ′

T̄
, at η = 0. (2.30)

In a nozzle with no dissipation, the entropy wave is only transported by the mean flow,
i.e. it does not change. However, in a nozzle with friction, the entropy wave does change
according to (2.23). To be consistent with the terminology of the literature (e.g. Marble &
Candel 1977; Morgans & Duran 2016), we refer to entropy noise as the sound produced by
the acceleration of a temperature inhomogeneity that enters the nozzle. Correspondingly,
the entropic–acoustic transfer function measures the acoustic pressure that is generated by
a nozzle due to a temperature fluctuation that enters the nozzle inlet.

3. Indirect noise in subsonic nozzle flows

The effect of non-isentropicity is investigated for a linear geometry nozzle in a subsonic
flow. First, the effect of the friction factor is shown for a nearly compact nozzle for different
throat Mach numbers. Second, the effects of the nozzle geometry and the non-compact
assumption are analysed. The equations are solved numerically with an exit temperature
of 293.15 K, exit pressure of 105 Pa and a heat-capacity ratio γ̄ = 1.4. The results are
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Figure 3. Entropic–acoustic (a,c,e,g) reflection and (b,d, f,h) transmission coefficients (gain) for mixture of air
and (a,b) carbon dioxide, (c,d) methane, (e, f ) argon, (g,h) helium as a function of the throat Mach number in
a nearly compact nozzle (He = 0.0037). The circles represent the experimental values of De Domenico et al.
(2021).

calculated for a converging–diverging nozzle with the dimensions used in the experiments
of De Domenico et al. (2021), which has a vena contracta factor Γ = 0.89. The nozzle
has the inlet and outlet diameters of 46.2 mm, a throat diameter of 6.6 mm with the
lengths of the converging part and diverging parts of 24 mm and 230 mm, respectively.
The Helmholtz number is He = 0.0037, which is used to analyse the behaviour of the
non-compact nozzle.

3.1. Effect of dissipation
Figure 3 shows the compositional–acoustic reflection and transmission coefficients as
functions of the throat Mach number and the friction factor. The magnitude of the
reflection and transmission coefficients increases as the flow becomes more dissipative (f
increases). This is because the pressure ratio across the nozzle increases with dissipation
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Compositional noise in nozzles with dissipation

to compensate for the loss in the stagnation pressure (Jain & Magri 2022a). This change
in the pressure ratio adds to the generation of sound, which is why the magnitudes
of the transfer functions tend to increase with the friction factor and the throat Mach
number (e.g. figure 3). The trend is shared by the different gases. The predictions from
the multicomponent model compare favourably with the experiments, the data of which
are indicated by open circles with error bars. The predictions match different values of
friction factors for different gas mixtures (figure 3). This is because, as discussed in § 2, the
friction factor encapsulates the effect of dissipation in a cross-averaged sense. The amount
of dissipation depends on factors such as gas composition, mass fractions, pressure and
temperature. The mass fraction of the inhomogeneities is different for all gas mixtures in
the experiment.

The model predictions on the reflection coefficients of mixtures of carbon dioxide and
argon with air (figure 3(a,e) slightly deviate for smaller throat Mach numbers (up to
Mt ≈ 0.5). (This regime is well below the realistic Mach regime of nozzle guide vanes of
aeronautical combustors Giusti et al. (2019).) There are three reasons for these higher-order
effects to appear. First, friction is assumed to be constant throughout the nozzle, however,
the dissipation can be different in different sections of the nozzle. A study on the effect
of a non-constant friction profile is shown in Appendix C, which shows that the friction
profile can have a slight effect on the magnitude of the transfer functions. Second, the mass
fraction of gases in the experiments (YCO2 = YAr = 0.2 as compared with YCH4 = 0.1,
and YHe = 0.02) may be large enough to add weakly nonlinear effects in the acoustic
propagation. Third, the effect of species diffusion and entropy/compositional dispersion
(e.g. Mahmoudi et al. 2018; Rodrigues, Busseti & Hochgreb 2020) are neglected in this
model, which may affect the transfer functions. The modelling of these higher-order effects
is left for future work.

