
Doctoral Dissertation

Doctoral Program in Computer and Control Engineering (36thcycle)

Advancing Generalization in
Heterogeneous Federated Learning
for Real-world Vision Applications

By

Debora Caldarola

Supervisors:
Prof. Barbara Caputo
PhD Marco Ciccone

Doctoral Examination Committee (in alphabetical order):
Prof. Sophie Fosson, Politecnico di Torino, President
Prof. Samuel Horvath, Mohamed bin Zayed University of Artificial Intelligence
Prof. Martin Jaggi, École Polytechnique Fédérale de Lausanne, Referee
Prof. Sanmi Koyejo, Stanford University
Prof. Nicholas Lane, University of Cambridge, Referee

Politecnico di Torino

2024

Declaration

I hereby declare that, the contents and organization of this dissertation constitute my
own original work and does not compromise in any way the rights of third parties,
including those relating to the security of personal data.

Debora Caldarola
2024

* This dissertation is presented in partial fulfillment of the requirements for Ph.D.
degree in the Graduate School of Politecnico di Torino (ScuDo).

Alla mia famiglia
Mamma, Papà, Ale e Gianluigi

Acknowledgements

I would like to begin by expressing my gratitude to the professors, colleagues,
collaborators and friends who have supported, guided, and believed in me throughout
this journey. This PhD would have not been possible without you.

My heartfelt thanks go first to my supervisors, Barbara and Marco, to whom I am
profoundly grateful. From my Master’s thesis to planning my future path, Barbara
has consistently shown her support while allowing me to make my own decisions.
Thank you for choosing to bet on me time and time again. Marco has been both my
mentor and my brother-in-arms. You taught me the true meaning of valid research
and the values of a dedicated researcher, while always being there for the highs and
the lows. Thank you for believing in me, for the successes we achieved together, for
your guidance, and for sharing this path with me.

I am honored to thank Prof. Fosson, Prof. Horvath, Prof. Jaggi, Prof. Koyejo
and Prof. Lane for agreeing to serve on my Examination Committee. I am grateful
for the time you have dedicated to me and for the opportunity to present my work to
such a distinguished group. I owe a special thanks to Prof. Jaggi and Prof. Lane for
the effort they have put into reviewing this thesis. Your constructive feedback has
enriched my work, and I deeply appreciated your support.

I would like to thank Sanmi for welcoming me into his laboratory at Stanford
and making me feel like a member of the team from day one. It was an enriching
experience, from the insightful discussions on campus to the memorable team-
building moments.

These years would not have been the same without my VANDAL lab mates.
Our time together was filled with laughter, shared adventures and misadventures,
Spritzes, and great food. You made this experience truly unforgettable. A special
recognition goes to those who have been there since day one - Alli, Chiara, Fabio,

v

Silvia, Tav, Francesco, Dario, Mirco, Nick, all our Gabriele and Luca - and to my
federated learning team - Eros and Riccardo, whom I am happy to call friends.

My strength, my constant source of support, and my anchor have always been
my family. Mum and Dad, thank you for always being there for me and making
the distance feel nonexistent, and for showing us that love does conquer all, even
in the face of adversity. Throughout this journey, Alessandra has been my greatest
supporter, from helping me wake up every morning and enjoy delicious meals to
showing me how deeply she believes in me. Our relationship is our greatest strength.

Speaking of love, patience and immense support, meeting (Dr.) Gianluigi has
been the greatest success of my PhD. This is just one of the many life achievements
we will celebrate together.

Lastly, I would like to express my gratitude to those who took a chance on me
and provided me with a wonderful opportunity for my future.

Abstract

Federated Learning (FL) is a machine learning framework that enables collaborative
training of a global model across edge devices (clients) without compromising user
privacy. Unlike traditional centralized approaches that require transferring raw data
to a central server, FL operates by exchanging model parameters and performing
training locally. Given that most data today originates from edge devices like
smartphones and Internet of Things hardware, FL offers a path to leverage this vast
and sensible resource while remaining compliant with privacy regulations.

This dissertation addresses key challenges in deploying FL in real-world sce-
narios, where personal habits introduce inherent bias in the local data distributions
and users’ devices vary widely in computational resources and network reliability.
Within this context, optimizing communication efficiency and mitigating the effects
of non-uniform data distributions are critical. This thesis seeks to uncover underly-
ing causes of poor model generalization and develop an approach that generalizes
effectively to the overall data distribution, emphasizing vision-oriented applications.

The core contribution of this work lies in leveraging the geometry of the loss
landscape to understand and mitigate the behavior of models trained in heteroge-
neous federated scenarios. Indeed, this thesis shows FL models usually end up in
sharp minima, providing a plausible explanation to their lack of generalization. By
promoting convergence towards globally flat minima with sharpness-aware strategies,
the global model’s robustness to distribution shifts is enhanced.

Additionally, to accelerate the speed of convergence and reduce the communi-
cation cost, this work proposes a new training framework that facilitates exchanges
between groups of dissimilar clients. This approach offers a winning alternative
to both the conventional client-server architecture and existing methods that group
clients based on similarity to learn cluster-specific models.

vii

Finally, with most future data expected from vision-based edge systems, computer
vision tasks are notably underrepresented in FL research, partly due to a lack of
benchmarks and large-scale federated datasets. To address this gap, this thesis
introduces three novel vision benchmarks for FL, focusing on semantic segmentation
for autonomous driving and collaborative visual place recognition.

Contents

List of Figures xiv

List of Tables xxvii

Nomenclature xxxiii

1 Introduction 1

1.1 Context and Motivation . 2

1.2 Research Questions and Contributions 7

1.3 Thesis Outline . 8

1.4 Publications List . 9

2 Preliminaries 12

2.1 Machine Learning . 13

2.1.1 Supervised Learning . 14

2.1.2 Weakly-Supervised Learning 18

2.1.3 Unsupervised Learning . 20

2.1.4 Self-Supervised Learning 21

2.2 Deep Neural Networks . 22

2.2.1 Convolutional Neural Networks 23

2.2.2 Graph Neural Networks 25

Contents ix

2.3 Optimization in Machine Learning 26

2.3.1 Gradient Descent . 26

2.3.2 Training Deep Neural Networks 29

2.4 Generalization in the Real World 30

2.4.1 Domain Adaptation vs. Domain Generalization 32

2.4.2 Momentum Improves Generalization 33

2.4.3 On the Impact of Data Distribution 34

2.4.4 The Critical Choice of the Model 36

2.4.5 Generalization through the Lens of the Loss Landscape . . . 38

2.5 Visualization of the Loss Landscape 45

3 Federated Learning 47

3.1 Federated Framework . 48

3.1.1 Federated vs. Centralized Learning 48

3.1.2 Centralized vs. Peer-to-Peer Federated Learning 49

3.1.3 Horizontal vs. Vertical Federated Learning 51

3.1.4 Cross-silo vs. Cross-device Federated Learning 52

3.2 Problem Statement . 54

3.3 Challenges in the Real World: Literature Review 56

3.3.1 Statistical Heterogeneity 57

3.3.2 System Heterogeneity . 61

3.3.3 Communication Efficiency 62

3.3.4 Privacy Concerns . 63

3.3.5 Federated Vision Applications 64

3.4 Datasets . 65

3.4.1 Image Classification . 66

3.4.2 Semantic Segmentation . 69

x Contents

3.4.3 Visual Place Recognition 71

4 Generalization through the Lens of the Loss Landscape 72

4.1 Introduction . 73

4.2 Where Heterogeneous Federated Learning Fails at Generalizing . . 75

4.2.1 Convergence Under Label Skew 75

4.3 Improving Generalization in Federated Learning by Seeking Flat
Minima . 80

4.3.1 Motivation . 80

4.3.2 Federated Sharpness-Aware Minimization 82

4.3.3 Generalization and Convergence Speed-up with FedSAM . 86

4.3.4 Results in Real-World Vision Scenarios 95

4.3.5 Ablation Studies . 97

4.3.6 Discussion . 98

4.4 Beyond Local Sharpness: Communication-Efficient Global Sharpness-
aware Minimization for Federated Learning 101

4.4.1 Motivation . 101

4.4.2 The Inconsistency between Local and Global Sharpness . . 103

4.4.3 Rethinking SAM in Federated Learning 104

4.4.4 Federated Global Server-side Sharpness 106

4.4.5 Experimental Results . 109

4.4.6 Limitations . 124

4.4.7 Discussion . 124

4.5 Window-based Model Averaging Improves Generalization in Het-
erogeneous Federated Learning . 125

4.5.1 Motivation . 125

4.5.2 Window-based Model Averaging (WiMA) 125

4.5.3 Results in Real-World Vision Scenarios 129

Contents xi

4.5.4 Discussion . 133

4.6 Summary . 134

5 Cluster-based Approaches for Improved Generalization and Conver-
gence Speed in Heterogeneous Federated Learning 136

5.1 Introduction . 137

5.2 Accelerating Federated Learning via Sequential Training of Grouped
Heterogeneous Clients . 139

5.2.1 Introduction . 139

5.2.2 Federated Learning via Sequential Superclients Training . . 142

5.2.3 Experimental Results . 148

5.2.4 Privacy Robustness . 158

5.2.5 Discussion . 163

5.3 Learning Across Domains and Devices: Style-Driven Source-Free
Domain Adaptation in Clustered Federated Learning 164

5.3.1 Motivation . 164

5.3.2 Federated source-Free Domain Adaptation 166

5.3.3 LADD in Real-World Vision Scenarios 171

5.3.4 Conclusion . 176

5.4 Cluster-driven Graph Federated Learning over Multiple Domains . . 177

5.4.1 Motivation . 177

5.4.2 Cluster-driven Graph Federated Learning 177

5.4.3 Experiments Results . 182

5.4.4 Conclusions . 187

5.5 Summary . 188

6 Novel Benchmarks for Federated Computer Vision 189

6.1 Introduction . 190

xii Contents

6.2 Federated Semantic Segmentation for Autonomous Driving 193

6.2.1 Motivation . 193

6.2.2 FedDrive . 194

6.2.3 Federated source-Free Domain Adaptation 200

6.3 Federated Visual Place Recognition 202

6.3.1 Introduction . 202

6.3.2 Framework . 205

6.4 Summary . 211

7 Conclusion 212

7.1 Contributions Summary . 213

7.2 Open Directions and Future Works 214

7.2.1 Flatness and generalization 215

7.2.2 Model Merging . 216

7.2.3 Beyond Label Skew: Spurious Correlations in FL 217

References 218

Appendix A Implementation Details 261

A.1 Appendix for Improving Generalization in Federated Learning by
Seeking Flat Minima . 261

A.1.1 Models . 261

A.1.2 Hyper-parameters Tuning 262

A.2 Appendix for Beyond Local Sharpness: Communication-Efficient
Global Sharpness-aware Minimization for Federated Learning . . . 266

A.2.1 Hyper-parameters Tuning 266

A.3 Appendix for Window-based Model Averaging Improves Generaliza-
tion in Heterogeneous Federated Learning 267

A.3.1 Training Details . 267

Contents xiii

A.3.2 SOTA Algorithms Hyper-parameters 268

A.4 Appendix for Accelerating Federated Learning via Sequential Train-
ing of Grouped Heterogeneous Clients 269

A.4.1 Datasets and Models . 269

A.4.2 Hyper-parameters Tuning 271

A.5 Appendix for Learning Across Domains and Devices: Style-Driven
Source-Free Domain Adaptation in Clustered Federated Learning . 273

A.5.1 Training Details . 273

Appendix B Project Funding and Computational Resources 275

List of Figures

1.1 Notable AI systems by domain over the years. This plot illustrates
the rapid advancements and increasing interest in AI across various
fields, with a particular emphasis on the significant growth in the
vision and language domains. Data source: [1]. 2

1.2 Data points used to train notable AI systems: the dataset size expo-
nentially increases as modern deep learning models become more
complex. Data from [2]. 3

1.3 Training computation, measured in FLOPs, required to train AI
models over time. Prior to the deep learning era (highlighted in
blue), the annual growth rate was approximately 1.5×. Starting in
2010, this rate accelerated to 4.2× per year. Data source: [3]. 4

1.4 Hardware and energy cost to train notable AI systems, expressed in
US dollars. The cost to train modern models surpasses $10 million
dollars. Data source: [4]. 5

2.1 Underfitting vs. Overfitting. Underfitting (left): a simple model
struggles to capture the underlying patterns in the data, resulting in
high errors on both the training and test sets. Overfitting (right):
a complex model memorizes the specifics of the training data, in-
cluding noise. While it performs well on the training set, it fails to
generalize to unseen examples, leading to high errors in the test set.
The ideal model (center) achieves a balance between simplicity and
complexity, with strong generalization ability. 15

List of Figures xv

2.2 Example of semantic segmentation. (a) Original image. (b) Each
pixel is assigned a color-coded label, revealing the objects it depicts.
For instance, the label tree is depicted in green, person in red and
car in blue. Images from the Cityscapes dataset. 17

2.3 Example of application of K-means with K = 3 clusters 21

2.4 Example of an Artificial Neural Network. The network receives
the inputs {x1,x2,x3} and processes them through multiple hidden
layers (l and l +1), until the final representation xL,i is reached for
i = 1, . . . ,3. 23

2.5 Example of visualization of Stochastic Gradient Descent path in
a high-dimensional non-convex loss landscape. The path taken by
SGD is marked by red dots indicating individual gradient steps.
Starting from a high-loss point, SGD leads the model towards a local
minimum. 28

2.6 Number of models parameters vs. corresponding training compu-
tation in notable AI systems. Computation is measured in floating
point operations. The highlighted points correspond to the reported
models’ names. Data source: [5, 3]. 36

2.7 Example of visualization of sharp and flat minima in a high-dimensional
non-convex loss surface. The sharp minimum (left) is characterized
by steep gradients, making it sensitive to small changes in the param-
eters, while the flat minimum (right) has shallow gradients, allowing
for more flexibility in the parameter space. 39

xvi List of Figures

3.1 Comparison of learning scenarios. Colors indicate different nodes
with their own local data distribution. (a) Local learning: each node
trains a model using only its data. (b) Centralized learning: the data
is transferred (blue arrows) from the edge nodes to a central storage.
The model is trained by accessing the overall data distribution and
then sent back (orange arrows). (c) Centralized federated learning:
the server shares the global model with the clients, which train it
using their local datasets and send back the updated parameters. The
server aggregates the updates. (d) Distributed federated learning:
clients share model parameters, without the orchestration of a central
server. 49

3.2 Cross-silo vs. cross-device FL. (a) Cross-silo FL: training occurs
between silos, such as hospitals, using their private data (e.g., pa-
tient medical records). Each silo has its own data distribution, with
typically large datasets and substantial computational resources. (b)
Cross-device FL: clients are typically personal devices, such as
smartphones, laptops, IoT sensors, or autonomous vehicles. They
are characterized by data heterogeneity, varying and limited compu-
tational capacities, and skewed data quantities. 53

3.3 Example of heterogeneous data collection. Local data distribution
is significantly influenced by factors such as geographical location
and user preferences. (a) Pictures of animals vary across the world.
For instance, Australian users may take pictures of kangaroos and
koalas, while moose may appear in photos taken in Canada. (b)
Landscape photos can depict urban or natural scenery and may be
captured at different times of the day (e.g., nighttime vs. daytime),
representing various domains. 57

List of Figures xvii

3.4 Client drift in i.i.d. (a) and non-i.i.d. settings (b). Given a global
model wwwt−1 (in grey) and two clients k = 1 and k = 2, at round t,
the local updates wwwt

k (in blue and orange) are aggregated to build the
new global model wwwt , with k ∈ { 1,2}. The same process occurs in
the following round t +1. The convergence points are enclosed in
squares. In i.i.d. settings (left), the global model correctly moves
towards the global optimum www∗ and no client drift occurs. In contrast,
the non-i.i.d. data distribution (right) causes the global model to drift
away from its optimum, converging instead at the points highlighted
by the red triangle. 59

3.5 CIFAR10 (a) and CIFAR100 (b) data distribution across clients with
the heterogeneity degree determined by α. The average number of
classes seen by each client is reported on top of each chart. 67

4.1 CIFAR100 accuracy trends with varying data heterogeneity, com-
pared to the centralized upper bound. Differently from homogene-
neous federated settings (α= 1k), models trained in heterogeneous
FL (α∈ {0,0.5}) necessitates more rounds to converge. 75

4.2 CIFAR100. Global model performance on local distributions with
(a) α= 0 and (b) α= 1000 at 20k rounds. Each color represents
a local distribution (i.e., one class for α= 0), while the dark line
represents the performance on the global test set. 76

4.3 CIFAR100. L2-norm of global classifier output features over succes-
sive rounds, using each client’s local data as input. Models trained
with FEDAVG. (a) With α= 0, at each round, the model tends to
focus on a different client’s distribution, i.e., a single class. (b) With
α= 1000, the model distributes attention evenly across all distributions. 77

4.4 CIFAR100. Global model convergence points in the (a) training loss
and (b) test error surfaces when trained with varying data hetero-
geneity, with α∈ {0,0.5,1000}, after 20k rounds. 77

4.5 CIFAR100. (a) Impact of local training epochs E in heterogeneous
(α {0,0.5}) and homogeneous FL (α= 1000). (b) Impact of selected
clients at each round t, Kt , with α= 0. 78

xviii List of Figures

4.6 CIFAR100 with α∈ {0,0.5,1k}. Train loss (top) and test error sur-
faces (bottom) of three local models resulting from 20k training
rounds with FEDAVG. 81

4.7 CIFAR100. 3D loss landscape visualizations of global models
trained using FEDAVG with (a-b) α= 0 and (c-d) α= 1k, with FE-
DAVG or FEDASAM. FL models converge to sharp minima. 81

4.8 CIFAR100. Hessian eigenspectra of the global model final parame-
ters with α∈ {0,0.5,1000}. 82

4.9 Overview of FEDSAM+SWA. At each round t, (1) the global model
is sent to the clients, which (2) train it with SAM on their local data.
(3) The model is sent back to the server, (4) where the updates are
aggregated using FEDAVG and (5) then ensembled with previous
models using SWA. 86

4.10 Impact of SWA on the robustness of the model and training stability.
The accuracy trends show the positive gap resulting from using
SWA on top of FEDAVG or FEDASAM. Setting: α= 0, 5% client
participation. 89

4.11 Maximum Hessian eigenvalue λ k
1 computed for each client k ∈ C as

rounds pass. CIFAR100. CNN. 90

4.12 SWA aids convergence for FEDAVGM/FEDSAM (CIFAR100, on the
left) and FEDASAM (CIFAR10, on the right) in this highly hetero-
geneous case (α= 0, 20 clients per round). However, FEDAVGM
+SWA fails on CIFAR10, while adding momentum to FEDASAM

speeds up training. 91

4.13 Domain generalization in FL with FEDSAM, FEDASAM and SWA.
Results with 20 clients, severity level 5 on CIFAR10-C (left) and
CIFAR100-C (right), under various heterogeneity (α). 97

4.14 FEDSAM and FEDASAM sensibility to hyperparameters 98

List of Figures xix

4.15 Comparison of FEDAVG (solid) and FEDSAM (net) loss landscapes
with varying degrees of data heterogeneity (α) on the CIFAR datasets.
FEDSAM’s effectiveness in converging to global flat minima is
highly influenced by the data heterogeneity, where higher hetero-
geneity (α→ 0) leads to sharper minima, and the complexity of the
task, e.g., higher sharpness for the more complex CIFAR100. This
highlights the importance of optimizing global sharpness. Model:
CNN. 102

4.16 Global vs. local perspective on FEDSAM. CIFAR100 α= 0 with
SAM as local optimizer @ 20k rounds on CNN. (a) - (e): Local
models trained on one class, tested on the local (bottom landscape)
or global dataset (top landscape). (f): Resulting global model @
t = 20k, computed using the reported clients’ models. Models trained
with FEDSAM present significant differences between local and
global behaviors. 105

4.17 Illustration of FEDGLOSS. The model wwwt is perturbed using ∆̃ t−1
www .

The sharpness-aware direction (dashed) is used to compute wwwt+1

(solid), which lands in a flat region. Compared to FEDAVG. 108

4.18 Trend of the difference δ t
ϵϵϵ (Equation (4.10)), which decreases as

ADMM is used and over training rounds. CIFAR datasets, CNN. . . 109

4.19 Global vs. local perspective on FEDGLOSS. CIFAR100 α= 0 with
SAM as local optimizer @ 20k rounds on CNN. (a) - (e): Local
models trained on one class, tested on the local (“Local loss”) or
global dataset (“Global loss”). Corresponding global perspective
of local model trained with FEDSAM (net) added as reference. (f):
FEDGLOSS (net) vs. FEDSAM (solid) resulting global model @
t = 20k, computed using the reported clients’ models. FEDGLOSS
achieves aligned low-loss flat regions, effectively reducing the
discrepancy between local and global sharpness. 112

xx List of Figures

4.20 Global vs. local perspective on FEDSMOO. CIFAR100 α= 0 with
SAM as local optimizer @ 20k rounds on CNN. (a) - (e): Local
models trained on one class, tested on the local (“Local loss”) or
global dataset (“Global loss”). Corresponding global perspective of
local model trained with FEDGLOSS (net) added as reference. (f):
FEDGLOSS (net) vs. FEDSMOO (solid) resulting global model @
t = 20k, computed using the reported clients’ models. Local models
trained with FEDGLOSS are found in lower and flatter regions
in the global loss landscape w.r.t. FEDSMOO. 113

4.21 Visualization of the loss landscapes of the CNN trained with FED-
GLOSS (net) and the best-performing SOTA FEDSMOO (solid).
Comparison with varying degrees of heterogeneity on CIFAR10
(left) and CIFAR100 (right). FEDGLOSS consistently achieves flat-
ter minima and lower loss values. 114

4.22 Maximum Hessian eigenvalues in CIFAR10 (left) and CIFAR100
(right), with varying data heterogeneity (α), CNN. Value shown only
if the algorithm converged. 115

4.23 Loss landscapes with ResNet18 on CIFAR10 α= 0.05 (top) and
CIFAR100 α= 0.5 (bottom). FEDGLOSS achieves the flattest and
lowest-loss regions in the global landscape. 116

4.24 Comparison of FEDGLOSS with state-of-the-art approaches.
Accuracy trends with CNN on CIFAR10 with varying degrees
of heterogeneity (α∈ {0,0.05}). Methods distinguished by local
optimizer, SAM (a and c) or SGD (b and d). Results of centralized
runs (dashed lines) added as reference. FEDGLOSS consistently
achieves the best performance. 118

4.25 Comparison of FEDGLOSS with state-of-the-art approaches.
Accuracy trends with CNN on CIFAR100 with varying degrees
of heterogeneity (α∈ {0,0.5}). Methods distinguished by local
optimizer, SAM (a and c) and SGD (b and d). Centralized upper
bound (dashed lines) added as reference. FEDGLOSS consistently
achieves the best performance. 119

List of Figures xxi

4.26 Comparison of FEDGLOSS with state-of-the-art approaches.
Accuracy trends with ResNet18 on CIFAR100 (top) and CIFAR10
(bottom). Methods distinguished by local optimizer, SAM (a and c)
and SGD (b and d). FEDGLOSS consistently achieves the best
performance, both in terms of final accuracy and convergence
speed. 120

4.27 Trend of model parameters norm, ∥wwwt ∥2, on SAM-based methods
with ResNet18 on CIFAR datasets. SAM reduces the norm and the
risk of parameters explosion, successfully enabling ADMM in
heterogeneous FL. 121

4.28 Accuracy trends of FEDGLOSS vs. NAIVEFEDGLOSS. The com-
parison includes the centralized upper bounds of SAM and the adap-
tation of FEDGLOSS’ strategy to the centralized scenario. CNN
on CIFAR10 and CIFAR100 with varying heterogeneity degree (α).
NAIVEFEDGLOSS is ≈ 1.1× faster than its efficient alternative
FEDGLOSS in CIFAR100, while FEDGLOSS shows increased con-
vergence speed after ≈ 25% of training rounds in CIFAR10. How-
ever, both methods reach the same accuracy at the of training. These
results motivate the choice of FEDGLOSS over NAIVEFEDGLOSS. 122

4.29 Loss barriers resulting from interpolating NAIVEFEDGLOSS and
FEDGLOSS’ models, which are found in the same basin. CIFAR100
and CIFAR10 with CNN. 123

4.30 Visualization of the loss landscapes of the CNN trained with FED-
GLOSS (net) and FEDSAM (solid). Comparison with varying de-
grees of heterogeneity on CIFAR10 (left) and CIFAR100 (right).
These plots validate the necessity for global sharpness. 124

4.31 Accuracy trends of WIMA and SWA starting at different rounds on
CIFAR100 with α= 0, using FEDAVG as reference. SWA suffers
from early initialization. 126

4.32 Overview of WIMA. A window of size W slides across the sequence
of global models generated by server-side aggregation, from round t
to round t+W . The WIMA parameters are calculated as the average
of the models within this window. 128

xxii List of Figures

4.33 Accuracy trends of different SOTA algorithms on CIFAR100 α=

0 across rounds, with and without WIMA (dashed lines). The
application of WIMA results in smoother and more stable trends,
leading to enhanced robustness and improved performance. 129

4.34 WIMA performances compared with varying client participation
rates at each round on CIFAR10 using FEDAVG. a) WIMA achieves
higher accuracy with 10% participation compared to FEDAVG with
1.5 times the number of devices per round. WIMA with 20 clients
performs similarly to FEDAVG with half the clients. b) WIMA
with 10% rate performs almost on par with FEDAVG w/o WIMA
selecting 50% of the devices. 132

5.1 To mitigate statistical heterogeneity in FL, FEDSEQ forms super-
clients by grouping clients with distinct local data distributions (dif-
ferent colors), creating simulated larger and homogeneous datasets.
Sequential training takes place within the selected superclients at
each round. The current global model is received by the first client
in the chain and sent back by the last one. 140