3.2. Effect of Helmholtz number
Figure 4 shows the gain and phase of entropic–acoustic reflection and transmission
coefficients. As friction increases, the magnitude of the transfer function increases.
Figure 5 shows the effect of the Helmholtz number on the gain and phase of
compositional–acoustic reflection and transmission coefficients for a binary mixture of air
with the four gases under consideration. Friction increases the magnitude of the transfer
functions, but it decreases the phase. Different gas mixtures have different mean-flow
properties that affect the amplitude, but the trends remain qualitatively similar.

As discussed in § 2.1.2, the indirect noise is generated by the interaction of the flow
inhomogeneities with the velocity gradient, ∂ ũ/∂η and friction factor, f . First, in an
isentropic compact nozzle, the sound wave generated in the converging section is cancelled
out by the wave generated in the diverging section. In an isentropic non-compact nozzle
flow, however, the entropy and the acoustic waves have different propagation speeds,
which causes a phase shift between the two. This means that the sound waves do not
cancel out, hence, the acoustic coefficients are no longer equal to zero (figures 4 and
5). Second, friction has a different effect on the inhomogeneities depending on whether
they are in the converging or diverging section. This means that the acoustic waves do
not cancel out even in a compact nozzle (He = 0), and larger friction leads to a larger
magnitude of the transfer functions. Third, there is a relatively large difference in the
magnitudes of the transfer functions for small Helmholtz numbers (up to ≈ 0.1). This
is because the friction induces a significant difference in phase of both reflected and
transmitted waves (figures 4c,d and 5iii,iv) as compared with compact nozzle flows. This
shows the importance of the non-compact assumption, in particular for small Helmholtz
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Figure 4. Entropic–acoustic (a) reflection coefficient, (b) transmission coefficient, (c) phase of the reflected
acoustic wave, (d) phase of the transmitted acoustic wave as a function of the Helmholtz number in a subsonic
nozzle flow with throat Mach number Mt = 0.6.

numbers (Appendix E). Fourth, the transfer functions are not monotonic functions of the
Helmholtz number. Fifth, the transfer functions are sensitive to the Helmholtz number
in the vicinity of the compact nozzle, He = 0, for an isentropic, f = 0, flow. This
sensitivity decreases as the non-isentropicity becomes larger. This is discussed in detail in
Appendix E. Finally, a phase difference of π can be observed in the phases of the reflected
and transmitted waves for carbon dioxide (figure 5a,iii–iv) or argon (figure 5b,iii–iv) and
methane (figure 5c,iii–iv) or helium (figure 5d,iii–iv). This can be physically explained by
analysing the chemical potential, which is the partial derivative of the Gibbs energy with
respect to the number of moles of the ith species at constant temperature and pressure,
μi = (∂G/∂ni)p,T,nj /= i . The chemical potential determines the direction in which species
tend to migrate (Job & Herrmann 2006). In a mean flow of air, the chemical potential
function, ψ̄ , is negative for carbon dioxide and argon, whereas it is positive for methane
and helium. This opposite sign means that these pairs of gases have opposite tendencies to
mix. Therefore, the phases of the reflected and transmitted waves of the two pairs of gases
are in antiphase (§ 6).

4. Indirect noise in supersonic nozzles

We consider supersonic nozzle with a linear mean-flow velocity with inlet and outlet Mach
numbers of 0.29 and 1.5, respectively (Magri 2017). The analysis is performed on the four
gas mixtures in flows without and with a shock wave.
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Figure 5. Compositional–acoustic (i) reflection coefficient, (ii) transmission coefficient, (iii) phase of the
reflected acoustic wave, (iv) phase of the transmitted acoustic wave for mixture of air and (a) carbon dioxide,
(b) methane, (c) argon and (d) helium as a function of the Helmholtz number in a subsonic nozzle flow with
throat Mach number Mt = 0.6.

4.1. Flow without a shock wave
In a choked nozzle, the upstream acoustic wave switches direction at the throat, which
gives rise to a singularity in the equations. To deal with the singularity, the nozzle is
divided into the converging section, the throat and the diverging section, as shown in
figure 6 (Duran & Moreau 2013). The choking boundary condition, M′/M̄ = 0, is imposed
at the nozzle throat (Magri et al. 2016)

2
u′

ū
+ p′

γ̄ p̄
(1 − γ̄ )− s′

c̄p
− K̄Z′ = 0. (4.1)

The choking condition, which is affected by friction through the mean-flow quantities,
implicitly provides the boundary condition for the flow in the diverging section.

Figure 7 shows the compositional–acoustic reflection and transmission transfer
functions as functions of the Helmholtz number for different friction factors. Because the
nozzle is choked, the reflected wave is largely unaffected by the friction. The magnitude
of the transmission coefficient increases with the friction for higher Helmholtz numbers.
It remains nearly unaffected for small Helmholtz numbers. However, the magnitude of
Tξ decreases as the friction factor increases up to He ≈ 0.04. The effect of the friction
on the phase (figure 7iii,iv, inset) is opposite to the case of subsonic flow (figure 5iii,iv,
inset), i.e. the phase increases as the friction increases, up to He ≈ 0.3. However, the trend
reverses thereafter. A phase difference of π is observed in the phases of carbon dioxide,
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Figure 6. Nozzle schematic with wave nomenclature for the supersonic regime. (i) Converging section,
(ii) throat, (iii) diverging section, (iv) diverging section with a shock wave.
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Figure 7. Compositional–acoustic (i) reflection coefficient, (ii) transmission coefficient, (iii) phase of the
reflected acoustic wave, (iv) phase of the transmitted acoustic wave for mixture of air and (a) carbon dioxide,
(b) methane, (c) argon and (d) helium as a function of the Helmholtz number in a supersonic nozzle flow
without a shock wave.

methane and argon, helium mixtures with air (§ 3.2). Physically, in a subsonic flow, the
pressure gradient is opposite to the flow, which makes it susceptible to flow separation.
In a supersonic flow, however, the pressure gradient supports the direction of the flow
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both in the converging and diverging sections, which tends to alleviate dissipation effects.
Therefore, the non-isentropicity on the reflected wave (for all Helmholtz numbers) and
transmitted wave (for small Helmholtz numbers) is negligible in a supersonic flow without
a shock wave. The friction increases the magnitude and affects the phase of the transmitted
wave for larger Helmholtz numbers.

4.2. Flow with a shock wave
We assume that a shock wave takes place in the diverging section (figure 6). The shock
wave is assumed to oscillate around its mean position with an infinitesimal amplitude. The
flow upstream of the shock is solved as described in § 4.1, and the downstream of the shock
wave is solved as described in § 3.2. The jump conditions across the shock are imposed
through the linearised Rankine–Hugoniot relations for compositional flows (Magri et al.
2016)

M̄2
s2

=
1 + γ̄ − 1

2
M̄2

s1

γ̄ M̄2
s1

− γ̄ − 1
2

,

π+
s2

= 1 + M̄2
s2

M̄s1 + M̄2
s1

1 + M̄2
s1

M̄s2 + M̄2
s1

π+
s1

+ 1 − M̄2
s2

M̄s1 + M̄2
s1

1 + M̄2
s1

M̄s2 + M̄2
s1

π−
s1
,

σs2 = σs1 − (
ψ̄s2 − ψ̄s1

)
Z′ +

(
(γ̄ − 1)(M̄s1 − 1)2

M̄2
s1
(2 + (γ̄ − 1)M̄2

s1
)