5.2 FEDSEQ pre-training phase to build superclients. a) The initial
random global model fwww0 is sent to all the clients, which train it
using their local data Dk∀k ∈ C . b) The local data distributions
are estimated (ψ) using the clients’ updates while preserving their
privacy. c) Based on the grouping strategy φ , clients are assigned to
NS superclients. 143

5.3 Sequential training with FEDSEQ. At each round t, a subset of
superclients (here S1 and S2) is selected and receives wwwt , which is
trained sequentially by the clients. Final updates are sent back to the
server, where they are aggregated with FEDAVG. 147

List of Figures xxiii

5.4 Training with FEDSEQ2PAR with R = 3. At round t, the global
model is sent to the selected superclients {S1,S5,S6}, having varying
latency (full arrows). The first superclient to complete training (S1)
marks the start of the new round t +1. As soon as the server receives
the updated model, it sends it to another superclient (e.g., from S1

to S4). Within the time it takes for S5 to finish training, the faster S1

and S4 can also complete theirs. After R rounds, the latest updates
from each chain of superclients (circled in red) are combined, and
the process begins anew. 148

5.5 Accuracy convergence plots of FEDSEQ, FEDASYNCSEQ, FED-
SEQ2PAR (in bold) and SOTA algorithms on vision datasets. On
average, FEDSEQ2PAR is the best-performing algorithm. All the
proposed approaches can be distinguished for their improved speed. 151

5.6 Convergence rates in non-i.i.d. scenarios. Each plot shows the
rounds necessary for each method to reach 70% and 90% of the
centralized accuracy. Not all the algorithms reach the 90% target
(missing line). FEDSEQ and its variants (in bold, stars) outperform
the others in all settings. 152

5.7 Accuracy convergence plots of FEDSEQ, FEDASYNCSEQ, FED-
SEQ2PAR (in bold) and SOTA algorithms on NLP datasets. On
average, FEDSEQ2PAR is confirmed the best-performing algorithm. 154

5.8 Effect of pre-training K = 500 local models for e ∈ {1,5,10,20,
30,40} epochs on CIFAR100 and CIFAR10. From the trends on
both datasets, it can be noted that after e = 10 the slope of the curve
decreases. 154

5.9 CIFAR datasets. Ratio of the preserved components after applying
PCA with 90% of explained variance when varying the number of
local epochs e. 155

xxiv List of Figures

5.10 CIFAR100, α= 0. (a) Focus on 75 clients. Each group of 25 clients
has access to either images of aquatic mammals, fishes or flow-
ers. (b) Client with images of whales. Comparison of embedding
distances with clients containing images of progressively different
entities. ψt2v accurately recognizes the similarities between animals,
in contrast to ψconf. 156

5.11 Sensitivity of FEDSEQ2PAR to fgr and the growth parameters αgr

and βgr. Results in test accuracy (%) on the NIID split. 159

5.12 (a) GRA attack on global model with different accuracy. The result-
ing FID scores on FEDSEQ are consistently higher, implying a less
effective attack. (b) Examples of images reconstructed by the GRA
attacker at distinct rounds. 162

5.13 Overview of FFREEDA. The clients’ data is unlabeled and the source
labeled dataset is kept on the server. Clients having similar styles
are clustered together. Local training leverages both global and
cluster-specific model parameters. 165

5.14 Overview of LADD. 1) Each client k extracts the average style s̄k

of its local data DT
k using FDA. At server-side, the collected styles

Ps are applied to the source dataset Ds during the supervised pre-
training. 2) Clients are clustered according to their style. 3) At
client-side, the cluster-specific teacher gc outputs the pseudo-labels,
used for training f t

c, leveraging KD from the pre-trained model. 4)
At the server-side aggregation, global (ΦΦΦ t+1) and cluster-specific
parameters (θθθ t+1

c) are separately aggregated. 167

5.15 GTA5→CrossCity qualitative results. 172

List of Figures xxv

5.16 In a federated scenario, clients and server exchange the parameters
of the model M. Each client has access to its local data, which
can be non-i.i.d. and unbalanced. Each color identifies a different
distribution, i.e., a domain, such as pictures of skyscrapers or sea
landscapes. The model M is made of domain-agnostic layers (in
gray) and a GCN containing domain- specific parameters, added
as residual. According to the domains of the input images, the
corresponding nodes of the GCN are activated. At test time, new
domains can be addressed as a soft combination of the discovered
ones, e.g., skyscrapers over the sea. 178

5.17 FEDCG framework. The server sends the model fθ to the clients
selected for the federated round, together with the teacher gφ and
student gϕ domain classifiers. On the client-side, the domain clas-
sifier clusters the local data xxx, producing as output the domain of
belonging d̂ of each image. At training time, the hard label d̂ is
predicted by gφ and is used as input to train gϕ through a process
based on knowledge distillation. At test time, d̂ is given by gϕ and
is a weighted combination of the discovered domains. In FEDCG,
the network fθ is made of a domain-agnostic part (in gray) and a
residual domain-specific one (in blue). The domain-specific parame-
ters are produced by the GCN, receiving as input A,Wℓ,Vℓ and d̂.
After training both fθ and gϕ on its data, the client k sends back to
the server the updated weights θk and ϕk. On the server-side, the
updates are aggregated with FEDAVG. 183

6.1 Examples of distribution and domain shifts in autonomous driving
scenarios. Due to personal habits and geographical locations, users
may be subject to different scenery (e.g., mountain landscapes vs.
city views), or shifts in visual domains (e.g., light conditions). . . . 194

6.2 CFSI and LAB applied to random images from Cityscapes and IDDA197

6.3 Example of qualitative results on FEDDRIVE with various methods . 199

6.4 Histogram of images per clients in the proposed federated CrossCity
split . 201

xxvi List of Figures

6.5 Histogram of images per clients in the proposed federated Mapillary
Vistas split . 201

6.6 Federated Visual Place Recognition (FedVPR): the training of
Visual Place Recognition models is revisited from the perspective
of Federated Learning, with clients distributed across geographical
areas, each possessing heterogeneous computational and commu-
nication resources and availability. Instead of relying on a central
database for mining, each client builds its own database of geo-
tagged images and uses it for local training based on contrastive
learning (step a.). Subsequently, it communicates its model weights
to the server, where they are aggregated into a new global model
(step b.). 203

6.7 Clients and images distributions in the federated MLSL 208

List of Tables

2.1 Formulas for Batch Normalization (BN) and Group Normalization
(GN). BN layers act on a batch of size m, while GN layers act on
groups g of channels. 24

3.1 Cross-silo vs. Cross-device FL vs. Distributed Learning. Source:
[6]. 52

3.2 Image classification datasets . 68

4.1 Hessian maximum eigenvalue λ1 and the ratio λ1/λ5 as a proxy for
sharpness. FEDAVG reaches sharp minima, while models trained
with our sharpness-aware solutions combined with SWA converge to
flat regions. CIFAR100. 82

4.2 Comparison of different server-side optimizers with varying learning
rate ηg on CIFAR100 @ 20k rounds. 5% clients participation. In
bold the best results in terms of accuracy (%) on both α= 0 and α= 1k. 87

4.3 Results on CIFAR100 with α∈ {0,0.5,1000} @ 20k rounds and
CIFAR10 with α∈ {0,0.05,100} @ 10k rounds, distinguished by
clients participation at each round 87

4.4 Accuracy results (%) on CIFAR100-PAM with ResNet18, with
varying clients participation. The results underline the performance
during training (@5k and @10k rounds), with and without SWA, and
with the addition of strong data augmentations (mixup and cutout).
Best results in bold. 88

xxviii List of Tables

4.5 Comparison of improvements (%) in centralized and federated sce-
narios (α∈ {0.5,1k}, 5 clients) on CIFAR100, computed w.r.t. the
reference at the bottom. 91

4.6 Reaching convergence in heterogeneous scenarios with FEDAVGM
(in bold). Results in terms of accuracy (%) computed with 20 clients
per round. 92

4.7 FEDAVG, SAM, ASAM and SWA with strong data augmentations
(MixUp, Cutout) . 93

4.8 SOTA comparison on CIFAR10 and CIFAR100 (centralized perfor-
mance underlined) . 94

4.9 Accuracy Results (%) on LANDMARKS-USER-160K with FEDSAM,
FEDASAM and SWA . 95

4.10 Federated SS on Cityscapes and IDDA. Results in mIoU (%) @ 1.5k
rounds . 96

4.11 SWA ablation study: comparison between cyclical (c > 1) and con-
stant learning rate (c = 1) and contribution given by averaging
stochastic weights. Highlighted in bold the best result for each
combination (algorithm, α, participating clients). 99

4.12 SWA ablation study: comparison in accuracy (%) between SWA

starting rounds, with 5 clients per round. Server-side aggregation
with FEDAVG. 100

4.13 Maximum Hessian eigenvalues of local models, computed on
global (λ1,g) and local datasets (λ1,l) with CIFAR10 α= 0 and CI-
FAR100 α= 0. Each client is identified via its local class. The
lowest λ1,g in bold. FEDDYN does not converge on CIFAR100 with
α= 0 [7, 8], hence the lack of results (✗). 104

4.14 Overview of FL methods using SAM. Differently from previous
works, FEDGLOSS uses SAM as server optimizer and allows any
local optimizer. 107

List of Tables xxix

4.15 FEDGLOSS against the state of the art on CIFAR datasets with
varying degrees of heterogeneity. Results distinguished by local
optimizer, SGD (top) and SAM (bottom). Comparison in terms
of minimum communication cost, higher accuracy (%) and lower
maximum Hessian eigenvalue. Best results in bold. Model: CNN. . 114

4.16 FEDGLOSS against the state of the art with ResNet18 on CI-
FAR100 α= 0.5 and CIFAR10 α= 0.05. Comparison in accuracy
(%). 117

4.17 FEDGLOSS against SOTA FL methods on homogeneous settings
with CIFAR datasets, compared in terms of communication costs,
accuracy (%) and maximum Hessian eigenvalue λ1. Model: CNN.
Best result in bold and second best underlined. 117

4.18 FEDGLOSS with local SAM with MobileNetv2, LANDMARKS-
USER-160K . 118

4.19 Communication costs comparison in terms of number of rounds and
transmitted bits w.r.t. FEDAVG (highlighted). “-” for not reached
accuracy, “✗” for non-convergence. 121

4.20 FEDGLOSS vs. its naïve implementation NAIVEFEDGLOSS in
terms of communication cost, accuracy (50% and 100% of train-
ing), with change in performance in brackets, and maximum Hessian
eigenvalue λ1. SAM as CLIENTOPT. 122

4.21 Efficacy of global sharpness minimization in FEDGLOSS. Analysis
of the effect of ADMM for global consistency and server-side SAM

for minimizing the global sharpness. Comparison in terms of accu-
racy (%) and maximum Hessian eigenvalue, distinguished by local
optimizer. Model: CNN. 123

4.22 WIMA combined with state-of-the-art FL algorithms. For each
configuration, the first column reports the accuracy (%) reached by
each standalone method; in the second column, the performance
achieved when adding WIMA. Between brackets the improvements
introduced by WIMA, underlined the best ones in each dataset. For
simplicity, the table only reports gains in improvements ≥ 1.5. Best
overall accuracy in bold. 130

xxx List of Tables

4.23 Large-scale experiments. Results in test accuracy (%) on LANDMARKS-
USER-160K. Best result in bold. 131

4.24 WIMA accuracy (%) with varying W on the CIFAR datasets with
α= 0. Best results in bold. 132

4.25 Accuracy (%) reached when applying WIMA only on the classifier,
the feature extractor, or all the model parameters (All) as reference. 133

5.1 Comparison with state-of-the-art FL algorithms. Color coding: first,
second and third best results. 150

5.2 Number of communication exchanges from server to client (C2S),
client to server (S2C) and client to client (C2C) at each round t and
across all rounds T . 153

5.3 FEDSEQ baselines: comparison of grouping criteria by varying φ ,
ψ and τ . Results in terms of accuracy (%). 157

5.4 Parallelism and test accuracy: FEDSEQ vs. FEDSEQ2PAR. 158

5.5 Label Flipping Attack experiments after 1k rounds. Results in ac-
curacy (%) and drop in accuracy (↓) w.r.t. to the reference. In
bold smaller drops in each attack. Symbols: “◦” (negligible or
non-existing drops), “Fixed” (γfixed) and “Random” (γrandom). 161

5.6 FFREEDA: Results on federated heterogeneous Cityscapes 174

5.7 FFREEDA: Results on federated CrossCity 175

5.8 FFREEDA: Results on federated Mapillary 175

5.9 Ablation studies on CelebA dataset with N = 32 domains extracted
from images meta-data. A is the adjacency matrix that weights the
domains contributions: the symbols (eye,U,H) respectively stand
for identity, uniform and weighted (with inverse Hamming distance)
matrices. W is the weight projection matrix and ReLU the non-linear
activation. 184

List of Tables xxxi

5.10 Ablation studies on CelebA dataset with domains given by a
priori knowledge or online clustering procedures. In the A init
column, “eye” stands for identity matrix and “rand” for random. The
third column specifies the clustering, i.e. clusters generated with
K-means or the teacher-student classifier (“Clf”). 185

5.11 FEDCG comparison with the state of the art on CelebA and FEMNIST187

6.1 Summary of the settings in FEDDRIVE 196

6.2 FEDDRIVE: Cityscapes results . 198

6.3 FEDDRIVE: IDDA results in mIoU ± std (%). 198

6.4 FFREEDA: Federated splits for semantic segmentation in FL. For
each dataset, the following information are reported: the number of
classes NC, the size of training and test sets, the number of clients
and the min-max range of images per client. 201

6.5 Characteristics of the proposed FEDVPR datasets, associated with
FEDAVG performances . 206

6.6 Comparison of the vanilla baseline FEDAVG with Hierarchical FL
methods and various server optimizers. Notation: CC for continent-
level middle servers in H-FL, C for city-level middle servers, SGDm
for SGD with server-side momentum, T rounds, C clients participat-
ing at each round. 209

6.7 Addressing the clients’ quantity heterogeneity. The R@1 (%) of the
FEDAVG baseline (grey background) is compared with the ones of
FEDAVG and FEDVC with a fixed number of iterations per client
per round. B is the local mini-batch size. 210

A.1 Best performing training parameters 263

A.2 FEDSAM and FEDASAM hyper-parameters 264

A.3 SWA hyper-parameters . 266

xxxii List of Tables

A.4 General training hyper-parameters common to all methods, distin-
guished by dataset and model architecture. Symbols: local epochs
E, local learning rate η , weight decay wd, client-side momentum βl ,
batch size B. 267

A.5 Search grid used to find optimal hyper-parameters for each com-
bination of method, dataset and model. Best performing values in
bold. 267

A.6 Best performing training hyperparameters on FEDSEQ 271

A.7 LADD datasets training hyper-parameters 273

Nomenclature

Roman Symbols

C Clients set

D Dataset

N Negative images set

P Positive images set

X Input space

Y Output space

B Batch size

C Number of classes

E Number of local epochs

f Objective function

K Number of clients

N Number of images

T Number of rounds

www Model parameters

Greek Symbols

α Dirichlet distribution concentration parameter

xxxiv Nomenclature

ϵϵϵ SAM perturbation

β Momentum parameter

η Learning rate

λ Hessian eigenvalue

λ1 Maximum Hessian eigenvalue

∇www Gradient of model parameters www

∆www Pseudo-gradient of model parameters www

Superscripts

q Reference to query image q

t Round index

Subscripts

g Global, i.e., server side

k Client index

l Local, i.e., client side

Other Symbols

[N] Indexing from 1 to N

∥·∥ ℓ2 norm

| · | Set cardinality

Acronyms / Abbreviations

non-i.i.d. Non-independent and identically distributed

vs. Versus

w.r.t. With respect to

AI Artificial Intelligence

Nomenclature xxxv

BN Batch Normalization

CE Cross-entropy

CFL Centralized Federated Learning

DFL Decentralized Federated Learning

DL Deep Learning

FL Federated Learning

GN Group Normalization

IoT Internet of Things

KD Knowledge Distillation

ML Machine Learning

NN Neural Network

SAM Sharpness-aware Minimization

SGD Stochastic Gradient Descent

SOTA State-of-the-art

VPR Visual Place Recognition

Chapter 1

Introduction

It is change, continuing change, inevitable change, that
is the dominant factor in society today.

No sensible decision can be made any longer without
taking into account not only the world as it is,

but the world as it will be.

ISAAC ASIMOV

This opening chapter establishes the framework and motivations for the research
presented in this thesis. Section 1.1 explores current challenges in the world of Arti-
ficial Intelligence, introducing the specific setting of interest for this work, Federated
Learning. The research questions and the thesis contributions are summarized in
Section 1.2. Section 1.3 provides a roadmap for navigating the manuscript, while
Section 1.4 offers details on the individual research papers included.

2 Introduction

1.1 Context and Motivation

Artificial Intelligence (AI) has permeated nearly every facet of people’s daily lives,
shaping experiences from personalized movie recommendations [9] and voice inter-
actions with smartphones [10] to advancements in autonomous driving [11]. Modern
AI models can now understand and generate text [12–15], comprehend and respond
to human speech [16], analyze video and image content [17–20], generate their own
visual data [21], and process both text and images simultaneously [22]. As illustrated
in Figure 1.1, interest in AI systems has surged in recent years, particularly within the
domains of vision and text after the rise of foundation models [23]. The 2024 Nobel
Prizes recognized the transformative impact of AI on modern society, awarding the
Physics Prize to Geoffrey E. Hinton and John J. Hopfield, pioneers of modern AI
[24], and the Chemistry Prize to Demis Hassabis and John Jumper for their use of
AlphaFold2 [25] “for protein structure prediction” [26].

1990 1995 2000 2005 2010 2015 2020 2024
Year

0

50

100

150

200

250

300

350

Nu
m

be
r o

f A
I s

ys
te

m
s b

y
do

m
ai

n

Audio
Biology
Games
Image generation
Language
Multimodal
Recommendation
Robotics
Speech
Video
Vision

Fig. 1.1 Notable AI systems by domain over the years. This plot illustrates the rapid
advancements and increasing interest in AI across various fields, with a particular emphasis
on the significant growth in the vision and language domains. Data source: [1].

The first major factor impacting AI model performance is the quantity of data
available [27], as these models are inherently data-hungry [28]. As Figure 1.2
shows, the size of training datasets has grown exponentially over the years, with
recent models like GPT-4 [29] and Llama 3.1 [30] requiring over 1012 data points to
achieve state-of-the-art performance. Large datasets are crucial for enabling models
to generalize effectively, meaning they can maintain high accuracy when predicting
outcomes for previously unseen data [31, 32].

1.1 Context and Motivation 3

1960 1970 1980 1990 2000 2010 2020
Year

1e02

1e04

1e06

1e08

1e10

1e12

Tr
ai

ni
ng

 d
at

as
et

 si
ze

Biology
Games
Image generation
Language
Multimodal
Speech
Vision

Fig. 1.2 Data points used to train notable AI systems: the dataset size exponentially increases
as modern deep learning models become more complex. Data from [2].

Today, a substantial amount of data is generated at the edge, collected from
devices such as smartphones, IoT sensors, and cameras. The International Data
Corporation estimates that by 2025 there will be 55.9 billion connected devices pro-
ducing 79.4ZB of data, predominantly belonging to the world of IoT [33]. Notably,
a significant portion of this data will come from video-based devices, such as
surveillance cameras. These large volumes of of data data are crucial for training AI
models designed for real-world applications, where variability is high. The quality
of the training data directly influences the model’s ability to detect complex patterns,
improve accuracy, and enhance generalization—critical factors for successfully ad-
dressing the challenges posed by dynamic, real-world environments. Data generated
at the edge possesses two main characteristics: it is often heavily influenced by user
habits and preferences, making it highly personalized, and it typically contains
sensitive information that raises privacy concerns. These factors present signif-
icant challenges for training robust AI models, as much of this edge data cannot
be accessed using conventional machine learning training methods, nor can it be
easily collected or stored in off-premise locations. This necessitates the development
of specialized techniques that respect user privacy while still allowing for effective
decentralized model training.

Another significant constraint in training AI models is the demand for compu-
tational resources, which has been growing at an annual rate of approximately 4.2

4 Introduction

1950 1960 1970 1980 1990 2000 2010 2020
Publication Year

1e04

1e08

1e12

1e16

1e20

1e24

Tr
ai

ni
ng

 C
om

pu
te

 (F
LO

P)

Fig. 1.3 Training computation, measured in FLOPs, required to train AI models over time.
Prior to the deep learning era (highlighted in blue), the annual growth rate was approximately
1.5×. Starting in 2010, this rate accelerated to 4.2× per year. Data source: [3].

times since the beginning of the “deep learning era” (Figure 1.3). This need often
translates into substantial hardware and energy costs and significant environmental
impact. As shown in Figure 1.4, training advanced models like GPT-4 can exceed
10 million U.S. dollars, reflecting the extensive infrastructure and power required
for such complex computations. In contrast, edge devices offer a unique advantage,
as they possess their own computational resources that can be leveraged to conduct
training operations. This approach can significantly reduce the need for additional
infrastructure and mitigate overall costs associated with training sophisticated AI
models. However, these devices may not possess the necessary resources to complete
the entire training process independently and are further subject to factors such as
battery life and network connectivity. These limitations necessitate a more efficient
approach that leverages edge device capabilities while mitigating their constraints.

Federated Learning (FL) emerges as a promising solution to enable the collabo-
rative training of AI models on edge devices (clients), overcoming their individual
limitations. This approach facilitates collaborative learning across a network of
devices without the need to share raw data directly [34]. Each client trains a lo-
cal model on its own private data and then transmits only the model updates to a
central server for aggregation. This process enables the global model to benefit
from the collective knowledge of all participants and ensures individual data
privacy by eliminating the need for transmitting large volumes of data to centralized

1.1 Context and Motivation 5

2015 2016 2017 2018 2019 2020 2021 2022 2023
Year

$1,000

$10,000

$100,000

$1 million

$10 million

Co
st

 (U
.S

. d
ol

la
rs

)

Biology
Games
Image generation
Language
Multimodal
Speech
Vision

Fig. 1.4 Hardware and energy cost to train notable AI systems, expressed in US dollars. The
cost to train modern models surpasses $10 million dollars. Data source: [4].

servers for processing. Privacy in FL is achieved by adhering to the Principle of
Data Minimization [35–37]: only the data necessary for a specific computation is
collected, i.e., the model parameters (focused collection); the user’s information is
processed immediately upon receipt (early aggregation) and then discarded (minimal
retention). In addition, users are informed and give their consent regarding the use
of their data, ensuring transparency. Lastly, FL aims to uphold the Principle of
Data Anonymization, where the model’s final output does not disclose any sensitive
information and aggregate statistics (e.g., model parameters) do not significantly
vary based on any individual user’s data [38].

As multiple devices collaborate in the training process, the effort to train large
models is distributed, making it more feasible [39, 40]. Since offline nodes can
be replaced with available ones, training can proceed with minimal disruption,
effectively minimizing the limitations associated with standalone edge systems.
Thus, the key appeal of FL lies in its ability to efficiently learn from privacy-protected,
distributed data while complying with regulations and leveraging edge resources.

Numerous real-world applications of FL have already demonstrated their success.
For example, Google Keyboard leverages FL to enhance user experience by learning
individual typing patterns - such as commonly used words - while safeguarding
privacy by not storing private messages on centralized servers [41, 6]. Similarly, the
voice assistants “Hey Google” and “Siri” use FL to recognize users’ voices without

6 Introduction

uploading audio data to the cloud, while simultaneously developing a new speech
model that incorporates learning from all participating devices [42, 43].

Since 2017, the research community FL has concentrated on addressing several
core challenges that define and complicate this field [44]. To clarify them, consider
the following example. Imagine a teenager in Europe using their smartphone, often
capturing photos of their small dog on walks through historic city centers with
ancient architecture. These photos vary in lighting, from bright daytime images
to dimly lit evening scenes, and in location, featuring both indoor and outdoor
settings. In contrast, imagine an adult in the United States, who also uses their
smartphone but primarily takes photos of landscapes, often in suburban or rural
areas, and typically in broad daylight. This difference extends to their language
in text messages as well. The European teenager might use slang, emojis, and
informal abbreviations frequently in their messages, creating a casual, playful tone.
Meanwhile, the American adult might favor more standard language and less emoji
use, producing a more formal or straightforward style. These variations in image
content and linguistic style illustrate the challenge of data heterogeneity in FL, where
different user behaviors and contexts lead to inconsistencies in data distribution,
making it difficult to train a unified model effectively [44, 6]. Communication
constraints add further complexity. In the previous scenario, smartphones may
lose connectivity due to weak signals or depleted battery life, negatively impacting
efficient exchange of model updates. In general, communication between devices
and the central server is often limited by bandwidth restrictions or connectivity issues
[6]. Privacy concerns also persist within the FL framework. Although FL reduces
the need to share raw data, the risk of information leakage through model updates
remains significant, necessitating the development of privacy-preserving techniques
to protect sensitive data [38]. Finally, the availability of computational resources on
individual devices can vary widely, introducing system heterogeneity that challenges
the creation of efficient and fair learning processes across devices [45]. Together,
these issues shape the direction of contemporary FL research, driving efforts to
improve robustness, efficiency, and privacy in decentralized learning systems.

Lastly, while FL has shown promise in various domains, research on its applica-
tion to computer vision tasks remains an emerging field [46]. As mentioned above,
in the coming years, a substantial amount of sensible data is expected to be generated
by video-based edge devices, highlighting the need for ad-hoc FL algorithms for
training robust computer vision models to extract value from this data.

1.2 Research Questions and Contributions 7

This thesis highlights the existence of a significant gap between research on FL
and its deployment in real-world complex applications, particularly in the vision do-
main. By investigating the underlying issues behind the lack of model generalization
and proposing novel solutions, this work contributes to the development of robust
and generalizable FL models that can unlock the full potential of this technology in
complex real-world scenarios.