)
(π+

s2
+ π−

s2
− π+

s1
− π−

s1
),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)

where the subscripts t and s refer to the throat and shock wave, respectively. The subscript
1 refers to the region just before the shock wave, whereas the subscript 2 refers to the
region just after the shock wave (figure 6). The jump conditions (4.2) are affected by
the friction factor through the mean-flow quantities. The friction, however, does not
affect the linearised Rankine–Hugoniot equations. The composition of the gas mixture
is conserved across the shock wave. Figure 8 shows the variation of the transfer functions
with the Helmholtz number. The reflection coefficient is equal to that of a flow without
a shock wave because the nozzle is choked, which means that the information cannot
travel from the diverging section to the converging section. The nozzle response has
mixed characteristics of both supersonic and subsonic regimes. The magnitude of the
transmission coefficient increases with the friction as the Helmholtz number increases.
A qualitatively similar trend is observed in the transfer functions for different gas mixtures
considered in this work, which is discussed in § 6.

5. Semi-analytical solution

We propose a semi-analytical solution to estimate the nozzle transfer functions using
an asymptotic expansion based on path integrals (Magri 2017; Magri et al. 2023). This
is useful for perturbation and sensitivity analysis (Appendix E). First, the differential
equation (2.26) is cast in integral form as

r(η) = ra + 2πiHe
∫ η

ηa

F (η′)r(η′) dη′ +
∫ η

ηa

G(η′)r(η′) dη′, (5.1)
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Figure 8. Compositional–acoustic (i) reflection coefficient, (ii) transmission coefficient, (iii) phase of the
reflected acoustic wave, (iv) phase of the transmitted acoustic wave for mixture of air and (a) carbon dioxide,
(b) methane, (c) argon and (d) helium as a function of the Helmholtz number in a supersonic nozzle flow with
a shock wave.

where ηa is the nozzle axial coordinate of the inlet, ηa = 0. In this case, the asymptotic
expansion can be performed on the Riemann invariant, r(η) by using (5.1). The solution
can be formally written as

r(η) = H(η)r(ηa), (5.2)

where r(ηa) is the solution at inlet, and H is the propagator. When the commutator
H(η1)H(η2)− H(η2)H(η1) is zero, the solution is obtained by integrating (5.1) term
by term to give an exponential. However, when the acoustic commutator is not zero, which
is the case here, the formal solution (5.1) is substituted recursively in (2.26), which yields
an explicit solution in an asymptotic form

r(η) =
[ n∑

k=0

(2πiHe)k
n−k∑
i=0

I{F kGi}
]

r(ηa), (5.3)

where we define I as

I{F kGi} =
∫ η

ηa

dη(1) . . .
∫ η(i+k)

ηa

dη(i+k−1)P{F kGi}, (5.4)

in which the integrals are path ordered (Dyson–Feynman integrals), ηa < η(n) < . . . <

η(1) < η, and P{F kGi} is the path-ordered multiplication of all combinations of
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Figure 9. (i) Compositional–acoustic reflection (left) and transmission (right) coefficients, (ii) error
percentage for a mixture of air and methane for subsonic flow. The circles correspond to the coefficients
calculated from the single-component entropic–acoustic transfer functions scaled with K̄CH4 .

the matrices. For instance, P{F 2G1} = F (η(1))F (η(2))G(η(3))+ F (η(1))G(η(2))F (η(3))+
G(η(1))F (η(2))F (η(3)). An explicit expression of (5.3) is shown in Appendix D. In a
finite spatial domain, the solution of (5.3) is convergent when F and G are bounded
(Lam 1998). The boundary conditions are computed similarly to Duran & Moreau (2013).
In a supersonic flow, the equations are solved as a subsonic flow from the inlet to the
nozzle throat with a choking condition at the throat. The final solution can be obtained by
computing H(η) analytically or numerically using different methods (Moler & Van Loan
2003).

6. Compositional-noise scaling factor

From the analysis of §§ 3 and 4, we observe qualitatively similar trends between (i) the
compositional-noise transfer functions (figure 5) and the entropy-noise transfer functions
for single-component gases (figure 4); and (ii) the transfer functions of different gas
mixtures. Mathematically, we observe that the source terms s′ and K̄Z′ appear side by
side in the linearised Gibbs equation (2.13) and the governing equations (2.21)–(2.24).
Because the partial differential equations (2.21)–(2.24) are linear, the transfer functions
are approximately related to each other through the scaling factor K̄ as

Tξ ≈ K̄ST , Rξ ≈ K̄SR, (6.1a,b)

which enable the estimation of the compositional-noise transfer functions from the
knowledge of one reference transfer function of a single-component gas. In this section, we
numerically show the accuracy of this scaling for a range of mixtures and friction factors.

Figure 9(i) shows the estimated values of the compositional-noise transfer functions
calculated from the single-component entropic–acoustic reflection coefficient (circles)
from (6.1a,b). The agreement is satisfactory because the absolute error is smaller than
1 %. When one compositional-noise transfer function is available for mixture, say, 1, we
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Figure 10. (i) Compositional–acoustic reflection (left) and transmission (right) coefficients, (ii) error
percentage for a mixture of air and methane for (a,b) subsonic, (c,d) supersonic without a shock wave and
(e, f ) with a shock wave. The circles correspond to the coefficients calculated from the transfer function of
CO2–air mix scaled with K̄CH4/K̄CO2 .

Gas mixture K̄

(a) CO2 > 0
(b) CH4 < 0
(c) Ar > 0
(d) He < 0

Table 2. Compositional-noise scaling factor, K̄ for the gas mixtures used in the study.

can compute the transfer functions for another mixture, say 2, as

Tξmix1
= K̄mix1

K̄mix2

Tξmix2
, Rξmix1

= K̄mix1

K̄mix2

Rξmix2
. (6.2a,b)

For illustration, we consider mixtures of methane and carbon dioxide only. The error
between the benchmark solution, which is obtained by solving the governing equations,
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and the scaled solution is defined as

Error % =

∣∣∣RξCH4

∣∣∣− K̄CH4
K̄CO2

∣∣∣RξCO2

∣∣∣∣∣∣RξCH4

∣∣∣ × 100. (6.3)

Figure 10 shows the transfer functions for a methane–air mixture using the carbon
dioxide–air mixture and the compositional-noise scaling factor (shown by circles). The
solid lines are the results obtained by solving the model proposed in § 2. The comparison
is performed for subsonic (figure 10a,b), supersonic without a shock wave (figure 10c,d)
and supersonic with a shock wave (figure 10e, f ) regimes. The exact results closely match
the scaled results for both cases. The absolute error is smaller than 1 %.

Additionally, we observe a phase difference of π in the transfer functions for
different gas mixtures in figures 5, 7, and 8. The phase depends on the sign of the
compositional-noise scaling factor K̄ (table 2), as explained in § 3.2. In summary, the
compositional-noise factor, K̄ can be used to quickly estimate the compositional-noise
transfer functions from a reference transfer function.

7. Conclusions

In this work, we propose a physics-based model to calculate indirect-noise transfer
functions in a flow with dissipation and multicomponent gases. The sources of viscous
dissipation averaged over the cross-section are encapsulated by a friction factor. First,
we show the effect that dissipation has on a multicomponent subsonic flow. We compute
the transfer functions, which favourably compare with the experiments available in the
literature. Second, we extend the model to supersonic flows with and without a shock wave.
Dissipation has the effect of increasing the gain of transfer functions for higher Helmholtz
numbers. Third, we propose a semi-analytical solution to calculate the transfer functions
with an asymptotic expansion. Fourth, we observe that the transfer functions have a similar
trend for different gas mixtures. Thus, we introduce a compositional-noise scaling factor,
which is employed to cheaply estimate the transfer functions for any gas mixture from the
knowledge of a reference transfer function. The proposed low-order model can be used to
estimate the nozzle transfer functions, which is useful for preliminary design. This work
opens up new possibilities for accurate modelling of sound generation in aeronautics and
power generation with realistic nozzles.
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Appendix A. Linearised entropy source term

The right-hand side term of (2.23) is

g( f , f 2, f 3, o( f 3)) = CI

(
M̄2(γ̄ − 1)

2
∂

∂η

(
u′

ū

)
− ∂

∂η

p′

γ̄ p̄

)

+CII

(
2

u′

ū
+ (1 − γ̄ )

p′

γ̄ p̄
− s′

c̄p
− K̄Z′

)
, (A1)

CI = Θf
(
γ̄ M̄2f − 2 tanα

)
, (A2)

CII = Θ

(
2 tanαM̄

dM̄
dη

(
1 − (γ̄ + 2)M̄2

(1 − M̄2)Λ
+ 2

)
f . . .