1.2 Research Questions and Contributions

This thesis addresses the critical challenge of generalization in heterogeneous FL
scenarios, specifically for real-world computer vision applications.

The term “real-world” in federated contexts refers to heterogeneous settings,
where clients have diverse data distributions and computational capabilities, limited
network access (e.g., unreliable or bandwidth-constrained), and consequently, incon-
sistent availability (for instance, due to battery life). All those factors constitute a
relevant challenge to the deployment of FL.

Aiming to learn a global model capable of generalizing to the underlying overall
distribution under the aforementioned constraints, this thesis highlights and addresses
the following gaps in current research:

Generalization through the loss landscape: recent research trends have identified
a link between models’ generalization ability and the geometry of their conver-
gence point in the loss landscape, associating poor generalization with sharp
minima. However, no prior work has examined the relationship between the
geometry of the loss landscape and limited generalization in heterogeneous
FL. This thesis explores the hypothesis that convergence to sharp minima
may contribute to the poor generalization typical of FL models in heteroge-
neous settings, and shows that discrepancies between local and global loss
surfaces are influenced by data heterogeneity. By encouraging convergence
toward flat minima in the global loss landscape, substantial improvement in
generalization performance can be achieved in several tasks (e.g., large-scale
image classification, semantic segmentation, domain generalization), while
maintaining communication efficiency. This work not only leads to better
performance across diverse data distributions in heterogeneous FL but also

8 Introduction

opens new avenues for understanding the dynamics of model performance in
complex learning environments.

Training paradigm: this thesis proposes novel training orchestration paradigms
that leverage privacy-preserving similarity metrics to facilitate the grouping of
similar or dissimilar clients, optimizing collaboration in FL. Differently from
previous existing research that often utilizes clustering techniques, this work
proposes a new training framework that leverages groups of dissimilar clients
to reduce communication exchanges while mitigating the models’ destructive
interference typical of heterogeneous FL environments, resulting in improved
model quality and convergence speedup.

Graph-based layer parameters: the standard FL approach is based on learning
a global model that on average minimizes all local empirical risks across
the entire population. In contrast, personalized FL approaches often learn
model parameters specific to each client, aiming for better local performance.
However, the former approach may lead to models with limited generalization
capabilities, while the latter can result in information loss, as knowledge gained
from previous clients is not effectively incorporated. Addressing this challenge,
this thesis proposes to leverage Graph Convolutional Neural Networks to
enable learning domain-specific information while facilitating knowledge
exchange between similar clients.

Federated vision benchmarks: to bridge the gap between FL research and real-
world computer vision applications, this thesis proposes novel federated splits
of vision datasets and establishes corresponding benchmarks in the fields
of semantic segmentation for autonomous driving and collaborative visual
place recognition. By demonstrating the effectiveness of state-of-the-art FL
algorithms in these diverse and more complex tasks, this work paves the way
for their wider adoption across various computer vision domains, broadening
the applicability of FL.

1.3 Thesis Outline

The thesis is organized as follows:

1.4 Publications List 9

Chapter 2 explores essential preliminary notions on machine learning, discussing
the difference between supervised, weakly-supervised, unsupervised and self-
supervised learning (Section 2.1). Section 2.2 details the architectures and
training of Deep Neural Networks and Section 2.3 discusses optimization algo-
rithms for machine learning. Generalization techniques proper of centralized
learning are reviewed in Section 2.4.

Chapter 3 outlines the Federated Learning framework, discussing its typical set-
tings (Section 3.1), the learning objective (Section 3.2) and the challenges
arising in real-world scenarios (Section 3.3). The federated datasets employed
in the experimental evaluations are presented in Section 3.4.

Chapter 4 introduces the first thesis’ contribution, addressing generalization in
heterogeneous FL. The generalization capability of the model is explored
through the lens of the geometry of the loss landscape and is improved by
encouraging convergence towards globally flat minima.

Chapter 5 presents novel approaches for improved generalization and convergence
speedup in heterogeneous FL, based on clustering and grouping techniques.
The local data distribution is used to detect and group similar (or dissimi-
lar) clients, while preserving their privacy. Learning group-specific models
effectively mitigates the issues deriving from data heterogeneity.

Chapter 6 addresses a critical aspect of current FL research: the lack of suitable
benchmarks for complex vision tasks. While all the presented works focus on
vision applications, this Chapter aims to enable future research in the federated
vision field by introducing novel federated datasets and corresponding bench-
marks. The addressed applications are semantic segmentation for autonomous
driving (Section 6.2) and visual place recognition (Section 6.3).

Chapter 7 summarizes the thesis contributions (Section 7.1) and discusses open
research directions and future works (Section 7.2).

1.4 Publications List

The author’s publications are detailed below in chronological order.

10 Introduction

• Caldarola, D., Mancini, M., Galasso, F., Ciccone, M., Rodolà, E., & Caputo,
B. (2021).
Cluster-driven Graph Federated Learning over Multiple Domains.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Workshop on Learning from Limited and Imperfect Data (pp.
2749-2758) (CVPRW 2021).

• Caldarola, D., Caputo, B., & Ciccone, M. (2022).
Improving Generalization in Federated Learning by Seeking Flat Minima.
In European Conference on Computer Vision (pp. 654-672). Cham: Springer
Nature Switzerland (ECCV 2022).

• Fantauzzo*, L., Fanì*, E., Caldarola, D., Tavera, A., Cermelli, F., Ciccone, M.,
& Caputo, B. (2022).
FedDrive: Generalizing Federated Learning to Semantic Segmentation in
Autonomous Driving.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(pp. 11504-11511). IEEE. (IROS 2022)

• Zaccone*, R., Rizzardi*, A., Caldarola, D., Ciccone, M., & Caputo, B. (2022).
Speeding Up Heterogeneous Federated Learning with Sequentially Trained
Superclients.
In 2022 26th International Conference on Pattern Recognition (pp. 3376-
3382). IEEE. (ICPR 2022)

• Shenaj*, D., Fanì*, E., Toldo, M., Caldarola, D., Tavera, A., Michieli, U.,
Ciccone, M., Zanuttigh, P., & Caputo, B. (2023).
Learning across Domains and Devices: Style-driven Source-free Domain
Adaptation in Clustered Federated Learning.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (pp. 444-454). (WACV 2023)

• Caldarola, D., Caputo, B., & Ciccone, M. (2023).
Window-based Model Averaging Improves Generalization in Heterogeneous
Federated Learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Women in Computer Vision Workshop (pp. 2263-2271). (ICCVW 2023)

1.4 Publications List 11

• Dutto, M., Berton, G., Caldarola, D., Fanì, E., Trivigno, G., & Masone, C.
(2024).
Collaborative Visual Place Recognition through Federated Learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Workshop on Federated Learning for Computer Vision. (CVPRW
2024)

• Silvi*, A., Rizzardi*, A., Caldarola*, D., Caputo, B., & Ciccone, M. (2024).
Accelerating Federated Learning via Sequential Training of Grouped Hetero-
geneous Clients.
IEEE Access.

Preprint (currently under review in peer-reviewed conference):

• Caldarola, D., Cagnasso, P., Caputo, B., & Ciccone, M. (2024).
Beyond Local Sharpness: Communication-Efficient Global Sharpness-aware
Minimization for Federated Learning.

Chapter 2

Preliminaries

We are drowning in information
and starving for knowledge

JOHN NAISBITT

This Chapter establishes the essential background knowledge necessary for
understanding the contributions presented in this thesis. Section 2.1 explores the
fundamental principles of machine learning, differentiating between supervised,
unsupervised and self-supervised learning. Particular emphasis will be placed on
tasks relevant to the field of computer vision, namely image classification, semantic
segmentation, and visual place recognition. These tasks will be the subject of
further examination in subsequent Chapters. Section 2.2 explains the architecture
of deep neural networks and their training. The concept of “generalization” and the
challenge of developing models robust to data distribution shifts are discussed in
Section 2.4, with a particular emphasis on methods that leverage the geometry of the
loss landscape.

2.1 Machine Learning 13

2.1 Machine Learning

Decades ahead of its time, Alan Turing’s 1950 paper, Computing Machinery and
Intelligence [47], predicted the potential for machines to learn. Turing’s insightful
analogy compared this learning process to a child’s education, where the teacher
provides the roadmap towards a desired outcome but may not fully understand the
internal learning mechanisms at play. Today, Turing’s vision has become a reality,
as machines are now capable of remarkable feats of comprehension, including
processing and generating text, images, and even spoken language, while learning
from their past. Extending Turing’s analogy further, the child in this scenario
becomes the machine learning model. Just as a child learns from experience and
instruction, the model learns from vast amounts of data, progressively improving its
ability to understand and elaborate information. This learning process, also known
as training, can be supervised or unsupervised. In supervised learning, the data
comes with pre-defined labels or ground truth information, acting as the “teacher”
guiding the model towards the desired outcome. Conversely, unsupervised learning
involves unlabeled data, where the model must identify patterns and relationships
within the data itself. Self-supervised and weakly-supervised learning instead take
an intermediate approach. In the former, the data remains unlabeled and the model
learns by creating its own supervisory signals from the inherent structure of the
data. This allows the model to extract meaningful features and representations
that can be beneficial for various downstream tasks. On the other hand, in weakly-
supervised learning the algorithm learns from partially labeled or noisy data. For a
comprehensive overview of machine learning paradigms, reinforcement learning [48]
also deserves mention, which operates through a reward-penalty system. Here, the
model learns by interacting with an environment and receiving positive or negative
feedback (rewards or penalties) for its actions. This feedback loop allows the model
to refine its behavior over time to maximize its cumulative reward. However, as
reinforcement learning falls outside the scope of this thesis, it will not be further
detailed. Readers interested in exploring this topic further can refer to [49–51].

The next Sections formalize supervised, weakly-supervised, unsupervised and
self-supervised learning paradigms.

14 Preliminaries

2.1.1 Supervised Learning

Supervised learning revolves around a training set made of labeled input-output
pairs of the form D = {(xxxi,yi)}N

i=1 drawn from a distribution P(x,y). Here, each xxxi

represents an input sample drawn from a feature space X , yi denotes its correspond-
ing ground truth label residing in the label space Y and N is the number of samples.
In the context of this thesis, xxxi typically represents an image or a sentence, while
yi corresponds to the correct prediction for that specific input. This could be the
image’s class label (e.g., “cat” or “dog”) or the sentiment of a sentence (e.g., “angry”
or “happy”).

In supervised training, the goal is to learn a function f : X → Y parametrized
by www ∈ Rd that effectively maps the input samples to their appropriate outputs, i.e.,
yi = f (xxxi). The training process consists on fitting www to the input data. The quality
of the learned mapping is measured via a loss function ℓ : Y ×Y → R+∪{0}, i.e.,
a non-negative real-valued function which measures the difference between the true
label y and its prediction ŷ, which corresponds to the class label with the highest
predicted probability. Typically, ℓ(y,y) = 0 and ℓ(ŷ,y)≥ 0 ∀y, ŷ. The choice of loss
function depends heavily on the specific task at hand. Examples of commonly used
loss functions will be discussed in Section 2.1.1.

The risk is the expected loss of the function f across the entire data distribution
P, i.e., RP(www)≜ E(xxxi,yi)∼P[ℓ(fwww(xxxi,yi)]. However, the true data distribution P is often
unknown in real-world scenarios. The concept of empirical risk, denoted by R(www),
tackles this challenge by estimating the true risk as the average loss of f over the
available training set D made of N data points, i.e.,

R(www)≜
1
N

N

∑
i=1

ℓ(ŷi,yi) =
1
N

N

∑
i=1

ℓ(fwww(xxxi),yi) . (2.1)

A learned predictor is said to generalize well if the generalization gap [52–56]
R(www)−RP(www) is small. Intuitively, it quantifies how well the performance of the
learned function transfers from seen to unseen samples. In other words, a smaller
generalization gap signifies that the model has effectively learned the underlying
patterns from the training data without simply memorizing specific examples. This
process is named generalization. The opposite phenomenon is overfitting [57–60],
happening when the learned function is too closely aligned with the training data.

2.1 Machine Learning 15

Model Complexity

Lo
ss

 Underfitting Overfitting

Best Fit

Training Loss

Test Loss

Fig. 2.1 Underfitting vs. Overfitting. Underfitting (left): a simple model struggles to
capture the underlying patterns in the data, resulting in high errors on both the training and
test sets. Overfitting (right): a complex model memorizes the specifics of the training data,
including noise. While it performs well on the training set, it fails to generalize to unseen
examples, leading to high errors in the test set. The ideal model (center) achieves a balance
between simplicity and complexity, with strong generalization ability.

This results in exceptional performance on seen examples, but poor generalization
on unseen ones. Lastly, underfitting occurs when the model fails to capture the
underlying patterns between input and output data, resulting in high loss on both
the training set and unseen samples [58, 60, 61]. As shown in Figure 2.1, these
phenomenons are highly correlated with the model complexity: a too simple model
may not be able to capture complex patterns in the data, but a overly complex
model is likely to capture noise in the training data rather than the underlying signal
[57, 62, 59].

Image Classification

Supervised learning aims to uncover the relationships between labeled inputs and
desired outputs. The specific task at hand depends on the nature of the training data,
D , and the corresponding ground truth information, Y . In this thesis, the focus is on
classification, where the model learns to categorize input data points into predefined
classes. Semantic Segmentation takes a step further, aiming to classify each pixel
of the input image (e.g., segmenting an image to identify individual pixels belonging
to a cat or a dog).

Classification aims to learn a mapping from inputs xxx ∈X to outputs y ∈ Y , where
Y is a set of C discrete labels representing the number of classes, i.e., Y = [C] =

16 Preliminaries

{1, · · · ,C}. The number of classes C determines the classification type: binary for
C = 2 and multiclass for C > 2. In image classification, the classes refers to objects
depicted in the images. For instance, animals (e.g., dog vs. cat), or cities (e.g., Rome
vs. New York).

For classification tasks, the most commonly employed loss function is cross-
entropy (CE) [63], ℓce. The CE loss is based on the concept of the Shannon entropy
[64] H of a random variable X , i.e., the average uncertainty inherent in the variables
possible outcome,

H(X) =−∑
x∈X

p(x) log p(x), (2.2)

where p is the probability distribution and X is a discrete variable. The larger the
value of H(X), the greater the uncertainty of the probability distribution. The cross-
entropy measures the distance between the estimated output probabilities and the true
output distribution, where each predicted class probability is compared to the real
desired output (0 or 1). The loss penalizes the probability based on how far it is from
the ground truth. Its logarithmic nature leads to large penalties for large differences
and small penalties for divergences tending to 0, i.e., the function penalizes the
confident and wrong predictions the most. The CE loss is defined as

ℓce ≜−
C

∑
i=1

yi log(pi), (2.3)

where yi is the ground truth label and pi the softmax probability of the ith class.

To measure the model performance in multiclass classification, the main reference
metrics is the accuracy, defined as

Accuracy =
Correct predictions

All predictions
. (2.4)

Semantic Segmentation. Semantic segmentation [65–67] is a classification task
whose goal is to provide a semantic prediction for each pixel in the image, without
distinguishing between multiple instances of the same class (e.g., all people are
labeled as “person”). For instance, semantic segmentation may identify the portion
of the image that corresponds to “sky”, “car”, or “person” (see Figure 2.2). Each
image xxx ∈X made of NP pixels is associated with a ground truth vector yyy ∈ Y NP ,
denoting the set of NP tuples with elements belonging to the output space Y . Given

2.1 Machine Learning 17

(a) Original image (b) Semantic segmentation map

Fig. 2.2 Example of semantic segmentation. (a) Original image. (b) Each pixel is assigned
a color-coded label, revealing the objects it depicts. For instance, the label tree is depicted
in green, person in red and car in blue. Images from the Cityscapes dataset.

the input xxx, the goal is to learn a function f : X → Y NP mapping each pixel xi of
the image xxx to a class yi ∈ Y . Pixels that fall outside the identified C classes are
assigned to a special label, e.g., “background” b ∈ Y or “ignore-index” i ∈ Y .

The performance of a semantic segmentation model is usually evaluated in
terms of mean Intersection over Union (mIoU) [68]. The Intersection over Union
computes the overlap between the class’ predicted segment and ground truth as

IoU(c) =
T P(c)

T P(c)+FP(c)+FN(c)
(2.5)

⇒ mIoU =
1
C

C

∑
c=1

IoU(c), (2.6)

where T P = True Positive, FP = False Positive and FN = False Negative for each
class c. The IoU is equal to 1 if the prediction matches the ground truth, i.e., the
intersection corresponds to the union, and is zero if the intersection is null.

Knowledge Distillation

Knowledge Distillation (KD) [69] is a technique employed to transfer the knowl-
edge from a complex, high-performing model (teacher) , ft , to a usually smaller
model (student), fs. This process enables the lightweight model to achieve better
performance by learning to mimic the teacher’s knowledge.

18 Preliminaries

Given an input sample xxxi, a neural network f typically outputs class probabilities
by leveraging a softmax function that converts the logits zzzi into a probability pi as

pi(zzzi,T) =
exp(zzzi/T)

∑ j exp(zzz j/T)
, (2.7)

by comparing zi with the other logits, smoothing the probability distribution with the
use of the temperature T, normally set to 1.

In supervised settings, a common approach to KD is to leverage the teacher’s
probabilities to train the student model in predicting the correct labels by minimizing
the distillation loss, as

ℓKD(xxxi,T)≜ γ · ℓce (pi (fs(xxxi),T = 1) ,yi)+ (2.8)

+(1− γ) · ℓce (pi (ft(xxxi),T =τ) , pi (fs(xxxi),T =τ)) , (2.9)

where xi is the input, yi the ground truth label, pi is the softmax function (Equa-
tion (2.7)), T the temperature and γ ∈ R a coefficient balancing the importance of
the teacher’s guidance.

2.1.2 Weakly-Supervised Learning

Weakly-supervised learning emerges as a powerful approach when acquiring fully
labeled data proves challenging or expensive [70, 71]. This method enables models
to learn from data with partial labels or inherent noise. Visual Place Recognition
(VPR), explored in the following section, exemplifies a successful application of
weakly-supervised learning. While GPS information provides a convenient way
to label image locations (often embedded automatically in photos), it falls short in
capturing the complete picture. Crucially, VPR needs to account for variations in
camera viewpoint, which are often absent from GPS data. This necessitates the use
of alternative techniques proper of the weak supervision to overcome this limitation.

Visual Place Recognition

Visual Place Recognition [72, 73] aims to estimate the location of a given input
image, called query, and acts as a image retrieval system specifically designed for
places. VPR is based on a large geo-tagged database, i.e., images with known GPS

2.1 Machine Learning 19

position. Samples from the same place (or within a certain radius) are referred to as
positives (e.g., images taken from different viewpoints), while images from different
locations are called negatives (e.g., photos of various cities). Given a query image,
the goal is to find the most similar match within the database to estimate the input’s
geographical location. This is achieved by learning a function f : X → E which
projects the input sample onto the embedding space E , where representations of the
same place are close to each other while being apart from representations of other
locations.

VPR models are usually trained using contrastive losses [74–76], which aim
to bring representations of positive images closer in the embedding space while
distancing representations of negatives. In general, VPR favors the triplet loss
[77, 75]. Received a query (anchor) qqq, a positive pppq and a negative nnnq images as
input, the triplet loss aims to minimize the distance from the anchor to the positive,
while maximizing the distance from the anchor to the negative input, as

ℓtriplet ≜ max(∥ f (qqq)− f (pppq)∥−∥ f (qqq)− f (nnnq)∥+m,0), (2.10)

with m being the margin between positive and negative pairs, treated as a hyperpa-
rameter.

According to Equation (2.10), if the chosen negative is far away from the query,
i.e., ∥ f (qqq)− f (nnnq)∥→ ∞, ℓtriplet = 0, implying a non-informative choice. To avoid
this issue, hard negatives are to be favored, i.e., closer or visually similar negatives
w.r.t. query [76]. Acquiring positive training examples for VPR is relatively straight-
forward. The GPS information is leveraged to identify images within a specific radius
(τ) of the query location, creating the set of positive images denoted as P ≜ {pppq

i }.
However, selecting the set of hard negatives N ≜ {nnnq

i } represents a challenge, since
all images outside the designated radius are considered. This process is known as
mining and can be time-consuming and computationally expensive. In addition, the
GPS information alone is not sufficient to determine whether two images are visually
similar. Thus, the best positive and negative among the candidates are chosen as

pppq = argmin
pppq

i ∈P
Dwww(qqq,ppp

q
i), (2.11)

nnnq = argmin
nnnq

i ∈N
Dwww(qqq,nnn

q
i), (2.12)

20 Preliminaries

where Dwww is the Euclidean distance computed using the current estimate of fwww. Since
VPR relies on estimates of the best pppq and nnnq, going beyond strictly using ground
truth information, it becomes a prime example of weakly-supervised learning.

2.1.3 Unsupervised Learning

The key difference between supervised and unsupervised learning lies in the input
data. In unsupervised learning [78–80], the training set is unlabeled, i.e., it is of
the form D = {xxxi}N

i=1. The learning objectives are multiple and vary from revealing
hidden structures or patterns within the data [81] and reducing dimensionality [82]
to detecting anomalies [83, 84] and clustering similar data [85–87]. The absence of
labels presents a challenge, as the model doesn’t have pre-defined categories or out-
puts to learn from. However, this also unlocks a key advantage: broad applicability.
Unsupervised learning algorithms can be applied to a vast range of data types and
domains because they don’t require human-labeled data, which can be expensive and
time-consuming to obtain in large quantities.

Clustering

Clustering is a fundamental technique in unsupervised learning [88]. It involves
grouping unlabeled data points together based on their similarities, measured using
a defined metric, such as distance in a specific feature space. By grouping similar
data points together, clustering helps uncover hidden structures within the data and
provides valuable insights into the underlying relationships between data points.

Among the clustering techniques, K-means [89, 90] is of interest in this thesis.
The K-means clustering algorithm partitions a dataset into K clusters by iteratively
assigning data points to the nearest cluster centroid and updating the centroids based
on the mean of the points in each cluster:

Ci =
{

x(j) : ∥x(j)−µi∥ ≤ ∥x(j)−µi′∥ for all i′ ̸= i
}
.

Ci denotes the set of data points assigned to cluster i and µi represents the centroid
of cluster i, identified as the mean of all points currently assigned to that cluster, as
µi =

1
|Ci|∑x∈Ci x. This process iterates until convergence, minimizing the total intra-

cluster variance. The k-means algorithm is efficient and straightforward, revealing

2.1 Machine Learning 21

3 2 1 0 1 2 3
Feature 1

1

0

1

2

3

4

5

Fe
at

ur
e

2

0
1
2
Centroids

Fig. 2.3 Example of application of K-means with K = 3 clusters

underlying patterns in the data’s structure, as illustrated in Figure 2.3 for k = 3
clusters.

2.1.4 Self-Supervised Learning

In self-supervised learning (SSL) [91], the system learns to understand and represent
data without relying on manually labeled examples. Differently from unsupervised
learning, it generates its own labels by leveraging the inherent structure of the
data. This is often achieved by formulating auxiliary tasks, such as predicting
missing parts of data or identifying transformations applied to the data. SSL has
gained importance for its ability to use large amounts of unlabeled data, making it
particularly valuable in scenarios where labeled data is scarce or expensive to obtain.
By learning from the data itself, models trained with SSL techniques can achieve
high levels of performance on downstream tasks, often rivaling those trained with
extensive labeled datasets. Examples of SSL applications are next character and next
word predictions, where part of the sentence is masked and the model is asked to
predict the missing part [92, 93].

22 Preliminaries

2.2 Deep Neural Networks

Deep Learning (DL) [94] is a subset of machine learning that leverages Neural
Networks (NNs) to process information. Building upon the biological concept
of neurons and neural networks in the brains of animals and humans, Artificial
Neural Networks (ANNs) consist of interconnected units or nodes called artificial
neurons. These artificial neurons exchange signals in the form of real numbers
through connections akin to synapses in the brain.

A neuron processes N inputs xxx (e.g., images) using a non-linear function f , which
maps them to an output value f (xxx) as

f (xxx) = σ (www ·xxx+b) , (2.13)

where www ·xxx = ∑
N
i=1 wixi is the dot product between the weights www and the inputs xxx, b

is the bias and σ is a non-linear activation function, e.g., ReLU [95]. Equation (2.13)
represents the formulation of the perceptron [96]. To improve the capability of the
network, multiple perceptrons can be combined in L connected layers, where the
output of each layer l becomes the input of the subsequent layer l +1 as

xxxl+1← σ(wwwl ·xxxl +bl), (2.14)

until the final representation xxxL = Sigmoid(wwwL−1 ·xxxL−1+bL−1) is computed. The
Sigmoid function transforms the output of the model into a probability vector. A
hidden layer in a neural network is an intermediate layer situated between the
input and output layers. Unlike the input and output, which directly handle the
data and final predictions, hidden layers perform computations and transformations
on the input data through weighted connections and activation functions. They
are responsible for capturing complex patterns and representations within the data,
enabling the network to model intricate relationships and enhance predictive accuracy.
The last layer of a neural network is usually named classifier, while the backbone
is the feature extractor. A Deep Neural Network (DNN) consists of multiple
stacked hidden layers and is the most used model for complex and modern tasks,
e.g., computer vision [97–99], natural language processing [14, 100, 101], image
and text generation [102, 15]. Figure 2.4 shows an example of DNN.

2.2 Deep Neural Networks 23

x1

x2

x3

xL,1

xL,2

xL,3

Inputs
Hidden Layer

l

Hidden Layer
l + 1 Outputs

1

Fig. 2.4 Example of an Artificial Neural Network. The network receives the inputs
{x1,x2,x3} and processes them through multiple hidden layers (l and l +1), until the final
representation xL,i is reached for i = 1, . . . ,3.