. . .−
(
γ̄ M̄3 dM̄

dη

(
1 − (γ̄ + 2)M̄2

(1 − M̄2)Λ

)
− 4 tanα

D̃
M̄2
)

f 2 − 2γ̄ M̄4

D̃
f 3
)
, (A3)

and

Θ = ũ
2(γ̄ − 1)(1 − M̄2)

8 tan2 αΛ− 2 tanαγ̄ M̄2(γ̄ − 1)(1 − M̄2)f + (γ̄ + 1)γ̄ 2M̄4f 2
. (A4)

Appendix B. Matrix formulation

The terms of matrices F and G are

F =

⎡
⎢⎢⎢⎣
�+

κ
+ 0 0

κ
− �− 0 0
ϑ+ ϑ− ς 0

0 0 0 −1
ū

⎤
⎥⎥⎥⎦ , G =

⎡
⎢⎢⎣
Γ −κ− + M Γ −κ+ − M Γ − K̄Γ −
Γ +κ− − M Γ +κ+ + M Γ + K̄Γ +

Υ κ− Υ κ+ Υ K̄Υ
0 0 0 0

⎤
⎥⎥⎦ ,

(B1a,b)
where

�± = ±M̄
(
2(1 ∓ M̄)+ C1M̄

(
M̄ ∓ 2 + M̄γ (1 ∓ 2M̄)

))
2
(
M̄2ū − ū + C1M̄2ū + C1M̄4γ ū

) , (B2)

κ
± = M̄2C1

(
2 ± M̄(γ − 1)

)
2
(
M̄2ū − ū + C1M̄2ū + C1M̄4γ ū

) , (B3)

ϑ± = C1M̄
(
M̄(1 + γ )± M̄2(1 − γ )∓ 2

)
(
M̄2ū − ū + C1M̄2ū + C1M̄4γ ū

) , (B4)

ς = − C1M̄2 (1 + γ M̄2)+ M̄2 − 1(
M̄2ū − ū + C1M̄2ū + C1M̄4γ ū

) , (B5)

M = 1
2M̄

dM̄
dx
, κ± = (γ − 1)± 2

M
, (B6)
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Γ ± = M̄

(
Ca
(
M̄ ± 1

)± Ff M̄
(
C1γ M̄3 + M̄ ± (

1 − C1M̄2)))
2(M̄2ū − ū + C1M̄2ū + C1M̄4γ ū)

, (B7)

Υ =
(
Ca(M̄2 − 1)− C1Ff M̄4(1 + γ )

)
(M̄2ū − ū + C1M̄2ū + C1M̄4γ ū)

, (B8)

C1 = (γ̄ − 1)(1 − M̄2)f

2
(

1 + γ̄−1
2 M̄2

)
(γ̄ M̄2f − 2 tanα)

, (B9)

Ff = −
(
∂ ū
∂x

+ 4f

D̃

ū
2

)
, Ca = −C1M̄ū

dM̄
dx

(
2 − 2M̄2

1 − M̄2
− C̄

Ā

)
, (B10)

Ā = 2
(

1 + γ̄ − 1
2

M̄2
)(
γ̄ M̄2f − 2 tanα

)
, (B11)

C̄ = 2γ̄ M̄2
(

−2f
(

1 + γ̄ − 1
2

M̄2
)

+ γ̄ − 1
γ̄

(
2 tanα − γ̄ M̄2f

))
. (B12)

Appendix C. Effect of the friction profile

The friction factor is assumed to be a constant quantity in the analysis presented in this
work. It takes into account sources of dissipation averaged across the nozzle cross-section.
Depending on the flow conditions and the nozzle shape, the friction factor might spatially
vary. In this section, we assume that the dissipation is concentrated near the throat, where
most of the dissipation occurs (Jain & Magri 2022a). We model the friction profile as a
Gaussian

f (x|sd, ηt) = exp
(−(x − ηt)

2

2sd2

)
, (C1)

where ηt is throat location. The variable sd defines the spread of the friction near the throat.
Figure 11(a) shows the friction profile for different values of spread, sd. Figure 11(b,c)
shows the effect of the spread, sd, on the reflection and transmission coefficients. As the
spread increases, the magnitude increases due to a net increase in the effect of friction. For
different flow conditions, the friction factor and its distribution can be approximated from
the experiments.

Appendix D. Semi-analytical solution
The explicit expression of (5.3) is

r(η) =
[

1 +
∫ η

ηa

dη(1)G(η(1))+ . . .+
∫ η

ηa

dη(1) . . .
∫ η(n−1)

ηa

dη(n)G(η(1))G(η(2)) . . .G(η(n))

+ 2πιHe

(∫ η

ηa

dη(1)F (η1)+
∫ η

ηa

dη(1)
∫ η(1)

ηa

dη(2)
[
F (η(1))G(η(2))+ G(η(1))F (η(2))

]
+ . . .

+
∫ η

ηa

dη(1) . . .
∫ η(n−1)

ηa

dη(n)
(

F (η(1))G(η(2)) . . .G(η(n))+ G(η(1))F (η(2)) . . .G(η(n))

+ . . .+ G(η(1))G(η(2)) . . .F (η(n))
))

+ . . .
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Figure 11. Effect of friction profile. (a) Friction as a function of the spatial distance. (b) Reflection and
(c) transmission coefficients as a function of the throat Mach number for different standard deviations, sd.

+ (2πιHe)n−1

(∫ η

ηa

dη(1) . . .
∫ η(n−2)

ηa

dη(n−1)F (η(1))F (η(2)) . . .F (η(n−1))+ . . .

+
∫ η

ηa

dη(1) . . .
∫ η(n−2)

ηa

dη(n−1)
(

F (η(1))F (η(2)) . . .F (η(n−2))G(η(n−1))

+ F (η(1)) . . .G(η(n−2))F (η(n−1))+ . . .+ G(η(1))F (η(2)) . . .F (η(n−1))
))

+ (2πιHe)n
(∫ η

ηa

dη(1) . . .
∫ η(n−1)

ηa

dη(n)F (η(1))F (η(2)) . . .F (η(n))

)]
r(ηa). (D1)

Appendix E. Perturbation analysis of the acoustic transfer functions

In §§ 3 and 4, we numerically evaluate the acoustic transfer functions for a range of
Helmholtz numbers. In § 5, we propose a semi-analytical solution based on path integrals
as a semi-analytical solution approach by series expansion. Here, we investigate the
leading perturbation effects that changes in the Helmholtz number have on the transfer
functions. We show the results for the compositional–acoustic reflection coefficients –
similar conclusions can be drawn for the transmission coefficient. Perturbation analysis is
performed by evaluating each order of the asymptotic solution (5.3), each term of which
is equal to the corresponding order of the Taylor expansion at the expansion point He0
(Magri et al. 2023).
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Figure 12. Mach number as a function of the nozzle coordinate, η, for three cases; (i) Nozzle profile I,
subsonic flow in a linear geometry nozzle, M1 = M2 = 0.01 and Mt = 0.6; (ii) Nozzle profile II, subsonic flow,
M1 = 0.09, M2 = 0.5, and Mt = 0.7; (iii) Nozzle profile II, supersonic flow, M1 = 0.29, M2 = 1.5 without
dissipation.
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Figure 13. Compositional–acoustic reflection coefficient (left) and phase (right) for mixture of air and methane
for a subsonic flow in Nozzle profile I (M1 = M2 = 0.01 and Mt = 0.6) without dissipation, f = 0, (a–d) and
with dissipation, f = 0.08, (e–h). The coloured lines show the predictions using the Taylor expansion. The
cross indicates the expansion point. Panels (a,b,e, f ) with expansion point at He0 = 0, panels (c,d,g,h) with
expansion point at He0 = 0.1.
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Figure 14. Compositional–acoustic reflection coefficient (left) and phase (right) for mixture of air and methane
for a subsonic flow in Nozzle profile II (M1 = 0.09, M2 = 0.5 and Mt = 0.7) without dissipation, f = 0, (a–d)
and with dissipation, f = 0.08, (e–h). The coloured lines show the predictions using the Taylor expansion. The
cross indicates the expansion point. Panels (a,b,e, f ) with expansion point at He0 = 0, panels (c,d,g,h) with
expansion point at He0 = 0.1.