Depending on the nature of the functions applied to inputs, weights, and biases,
as well as the connections between layers, multiple types of DNNs can be defined.
The multilayer perceptron (MLP) [103, 104], or feedforward neural network,
consists of fully connected neurons, as illustrated in Figure 2.4. While the full
connections in MLPs enable complex mappings from inputs to outputs, they also
make training more difficult due to the large number of parameters and potential
for overfitting. To this end, Convolutional Neural Networks [94, 105] reduce
the number of parameters and improve the robustness of the network, as discussed
in Section 2.2.1. This thesis also focuses on Graph Neural Networks [106, 107],
which process data representable via the means of a graph (Section 2.2.2). For
completeness, another relevant example of DNNs is Recurrent Neural Networks
[108, 109], which enable the use of memory when processing subsequent inputs,
making them applicable to tasks like handwriting and speech recognition [110, 111].

2.2.1 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are a specialized type of deep neural network
designed to process and analyze grid-like data structures, such as images. In a
convolutional layer, neurons are organized in three dimensions: width, height, and
depth. Each layer transforms an input 3D volume into an output 3D volume. Unlike

24 Preliminaries

Table 2.1 Formulas for Batch Normalization (BN) and Group Normalization (GN). BN layers
act on a batch of size m, while GN layers act on groups g of channels.

Batch Normalization (BN) Group Normalization (GN)

µBN = 1
m ∑

m
i=1 xi µg =

1
m ∑i∈groupg

xi

σ2
BN = 1

m ∑
m
i=1(xi−µBN)

2 σ2
g = 1

m ∑i∈groupg
(xi−µg)

2

x̂BN,i =
xi−µBN√

σ2
BN+ϵ

x̂GN,i =
xi−µg√

σ2
g+ϵ

yBN,i = γ x̂BN,i +b = BNγ,b(xi) yGN,i = γ x̂GN,i +b = GNγ,b(xi)

traditional fully connected networks, CNNs utilize convolutional layers that apply
a set of learnable filters to the input data, efficiently capturing spatial hierarchies
and patterns. These filters are spatially small but extend through the full depth of
the input volume. The core operation within each layer is the convolution between
the input and the filter weights. As the filter slides over the input, it produces an
activation map that highlights relevant visual features. These filters, combined with
pooling layers that reduce dimensionality, enable CNNs to learn hierarchical features
such as edges, textures, and shapes. This architecture makes CNNs highly effective
for tasks such as image classification, object detection, and segmentation, where
spatial context and local dependencies are crucial. Examples of CNNs are LeNet5
[112], AlexNet [113] and ResNet [114].

ResNet. A case study relevant to this thesis is the Residual Neural Network
(ResNet), that uses identity skip connections inside the model architecture, also
known as “residual connections”, to make the layers fit a residual mapping. Thus,
given an input xxx, the ResNet aims to modify the original mapping function from f (xxx)
to f (xxx)+xxx. The shortcut connections perform the identity mapping, which is added
to the output of the stacked layers. This approach improves the robustness of the
model by reducing the vanishing gradient, discussed in Section 2.3.2.

Normalization

Data normalization is often used to ensure stability and accelerated convergence
during training. A common technique is the use of Batch Normalization (BN)
layers [115], which are often added between hidden layers of a CNN to normalize
the input through re-centering and re-scaling to have zero mean and unit variance.

2.2 Deep Neural Networks 25

Table 2.1 summarizes the step of the BN transform for each sample xxx of a mini-batch
B = {xxx1, . . . ,xxxm}. The scale γ and the bias b are learnable parameters, while µ and
σ are the BN statistics, namely running mean and running variance, respectively. ε

is a small scalar that prevents division by 0. Thus, BNγ,b depends on all the examples
in the mini-batch. This approach makes the training of neural networks faster and
more stable. However, it may require large mini-batches to calculate stable statistics,
which may not be feasible in memory-constrained environments or with limited data
and the performance can degrade when the batch size is small.

Differently from BN, Group Normalization (GN) [116] computes normalization
over the spatial dimensions and groups of channels, not across the batch dimension.
Thus, the normalization is independent of the batch size and works well with limited
data. Given an input xxx, its C channels are divided into G groups, each containing C/G

channels, which are normalized independently.

2.2.2 Graph Neural Networks

Graph Neural Networks (GNNs) are models capable of learning functions over
graphs and are usually leveraged to learn predictive models over graph-structured
data. Formally, a graph is represented as G = (V ,E), where V and E are the sets
of vertices and edges respectively. Let vi ∈ V denote a node, ei j = (vi,v j) ∈ E be
the edge connecting vi and v j, and n = |V | the number of nodes. The adjacency
matrix AAA ∈ Rn×n is defined such that AAAi j = γi j if ei j ∈ E and AAAi j = 0 otherwise, with
γ ∈ R+ being the weight of ei j. GNNs usually focus on node or edge classification,
link prediction and graph classification [117].

Graph Convolutional Neural Networks. Among the existing architectures, this
thesis focuses on Graph Convolutional Neural Networks (GCNs) [118]. GCNs
leverage both the features of a node and its neighborhood to make predictions,
leading to successful results in various scenarios [119]. Each layer l of the GCN is
based on the following propagation rule:

ZZZl+1 = σ

(
D̃DD−

1
2 ÃAAD̃DD−

1
2ZZZlWWW l

)
, (2.15)

26 Preliminaries

where ÃAA = AAA+ IIIn is the adjacency matrix with added self-connections, IIIn is the
identity matrix, D̃ii = ∑ j Ãi j, WWW l is a trainable weight matrix of layer l and σ a non-
linear activation function. ZZZl is the activation matrix and is initially set equal to the
input XXX . By conditioning ZZZ on the adjacency matrix, the gradient information from
the supervised loss is propagated across the entire graph, with weights eventually
adjusted based on the proximity of the nodes.

2.3 Optimization in Machine Learning

Section 2.1.1 discussed the empirical risk (Equation (2.1)) as a measure to evaluate
the loss occurring in the current model’s predictions. This Section describes the
training process to minimize the loss and, by extension, the empirical risk.

The standard approach to train a predictor is Empirical Risk Minimization
(ERM) [120], where the best model parameters www∗ are the ones that minimize the
expected loss of the function f over the training set D . In simpler terms, the goal
is to find fwww∗ such that Equation (2.1) is minimized for the data in D . The ERM
problem is formalized as follows

fwww∗ = argmin
www∈Rd

R(www) = argmin
www∈Rd

E(xxx,y)∼D [ℓ(fwww(xxx),y)], (2.16)

and is solved using optimization algorithms. Among those, gradient descent is of
interest for this work.

2.3.1 Gradient Descent

Gradient descent (GD) [121] is an iterative first-order optimization algorithm, aiming
to find local minima (or maxima) of a given function. In ML applications, it is used
to minimize loss functions [122, 123].

Given a function f : X → Y parametrized by www ∈ Rd , its gradient ∇ is a vector
that contains all the partial derivatives of f with respect to each component of the
parameter vector www. Formally, if fwww is a scalar-valued function (i.e., f : Rd→R), the

2.3 Optimization in Machine Learning 27

gradient of f with respect to www is denoted as ∇www f and is defined as:

∇www f ≜

∂ f

∂w1
∂ f

∂w2...
∂ f

∂wd

 . (2.17)

If fwww is a vector-valued function (i.e., f : Rd → Rm), the gradient is generalized to
the Jacobian matrix, which contains the partial derivatives of each component of f
with respect to each element of www. In such cases, the Jacobian JJJwww(f) is defined as:

JJJwww(f)≜

∂ f1
∂w1

∂ f1
∂w2

· · · ∂ f1
∂wd

∂ f2
∂w1

∂ f2
∂w2

· · · ∂ f2
∂wd

...
...

∂ fm
∂w1

∂ fm
∂w2

· · · ∂ fm
∂wd

 . (2.18)

The second-order partial derivatives form the Hessian matrix [124], which captures
the local curvature of the function. This curvature provides insights on the sharpness
of a local minimum: a high curvature indicates a sharp minimum, whereas a low
curvature suggests a flat minimum. For a scalar-valued function, the Hessian matrix
is defined as

HHHwww(f)≜

∂ 2 f
∂w2

1

∂ 2 f
∂w1∂w2

· · · ∂ 2 f
∂w1∂wd

∂ 2 f
∂w2∂w1

∂ 2 f
∂w2

2
· · · ∂ 2 f

∂w2∂wd
...

...
∂ 2 f

∂wd∂w1

∂ 2 f
∂wd∂w2

· · · ∂ 2 f
∂w2

d

 . (2.19)

Thus, the gradient acts as a compass in the landscape of a function. It points
in the direction of the steepest ascent, indicating how quickly the function’s value
increases as moved in that direction. The magnitude of the gradient reflects the rate
of this increase – a larger magnitude signifies a steeper climb. In the context of ML,
the gradient of the loss function points towards the direction of higher-loss points.
This implies that the opposite direction of the gradient, −∇www, indicates the path of
steepest descent and guides towards the lower-loss points.

Gradient descent leverages the negative gradient direction of the loss function
to guide the model towards stationary points. If the function is convex, this will be

28 Preliminaries

−2
0

2 −2 0
2

−1
0

1

x
y

L
o
ss

1

Fig. 2.5 Example of visualization of Stochastic Gradient Descent path in a high-dimensional
non-convex loss landscape. The path taken by SGD is marked by red dots indicating
individual gradient steps. Starting from a high-loss point, SGD leads the model towards a
local minimum.

a global minimum, otherwise it could end up in a local minimum [125]. Starting
from a point www in the loss landscape at iteration i, GD iteratively updates the model
parameters as

wwwi+1←wwwi−η∇wwwi fwwwi, (2.20)

where η ∈ R+ is the learning rate and has a great impact on the learning process.
Too small learning rates slow down the model, increasing the number of iterations
needed to reach a local minimum. Conversely, excessively large learning rates might
cause the algorithm to overshoot the optimal point or even diverge entirely.

Unfortunately, computing the gradient over all data points for each step, as done
in Equation (2.20), is computationally intensive, and its cost increases linearly with
the size of the training set. As a solution, Stochastic Gradient Descent (SGD)
[126, 121] estimates the true gradient using a randomly sampled batch of data of size
B and takes a small step in the resulting negative direction. Such approach enables
fast computations, regardless of the dataset size, while still giving an unbiased
estimate of the true gradient. In addition, for SGD to converge, the step size η has to
decrease over time. Various learning rate schedulers exist, such as cosine annealing,
time-based decay and exponential decay [127]. Algorithm 1 summarizes SGD.

2.3 Optimization in Machine Learning 29

Algorithm 1 Stochastic Gradient Descent (SGD)
Require: Learning rate η , initial parameter www0

1: while not converged do
2: Sample a minibatch of data points {xi,yi}B

i=1
3: Compute the gradient estimate: ∇wwwL̂ (www) = 1

B ∑
B
i=1 ∇ℓ(fwww(xi),yi)

4: Update the parameters: wwwi+1←wwwi−ηi∇wwwL̂ (www)
5: end while

2.3.2 Training Deep Neural Networks

The goal of training a DNN is to learn the weights wwwl and the biases bl of each
layer l (Equation (2.14)) so that the model f can accurately map the inputs xxx to their
corresponding outputs yyy, i.e., ŷ = fwww(xxx) with ŷ being the predicted output.

The learning objective is to minimize the empirical risk, based on a loss function
ℓ (Equations (2.1) and (2.16)). In deep learning contexts, ℓ typically takes the form of
a non-convex function. This means it may have multiple local minima (Figure 2.5),
making the optimization process more challenging. The training of a DNN happens
in two phases: i) forward pass, and ii) backward pass or backpropagation [128].
In the former, the input data xxx traverses each layer of the network as in Equation (2.14)
and the produced layer-specific output is stored. During backpropagation instead,
the weights and biases of each layer are modified such that the loss between the
model’s predictions and the ground truth is minimized, solving Equation (2.16). The
adjustment is determined by the gradient of the loss function w.r.t. those parameters.
Given a DNN of L layers with weights wwwl and biases bl ∀l ∈ [L], the gradient ∇ℓ of
the loss function (Equations (2.17) and (2.18)) is

∇ℓ=

[
∂ℓ

∂w1
,

∂ℓ

∂b1
, . . . ,

∂ℓ

∂wL
,

∂ℓ

∂bL

]⊤
(2.21)

⇒ ∇wwwℓ=

[
∂ℓ

∂w1
, . . . ,

∂ℓ

∂wL
,

]⊤
and ∇bℓ=

[
∂ℓ

∂b1
, . . . ,

∂ℓ

∂bL

]⊤
. (2.22)

The gradients in Equation (2.22) are computed using a technique called the chain
rule, that leverages the equivalence ∂ f

∂x = ∂ f
∂ z

∂ z
∂x ∀x,z. First, the gradient of the loss

function ℓ with respect to the predicted output ŷ is computed, ∂ℓ
∂ ŷ =

∂ℓ
∂ ŷ . Then, the

gradient is propagated backward through each layer l from the output layer L to the
input one (l = 1). For the layer L, being zL the input to the activation function of the

30 Preliminaries

output layer,

δL =
∂ℓ

∂ zL
=

∂ℓ

∂ ŷ
∂ ŷ
∂ zL

. (2.23)

For the layers l = L−1, . . . ,1,

δl =

(
δl+1

∂ zl+1

∂xl

)
· ∂xl

∂ zl
, (2.24)

where xl is the output of layer l. Lastly, the gradient of the loss function with respect
to the weights and biases for each layer l is

∂ℓ

∂wl
= δl

∂ zl

∂wl
and

∂ℓ

∂bl
= δl. (2.25)

Once ∇ℓ is computed, the chosen optimization algorithms determines the update
rule of the parameters, e.g., SGD.

During training, DNNs can be subject to two relevant problems: vanishing
and exploding gradients [129, 130]. The vanishing gradient problem occurs when
the gradients of the loss function with respect to the model parameters become
exceedingly small as they are propagated back through the layers. This results
in very slow updates to the weights of the earlier layers, effectively preventing the
network from learning. Conversely, the exploding gradient problem arises when these
gradients become excessively large, causing the weights to update too aggressively
and potentially leading to numerical instability and divergence. Both issues are more
prevalent in deep networks with many layers and can hinder the effective training of
the model. Techniques such as proper weight initialization [131], gradient clipping
[132], batch normalization [133, 134] and the use of advanced architectures like
ResNets are often employed to mitigate these problems.

2.4 Generalization in the Real World

Achieving strong generalization performance is a fundamental objective in devel-
oping deep learning models [135]. As introduced in Section 2.1.1, generalization
refers to a model’s capacity to accurately make predictions on previously unseen
data, demonstrating its ability to learn underlying patterns and not simply memorize
the training data. Generalization is crucial for real-world applications, where deep

2.4 Generalization in the Real World 31

learning models encounter data that may differ statistically from the training set.
For example, a medical image analysis model should not only excel at classifying
diseases on the training images but also maintain this accuracy on new patient data.
Insufficient generalization can lead to overfitting or underfitting, with consequent
poor performance in practical settings. In essence, a well-generalized model can
effectively adapt its knowledge to new situations. This concept is formalized by
the generalization gap, i.e., the difference between the true and the empirical risk
(Equation (2.1)).

In over parametrized settings, where neural networks have a large number of
parameters, the learning objective has multiple local minima (Section 2.3.2). While
these minima all achieve low training error, they may not generalize equally well
to unseen data. Essentially, getting stuck in the “wrong” local minimum can lead
to significantly different performance on new data. Several factors influence the
optimization path during training and can affect the likelihood of ending up in a
sub-optimal minimum [135]. These include:

• Choice of the optimizer: different optimization algorithms have varying
tendencies when navigating the loss landscape [136].

• Hyperparameter tuning: hyperparameters, such as the learning rate, control
the learning process and influence the path taken by the optimizer. Careful
selection of these hyperparameters can help steer the optimization towards
better minima. Techniques like grid search or random search can be employed
for hyperparameter optimization [137, 138].

• Initialization strategy: the initial values of the network’s parameters play a
fundamental role, since they determine the starting point of the optimization
path [139, 131]. A common technique to achieve a better starting point is
to leverage pre-trained models. These models have already been trained on
a different, potentially larger dataset, and their learned parameters can be
used to initialize a new network. This approach can significantly improve
the convergence speed and performance of the new model, especially when
dealing with limited training data [140].

• Data distribution: imbalanced data distributions, where one or a few classes
significantly outnumber the others, can severely affect a model’s ability to
generalize. The presence of a majority class/group can bias learning models,

32 Preliminaries

potentially leading them to overlook patterns in the minority class [141, 142].
This can lead to unfair behaviors towards the minority group, such as perfor-
mance disparity and inherent bias in the model’s predictions [143].

• Sharpness: the sharpness measures how sensitive a model’s training error
is to slight parameter changes. Keskar et al. [52] introduced the notion of
sharpness as a proxy for generalization. Flatter solutions are believed to
indicate better generalization, as the training error remains relatively stable
under small parameter perturbations.

The following sections discuss in detail the aforementioned choices. Section 2.4.1
introduces the difference between Domain Adaptation and Domain Generalization,
together with common techniques to improve the model’s generalization ability. Next,
the thesis focuses on the impact of momentum on SGD, the preferred optimizer.
Section 2.4.3 discusses the challenges posed by imbalanced data distributions and
their effect on the learning process, while the relevance of the model architecture
and its initialization strategy are analyzed in Section 2.4.4. Section 2.4.5 discusses
the recent research trend linking generalization with convergence to flat minima in
the loss landscape.

2.4.1 Domain Adaptation vs. Domain Generalization

Domain transfer learning [144] is a technique used to learn robust features that
generalize from the training samples (source domains) to out-of-distribution test data
(target domains). The learning process usually involves two main steps [140]:

1. Pre-training: the model is trained on an upstream task using a large dataset,
aiming to extract general patterns and robust features from the input data.

2. Knowledge transfer, or adaptation: the model is fine-tuned on downstream
target domains. In this step, depending on the access to the target domain, it is
possible to distinguish between Domain Adaptation (DA) [145], which uses
both labeled source data and a subset of unlabeled target data, and Domain
Generalization (DG) [146, 147], that only leverages data from source domains.

Farahani et al. [145] categorize DA techniques into methods with shallow and
deep architectures. Belong to the former approaches that aim to minimize the distance

2.4 Generalization in the Real World 33

between source and target domains [148–150], using metrics like the Wasserstein
distance and Kullback-Leibler divergence [151]. Methods belonging to the latter
approach levearge DNNs instead. Models like adversarial or convolutional networks,
and autoencoders are used to reduce the domain gap [152, 153].

Since its conceptualization in 2011, DG has received much attention for the
research community, as demonstrated by the significant amount of related works
[147]. The DG literature has explored various approaches, such as aligning source
domain distributions to learn domain-agnostic representations [154], or using meta-
learning to expose the model to the domain shifts at training time [155], or creating
synthetic data to bridge the gap between the source and potential target domains [31].
This thesis focuses on domain generalization.

2.4.2 Momentum Improves Generalization

Stochastic Gradient Descent with momentum [156] is one of the most widely used
optimizers in deep learning literature [157]. Momentum can be likened to a rolling
ball descending a hill: as it gets closer to the lowest point, it gains speed. Similarly,
in SGD with momentum, the optimization process accelerates as it approaches the
minimum. This results in gradients being accelerated towards the lowest-loss points
of the loss landscape, leading to faster convergence and dampened oscillations.

Formally, momentum is defined as a moving average of the gradients, and
modifies the update rule of SGD (Algorithm 1.Line 4) at iteration i as

wwwi+1←wwwi−vvvi, (2.26)

vvvi← βvvvi−1 +ηi∇wwwL̂ (www), (2.27)

with β ∈R+ being a hyperparameter, usually in [0.5,0.99]. The term vvv is the velocity
and allows the algorithm to maintain a memory of previous updates, avoiding local
minima [158].

Several works have examined the impact of momentum on generalization [157–
162]. Among these, Jelassi et al. [162] emphasize that the key strength of momentum
in enhancing generalization lies in its ability to amplify historical gradients.

34 Preliminaries

2.4.3 On the Impact of Data Distribution

The data distribution plays a crucial role in the generalization capabilities of deep
learning models. When training data is representative of the overall data distribution,
models are more likely to generalize well to unseen data. However, in real-world sce-
narios, achieving a balanced distribution is often unrealistic, as certain subjects may
appear more frequently than others. This imbalance can lead to models that overfit
to the more prevalent classes and underperform on less common ones, highlighting
the importance of addressing data distribution challenges to improve generalization.

Imbalanced data

Class imbalance occurs in supervised learning problems when a subset of classes is
underrepresented compared to the others. High class imbalance is characteristic of
various real-world scenarios, such as cancer or fraud detection [163, 164, 142], and
federated learning, where each user independently collects data based on personal
habits [34]. In many cases [83, 165, 163, 164], the minority class is the primary
focus of the learning process. When data distribution is skewed towards certain
classes, models often fail to capture relevant information about the minority group
and may overfit the majority one due to its increased prior probability.

According to R. Anand et al. [166], the gradient of the model parameters is
dominated by the majority class when training DNNs on imbalanced datasets. Con-
sequently, the training error for over-represented classes rapidly decreases, while
the error for the minority class likely increases, resulting in slow convergence [142].
Possible solutions include balancing the data [167], using sophisticated sampling
methods [168], or dividing training in two phases [169].

Domain shifts

The unbalanced distribution of data is not limited to class representation. In computer
vision, data is also characterized by the presence of visual domains. The domain shift
refers to variations in data distribution across different environments or conditions.
For instance, images captured outdoors can vary significantly in terms of lighting,
reflections, viewpoints, and meteorological conditions.

2.4 Generalization in the Real World 35

Formally, given a probability distribution P and two sample pairs drawn from
the training dataset D , namely (xi,yi) and (x j,y j) with i ̸= j, the presence of domain
shifts is formalized as a difference in the features distribution: P(yi|xi) = P(y j|x j)

and P(yi) = P(y j), but P(xi|yi) ̸= P(x j|y j) and P(xi) ̸= P(x j). This means that while
the class probabilities are shared, the feature distributions vary. For example, xi and
x j could be pictures of the same location taken at different times of the day.

The presence of domains highly impacts the generalization capabilities of deep
learning models. When a model trained on a specific domain (source) encounters data
from a different domain (target), performance can degrade due to discrepancies in
features [170–173], affecting the model robustness. This phenomenon often occurs
in real-world applications like autonomous driving and medical imaging [174, 175].

Section 2.4.4 details some approaches to generalize to multiple domains.

Data Augmentation

Data augmentation is a widely used technique in deep learning to enhance the gen-
eralization capabilities of models [176–178]. By artificially expanding the training
dataset through various transformations such as rotations, translations, scaling, flip-
ping, and color adjustments [179], data augmentation helps create a more diverse
set of training examples. This diversity encourages the model to learn more robust
and invariant features, reducing its tendency to overfit to the limited original dataset.
Consequently, models trained with data augmentation perform better on unseen data,
leading to improved generalization and higher accuracy in real-world applications.

In addition to these standard techniques, advanced data augmentations exist,
such as Cutout [180] and MixUp [181]. Cutout regularizes learning by randomly
masking out square regions of the input during training. MixUp instead trains the
neural network using convex combinations of images and their labels, leveraging the
prior knowledge that linear interpolations of features result in linear interpolations of
their corresponding targets. Given two input images {xxxi,xxx j} and their corresponding
one-hot label encodings {yi,y j}, virtual training examples are constructed as follows:

x̄ = βxi +(1−β)x j and ȳ = βyi +(1−β)y j, (2.28)

with β ∼ Beta(γ,γ) for γ ∈ (0,∞).

36 Preliminaries

1e02 1e04 1e06 1e08 1e10 1e12
Number of trainable parameters

1e04

1e08

1e12

1e16

1e20

1e24

Tr
ai

ni
ng

 c
om

pu
te

 (F
LO

P)

Fig. 2.6 Number of models parameters vs. corresponding training computation in notable
AI systems. Computation is measured in floating point operations. The highlighted points
correspond to the reported models’ names. Data source: [5, 3].

2.4.4 The Critical Choice of the Model

This section explores the critical role of model choice in achieving strong general-
ization performance. Beyond the initial position of a model in the loss landscape,
the very architecture of the model itself significantly impacts its ability to general-
ize. This thesis investigates three key factors related to model choice that influence
generalization: model complexity, the design of the architecture’s layers, and the
utilization of pre-training.

Model Size

While overfitting is a concern for complex models with limited training data (as
discussed in Section 2.1.1), the abundance of data in real-world scenarios offers
a unique opportunity. Large datasets, often containing diverse distributions and
intricate patterns, can mitigate the risk of overfitting even with complex models
[59]. This is especially true when dealing with unsupervised scenarios, where data is
readily available due to the absence of labeling requirements (e.g., domain expertise)
and related costs [19].

However, the allure of simply deploying the largest model needs to be tempered
by practical considerations. Training large deep learning models incurs significant

2.4 Generalization in the Real World 37

costs [182, 183]. As Figure 1.4 shows, the training cost of notable AI systems went
from less than 1,000 to over 10 millions dollars in just over a decade. In addition,
larger models training necessitates access to substantial computational resources,
such as GPUs or TPUs, and ample storage memory (see Figure 2.6). Furthermore,
real-world applications often involve deploying these models on resource-constrained
devices at the edge, like IoT sensors or smartphones [184]. Large model sizes can
hinder deployment on such devices, and network transmission can be subject to
congestion, overload, or even unavailability.

Therefore, the optimal model choice for generalization becomes a balancing
act. While complex models may excel on large datasets, real-world constraints
like resource limitations necessitate a focus on model efficiency [185]. This thesis
explores strategies to achieve strong generalization performance while keeping model
complexity in check for practical federated applications.

Impact of Layers on Generalization

Aside from the complexity of the model architecture, its layers play an important
role as well. In particular, Batch Normalization (BN) layers and the classifier have a
huge impact on the model generalization performance.

BN works by normalizing the inputs of each layer to have a mean of zero and
a variance of one during training (Section 2.2.1) and is based over the assumption
that training and test data follow the same distribution. This normalization process
reduces internal covariate shift, allowing the model to learn more stable and reliable
features, alleviating the need for very high learning rates. This can lead to faster
convergence and improved generalization by reducing the sensitivity of the model to
the specific scaling of its internal activations. Furthermore, BN can help alleviate
the problem of vanishing or exploding gradients (Section 2.3.2), which can hinder
training in deep networks, and acts as a regularizer, reducing the need for other
forms of regularization like dropout [186]. Lastly, Santurkar et al. [134] note that
the presence of BN layers makes the loss landscape significantly smoother, further
stabilizing the learning process. These characteristics reflect in better generalization
to unseen data in various tasks [187, 188, 133, 189–194].

Research suggests that the model’s classifier layer is most impacted by shifts
in data distribution [195–197] and by spurious correlations [198], i.e., patterns that

38 Preliminaries

appear predictive in the training data but are misleading at test time. For instance, in
classifying waterbirds versus landbirds, if waterbirds often appear with water in the
background, the model might classify any bird with water as a waterbird, ignoring the
actual bird features. Kirichenko et al. [199] demonstrate that retraining the last layer
on a fraction of held-out balanced data can achieve equal performance across majority
and minority groups. Building upon this work, Izmailov et al. [200] highlight that
the learned feature representation itself is influenced by model architecture and pre-
training methods. Luo et al. [201] instead show that the classifier is highly impacted
by the heterogeneous distributions of clients in federated learning.

This thesis investigates the impact of both BN and output layers on learning a
model in the federated learning scenario.

Impact of Pre-training

The initial values assigned to a network’s parameters significantly impact its opti-
mization path [139, 131]. A common approach to achieve a more favorable starting
point is to use pre-trained parameters [140]. These models have been trained on a
separate large dataset, and their learned parameters can be utilized to initialize a new
network in an already favorable initial point in the optimization landscape.

In addition, this approach leverages the knowledge gained from the pre-trained
model, potentially leading to better generalization on new tasks. The positive
impact of the knowledge transfer is highly dependent on the quality of the learned
representations. Nowadays, examples of strong backbone architectures are ResNets
[18], EfficientNet [202], ConvNeXt [203] and Vision Transformers (ViT) [17].

2.4.5 Generalization through the Lens of the Loss Landscape

The loss landscape is a multidimensional surface that represents the relationship
between the model’s parameters and its loss function. The geometry of the loss
surface is commonly described by the existence of both sharp and flat minima
(Figure 2.7). Intuitively, sharp minima are characterized by steep gradients and
narrow regions of low loss, where the function quickly increases as the parameters
move away from the minimum. In contrast, flat minima exhibit gentle slopes and
wider basins of attraction with a gradual increase in loss. Hochreiter et al. [204]

2.4 Generalization in the Real World 39

−2
0

2 0 1 2 3

−1.5

−1

−0.5

x y

L
os
s

Fig. 2.7 Example of visualization of sharp and flat minima in a high-dimensional non-convex
loss surface. The sharp minimum (left) is characterized by steep gradients, making it sensitive
to small changes in the parameters, while the flat minimum (right) has shallow gradients,
allowing for more flexibility in the parameter space.

defined the flatness of a solution as the dimension of the region connected around
the minimum in which the training loss is low. This concept was later refined by
Keskar et al. [52], who introduced the ϵϵϵ-sharpness which considers the maximum
loss value within a given neighborhood of the minimum.

To understand the generalization ability of DNNs, several theoretical and em-
pirical studies analyze its relationship with the geometry of the loss surface [205,
204, 52, 206–212], linking sharp minima with poor generalization. In particular,
it has been shown that sharpness-based measures highly correlate with generaliza-
tion performance [209]. Among these studies, special attention has been given
to Sharpness-Aware Minimization (SAM) [213], an optimizer that explicitly seeks
flatter regions and smoother loss surfaces through a simultaneous minimization of
loss sharpness and value at training time. This method has proved effective across a
variety of architectures and tasks, such as Vision Transformers [214] and language
modeling [215] respectively.

As discussed in Section 2.3, the Hessian matrix, computed w.r.t. the model
parameters, provides information about the curvature of the loss landscape, with flat
minima corresponding to low-curvature regions. Building on this connection, Keskar
et al. [52] proposed using the maximum eigenvalue λ1 of the Hessian matrix as a
proxy for sharpness: a lower λ1 indicates a flatter minimum and potentially better
generalization performance.

40 Preliminaries

Sharpness-aware Minimization

SAM [213] aims to jointly minimize the loss value and the sharpness of the solution
by solving the following min-max problem

min
www∈Rd

{
F(www)≜ max

∥ϵϵϵ∥≤ρ

f (www+ϵϵϵ)

}
, (2.29)

where ϵϵϵ is the perturbation to estimate the sharpness, f the empirical risk, ρ the
neighborhood size and ∥ · ∥ the ℓ2 norm.

From Equation (2.29), given the point www in the parameter space, the sharpness
of f is defined as

Swww ≜ max
∥ϵϵϵ∥≤ρ

f (www+ϵϵϵ)− f (www) (2.30)

and measures how quickly the loss can be increased by moving from www to a nearby
parameter. Using the first-order Taylor expansion of f , SAM efficiently solves the
inner maximization in Equation (2.29) as

argmax∥ϵϵϵ∥≤ρ

{
f (www)+ϵϵϵ⊤∇www f (www)

}
= ρ

∇www f (www)
∥∇www f (www)∥ ≜ ϵ̂ϵϵ(www). (2.31)

Thus, ϵ̂ϵϵ is the scaled gradient of the loss w.r.t. the current parameters www. The
sharpness-aware gradient is then defined as ∇www f (www)|www+ ϵ̂ϵϵ(www). Equation (2.29) is
solved with a first gradient ascent step to compute ϵ̂ϵϵ and a descent step using the
sharpness-aware gradient, updating the model as www←www−η∇www f (www)|www+ ϵ̂ϵϵ(www).

Building Upon SAM: Recent Advancements

Since its publication in 2021, SAM has received a lot of attention from the ML
community. Follow-up works mainly focus on improving SAM’s efficiency or its
performance, and on better understanding its behavior.

Efficient Sharpness-aware Minimization. SAM’s optimization process involves
a step of gradient ascent to approximate the sharpness within a given neighborhood
and one step of gradient descent for joint loss and sharpness minimization, resulting
in increased computation cost. To reduce SAM’s doubled computational overhead,
various methods have been proposed. ESAM [216] reduces the model parameters or

2.4 Generalization in the Real World 41

the batch of data used to computed the perturbation, while δ -SAM [217] substitutes
per-instance weight perturbations with per-batch approximations by reweighing the
contribution of each instance. LOOKSAM [218] computes the perturbation only
once every k steps, building upon the insight that the norm of the gradient pointing
towards the flatness direction does not significantly change during training. DP-
SAT [219] approximates the adversarial step with the gradient from the previous
iteration in the context of differential privacy [220] and SAF [221] replaces SAM’s
sharpness approximation with the trajectory of weights learned during training. In
K-SAM [222], both gradients are computed using only the k samples having highest
loss, exploiting the idea that the examples with larger losses dominate the average
gradient over a large batch. Lastly, SAM-ON [223] argues that perturbing only the
normalization parameters in the ascent step outperforms using the whole model.

Performance-driven Sharpness-aware Minimization. A significant line of re-
search focuses on improving SAM’s performance. Among these methods, GSAM

[224] shows that SAM’s perturbed loss can be found in sharp minima. The surrogate
gap is proposed as an alternative measure that agrees with sharpness. GSAM jointly
minimizes the perturbed loss and the surrogate gap. IMBSAM [225] introduces a
novel version of SAM for addressing class imbalance, while in WSAM [226] sharp-
ness is used as a regularization term and a hyperparameter weights the importance of
the perturbed gradient. SSAM [227] leverages the smaller parameters norm resulting
from SAM’s gradients to promote sparsity.

Understanding SAM. Kwon et al. [228] highlight that SAM is sensitive to param-
eter re-scaling, weakening the connection between loss sharpness and generalization
gap. ASAM (Adaptive Sharpness-Aware Minimization) [228] solves such issue by
introducing the concept of adaptive sharpness: ASAM reformulates sharpness to
be invariant to weight scaling by conditioning the neighborhood region of each
weight based on its magnitude. SAMSON [229] builds upon the concept of ASAM

by incorporating the distribution of weight values within the loss function. While
ASAM only considers the magnitude of individual weights, SAMSON additionally
factors in the dynamic range of the weight distribution. This combined approach
leads to normalized neighborhood sizes across all layers of the deep learning model.
Furthermore, SAMSON focuses on outlier weights during the adaptation process,
aiming to improve the model’s generalization performance and robustness. An-

42 Preliminaries

driushchenko et al. [230] show how SAM mainly impacts training during the initial
stages, and in the follow-up work [231] argue that SAM leads to low-rank features by
implicitly pruning a significant number of activations. Dai et al. [232] explain that
the normalization factor in SAM increases stability and robustness towards different
values of ρ , and allows the algorithm to keep exploring the manifold of minimizers
instead of being trapped in one minimum.

The Duality between SAM and Adversarial Perturbations

The robust formulation of deep learning models is often conceptualized as a two-
player game between an adversary and the model. The adversary perturbs the
input data to maximize the loss of the model, using perturbations that are usually
constrained to a certain norm (e.g., ℓp-norm) to ensure they remain small and
imperceptible. The model (or defender) seeks to minimize the loss function over the
perturbed inputs, maintaining good performance even in the presence of adversarial
attacks. This two-player game can be expressed as a min-max optimization problem

min
www

max
∥δ∥p≤ρadv

L (fwww(xxx+δ),y), (2.32)

where δ is the adversarial perturbation (AT), xxx the input data and y its true label, L

the loss function and ρadv the margin of perturbation. An intuitive interpretation is
that the adversary generates challenging inputs within a constrained region aiming
to maximize the loss, while the model learns parameters that are robust to such chal-
lenges, improving generalization to both clean and adversarial examples, ultimately
minimizing Equation (2.32).

Similarly, SAM can also be interpreted as a two-player game between a model
and a “perturbator”, as discussed in [233]. The first player represents the model
parameters www and seeks to minimize the maximum loss caused by small perturbations
to its parameters, aiming for a robust and generalizable solution. The second player
represents adversarial perturbations (i.e., ϵϵϵ) applied to the model parameters. The
perturbator’s objective is to find a parameter perturbation ϵϵϵ that maximizes the
training loss, effectively identifying sharp regions in the loss landscape. When
solving SAM’s min-max optimization problem (Equation (2.29)), the perturbator
seeks the steepest direction (sharpest region) that increases loss, while the model

2.4 Generalization in the Real World 43

adapts its parameters to avoid such sharp regions, effectively “flattening” the loss
landscape and ensuring better generalization.

For clarity, both objectives are rewritten here in a unified form:

SAM: min
www

E(xxx,y)∼D max
∥ϵϵϵ∥p≤ρ

L (fwww+ϵϵϵ(xxx),y) (2.33)

AT: min
www

E(xxx,y)∼D max
∥δ∥p≤ρadv

L (fwww(xxx+δ),y). (2.34)

While both techniques use perturbation to learn a function f more robust to input or
weight changes, AT adds such perturbations to the input samples and transforms
them into adversary examples, while SAM directly perturbs the weights. As
a result, the data distribution learned in the adversarial setting diverges from the
original one, causing an inevitable loss of generalization when the model is tested
on the natural distribution. In contrast, SAM’s weight perturbation allows it to learn
from the actual data distribution while implicitly weighing robust features more
[234, 233].

Model Ensembling and Model Averaging

Model ensembling [235] is a successful technique to enhance the generalization
of deep learning models by combining the predictions of multiple models. The
underlying idea is that the ensemble generalization ability is usually stronger than
that of a single learner. Different models, even when trained on the same data, may
capture different patterns or make distinct types of errors. By aggregating their
predictions, the ensemble can mitigate the effects of individual model biases and
errors and become more robust.

Formally, given an input sample xxxi, model ensembling leverages an aggregation
function G to combine a set of h classifiers f1, f2, . . . , fh into a single output as

yi = φ(xxxi) = G(f1, f2, . . . , fh), (2.35)

where all fi∀i ∈ [h] were trained on the same input data, or on its subsets. The
resulting yi is the aggregate prediction. Common implementation of G include
averaging, bagging, or major voting [235].

44 Preliminaries

Garipov et al. [236] show that randomly initialized networks independently
trained on the same task are connected by simple curves of low loss. Building on this
insight, the authors propose FGE (Fast Geometric Ensembling), that collects models
during training and averages their predictions. Stochastic Weight Averaging (SWA)
[237] argues that solutions found by FGE are on the edge of most desirable ones.
Thus, it propose to average points in the weight space rather than in the model space
to move solutions towards the center of the minimum. In particular, SWA computes
a moving average of the weights of models sampled at different points along SGD’s
training trajectory, while traversing the weight space using a cycling learning rate for
wider exploration. At each step i of a cycle of length c, the learning rate decreases
from γ1 to γ2 as

γ(i) = (1− t(i))γ1 + t(i)γ2, (2.36)

t(i) =
1
c
(mod(i−1,c)+1) . (2.37)

The learning rate scheduling is constant for c = 1 and cyclical for c > 1. Starting
from a pre-trained model fwww, SWA captures all the updates www at the end of each cycle
and averages them as

wwwSWA←
wwwSWA ·nmodels +www

nmodels +1
(2.38)

obtaining the final model fwwwSWA
, with nmodels ∈ N counting the number of completed

cycles. This approach creates a smoother and more robust solution space, lead-
ing to better performance on unseen data. However, SWA is most effective near
convergence, e.g., after 75% of training.

SWAD [238] leverages SWA for domain generalization. Kaddour et al. [239]
compare SWA and SAM, showing that the best outcome is obtained when combining
the two approaches, i.e., by averaging SAM’s models as in Equation (2.38). Aiming
to reduce training hours of large models, LAWA (Latest Weight Averaging) [240]
introduces a sliding window traversing the training iterations, containing the last
W checkpoints. At the end of each epoch, LAWA averages the queued parameters,
resulting in a robust model and improved convergence speed. Another successful
example of model averaging is Model Soup [241], that combines the weights of
different models trained on the same task but with varying hyperparameters or
architectures to gain robustness.

2.5 Visualization of the Loss Landscape 45

2.5 Visualization of the Loss Landscape

This section describes the procedure to visualize the loss landscapes and compute
the Hessian eigenvalues as a proxy for sharpness.

Visualizing 1D Loss Landscapes. The 1D loss landscape visualization is often
used to highlight the presence of loss barriers between two interpolated models, www1

and www2. Given the interpolation coefficient γ ∈ R

www = γ ·www1+(1− γ) ·www2 . (2.39)

For each γ ∈ [a,b], with a and b ∈ R, the resulting www is tested on the dataset of
interest. If no loss barrier appears, www1 and www2 lie in the same basin.

Visualizing 2D Loss Landscapes. Following the methods outlined in [236] and
[242], the procedure for visualizing 2D loss landscapes involves the following steps:

1. Three weight vectors, denoted by www1,www2,www3, are chosen. Two basis vectors,
u⃗ and v⃗, are constructed using these weight vectors: u⃗ = (www2−www1) and v⃗ =
(www3−www1)− ⟨www3−www1,www2−www1⟩

||www2−www1 ||2 · (www2−www1).

2. These basis vectors are then normalized to form an orthonormal basis in the
plain containing www1,www2,www3, as û = u/||u|| and v̂ = v/||v||.

3. A Cartesian grid with dimensions N×N points is defined within the basis
formed by û, v̂. In this case, a grid size of N = 21 is used.

4. For each point on the grid, the corresponding weight vector is calculated
and the resulting network’s loss is evaluated. Given a point P on the grid
with coordinates (x,y), the corresponding weight vector is computed as: P =

www1+x · û+ y · v̂. Here, www1 serves as the reference point and is located at the
origin (0,0) of the grid.

The code for this process was adapted from the implementation provided by
Garipov et al. [236]1.

1https://github.com/timgaripov/dnn-mode-connectivity

https://github.com/timgaripov/dnn-mode-connectivity

46 Preliminaries

Visualizing 3D Loss Landscapes. The proposed plots of loss landscapes are com-
puted leveraging the techniques from [243]. Their code is adapted to the introduced
datasets and network architectures. The process involves calculating the loss func-
tion along random directions in the parameter space. This is achieved by perturbing
the model’s parameters within a defined range. In this case, the perturbations are
constrained in the range of [−1,1] for both the x and y axes. To ensure consistent
comparisons across models, the same set of random directions is used for all models.

Hessian Eigenvalues for Flatness Measure. Following prior work [213, 236, 243],
the spectrum of the Hessian matrix is used to quantify the flatness of the loss
landscape. Lower maximum eigenvalues correspond to flatter landscapes, implying
less sharpness. Stochastic power iteration [244] is used to compute the largest
eigenvalues (denoted by λ1), with a maximum of 20 iterations, referring to the code
of [245].

Chapter 3

Federated Learning

Privacy is not an option, and it should not be the price
we accept for just getting on the internet

GARY KOVACS

This chapter elaborates on the Federated Learning framework and its various
configurations (Section 3.1), the learning objective (Section 3.2) and the challenges
encountered in real-world deployments, with an emphasis on vision applications
(Section 3.3). Lastly, Section 3.4 presents the federated datasets used in the empirical
evaluations conducted in this thesis.

48 Federated Learning

3.1 Federated Framework

Federated Learning [34, 246] is a machine learning framework that enables collab-
orative training of a shared global model among multiple clients (i.e., edge nodes,
such as smartphones, or hospitals) on their privacy-protected data (e.g., text mes-
sages, or patients’ medical results), without compromising any sensitive information.
Differently from centralized settings, where raw data needs to be transferred to a
central location, FL happens through the exchange of model parameters and the
clients’ data never leaves their premises. The training process unfolds across iterative
communication rounds. In each round, clients fit the model to their local data and
then share the updated parameters to facilitate knowledge exchange. The global
model results from the aggregation of the trained parameters.

Privacy in FL is achieved by adhering to the Principle of Data Minimization [35–
37]: only the data necessary for a specific computation is collected, i.e., the model
parameters (focused collection); the user’s information is processed immediately
upon receipt (early aggregation) and then discarded (minimal retention). In addition,
users are informed and give their consent regarding the use of their data, ensuring
transparency. Lastly, FL aims to uphold the Principle of Data Anonymization, where
the model’s final output does not disclose any sensitive information and aggregate
statistics (e.g., model parameters) do not significantly vary based on any individual
user’s data [38].

The following sections first outline the difference between FL and centralized
learning (Section 3.1.1), and then explore the specifics of federated settings, consid-
ering the underlying framework architecture (Section 3.1.2), the nature of the local
datasets (Section 3.1.3), and the characteristics of the clients (Section 3.1.4).

3.1.1 Federated vs. Centralized Learning

Federated and centralized learning differ primarily in how data is managed and
processed. In centralized learning, data from various sources is collected and stored
in a central server, where a global model is trained using this aggregated data. This
approach, while straightforward, raises significant privacy and security concerns
when sensitive data is transferred and stored in a single location. Additionally, the
centralized storage location can become a single point of failure and is vulnerable to

3.1 Federated Framework 49

(a) Local learning (b) Centralized learning (c) Centralized FL (d) Distributed FL

Fig. 3.1 Comparison of learning scenarios. Colors indicate different nodes with their own
local data distribution. (a) Local learning: each node trains a model using only its data.
(b) Centralized learning: the data is transferred (blue arrows) from the edge nodes to a
central storage. The model is trained by accessing the overall data distribution and then sent
back (orange arrows). (c) Centralized federated learning: the server shares the global
model with the clients, which train it using their local datasets and send back the updated
parameters. The server aggregates the updates. (d) Distributed federated learning: clients
share model parameters, without the orchestration of a central server.

malicious attacks. In contrast, FL keeps the data localized on client devices. Each
client trains a model on its own data and only shares the model updates rather than the
raw data with a central server or other clients (see Section 3.1.2). This decentralized
approach protects users’ privacy by ensuring that sensitive information remains on
local devices, and leverages edge computational resources, including memory for
storage and CPU/GPU accelerators, which would otherwise remain underutilized.
The FL approach introduces its own set of challenges in terms of coordination
and communication, as discussed in Section 3.3. A potential alternative to both
centralized and federated learning is to keep both data and training computation
local, avoiding any additional communication. However, this method, known as
local learning, restricts training to a limited number of data points, ultimately leading
to overfitting [247]. Figures 3.1a to 3.1c summarize this comparison.

Lastly, it is important to note that the performance of a model trained in a
centralized setting defines the upper bound for FL performance, as shown in
[248, 7].

3.1.2 Centralized vs. Peer-to-Peer Federated Learning

Federated Learning can operate under either a client-server or a decentralized archi-
tecture, depending on the presence of a central orchestrating server [6].

50 Federated Learning

In Centralized FL (CFL), a central server orchestrates the training process [34,
246]. Once the task to be solved is defined, the server initializes the global model
using either pre-trained parameters or random ones [249–251]. During training, the
server maintains an updated copy of the global model. At each round, it selects
a subset of available clients to receive the model parameters and train them on
their local data. The clients then send their updated models back to the server,
which aggregates them according to a predefined rule. This process repeats for
multiple rounds, continuously refining the global model. This approach ensures
synchronization, implying that clients selected in the same round receive the same
model, and all clients contribute to the same model. In addition, the server is
assumed to be honest-but-curious [252], meaning it faithfully trains the federated
model according to the principle of data minimization and does not maliciously
alter the model architecture, send fake parameters to clients, or modify the FL
algorithm. However, it could potentially use the legitimately received models to infer
additional information, e.g., statistical properties of the training data, or the users’
geographical position. This approach also positions the server as the central player
in the algorithm, making it a single point of failure. As discussed in [6, 253], while
large companies or organizations can fulfill this role in certain application scenarios,
a dependable and powerful central server may not always be readily available or
desirable. Additionally, as the number of clients increases, the server can become a
significant bottleneck [254].

An alternative to the client-server architecture is fully decentralized federated
learning (DFL), where there are no central orchestrators, and communication occurs
only between individual clients using a peer-to-peer (P2P) approach [255, 256, 247].
Relevant DFL frameworks are P2P FL [257], server-less FL [258] and device-to-
device FL [259]. Communication between clients is typically modeled as a graph,
with clients as nodes and edges representing communication channels. The under-
lying graph typically has a small maximum degree, allowing communication only
between neighboring clients. Neighbors can be identified via geographical proximity,
clients similarity, communication protocols, etc. [247]. In contrast, the client-server
architecture can be thought of as a star graph, where the server communicates with
all clients, while clients communicate solely with the server (Figures 3.1c and 3.1d).
In DFL, each round involves exchanges between a client and its neighbors, with
model updates occurring locally by aggregating both local and received parameters.
Consequently, each client maintains a different version of the global model, i.e., there

3.1 Federated Framework 51

is no longer a global state. Nonetheless, each local model gradually converges to-
wards a consensus, ultimately reaching the desired solution. The primary advantages
of DFL are its reduced communication costs, as it eliminates the need for interme-
diate exchanges with a central server [260]. However, unlike the CFL scenario, no
assumptions about security and privacy can be made regarding the clients. In DFL,
clients may be malicious and could attempt to compromise the privacy of other users
by exploiting the received trained parameters, or they may try to poison the data or
the updates sent [6]. Possible solutions are client-level differential privacy [261],
achieved by adding random Gaussian noise to the model parameters, and secure
aggregation protocols [262]. Another challenge is the practical applicability of DFL.
Key questions include how to define the learning task without a central authority,
and how to handle unreliable networks and clients.

This thesis focuses on the more-studied CFL. For a comprehensive review of the
state of the art on DFL, the reader is referred to [6, 263, 247].

3.1.3 Horizontal vs. Vertical Federated Learning

As initially introduced by Yang et al. [264], FL can be categorized into horizontal,
vertical and transfer learning based on data partitioning.

Given a training dataset D = (X ,Y ,F), where X , Y and F are the input,
output and feature spaces respectively, in horizontal or sample-based FL, devices
share the same feature space but different samples, i.e., Fi = F j, Y i = Y j but
X i ̸=X j, where i and j index the local datasets of two distinct clients. For example,
two local hospitals likely have separate group of users, i.e., different samples, but
propose similar medical analyses, leading to the same feature space. Another
example is Google’s keyboard, GBoard [41], which provides next-word prediction
to users worldwide. Horizontal FL is the most common scenario in state-of-the-art
research on FL. By contrast, in vertical or feature-based FL, devices share the same
sample space but different feature space, i.e., Fi ̸= F j, Y i ̸= Y j and X i = X j

∀i, j. For instance, a hospital and a bank in the same city likely share the same set of
users but offer significantly different services, resulting in separate feature spaces.
Lastly, federated transfer learning applies to scenarios where there is no overlap in
either the sample or the feature space: Fi ̸= F j, Y i ̸= Y j and X i ̸= X j ∀i, j. A
hospital in Italy and an e-commerce company in the U.S. likely do not share the same

52 Federated Learning

Table 3.1 Cross-silo vs. Cross-device FL vs. Distributed Learning. Source: [6].

Distributed Learning Cross-silo FL Cross-device FL

Clients
Compute nodes in a
cluster or datacenter

Silos (e.g., hospitals,
companies, banks)

Edge devices (e.g., smartphones,
IoT sensors, autonomous vehicles)

Distribution scale ≈ 1−1000 clients ≈ 2−100 clients Up to 1010 clients

Data distribution
Data centrally stored,
arbitrarily shuffled among
clients, usually i.i.d.

Data autonomously collected from users and likely
non-i.i.d.. Data remains decentralized and is subject to
privacy constraints.

Clients availability Almost always available
Only a fraction of clients available.
Influencing factors: geographical
position, user habits.

Bottleneck Computation Communication or
computation Communication

Data partition Arbitrary Vertical or
horizontal Horizontal

set of users. However, there might be a small overlap in their feature spaces. In such
cases, transfer learning techniques [144] can be employed to transfer knowledge
from one domain to the other, facilitating the learning of a common representation.