We analyse the effect of perturbations to the Helmholtz number for three flows as shown
in figure 12. First, a subsonic flow in a nozzle profile is investigated in § 3 with equal inlet
and outlet areas (Nozzle profile I). Second, we investigate a subsonic flow in a nozzle with
the profile of § 4 (Nozzle profile II) with an outlet area that is half of the inlet area. Third,
we analyse the Nozzle profile II for a supersonic regime.

Figures 13 and 14 show the contributions of the first three perturbation orders for the
subsonic flows, whereas figure 15 shows the same quantities for the supersonic flow. The
top panels (a,b) show the Taylor expansion at He0 = 0, and the bottom panels (c,d) show
the Taylor expansion at He0 = 0.1.

On the one hand, in a subsonic flow (figures 13a,b and 14a,b), a third-order expansion
around the compact nozzle, He0 = 0, fails to accurately reproduce both the magnitude
and the phase of the model solution. This has a significant consequence on the low-order
modelling of nozzles. Hence, a small change in the Helmholtz number around He ≈ 0
greatly changes the reflection coefficient. With the model proposed in this work, we can
either calculate the solutions for a range of Helmholtz numbers with no approximation
or, alternatively, we can compute one reference solution at He0 > 0 and expand around it.
For example, if we expand at He0 = 0.1 (figures 13c,d and 14c,d), we obtain an accurate
approximation of the solution. This is because the solution is less sensitive at He0 > 0. The
sensitivity at He = 0 becomes less significant when the dissipation is modelled, as shown
in figures 13(e, f ) and 14(e, f ). On the other hand, in a supersonic flow (figure 15a,b),
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Figure 15. Compositional–acoustic reflection coefficient (left) and phase (right) for mixture of air and
methane for a supersonic flow without dissipation, f = 0, (a–d) and with dissipation, f = 0.08, (e–h). The
coloured lines show the predictions using the Taylor expansion. The cross indicates the expansion point. Panels
(a,b,e, f ) with expansion point at He0 = 0, panels (c,d,g,h) with expansion point at He0 = 0.1.

a third-order expansion around the compact nozzle, He0 = 0, satisfactorily reproduces
both the magnitude and the phase of the solution. The approximation further improves
by expanding at He0 = 0.1 (figure 15c,d). Notably, the first-order approximation, which
is cheap to compute, accurately quantifies the phase in the supersonic regime for small
Helmholtz numbers.

In summary, the transfer functions at He ≈ 0, are sensitive to small perturbations in
the Helmholtz number in the subsonic regime, but less so in the supersonic regime. This
sensitivity can be explained on a physical basis. In a subsonic flow in a compact nozzle,
some of the sound waves generated in the converging section are cancelled by the sound
waves generated in the diverging section. However, for larger frequencies (He > 0), due
to a phase difference induced between the compositional and acoustic waves, the sound
waves do not cancel each other. This leads to a sharp rise in the magnitude of the transfer
functions near He → 0. In contrast, in a supersonic flow, the velocity gradient is positive
both in the converging and the diverging sections. Hence, the sound waves do not cancel
each other, which means that the sensitivity to the Helmholtz number is smaller.
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