3.1.4 Cross-silo vs. Cross-device Federated Learning

The final FL taxonomy pertains to the nature and number of clients involved in
the training process, distinguishing between cross-silo and cross-device FL [6],
summarized in Figure 3.2.

As the name suggests, in cross-silo FL, clients are large entities, or silos, such as
hospitals, banks, and companies, that aim to learn a common model without sharing
their data. For instance, hospitals might be interested in developing better diagnostic
models [175], while banks might focus on enhancing fraud detection systems [265].
In general, a central server orchestrates the training process between approximately
2−100 clients, e.g., all hospitals within a single region, as summarized in Table 3.1.
Silos are considered reliable and likely to be almost always available, allowing
them to potentially participate in every training round. Given that silos typically
possess powerful computational resources and stable communication networks, the
main bottleneck can vary depending on various factors, such as network congestion,
geographical locations, and weather conditions.

3.1 Federated Framework 53

(a) Cross-silo FL (b) Cross-device FL

Fig. 3.2 Cross-silo vs. cross-device FL. (a) Cross-silo FL: training occurs between silos,
such as hospitals, using their private data (e.g., patient medical records). Each silo has its
own data distribution, with typically large datasets and substantial computational resources.
(b) Cross-device FL: clients are typically personal devices, such as smartphones, laptops,
IoT sensors, or autonomous vehicles. They are characterized by data heterogeneity, varying
and limited computational capacities, and skewed data quantities.

Cross-device FL, on the other hand, potentially involves billions of edge de-
vices, including smartphones [41, 266, 44], IoT sensors [267, 268], and autonomous
vehicles [269–272]. In this setting, clients may become unavailable due to various
reasons, such as communication network instability, lack of internet access, battery
power, time zone differences, and user habits. Consequently, only a fraction of clients
can participate in each training round. Furthermore, although edge devices typically
have limited computational resources, the primary bottleneck is communication, due
to network instability and congestion.

In both cross-device and cross-silo FL, each client autonomously collects its own
data, resulting in non-independent and identically distributed (non-i.i.d.) data that
varies in terms of both distribution and quantity.

To better highlight the properties of federated settings, Table 3.1 also compares
cross-silo and cross-device FL with distributed learning. The main differences lie
in data distribution and access: in distributed learning, data is centrally stored and
arbitrarily shuffled among the computing nodes. This means that the data distribution
across clients is likely i.i.d. and, most importantly, the central orchestrator has access
to the raw data. This contrasts with the key characteristics of FL, where data is
naturally collected, typically non-i.i.d., and remains inaccessible to external actors
for privacy reasons.

54 Federated Learning

This thesis focuses on cross-device FL, specifically aiming to develop a model
that can generalize effectively when dealing with non-i.i.d. local data distributions.

3.2 Problem Statement

In FL, a central server communicates with a set of clients C across T rounds. The
goal is to learn a global model f (www) : X → Y parametrized by www ∈ Rd , where
X and Y are the input and the output spaces respectively. Each client k ∈ C has
access to a local dataset Dk containing Nk pairs of samples {(xxxi,yi)}Nk

i=1 with xxxi ∈X

and yi ∈ Y . In realistic heterogeneous settings, clients usually hold different data
distributions, i.e., Pi ̸= P j, and number of data points, i.e., Ni ̸= N j ∀i ̸= j ∈ C .

The global FL objective is:

min
www∈Rd

{
f (www) =

1
K ∑

k∈C
fk(www)

}
, (3.1)

fk(www)≜ Eξk∼Dk
ℓ(www,ξk), (3.2)

where K ≜ |C | is the total number of clients, f (www) is the empirical loss on the
overall dataset D = ∑k Dk, fk is the empirical loss of the k-th client, ℓ is the loss
function on the k-th client’s data Dk (e.g., cross-entropy loss, ℓce) and ξk = (xxxi,yi) is
the data sample randomly drawn from the local data distribution Pk.

The training process is a two-phase optimization approach within each round
t ∈ [T]. First, due to potential client unavailability, a subset of selected clients
C t ⊂ C trains the received global model parameters wwwt using their local optimizer
CLIENTOPT (e.g., SGD). The local optimization happens for E epochs, using a local
learning rate ηl , resulting in wwwt

k. Then, the server aggregates their updates with a
server optimizer, SERVEROPT (e.g., SGD, ADAM [273], ADAGRAD [274]). Reddi
et al. [275] propose FEDOPT as a general framework to solve the FL optimization
objective, formalized as

∆
t
www ≜ ∑

k∈C t

Nk

N
(wwwt−wwwt

k), (3.3)

wwwt+1← SERVEROPT(wwwt ,∆ t
www,ηg, t), (3.4)

3.2 Problem Statement 55

Algorithm 2 Federated Optimization (FedOpt)
Require: Number of clients K, number of communication rounds T , local mini-

batch size B, number of local epochs E, local learning rate ηl , local optimizer
CLIENTOPT, server optimizer SERVEROPT, global learning rate ηg

1: Initialize global model parameters www0

2: for each round t = 1, . . . ,T do
3: Randomly select a fraction of clients C t ⊆ C
4: Send the current global model wwwt to each client in C t

5: for each client k ∈ C t in parallel do
6: wt

k← wt ▷ Initialize local model
7: for each local epoch e = 1, . . . ,E do
8: for each batch b of size B do
9: Compute the local gradient gt

b,k = ∇wwwℓ(wt
k;b)

10: wt
k← CLIENTOPT(wwwt

k,g
t
b,k,ηl,b) ▷ Client optimizer step

11: end for
12: end for
13: Send updated local model wt

k to the server
14: end for
15: ∆ t

www = ∑k∈C t
Nk
N (wwwt−wwwt

k) ▷ Compute global pseudo-gradient
16: wt+1← SERVEROPT(wwwt ,∆ t

www,ηg, t) ▷ Server optimizer step
17: end for
18: Output: Global model parameters wT

where ∆ t
www is the global pseudo-gradient at round t, N = ∑k∈C t Nk the total number

of images seen during the current round and ηg the server learning rate. Algorithm 2
summarizes FEDOPT.

The de-facto standard server-side optimization algorithm in FL is FEDAVG [34],
that computes wwwt+1 as a weighted average of the clients’ updates, corresponding to
one SGD step on the pseudo-gradient ∆ t

www with learning rate ηg = 1:

wwwt+1← ∑
k∈C t

Nk

N
wwwt

k (3.5)

=wwwt− ∑
k∈C t

Nk

N
(wwwt−wwwt

k) (3.6)

=wwwt−∆
t
www. (3.7)

FEDAVG is summarized in Algorithm 3.

56 Federated Learning

Algorithm 3 Federated Averaging (FedAvg)
Require: Number of clients K, number of communication rounds T , local minibatch

size B, number of local epochs E, local learning rate ηl
1: Initialize global model parameters www0

2: for each round t = 1, . . . ,T do
3: Randomly select a fraction of clients C t ⊆ C
4: Send the current global model wwwt to each client in C t

5: for each client k ∈ C t in parallel do
6: wt

k← wt ▷ Initialize local model
7: for each local epoch e = 1, . . . ,E do
8: for each batch b of size B do
9: wt

k← wt
k−ηl∇wwwℓ(wt

k;b)
10: end for
11: end for
12: Send updated local model wt

k to the server
13: end for
14: wt+1← ∑k∈C t

Nk
N wt

k ▷ Aggregate local models
15: end for
16: Output: Global model parameters wT

A Game-Theoretic Approach to Federated Learning. The FL problem (Equa-
tion (3.2)) can be seen as a game between multiple agents, i.e., the clients, aiming to
learn a model with low expected error on their own distribution. Instead of simply
performing local learning, the subset of selected agents C t forms a coalition, where
their local estimates of the model parameters are aggregated together, e.g., as in
Equation (3.5). The goal of the coalition is to minimize the weighted sum of errors
across players [276].

3.3 Challenges in the Real World: Literature Review

Deploying FL algorithms in real-world scenarios introduces a unique set of chal-
lenges. Key issues include managing non-i.i.d. data distribution and unbalanced
local dataset sizes across clients, accounting for devices with varying and limited
computational resources, ensuring efficient communication over potentially unreli-
able networks, and maintaining data privacy and security [277, 6]. Addressing these
challenges is crucial for the successful deployment and scalability of FL systems in

3.3 Challenges in the Real World: Literature Review 57

(a) Animals around the world (b) Landscapes around the world

Fig. 3.3 Example of heterogeneous data collection. Local data distribution is significantly
influenced by factors such as geographical location and user preferences. (a) Pictures of
animals vary across the world. For instance, Australian users may take pictures of kangaroos
and koalas, while moose may appear in photos taken in Canada. (b) Landscape photos
can depict urban or natural scenery and may be captured at different times of the day (e.g.,
nighttime vs. daytime), representing various domains.

diverse real-world applications. The following sections will explore each of these
challenges in detail and discuss state-of-the-art solutions.

3.3.1 Statistical Heterogeneity

In FL, clients collect data autonomously, and this process is often influenced by
factors such as user habits and geographical location [6, 278]. For instance, users
may prefer photographing different subjects, at various times of the day, or in varying
quantities (Figure 3.3). This introduces an inherent diversity of data distributions
across clients, i.e., local datasets are non-i.i.d. w.r.t. the underlying global distribution.
This occurrence, known as statistical heterogeneity, poses a major challenge in FL
scenarios.

Given two clients i and j in C , their local data distributions Pi(xi,yi) and Pj(x j,y j)

with (xi,yi)∼D i and (x j,y j)∼D j can be rewritten as P(y|x)P(x) and P(x|y)P(y)
[6]. Depending on the varying factor, the following cases can be identified:

• Label skew: clients have access to different classes. P(x|y) is shared, while
Pi(y) may differ from Pj(y). For instance, data collection highly depends on
geographical position (e.g., kangaroos are only found in Australia, as shown
in Figure 3.3a).

58 Federated Learning

• Feature shift: clients hold different feature distributions. P(x) may vary even
if they share the same P(y|x). For example, users writing the same word may
have diverse handwriting styles.

• Domain shift: clients share the same classes but have different features, i.e.,
P(x|y) may vary even if P(y) is shared. For instance, the concept of a “house”
in the United States and in Japan is associated with very different buildings,
while still having the same label. Other examples include shifts in weather or
light conditions (Figure 3.3b).

• Concept shift: same features but different labels. The conditional distribution
Pi(y|x) ̸= Pj(y|x), but Pi(x) = Pj(x). Due to personal preferences, the same
feature vectors can be mapped to distinct labels.

• Quantity skew: the sizes of local datasets differ, i.e., |Di| ≠ |D j|, with poten-
tially |Di|≫ |D j| or vice versa.

Formally, each client k ∈ C solves the optimization problem
argminwwwk

E(xxx,y)∼Dk
[ℓ(f (wwwk(xxx),y)]. This indicates that the clients’ objectives

vary significantly and depend heavily on their data distributions. In heterogeneous
scenarios, the local data distributions are statistically different, causing local opti-
mizations to converge towards different minima in the loss landscape [279, 45, 280].
This leads to a phenomenon known as client drift [279, 280], which quantifies the
difference in expectation between the clients’ convergence points and the global
current one. Figure 3.4 compares the optimization paths in scenarios with and
without client drift. Formally, at round t, the client drift is defined as

ε
t ≜

1
E ·K

E

∑
e=1

K

∑
k=1

E[∥wwwt
k,e−wwwt ∥], (3.8)

where wwwt
k,e is the k-th client local model after e epochs. Due to the client drift, the

local optimization paths drift from the global convergence point, resulting in slow
and unstable convergence [279, 281, 282, 280, 7, 283, 8]. The following sections
discuss existing approaches to address this issue. For detailed surveys on methods
for statistical heterogeneity in FL, the reader is referred to [284–287].

3.3 Challenges in the Real World: Literature Review 59

(a) I.i.d. setting (b) Non-i.i.d. setting

Fig. 3.4 Client drift in i.i.d. (a) and non-i.i.d. settings (b). Given a global model wwwt−1 (in
grey) and two clients k = 1 and k = 2, at round t, the local updates wwwt

k (in blue and orange)
are aggregated to build the new global model wwwt , with k ∈ { 1,2}. The same process occurs
in the following round t+1. The convergence points are enclosed in squares. In i.i.d. settings
(left), the global model correctly moves towards the global optimum www∗ and no client drift
occurs. In contrast, the non-i.i.d. data distribution (right) causes the global model to drift
away from its optimum, converging instead at the points highlighted by the red triangle.

Client-side Approaches

Several approaches address client drift by directly enforcing regularization during
local training. These include methods like FedProx [45], which introduces a term
encouraging proximity between local and global parameters, and FEDDYN [288],
employing the alternating direction method of multipliers (ADMM) [289] to align
local and global convergence points. ADABEST [8] corrects local updates with an
adaptive bias estimate. Differently, SCAFFOLD [280] leverage stochastic variance
reduction to mitigate the client drift. Furthermore, some methods use momentum
[157] to maintain a consistent global trajectory. This can be achieved either on the
server side (e.g., FEDAVGM [290]) or by incorporating global information into local
training (e.g., FEDCM [291], FEDACG [292], MIME [282]). FEDDC [283] instead
maintains an auxiliary local variable to reduce the drift between local and global
models.

A different line of works looks at statistical heterogeneity through the lens of
Domain Generalization (FEDDG). Liu et al. [293] exploit frequency space to extract
privacy-preserving information on the local distributions and learn a model robust
to domain shifts in medical data. SILOBN [191] and FEDBN [193] learn domain-
specific BN statistics. Cross-client style transfer [294] exchange the style across users
to improve the model’s robustness, and FEDKA [295] aligns feature distributions

60 Federated Learning

in the global space to learn domain-invariant features. A related research field is
Federated Domain Adaptation (FEDDA). Differently from FEDDG, FEDDA has
access to the target domain. Methods like [296, 297] align source and target features.

Server-side Approaches

Recent literature addresses the statistical heterogeneity issue also by looking at the
server-side optimization. In terms of model aggregation, in addition to FEDOPT and
FEDAVG introduced in Section 3.2, FAIRAVG [298] suggests updating Equation (3.5)
by equally weighting all clients’ updates, regardless of local dataset size, to ensure
fair treatment of users. Conversely, a line of research demonstrates that incorporating
the memory of previous updates through server momentum is effective in reducing
bias towards recently observed clients [290, 282, 299], or in reducing the client drift
by locally guiding the clients’ updates [300, 291, 301, 302].

To improve the global model robustness, the literature additionally proposes
to exploit publicly available data on the server side. Given that the trained local
model under-represents patterns from missing classes, Zhao et al. [279] demonstrate
that sharing a small set of public data among clients leads to notable improvements.
Additionally, Li et al. [303] utilize public data for knowledge distillation, while
Huang et al. [304] leverage unlabeled public data to learn a global representation
invariant to domain shifts. Other studies [201, 305] suggest that the model’s classifier
layer is particularly affected by non-i.i.d. data distributions. Stabilizing this layer
can significantly bridge the performance gap between non-i.i.d. and i.i.d. scenarios,
improving overall model robustness and generalization.

As discussed in Section 3.2, FEDOPT demonstrates that FL is a two-level opti-
mization process, with the “inner” training loop occurring on the client side and the
“outer” loop on the server side. Building on this insight, works like [306–311] ap-
proach the FL task using Model Agnostic Meta-Learning (MAML) [312] techniques.
Another line of research instead builds a parallelism between FL and Multi-Task
Learning, seeing client with its own data distribution as a different task [313–316].

Another distinction can be made in terms of orchestration of the training process.
For instance, FEDVC [278] creates virtual clients to reduce the impact of quantity
skewness. In [317–320], the server clusters similar clients together to learn a cluster-
specific model and reduce the impact of data heterogeneity. For examples, similarity

3.3 Challenges in the Real World: Literature Review 61

can be expressed in terms of data distributions, available resources and geographical
positions. Conversely, the anti-clustering [321] techniques aim to group together
dissimilar elements. An example is FEDGSP [322], which dynamically expands the
number of groups made of different clients in each round to enhance parallelism.

Personalized FL

Personalized Federated Learning (PFL) [309] argues that while standard FL enables
knowledge sharing across multiple entities, the learned global model outputs the
same features for all users and does not adapt to individual use cases. To overcome
this limitation and maximize user experience, PFL aims to learn a common base
model that each user can easily adapt to their specific task with minimal iterations,
resulting in a personalized local model. PFL is applicable to a variety of tasks and
settings. For instance, Apple and Google use PFL with their voice assistants - Siri
and Hey Google respectively - to recognize individual users’ voices [323]. Similarly,
works such as [324] leverage PFL for speaker recognition. In [325], PFL is used for
health monitoring tailored to individual user characteristics, and FEDHEALTH [326]
proposes a framework for wearable healthcare. Detailed overviews of PFL can be
found in [327, 328].

In contrast to PFL, this thesis aims to learn a global model capable of addressing
the overall underlying distribution while ensuring local convergence.

3.3.2 System Heterogeneity

In realistic FL scenarios, edge devices exhibit a wide range of computational re-
sources (e.g., storage, processing power) due to system heterogeneity [44, 329]. In
cross-device FL, such distinction is further underlined by limitations in battery life,
varying device availability and limited resources. This heterogeneity impacts critical
decisions like model complexity and local training volume, ultimately affecting
convergence speed. Larger models, while offering superior performance, demand
more resources for training, making them less suitable for resource-constrained edge
devices. Consequently, FL in such settings often opts for smaller models, sacri-
ficing some performance for efficient training. In addition, the limited availability
of resources also restricts the training intensity. Local training on these devices

62 Federated Learning

is typically limited to a small number of epochs (often E ≤ 5) to ensure efficient
utilization of battery and processing power [45].

Adding to the challenge of limited resources is the restricted availability of edge
devices. To avoid battery drain, training on these devices typically occurs only
when they are plugged in and not in use. This often coincides with nighttime for
personal devices like smartphones. As a consequence, client availability becomes
dependent on the time zone, adding another layer of complexity to FL deployments
in geographically distributed settings. Furthermore, the limitation of local training
epochs due to resource constraints and the selection of only a subset of clients per
round result in needing a larger number of communication rounds to achieve a target
performance, ultimately slowing down convergence. Lastly, the varying clients’
computational capabilities and availability results in different latency in reporting
back to the server. These devices are referred to as stragglers [45]. To address these
issues, FEDPROX [45] introduces a proximal term to account for device heterogeneity.
FEDGKT [330] allows each client to define its own model architecture and uses
knowledge transfer techniques to build a common server model. In Split-Mix FL
[331], clients can customize a base sub-network to meet their specific needs.

3.3.3 Communication Efficiency

Communication is the main bottleneck in cross-device FL due to network congestion,
unstable internet access, and potential client unavailability [6, 277, 332]. Conse-
quently, significant attention has been given to minimizing both the communication
bandwidth (i.e., the number of bytes transmitted over the network) and the number
of rounds necessary to reach target performance by improving convergence speed.
However, as discussed in Section 2.1.1, although reducing the model size is a straight-
forward solution, it can lead to sub-optimal results (e.g., underfitting). Therefore,
this issue involves a trade-off between minimizing communication and achieving
optimal performance, as theorized by [333–335].

State-of-the-art approaches often use sparsification [336, 337] and quantization
[338–342] to reduce the size of model parameters to a smaller number of bits, with
minimal impact on overall accuracy [246]. Alternatively, [343, 344] propose client
selection techniques for improving training efficiency, and [345, 346] instead employ
knowledge distillation.

3.3 Challenges in the Real World: Literature Review 63

Building upon existing works such as [280, 282, 288], this thesis aims to acceler-
ate the convergence of FL algorithms to reduce communication costs.

3.3.4 Privacy Concerns

The federated framework involves multiple actors with distinct roles. Edge devices,
acting as distributed data sources, contribute by collecting data and performing
local model training. In contrast, the central server orchestrates the training process,
aggregates these local updates and disseminates the consolidated knowledge back to
participating devices, enabling both existing and newly joined users to benefit from
the collective learning. Ideally, each actor would operate with a principle of least
privilege, meaning they would limit their activities to acquiring and processing only
the information necessary to fulfill the designated role. However, in realistic settings,
potential vulnerabilities and threats to the system can arise [6, 277]. Ultimately,
aiming to protect the users’ privacy, it all comes down to answering the question:
“How much can each involved party be trusted?”.

Security Challenges in Federated Learning

A critical objective in FL is to guarantee the algorithm’s resilience against malicious
actors. However, current FL approaches have inherent vulnerabilities [347, 348].
One common threat is posed by inference attacks, where adversaries attempt to infer
sensitive information from the model updates exchanged between clients and the
central server. For instance, model inversion attacks aim to reconstruct the original
data from the gradients or model parameters, as demonstrated by [349]. Hitaj et
al. [350] leverage a Generative Adversarial Network (GAN) [351] to reconstruct
user data, while [352, 353] use GANs for data reconstruction or inferring client
characteristics. Similarly, membership inference attacks, highlighted in [354], seek
to determine whether a specific data point was part of the training dataset, potentially
exposing sensitive user information.

Additionally, poisoning attacks, as discussed by [355], involve adversaries inject-
ing malicious data into the training process to corrupt the global model, hindering its
ability to learn effectively, or embed hidden backdoors. Another concern is the risk
of gradient leakage [356], where the gradients shared during the training process can
inadvertently reveal private information. Malicious servers instead could implement

64 Federated Learning

label and feature fishing attacks by strategically altering global model parameters
[357].

Defense Mechanisms

A first step in protecting the privacy of all involved parties is encryption, ensuring that
only users with physical access to the device can retrieve the information exchanged
over the network [358, 359].

Common defense techniques include differential privacy (DP) [360, 220, 361],
which adds random Gaussian noise to the local model parameters before transmission,
and fragmenting local updates before sending them to the server [362]. In scenarios
where the server can be trusted, DP can be applied to the model before it is shared
with the external world (centralized differential privacy). However, in typical settings,
clients do not trust the server, and the noise added locally accumulates during
aggregation, leading to a loss in performance.

Other approaches aim to detect malicious users, assuming that the main features
from honest users follow a similar distribution [363], and excluding the furthest
model from the mean in the server aggregation [364].

For a comprehensive discussion on FL threats, attacks and defenses please refer
to [364, 365].

3.3.5 Federated Vision Applications

FL has attracted significant interest from the machine learning community since its
introduction in 2017 [34]. However, its application to computer vision tasks has
lagged behind the focus on algorithm optimization and convergence [281, 288, 275].
While small-scale image classification has been explored in various works [366],
more complex tasks have been largely neglected. This disparity underscores the need
to bridge the gap between theoretical advancements and real-world deployments of
FL in computer vision.

The medical field presents a promising avenue for FL applications. Researchers
are actively developing specialized techniques that prioritize strong patient privacy
protections [367–370] while remaining robust to domain shifts [293, 371]. Examples

3.4 Datasets 65

of successful applications include disease classification [372, 373, 191, 374], MRI
(Magnetic Resonance Imaging) reconstruction [375–377], and image segmentation
for disease detection [293, 378, 366]. Notably, during the COVID-19 pandemic, FL
techniques were successfully applied to chest X-ray and computed tomography scan
analysis for virus detection [379, 267, 380].

One significant challenge for FL in computer vision is the lack of readily available
benchmarks and large-scale federated datasets. Hsu et al. [278] addressed this
by introducing federated versions of Google Landmarks v2 [381] and iNaturalist
2017 [382], namely LANDMARKS-USER-160K and INATURALIST-USER-120K

respectively, enabling large-scale federated classification tasks. Luo et al. [383]
introduced the Street-5 and Street-20 datasets for object detection, consisting of
images taken from street cameras.

Recent advancements are trying to fill the gap in complex computer vision tasks.
Researchers have proposed algorithms for deploying both global and personalized
models for object detection [384], while works like FEDMARGIN [385], Federated
Multi-target Domain Adaptation (FMTDA) [297] and FEDSEG [386] focus on
semantic segmentation. In particular, FMTDA introduces the challenge of learning
from clients with unlabeled local target datasets while leveraging a public labeled
source dataset available on the server side. Frameworks like FEDVISION [46] further
bridge the gap by providing platforms for deploying FL applications in various
settings, e.g., smart cities.

While face recognition has been explored in FL [387–389], ethical considerations
and privacy regulations (e.g., GDPR [35]) necessitate careful evaluation. Training
data can potentially be reconstructed from the trained model (Section 3.3.4), raising
privacy concerns, especially when dealing with sensitive data like facial images.

3.4 Datasets

This Section details the federated datasets used in the proposed experimental eval-
uations, distinguished by task, i.e., image classification (Section 3.4.1), semantic
segmentation (Section 3.4.2) and visual place recognition (Section 3.4.3).

66 Federated Learning

3.4.1 Image Classification

Most of the experimental results presented in this thesis focus on image classification.
Table 3.2 summarizes the key information about the main datasets, with details
provided in the following sections.

CIFAR Datasets

Task. CIFAR10 and CIFAR100 [390] are image classification datasets with 10
and 100 classes respectively. The labels include (but are not limited to) animals,
vegetables, fruits, plants and vehicles.

Centralized. Each dataset is made of 50,000 training and 10,000 test images,
evenly distributed across the classes. CIFAR100 additionally groups the 100 classes
into 20 coarse ones. For instance, the labels “sunflowers”, “roses” and “tulips”
belong to the superclass “flowers”.

Federated-LDA. Following the adaptation proposed by [290], both datasets are
split evenly among 100 clients, thus each of them has access to 500 data samples.
This partitioning is performed according to a Latent Dirichlet Allocation (LDA) on
the labels. In practice, each local dataset follows a multinomial distribution drawn
according to a symmetric Dirichlet distribution with concentration parameter α.
The higher the value of this parameter is, the more the local datasets resemble a
homogeneous scenario, in the limit case α= 0 each client has access to one only
class of images. In this thesis, α∈ {0,0.05,100} in CIFAR10 and α∈ {0,0.5,1000}
in CIFAR100. Figures 3.5a and 3.5b show how data is distributed across clients in
all the experimental settings for these two datasets.

Federated-PAM. Proposed by [275], CIFAR100-PAM reflects the “coarse" and
“fine" label structure of the dataset for a more realistic partition. The dataset is split
among 500 clients - with 100 images each - following the Pachinko Allocation
Method (PAM) [391], on the result of which LDA is applied.

3.4 Datasets 67

0 20 40 60 80 100
Client

100

200

300

400

500

L
o

ca
l

sa
m

pl
e

Dirichlet(α = 0) - 1.0± 0.0 classes

0 20 40 60 80 100
Client

100

200

300

400

500

Dirichlet(α = 0.05) - 1.32± 0.53 classes

0 20 40 60 80 100
Client

100

200

300

400

500

Dirichlet(α = 100.0) - 9.9± 0.52 classes

0

1

2

3

4

5

6

7

8

9

C
la

ss

(a) CIFAR10

0 20 40 60 80 100
Client

100

200

300

400

500

L
o

ca
l

sa
m

pl
e

Dirichlet(α = 0) - 1.0± 0.0 classes

0 20 40 60 80 100
Client

100

200

300

400

500

Dirichlet(α = 0.50) - 5.13± 2.5 classes

0 20 40 60 80 100
Client

100

200

300

400

500

Dirichlet(α = 1000.0) - 98.82± 6.6 classes

0

20

40

60

80

100

C
la

ss

(b) CIFAR100

Fig. 3.5 CIFAR10 (a) and CIFAR100 (b) data distribution across clients with the heterogeneity
degree determined by α. The average number of classes seen by each client is reported on
top of each chart.

Data pre-processing. The 32×32 input images are pre-processed following the
standard pipeline: the training images are randomly cropped applying padding 4
with final size 32×32, randomly horizontally flipped with probability 0.5 and finally
the pixel values are normalized with the dataset’s mean and standard deviation.
Normalization is applied to test images as well.

Corrupted CIFAR. CIFAR10-C and CIFAR100-C are the corrupted versions of
the CIFAR datasets. As part of the benchmark proposed by [196], they are used for
testing the image classifiers’ robustness. The 10k test images are modified according
to a given corruption and a corresponding level of severity, resulting in 19 possible
corruptions (brightness, contrast, elastic blur, elastic transform, fog, frost, Gaussian
blur, Gaussian noise, glass blur, impulse noise, JPEG compression, motion blur,
pixelate, saturate, short noise, snow, spatter, speckle noise, zoom blur), with severity
ranging from 1 (low) to 5 (high).

Google Landmarks v2

Task. Google Landmarks v2 [381] is an image classification dataset over 2,028
distinct natural landmarks.

68 Federated Learning

Table 3.2 Image classification datasets

Dataset Clients Size imbalance Training samples Classes

CIFAR10 100 ✗ 50,000 10
CIFAR100 100 ✗ 50,000 100
CIFAR100-PAM 500 ✗ 50,000 100
LANDMARKS-USER-160K 1,262 ✓ 164,172 1,028
FEMNIST 3,550 ✓ 805,263 62
CELEBA 9,343 ✓ 200,288 2

Centralized. The dataset contains approximately 5 milion images, depicting pic-
tures of landscapes taken around the world by various contributors.

Federated. The LANDMARKS-USER-160K dataset [278] is the federated adapta-
tion of Google Landmarks v2 and contains 164,172 images, distributed among 1262
clients, accounting for authorship information. Each contributor to the dataset was
required to provide at least 30 images, capturing a minimum of 5 distinct landmarks.
Each location was visited by 10 or more contributors and is depicted in at least 30
images. The authors in the test set do not overlap with the ones appearing in the
training split.

Data pre-processing. The data pre-processing pipeline adheres to the standard
implementation used for training models on ImageNet. The input images are resized
and cropped to 224×224 with random scale and aspect ratio as described in [392].
The data augmentation pipeline used for the experiments can be found here1.

FEMNIST

Task. EMNIST (Extended MNIST) [393] is the extended version of MNIST [112],
containing handwritten characters (A-Z, a-z) and digits (from 0 to 9) for a total of 62
classes.

Centralized. The dataset contains 805,263 black and white images of shape 28×
28.

1https://github.com/google/flax/blob/571018d16b42ce0a0387515e96ba07130cbf79b9/
examples/imagenet/input_pipeline.py#L90-L108

https://github.com/google/flax/blob/571018d16b42ce0a0387515e96ba07130cbf79b9/examples/imagenet/input_pipeline.py#L90-L108
https://github.com/google/flax/blob/571018d16b42ce0a0387515e96ba07130cbf79b9/examples/imagenet/input_pipeline.py#L90-L108

3.4 Datasets 69

Federated. FEMNIST (Federated Extended MNIST) was first introduced as part
of the LEAF benchmark [394]. The partitioning between clients preserves the
authorship information, resulting in a total of 3,500 clients with an average of 226
samples each. The number of local samples significantly varies across clients.

CelebA

Task. CelebA [395] is a dataset containing pictures of celebrities’ faces, each
characterized by 40 attributes such as gender, presence of glasses or beard, and smile.
The task involves binary classification, aiming to determine whether the person in
the picture is smiling or not.

Centralized. The dataset contains 202,599 face images for a total of 10,177
identities.

Federated. Following [394], federated CelebA partitions the dataset based on the
depicted celebrity, excluding those with fewer than 5 images. This results in 9,343
users, each with access to an average of 21 samples.

3.4.2 Semantic Segmentation

This Section details the semantic segmentation datasets for autonomous driving.
Their federated adaptation is one of the contributions of this thesis and is discussed
in details in Chapter 6.

Cityscapes

Task. Cityscapes [396] is among the most used datasets for semantic segmentation.
It accounts for 19 classes and provides street-view images from 50 cities in Central
Europe. Examples of extracted images and corresponding segmentation maps can be
found in Figure 2.2.

Centralized. The training set contains 2,975 real photos taken in the streets of 50
different cities with good weather conditions. There are 500 test images.

70 Federated Learning

Data pre-processing. The images are randomly scaled in the range (0.5, 1.5) and
cropped to a 512×1024 shape.

Mapillary Vistas

Task. The Mapillary Vistas dataset [397] collects geo-localized street-view images
from all around the world with 19 semantic classes.

Centralized. The dataset contains 17,969 training and 2,000 test images.

IDDA

Task. IDDA [174] is a synthetic dataset for semantic segmentation, simulating
images captured by autonomous vehicles, and includes 16 semantic classes.

Centralized. The dataset contains 1,006,800 1920×1080 images. The driving
conditions are characterized by 7 towns (ranging from urban to rural environments),
5 viewpoints (simulating different vehicles), and 3 weather conditions (noon, sunset,
and rainy scenarios), resulting in a total of 105 domains.

Data pre-processing. The images are randomly scaled in the range (0.5, 2.0) and
cropped to a 512×928 shape.

CrossCity

Task. CrossCity [398] collects driving scenes from Rome, Rio, Tokyo, and Taipei,
with 13 semantic classes.

Centralized. The dataset is made of 12,800 training and 400 test images.

GTA5

Task. GTA5 [399] is a synthetic dataset of highly realistic road scenes of typical
US-like urban and suburban environments, rendered from the videogame Grand

3.4 Datasets 71

Theft Auto 5. Each image has pixel-level semantic annotations over 19 classes,
which are compatible with the ones of Cityscapes.

Centralized. The training set contains 24,966 images.

3.4.3 Visual Place Recognition

Mapillary Street-Level-Sequences

Task. The Mapillary Street-Level Sequences (MSLS) dataset [400] is geograph-
ically distributed across 30 cities worldwide, including Amsterdam, Manila, San
Francisco, and Copenhagen, covering over 4,228 km. The images are captured by
various users, featuring a diverse range of cameras, weather conditions, times of day,
and scenarios spanning both urban and rural environments.

Centralized. The dataset contains approximately 1.68 million images and is di-
vided into non-overlapping training, validation, and test sets, with each set com-
prising distinct cities: Amsterdam and Manila for validation, San Francisco and
Copenhagen for testing, and the remaining cities for training. Each subset is further
split into databases and queries, where queries represent images to be localized, and
databases serve as the system’s prior knowledge of the area.

Chapter 4

Generalization through the Lens of
the Loss Landscape

A mathematician who can only generalise is like a
monkey who can only climb up a tree, and a

mathematician who can only specialise is like a monkey
who can only climb down a tree. In fact neither the up

monkey nor the down monkey is a viable creature

GEORGE PÓLYA

This Chapter introduces the first contribution of this thesis. The issue of lack of
generalization in heterogeneous federated learning is addressed through the lens of
the geometry of the loss surface. After delineating the contributions (Section 4.1),
Section 4.2 studies the models behavior in heterogeneous FL, placing particular
emphasis on the impact of label skew on model performance, convergence speed
and stationary points. Section 4.3 introduces FEDSAM, a novel method that ap-
plies Sharpness-aware Minimization and Stochastic Weight Averaging in federated
learning to improve generalization by promoting convergence towards flatter min-
ima. Sections 4.4 and 4.5 study the limitations of FEDSAM and propose alternative
solutions. The contributions are summarized in Section 4.6.

4.1 Introduction 73

4.1 Introduction

A fundamental challenge in cross-device heterogeneous federated learning is the
lack of generalization. This arises due to heavily skewed local distributions, causing
local models to drift from the convergence minimum in the global optimization path,
ultimately resulting in poor generalization to the overall data distribution (Chapter 3).
This thesis posits that, in addition to client drift, local models tend to overfit their
training data, which contributes to a global model that lacks generalization. This
issue is exacerbated by local datasets that are limited in size and contain only a
subset of the target task’s classes. While this simplifies the learning process for local
models, it hinders their ability to adapt to the full range of potential inputs.

Furthermore, no previous work has attempted to explain the (lack of) general-
ization in heterogeneous federated learning through the lens of the loss surface. To
gain a comprehensive understanding of models’ behavior in FL, this thesis asks: Do
models converge to sharp minima in heterogeneous FL? If so, can generalization be
improved by promoting convergence towards flat minima?

To enhance the generalization ability of the global model by learning better local
models, this thesis proposes leveraging Sharpness-Aware Minimization (SAM) [213]
during client-side training to reach flat regions in the loss landscape, and Stochastic
Weight Averaging (SWA) [237] during server-side aggregation for increased robust-
ness. This approach, named FEDSAM, has been shown to outperform the state of the
art on various vision tasks (Section 4.3).

However, FEDSAM +SWA comes with a few limitations:

• Inconsistency between local and global loss landscapes: in heterogeneous FL,
local flat minima may not directly translate to global flat minima.

• Increased computational cost: SAM requires two optimization steps at each
training iteration, increasing the computational burden on resource-constrained
devices.

• Limited efficacy of SWA: SWA can only be applied during the final stages of
training, which restricts its overall impact and usability.

74 Generalization through the Lens of the Loss Landscape

To address these limitations, FEDGLOSS targets the inconsistency between
local and global sharpness by using SAM in the server-side optimization process
(Section 4.4).

WIMA (Window-based Model Average) instead overcomes the SWA’s limita-
tions by introducing a window-based aggregation of global models, applicable from
the initial training stages (Section 4.5). All these solutions are shown to outperform
the state of the art on multiple vision tasks.

The ideas and results presented in this Chapter have led to the publication of the
following works:

• Caldarola, D., Caputo, B., & Ciccone, M. (2022).
Improving Generalization in Federated Learning by Seeking Flat Minima.
In European Conference on Computer Vision (pp. 654-672). Springer Nature
Switzerland (ECCV 2022).

• Caldarola, D., Caputo, B., & Ciccone, M. (2023).
Window-based Model Averaging Improves Generalization in Heterogeneous
Federated Learning.
In Proceedings of the IEEE/CVF International Conference on Computer Vision,
Women in Computer Vision Workshop (pp. 2263-2271). (ICCVW 2023).

The paper mentioned below is currently under review in a peer-reviewed conference:

• Caldarola, D., Cagnasso, P., Caputo, B., & Ciccone, M. (2024).
Beyond Local Sharpness: Communication-Efficient Global Sharpness-aware
Minimization for Federated Learning.

4.2 Where Heterogeneous Federated Learning Fails at Generalizing 75

0 10k 20k
0

10

20

30

40

50

40k 60k 80k 140k 160k 180k 200k
Round

Ac
cu

ra
cy

 (%
)

Centralized
= 1k
= 0.5
= 0

Fig. 4.1 CIFAR100 accuracy trends with varying data heterogeneity, compared to the cen-
tralized upper bound. Differently from homogeneneous federated settings (α= 1k), models
trained in heterogeneous FL (α∈ {0,0.5}) necessitates more rounds to converge.

4.2 Where Heterogeneous Federated Learning Fails
at Generalizing

To fully understand the behavior of a model trained in a heterogeneous FL scenario,
this Section introduces a thorough empirical analysis to underline the impact of
non-i.i.d. data on the convergence speed, stationary points in the loss landscape and
on the training hyperparameters (e.g., number of selected clients and number of local
epochs).

Experimental Setup. The experimental setup replicates the one proposed by Hsu
et al. [278], including both the dataset and network configuration. The chosen dataset
is the federated CIFAR100, split following a Dirichlet distribution with concentration
parameter α, as described in Section 3.4.1. For simulating a heterogeneous scenario,
α values of 0 and 0.5 are chosen, while for a homogeneous scenario, α is set to
1000. The model undergoes training for 20,000 rounds. The chosen architecture is
a CNN similar to LeNet5 [112]. The de-facto standard FEDAVG is used for model
aggregation, and SGD for client-side optimization. Further implementation details
are provided in Chapter A.

4.2.1 Convergence Under Label Skew

Figure 4.1 illustrates the impact of label skew in FL. The centralized baseline is
the reference upper bound, as discussed in Section 3.1.1. A comparison of learning

76 Generalization through the Lens of the Loss Landscape

(a) α= 0 (b) α= 1000

Fig. 4.2 CIFAR100. Global model performance on local distributions with (a) α= 0 and (b)
α= 1000 at 20k rounds. Each color represents a local distribution (i.e., one class for α= 0),
while the dark line represents the performance on the global test set.

trends between homogeneous and heterogeneous federated settings reveals that the
latter exhibits significantly noisier and more unstable trends, as well as a considerable
performance gap. Despite this, it is observed that the heterogeneous distribution of
the data does not entirely inhibit the model from achieving comparable performance;
it merely requires a larger number of rounds to reach convergence. Specifically, with
a round budget ten times larger, the model eventually converges. This indicates that
learning is slowed down but not impaired in heterogeneous settings, suggesting there
is room for improvement.

An analysis of the model’s behavior reveals that shifts in client data distribution
lead to significant fluctuations in learning. At each round, the model focuses on a
subset of recently seen tasks and fails to generalize to previously learned ones. This
phenomenon, known as catastrophic forgetting in neural networks [401], is typical in
multitask learning [313, 402]. Figure 4.2 illustrates this by comparing the accuracy
of the global model on the clients’ data and the test set for α= 0 and α= 1000. In
the first case, the model achieves very high performance on one class at each round
but forgets others, with this behavior only slightly improving as training progresses
(Figure 4.2a). Conversely, in the homogeneous scenario, the model behaves similarly
across each client, achieving convergence more easily but leading to overfitting as
the number of rounds increases (Figure 4.2b).

Fluctuations in model predictions can also be observed by examining its output
features, fwww(xxx)∀xxx ∈ X . Figure 4.3 shows the L2-norm of the output features
computed using the current global model parameters wwwt at each round t ∈ [T], given

4.2 Where Heterogeneous Federated Learning Fails at Generalizing 77

rounds

cli
en

t I
Ds

100

200

300

400

500

600

700

(a) α= 0

rounds

cli
en

t I
Ds

200

400

600

800

1000

1200

1400

1600

(b) α= 1000

Fig. 4.3 CIFAR100. L2-norm of global classifier output features over successive rounds,
using each client’s local data as input. Models trained with FEDAVG. (a) With α= 0, at each
round, the model tends to focus on a different client’s distribution, i.e., a single class. (b)
With α= 1000, the model distributes attention evenly across all distributions.

0 10 20 30
2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

W 0

W 0.5

W 1000

0.88

0.9

0.95

1.1

1.6

3.1

8.1

24

> 24

(a) Train loss surface

0 10 20 30
2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0

W 0

W 0.5

W 1000

49

50

51

52

55

61

74

98

> 98

(b) Test error surface

Fig. 4.4 CIFAR100. Global model convergence points in the (a) training loss and (b) test
error surfaces when trained with varying data heterogeneity, with α∈ {0,0.5,1000}, after
20k rounds.

the local clients’ data Dk for all k ∈ C . A higher norm value corresponds to greater
attention paid to that class by the network. The uniformity of the features obtained
in the homogeneous setting (Figure 4.3b) contrasts with the chaotic distribution
observed when α= 0, where the values vary significantly over time without following
a consistent trend (Figure 4.3a).

From the loss landscape perspective (Figure 4.4), given T = 20k rounds, models
trained with varying degrees of heterogeneity end up at different points, as anticipated
by their performance in Figure 4.1. The model trained in an i.i.d. setting reaches a
local minimum, while the others remain in high-loss regions due to slower learning
trends. Furthermore, the shift between the training (Figure 4.4a) and testing surfaces

78 Generalization through the Lens of the Loss Landscape

Round

50

40

Ac
cu

ra
cy

 (%
)

30

20

10

0 5k 10k 15k 20k

(a) Local epochs

Round

Ac
cu

ra
cy

 (%
)

0 5k 10k 15k 20k

30

20

10

(b) Number of selected clients

Fig. 4.5 CIFAR100. (a) Impact of local training epochs E in heterogeneous (α {0,0.5}) and
homogeneous FL (α= 1000). (b) Impact of selected clients at each round t, Kt , with α= 0.

(Figure 4.4b) indicates that the models trained in the heterogeneous setting are unable
to generalize well to unseen data.

Impact of Training Hyperparameters

This section analyzes the impact of training hyperparameters under non-i.i.d. data
distribution across clients, taking into account total rounds T , number of local epochs
E and number of clients selected at each round Kt ≜ |C t |.

As shown in Figure 4.1, the number of rounds required to reach convergence
varies depending on the data distribution, with heterogeneous settings necessitating
nearly 10 times more rounds to achieve the performance of the centralized baseline.
Additionally, this plot highlights a fundamental insight: the increased number of
rounds in heterogeneous FL implicitly indicates more communication exchanges,
thereby underscoring the importance of communication efficiency in such settings.

Figure 4.5a examines the impact of the number of local training epochs in both
homogeneous and heterogeneous federated learning, with E ∈ {1,2}. Consistent
with previous works [45, 281], a larger number of epochs results in increased client
drift in heterogeneous settings, further slowing down training and degrading perfor-
mance. Conversely, when α= 1000, increasing the number of epochs accelerates
convergence and ultimately leads to overfitting to the overall distribution. Motivated
by these results, E = 1 in the results presented in this thesis.

Lastly, increasing the number of clients selected at each round t positively impacts
the training progress, as shown in Figure 4.5b. Involving more clients statistically
increases the likelihood of selecting users with similar distributions, which leads

4.2 Where Heterogeneous Federated Learning Fails at Generalizing 79

to constructive interference during model aggregation. Additionally, merging more
updates reduces noise, enhancing the overall stability and performance of the model.
However, as discussed in Section 3.1, clients in cross-device federated learning are
not always reliable, which negatively impacts their likelihood of participating in
multiple rounds.

In conclusion, models trained in heterogeneous settings suffer from client drift
and catastrophic forgetting, resulting in slower, unstable, and noisy learning trends.
These negative effects are exacerbated by a larger number of training epochs but
can be alleviated with higher client participation. Nonetheless, convergence can be
achieved, making communication efficiency of utmost importance.

80 Generalization through the Lens of the Loss Landscape

4.3 Improving Generalization in Federated Learning
by Seeking Flat Minima

Reproduced with permission from Springer Nature: Caldarola, D., Caputo, B., &
Ciccone, M. (2022). Improving generalization in federated learning by seeking
flat minima. In European Conference on Computer Vision - ECCV (pp. 654-672).
Springer Nature Switzerland.

Models trained in federated settings often suffer from degraded performance
and poor generalization, particularly in heterogeneous scenarios. This work investi-
gates such behavior through the geometry of the loss and Hessian eigenspectrum,
linking the model’s lack of generalization capacity to the sharpness of the solution.
Motivated by prior studies connecting the sharpness of the loss surface and the
generalization gap, it is demonstrated that training clients locally with Sharpness-
Aware Minimization (SAM) or its adaptive version (ASAM), and averaging stochastic
weights (SWA) on the server side, can substantially improve generalization in feder-
ated learning and help bridge the gap with centralized models. By seeking parameters
in neighborhoods with uniformly low loss, the model converges towards flatter min-
ima, significantly improving generalization in both homogeneous and heterogeneous
scenarios. The code is available at https://github.com/debcaldarola/fedsam.

4.3.1 Motivation

This work begins by analyzing the heterogeneous federated learning scenario to
identify the causes of poor generalization in federated algorithms. Building upon the
insights presented in Section 4.2, it is hypothesized that local models overfit their
current distributions during training, an issue exacerbated by limited dataset sizes
and accessible classes. This hypothesis is verified in Figure 4.6, which shows the
positions of three local models www1,www2 and www3 after 20k rounds, before the server-
side aggregation. The training loss surfaces (Figures 4.6a to 4.6c) reveal that local
models are distant from the center of the minimum, with this distance increasing
as data heterogeneity rises. This implies that, despite achieving 100% training
accuracy on their local datasets, the models fail to generalize to the underlying
global training distribution. This failure becomes even more evident on the test set
(Figures 4.6d to 4.6f), where models trained with α= 0 and α= 0.5 are found in

https://github.com/debcaldarola/fedsam

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 81

0.0 0.1 0.2 0.3 0.4 0.5
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

W1

W2

W3

2.9

2.9

2.9

3

3.2

3.6

4.5

7

> 7

(a) α= 0 Train loss surface

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

W1

W2

W3

2.1

2.1

2.1

2.2

2.3

2.7

3.7

6.1

> 6.1

(b) α= 0.5 Train loss surface

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

W1

W2

W3

0.51

0.53

0.54

0.56

0.61

0.71

0.89

1.2

> 1.2

(c) α= 1k Train loss surface

0.0 0.1 0.2 0.3 0.4 0.5
0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

W1

W2

W3

72

72

73

73

74

75

77

80

> 80

(d) α= 0 Test error surface

0.0 0.1 0.2 0.3 0.4

0.0

0.1

0.2

0.3

W1

W2

W3

62

63

63

64

66

69

76

87

> 87

(e) α= 0.5 Test error surface

0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

W1

W2

W3

51

51

52

52

53

54

55

57

> 57

(f) α= 1k Test error surface

Fig. 4.6 CIFAR100 with α∈ {0,0.5,1k}. Train loss (top) and test error surfaces (bottom) of
three local models resulting from 20k training rounds with FEDAVG.

(a) α= 0 FEDAVG (b) α= 0 FEDASAM (c) α= 1k FEDAVG (d) α= 1k FEDASAM

Fig. 4.7 CIFAR100. 3D loss landscape visualizations of global models trained using FEDAVG

with (a-b) α= 0 and (c-d) α= 1k, with FEDAVG or FEDASAM. FL models converge to sharp
minima.

high-error regions. Thus, the resulting global model fails to generalize to the overall
underlying distribution.

Inspired by recent trends in deep learning that connect the geometry of the loss
surface to the generalization gap [52, 207–209, 228, 237], this work investigates the
loss surface geometry of models trained in non-i.i.d. federated scenarios. The aim
is to determine whether sharp minima contribute to the lack of generalization in
heterogeneous FL. Following [208], the loss surfaces obtained from models trained
with varying heterogeneity are plotted and reported in Figure 4.7. The results show
that FL models converge to sharp regions, providing a plausible explanation for the
observed lack of generalization.

Additionally, [52] characterizes flatness through the eigenvalues of the Hessian,
where the dominant eigenvalue λ1 evaluates the worst-case landscape curvature. A
larger λ1 indicates greater changes in loss in that direction and a steeper minimum

82 Generalization through the Lens of the Loss Landscape

0 10 20 30 40 50
Eigenvalue Index

0

20

40

60

80

100

Ei
ge

nv
al

ue

FedAvg E=1
FedAvg E=2
ASAM
SAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(a) α= 0

0 10 20 30 40 50
Eigenvalue Index

0

20

40

60

80

100

Ei
ge

nv
al

ue

FedAvg E=1
FedAvg E=2
ASAM
SAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(b) α= 0.5

0 10 20 30 40 50
Eigenvalue Index

0

20

40

60

80

100

120

Ei
ge

nv
al

ue

FedAvg E=1
FedAvg E=2
ASAM
SAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(c) α= 1000

Fig. 4.8 CIFAR100. Hessian eigenspectra of the global model final parameters with α∈
{0,0.5,1000}.

Table 4.1 Hessian maximum eigenvalue λ1 and the ratio λ1/λ5 as a proxy for sharpness.
FEDAVG reaches sharp minima, while models trained with our sharpness-aware solutions
combined with SWA converge to flat regions. CIFAR100.

Algorithm λ1λ1λ1 λ1λ1λ1/λ5λ5λ5

α= 0 α= 1k α= 0 α= 1k
FEDAVG E = 1 93.46 106.14 2.00 1.31
FEDAVG E = 2 110.62 118.35 2.32 1.30
FEDSAM 70.29 51.28 1.79 1.48
FEDASAM 30.11 20.19 1.80 1.27

FEDAVG+SWA 97.24 120.02 1.49 1.39
FEDSAM+SWA 73.16 54.20 1.56 1.61
FEDASAM+SWA 24.57 20.49 1.51 1.30

(Section 2.4.5). The Hessian eigenspectrum (first 50 eigenvalues) is computed using
the power iteration method and shown in Figure 4.8. Table 4.1 reports the values of
λ1 and the ratio λ1/λ5, commonly used as proxies for sharpness, as the heterogeneity
varies. As expected, λ1 is large in all settings when using FEDAVG, indicating that
this method leads models towards sharp minima regardless of the data distribution,
consistent with the observations from the loss landscapes. At the same time, the
ratio λ1/λ5 is smaller when α= 1k, implying a less sharp minimum and that larger
sharpness is correlated with data heterogeneity.

These results suggest that explicitly searching for flatter minima can potentially
improve global model generalization in FL.

4.3.2 Federated Sharpness-Aware Minimization

To expedite training and reduce the performance gap in the presence of non-i.i.d. data,
efforts are directed towards improving the model’s generalization ability. Common

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 83

first-order optimizers (e.g., SGD, Adam [273]) are typically non-robust to unseen data
distributions [214], as they focus solely on minimizing the training loss L D without
considering higher-order information related to generalization, such as curvature.
This issue is exacerbated in federated learning due to inherent statistical heterogeneity,
leading to sharp minima and poor generalization. This work hypothesizes that
encouraging the local model to converge towards flatter neighborhoods may help
bridge the generalization gap. To this end, methods from current literature that
explicitly seek flat minima are introduced in the federated training: Sharpness-Aware
Minimization (SAM) or its adaptive version (ASAM) on the client-side (FEDSAM and
FEDASAM respectively), and Stochastic Weight Averaging (SWA) on the server-side
(Figure 4.9). The overall process is delineated in Algorithm 4.

Intuitively, by minimizing the sharpness of the loss surface and the generalization
gap, local models become more robust to unseen data distributions and, when
averaged, contribute to a more solid central model.

Sharpness-aware Minimization in Client-side Optimization

FEDSAM aims to improve the generalization of the clients’ models through conver-
gence to flatter regions by using SAM in the local training. From Equations (2.29)
and (3.2), its global objective becomes

min
www

{
f SAM(www) =

1
K ∑

k∈C
f SAM
k (www)

}
, f SAM

k (www)≜ max
∥ϵϵϵk ∥≤ρ

fk(www+ϵϵϵk), (4.1)

with ϵϵϵk being the local perturbation. The intuition behind this approach is that the
server indirectly inherits sharpness-minimizing behavior from the clients, and the
improved local models’ generalization ability positively reflects on the global model.

FedSAM as a Two-Player Game Formulation. As discussed in Section 2.4.5,
the robustness of deep learning models can be formalized as a two-player game
between an adversary and the model. Similarly, SAM’s min-max optimization
problem (Equation (2.29)) reminds of a game between a “perturbator” and a model.
The former aims to find a parameter perturbation ϵϵϵ that maximizes the training
loss, implicitly identifying sharp regions in the loss landscape, while the latter’s
objective is to minimize the maximum loss deriving from small perturbations to its

84 Generalization through the Lens of the Loss Landscape

parameters. This results in model parameters that effectively avoid sharp minima
and flatten the loss surface. In FEDSAM instead, the robust formulation as a two-
player game operates at two interconnected levels: local (client-specific) and global
(federated) objectives. At the local level, each client plays the standard SAM game,
where the local model (Player 1) minimizes the worst-case loss induced by its local
perturbator (Player 2). Moreover, this local two-player game is nested within
the global optimization process (Equation (4.1)), introducing an additional layer
of interaction between the local and global objectives. In this setting, while the
server does not actively engage in the sharpness-aware two-player game at the client
level, it plays a critical role in integrating client updates to advance the global model.
This introduces an additional coordination game, where clients’ local two-player
outcomes contribute to the global update, influencing the overall robustness and
generalization. By balancing competing local sharpness-aware objectives, the server
implicitly inherits the robustness from local SAM.

To underline the differences between SAM’s and FEDSAM’s games in centralized
and federated learning respectively, Equations (2.29) and (4.1) are reported with
unified notation:

SAM: min
www

E(xxx,y)∼D max
∥ϵϵϵ∥≤ρ

L (fwww+ϵϵϵ(xxx),y) (4.2)

Client-side SAM: min
wwwk

E(xxxk,yk)∼Dk
max
∥ϵϵϵk ∥≤ρ

L (fwwwk +ϵϵϵk(xxxk),yk) (4.3)

FedSAM: min
www

1
K ∑

k∈C
min
wwwk

E(xxxk,yk)∼Dk
max
∥ϵϵϵk ∥≤ρ

L (fwwwk +ϵϵϵk(xxxk),yk). (4.4)

In centralized SAM, the perturbation ϵϵϵ is applied globally to the centralized model
parameters www and is computed based on the entire training dataset D . In FEDSAM

instead, locally, each client k seeks to minimize its local sharpness-aware loss. Each
local perturbator maximizes the local loss by finding the sharpest direction ϵϵϵk for the
client’s data Dk. The local model counteracts by adjusting wwwk to minimize the effect
of the worst-case ϵϵϵk. Since each ϵϵϵk is tailored to the local distribution, their effect at
the global level depends on how updates are aggregated. This is where the server
comes into play, acting as a coordinator by aggregating the locally optimized models,
implicitly inheriting the sharpness-minimizing behavior. Thus, at each round, clients
alternate between playing the local game (SAM) and contributing updates to the

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 85

Algorithm 4 SAM/ASAM and SWA applied to FEDAVG

Require: Initial random model parameters www0, clients set C , T rounds, SWA learn-
ing rates γ1,γ2, neighborhood size ρ > 0, η > 0, batch size B, local epochs E,
cycle length c

1: for each round t = 0 to T −1 do
2: if t = 0.75∗T then ▷ Apply SWA from 75% of training onwards
3: wwwSWA←wwwt ▷ Initialize SWA model
4: end if
5: if t ≥ 0.75∗T then
6: γ = γ(t) ▷ SWA LR scheduling step (Eq. 2.37)
7: end if
8: Subsample a set C t in C of clients
9: for each client k in C t in parallel do ▷ Iterate over subset C t of clients

10: wwwt+1
k,0 ←wwwt

11: for each batch b of size B in Dk do
12: Compute SGD gradient ∇wwwLB(wwwt

k,i)

13: Compute ϵ̂ϵϵ
(

wwwt
k,i

)
= ρ

∇wwwLb

(
wwwt

k,i

)
∥∇wwwLb

(
wwwt

k,i

)
∥
=: ϵ̂ϵϵ(www) ▷ Solve Eq. 2.31

14: wwwt
k,i+1←wwwt

k,i−γ ∇wwwLB(wwwt
k,i)|www+ ϵ̂ϵϵ(www) ▷ Local update w/

sharpness-aware gradient
15: end for
16: Send wwwt

k to the server
17: end for
18: wwwt+1← ∑k∈C t

Nk
N wwwt

k ▷ FEDAVG (Eq. 3.5)
19: if t ≥ 0.75∗T and mod(t,c) = 0 then ▷ End of SWA cycle
20: nmodels← t/c

21: wwwSWA← wwwSWA ·nmodels+wwwt+1

nmodels+1 ▷ Update SWA average (Eq. 2.38)

22: end if
23: end for

global objective. By aggregating these outcomes, the server effectively takes a
meta-step in the larger federated optimization game.

Stochastic Weight Averaging for Robust Server-side Aggregation

To further enhance the robustness of the learning process, SWA is applied on the
server-side. Adapting the scenario from [237] to the FL framework, the server

86 Generalization through the Lens of the Loss Landscape

Cyclically
ensemble

global models
with SWA

1 Send current global
model to clients

2
Locally train with
SAM to converge

to flat minima

3 Send back to
the server

4 Update global
model with FedAvg

5

Fig. 4.9 Overview of FEDSAM+SWA. At each round t, (1) the global model is sent to the
clients, which (2) train it with SAM on their local data. (3) The model is sent back to the
server, (4) where the updates are aggregated using FEDAVG and (5) then ensembled with
previous models using SWA.

maintains two models, fwww and fwwwSWA
(denoted as f and fSWA for simplicity), from

75% of the training onwards. f follows the standard FEDAVG paradigm, while fSWA

is updated every c rounds.

4.3.3 Generalization and Convergence Speed-up with FedSAM

This section introduces the main results of the proposed FEDSAM, FEDASAM and
their combination with SWA.

Federated Baseline

To determine the reference FL baseline with the optimal server-side optimizer ac-
cording to Equation (3.4), SGD, Adam, and AdaGrad are evaluated cross both the
heterogeneous (α= 0) and homogeneous (α= 1k) configurations of CIFAR100, in-
volving five clients per round. According to the adaptive optimization strategies
outlined in [275], the parameters β1 and β2 were set to 0 for AdaGrad, and to 0.9
and 0.99 for Adam, respectively. As demonstrated in Table 4.2, SGD with unitary
learning rate, commonly referred to as FEDAVG, emerges as the superior choice,
yielding satisfactory results in both scenarios, particularly in the heterogeneous
configuration, becoming the reference in the following experiments.

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 87

Table 4.2 Comparison of different server-side optimizers with varying learning rate ηg on
CIFAR100 @ 20k rounds. 5% clients participation. In bold the best results in terms of
accuracy (%) on both α= 0 and α= 1k.

Optimizer ηgηgηg α= 0α= 0α= 0 α= 1kα= 1kα= 1k

SGD

1 30.25 49.92
0.1 14.09 40.43
0.01 2.67 11.35
0.001 1.20 1.12

ADAM

1 1.00 51.73
0.1 29.75 51.62
0.01 13.72 40.12
0.001 2.60 11.31

ADAGRAD

1 1.00 1.00
0.1 1.77 46.74
0.01 26.25 51.44
0.001 9.70 32.01

Table 4.3 Results on CIFAR100 with α∈ {0,0.5,1000}@ 20k rounds and CIFAR10 with
α∈ {0,0.05,100}@ 10k rounds, distinguished by clients participation at each round

Algorithm α= 0α= 0α= 0 α= 0.5/0.05α= 0.5/0.05α= 0.5/0.05 α= 1000/100α= 1000/100α= 1000/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

C
IF

A
R

10
0

FEDAVG E = 1 30.25 36.74 38.59 40.43 41.27 42.17 49.92 50.25 50.66
FEDAVG E = 2 24.94 31.81 35.18 38.21 39.59 40.94 48.72 48.64 48.45
FEDSAM 31.04 36.93 38.56 44.73 44.84 46.05 54.01 53.39 53.97
FEDASAM 36.04 39.76 40.81 45.61 46.58 47.78 54.81 54.97 54.50

FEDAVG+SWA 39.34 39.74 39.85 43.90 44.02 42.09 50.98 50.87 50.92
FEDSAM+SWA 39.30 39.51 39.24 47.96 46.76 46.47 53.90 53.67 54.36
FEDASAM+SWA 42.01 42.64 41.62 49.17 48.72 48.27 53.86 54.79 54.10

C
IF

A
R

10

FEDAVG E = 1 65.00 65.54 68.52 69.24 72.50 73.07 84.46 84.50 84.59
FEDAVG E = 2 61.49 62.22 66.36 69.23 69.77 73.48 83.93 84.10 84.21
FEDSAM 70.16 71.09 72.90 73.52 74.81 76.04 84.58 84.67 84.82
FEDASAM 73.66 74.10 76.09 75.61 76.22 76.98 84.77 84.72 84.75

FEDAVG+SWA 69.71 69.54 70.19 73.48 72.80 73.81 84.35 84.32 84.47
FEDSAM+SWA 74.97 73.73 73.06 76.61 75.84 76.22 84.23 84.37 84.63
FEDASAM+SWA 76.44 75.51 76.36 76.12 76.16 76.86 84.88 84.80 84.79

The Effective Search of Flat Minima in Federated Learning

Section 4.2 demonstrates that FL models in heterogeneous settings exhibit significant
performance disparities when compared to homogeneous settings, especially under
a fixed number of communication rounds. Table 4.3 shows these differences can
reach up to 20 percentage points. This performance gap is partly attributed to clients’
hyperspecialization to their local datasets, which hinders the global model’s general-
ization across the training distribution. This phenomenon is further evidenced by the

88 Generalization through the Lens of the Loss Landscape

Table 4.4 Accuracy results (%) on CIFAR100-PAM with ResNet18, with varying clients
participation. The results underline the performance during training (@5k and @10k rounds),
with and without SWA, and with the addition of strong data augmentations (mixup and
cutout). Best results in bold.

Algorithm Augmentation 10 clients 20 clients

@5k @10k w/ SWA @5k @10k w/ SWA

FEDAVG 46.60 47.03 52.70 46.51 45.83 50.28
FEDSAM 50.71 53.10 55.44 52.96 53.41 54.67
FEDASAM 49.31 51.10 54.25 47.21 53.50 54.29
FEDAVG E = 2 44.58 43.90 51.10 43.31 42.88 47.95
FEDSAM E = 2 52.36 52.04 55.23 51.41 51.35 53.41
FEDASAM E = 2 49.03 49.33 53.01 53.88 52.94 54.18

FEDAVG

M
IX

U
P

43.47 49.25 56.71 50.33 49.89 55.74
FEDSAM 42.83 51.92 53.96 49.66 55.77 57.70
FEDASAM 43.13 51.09 56.31 50.51 52.62 56.89
FEDAVG E = 2 44.76 46.44 57.15 47.10 47.59 54.40
FEDSAM E = 2 42.17 51.04 56.54 53.50 54.75 58.88
FEDASAM E = 2 44.74 50.14 58.31 49.87 50.87 55.86

FEDAVG

C
U

T
O

U
T

48.64 48.59 55.40 47.00 46.96 51.70
FEDSAM 48.28 53.53 57.25 52.06 54.37 56.70
FEDASAM 47.52 52.13 57.01 50.01 50.66 53.54
FEDAVG E = 2 45.19 45.46 55.40 44.68 44.25 49.39
FEDSAM E = 2 49.39 51.88 57.32 52.16 52.37 55.45
FEDASAM E = 2 48.99 50.09 55.77 48.48 48.77 52.00

model’s convergence to sharp minima, known to correlate with poor generalization.
Table 4.3 reports the first results of various configurations of SAM, ASAM, and
their integration with SWA on the federated CIFAR10 and CIFAR100, with multiple
heterogeneity levels, denoted by α, and client participation rate, Kt . Results on
CIFAR100-PAM are instead shown in Table 4.4.

Since both SAM and ASAM involve alternating steps of gradient ascent and
descent per iteration, they should be compared against FEDAVG with two local
epochs (E = 2). However, as also discussed in Section 4.2, a larger number of
epochs usually results in degraded performance when α→ 0. This trend is confirmed
by the experiments in both Tables 4.3 and 4.4, thus establishing FEDAVG with E = 1
as a more appropriate baseline due to its higher performance.

The mentioned results empirically demonstrate that optimizing for flat minima
during both local training and server-side aggregation mitigates the issues arising
in FL settings, particularly enhancing performance in heterogeneous environments.
Experimental results underscore that incorporating ASAM into FEDAVG significantly
enhances accuracies, showing improvements of +6 and +8 points for CIFAR100 and

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 89

0 2500 5000 7500 10000 12500 15000 17500 20000
Round

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

FedAvg + SWA
FedSAM + SWA
FedASAM + SWA
Reference FedAvg

(a) CIFAR100

0 2000 4000 6000 8000 10000
Round

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

FedAvg + SWA
FedSAM + SWA
FedASAM + SWA
Reference FedAvg

(b) CIFAR10

Fig. 4.10 Impact of SWA on the robustness of the model and training stability. The accuracy
trends show the positive gap resulting from using SWA on top of FEDAVG or FEDASAM.
Setting: α= 0, 5% client participation.

CIFAR10 with the CNN, respectively, under the most challenging conditions (α= 0
with 5% client participation). Further gains of +12 and +11.5 accuracy points are
achieved when FEDASAM is combined with SWA. The stabilizing effect of SWA

is particularly valuable in scenarios with lower client participation, which tend to
exhibit more variability. Figure 4.10 highlights the improved stability and positive
performance gains achieved by incorporating SWA, focusing on the most challenging
scenario: α= 0 and 5 clients per round on both CIFAR datasets. Ablation studies,
detailed in Section 4.3.5, confirm that these improvements are primarily due to the
averaging of stochastic weights (Equation (2.38)), rather than changes in the learning
rate. The results with ResNet18 on CIFAR100-PAM instead reveal that SAM and
SAM +SWA are more beneficial than ASAM in this specific setting.

Reaching Flatter Regions with ASAM and SWA. The analysis of the loss land-
scape and Hessian eigenspectrum is extended to models trained with FEDSAM,
FEDASAM, and SWA. Both the loss surfaces (Figure 4.7) and the Hessian spectra
(Figure 4.8) indicate that these methods facilitate convergence towards flatter minima.
Specifically, examining the maximum eigenvalues, which represent the worst-case
curvature, reveals a decrease in λ1 from 93.5 with FEDAVG to 70.3 with FEDSAM

and to 30.1 with FEDASAM in the most heterogeneous setting (Table 4.1). The
result is further improved by combining FEDASAM and SWA, achieving λ1 = 24.6.
There is a strong correlation between the best λ1 and the best ratio λ1/λ5. Even
though the maximum eigenvalue resulting from FEDAVG+SWA and FEDSAM+SWA

90 Generalization through the Lens of the Loss Landscape

(a) α= 0 FEDAVG (b) α= 0 FEDSAM (c) α= 0 FEDASAM

(d) α= 0.5 FEDAVG (e) α= 0.5 FEDSAM (f) α= 0.5 FEDASAM

(g) α= 1k FEDAVG (h) α= 1k FEDSAM (i) α= 1k FEDASAM

Fig. 4.11 Maximum Hessian eigenvalue λ k
1 computed for each client k ∈ C as rounds pass.

CIFAR100. CNN.

is higher than their respective values without SWA, the corresponding lower ratio
λ1/λ5 indicates that the majority of the spectrum lies in a lower curvature region,
demonstrating the effectiveness of SWA.

Figure 4.11 instead compares the maximum Hessian eigenvalues obtained using
the clients’ local models. First, FEDAVG always leads to larger values, implying
sharper local minima. Analyzing ASAM’s behavior from each client’s perspective,
it is evident that flat minima are achieved from the beginning of the training for all
values of α, positively impacting the model’s performance.

SAM is More Effective in FL than in Centralized Learning

Building upon the performance improvements observed with SAM, ASAM, and
their combination with SWA, a question arises: do these gains solely reflect the
benefits observed in the centralized training scenario? Table 4.5 addresses this

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 91

Table 4.5 Comparison of improvements (%) in centralized and federated scenarios (α∈
{0.5,1k}, 5 clients) on CIFAR100, computed w.r.t. the reference at the bottom.

Algorithm Accuracy Absolute Improvement Relative Improvement

Centr. α= 0 α= 0.5 α= 1k Centr. α= 0 α= 0.5 α= 1k Centr. α= 0 α= 0.5 α= 1k

SAM 55.22 31.04 44.73 54.01 +3.02 +0.79 +4.30 +4.01 +5.79 +2.61 +10.64 +8.03
ASAM 55.66 36.04 45.61 54.81 +3.46 +5.79 +5.18 +4.89 +6.63 +19.14 +12.81 +9.80
SWA 52.72 39.34 43.90 50.98 +0.52 +9.09 +3.47 +1.06 +1.00 +30.05 +8.58 +2.12
SAM+SWA 55.75 39.30 47.96 53.90 +2.55 +9.05 +7.53 +3.98 +6.76 +29.92 +18.63 +7.97
ASAM+SWA 55.96 42.01 49.17 53.86 +3.76 +11.76 +8.74 +3.94 +7.20 +38.88 +21.62 +7.89
MIXUP 58.01 29.91 35.10 55.34 +5.81 -0.34 -5.33 +5.42 +11.13 -1.12 -13.18 +10.86
CUTOUT 55.30 24.24 37.72 53.48 +3.10 -6.01 -2.71 +3.56 +5.94 -19.87 -6.70 +7.13

Centralized: 52.20 - FEDAVG α= 0: 30.25, α= 0.5: 40.43, α= 1k: 49.92

0 2500 5000 7500 10000 12500 15000 17500 20000
Round

0

10

20

30

40

50

60

Ac
cu

ra
cy

 (%
)

FedAvg + SWA
FedAvg + SWA = 0.9
FedSAM + SWA
FedSAM + SWA = 0.9
Centralized SAM + SWA

(a) CIFAR100

0 2000 4000 6000 8000 10000
Round

0

10

20

30

40

50

60

70

80

90
Ac

cu
ra

cy
 (%

)

FedAvg + SWA
FedAvg + SWA = 0.9
FedASAM + SWA
FedASAM + SWA = 0.9
Centralized ASAM + SWA

(b) CIFAR10

Fig. 4.12 SWA aids convergence for FEDAVGM/FEDSAM (CIFAR100, on the left) and
FEDASAM (CIFAR10, on the right) in this highly heterogeneous case (α= 0, 20 clients
per round). However, FEDAVGM +SWA fails on CIFAR10, while adding momentum to
FEDASAM speeds up training.

by demonstrating that the positive performance gap achieved in the heterogeneous
federated setting is larger than the one obtained in the centralized setting. This finding
suggests that these approaches provide specific advantages within the federated
learning context beyond what might be expected from a centralized training approach.

Reaching Convergence in Heterogeneous Federated Learning with FedSAM

Further experiments explore the impact of adding momentum (β = 0.9 in Equa-
tion (2.26)) to the server-side SGD optimization in the FEDAVG baseline, resulting
in the FEDAVGM algorithm [290]. The combination of FEDAVGM with either SAM

or ASAM and SWA achieves convergence even in highly heterogeneous scenarios

92 Generalization through the Lens of the Loss Landscape

Table 4.6 Reaching convergence in heterogeneous scenarios with FEDAVGM (in bold).
Results in terms of accuracy (%) computed with 20 clients per round.

Algorithm Momentum α= 0α= 0α= 0 α=α=α= α=α=α= Momentum α= 0α= 0α= 0 α=α=α= α=α=α=
0.5/0.050.5/0.050.5/0.05 1k/1001k/1001k/100 0.5/0.050.5/0.050.5/0.05 1k/1001k/1001k/100

C
IF

A
R

10
0

FEDAVG ✗ 38.59 42.17 50.66 ✓ 40.64 47.88 50.77
FEDSAM ✗ 38.56 46.05 53.97 ✓ 41.96 50.23 52.29
FEDASAM ✗ 40.81 47.78 54.50 ✓ 39.61 51.65 53.74
FEDAVG+SWA ✗ 39.85 42.09 50.92 ✓ 53.50 53.69 51.78
FEDSAM+SWA ✗ 39.24 46.47 54.36 ✓ 54.63 54.93 53.27
FEDASAM+SWA ✗ 41.62 48.27 54.10 ✓ 51.58 56.19 54.72

C
IF

A
R

10

FEDAVG ✗ 68.52 73.07 84.59 ✓ 10.00 78.51 85.05
FEDSAM ✗ 72.90 76.04 84.82 ✓ 83.07 83.57 86.20
FEDASAM ✗ 76.09 76.98 84.75 ✓ 84.89 85.06 85.42
FEDAVG+SWA ✗ 70.19 73.81 84.47 ✓ 10.00 84.00 85.73
FEDSAM+SWA ✗ 73.06 76.22 84.63 ✓ 85.65 85.98 86.79
FEDASAM+SWA ✗ 76.36 76.86 84.79 ✓ 85.98 86.03 86.00

across both datasets (Table 4.6). However, FEDAVGM alone does not exhibit con-
sistent convergence behavior. For example, in the CIFAR10 dataset with α= 0, the
model remains stuck at random guess accuracy (10%) using FEDAVG. This issue is
successfully addressed by applying our proposed method. Convergence behavior of
the aforementioned training runs is illustrated in Figure 4.12.

Enabling the Use of Strong Data Augmentations in FL with FedSAM

The effectiveness of data augmentations in enhancing neural network performance
and generalization is well-documented [181, 403, 404]. However, designing effective
data augmentations often necessitates domain expertise and substantial computational
resources, which may not be readily available in federated learning environments.

This work investigates the impact of commonly used strong data augmentations
like MixUp [181] and Cutout [180] (Section 2.4.3) on FL tasks. Tables 4.3 and 4.7
present results obtained by applying these augmentations to the CIFAR100 (PAM and
Dirichlet) and CIFAR10 datasets. Interestingly, the inclusion of MixUp and Cutout
leads to performance degradation across all algorithms compared to the baseline
without augmentation. This suggests that these specific augmentations may not be
well-suited for the FL context and, in some cases, can hinder training progress. This
behavior is also highlighted in Table 4.5.

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 93

Table 4.7 FEDAVG, SAM, ASAM and SWA with strong data augmentations (MixUp, Cutout)

Algorithm SWA Aug α= 0 α= 0.5/0.05 α= 1000/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

C
IF

A
R

10
0

FEDAVG ✗

M
IX

U
P

29.91 33.67 35.67 35.10 37.80 39.34 55.34 55.81 55.98
FEDSAM ✗ 30.46 34.10 35.89 38.76 40.31 42.03 54.21 54.94 55.24
FEDASAM ✗ 34.04 36.82 36.97 40.71 42.24 44.45 49.75 49.87 49.68
FEDAVG ✓ 35.56 36.07 36.08 39.21 39.22 38.31 55.43 55.37 55.39
FEDSAM ✓ 35.62 36.25 35.66 42.13 41.95 42.03 52.9 53.14 53.48
FEDASAM ✓ 40.08 38.74 37.47 44.53 43.97 44.22 46.97 47.24 46.93

FEDAVG ✗

C
U

T
O

U
T

24.24 31.55 32.44 37.72 38.45 39.48 53.48 53.83 52.90
FEDSAM ✗ 23.51 30.92 33.12 40.33 40.31 42.58 54.27 54.75 54.76
FEDASAM ✗ 30.05 33.62 34.51 41.86 41.84 43.33 51.88 51.78 53.03
FEDAVG ✓ 33.65 34.40 35.03 40.43 40.12 39.32 53.87 54.09 52.75
FEDSAM ✓ 34.00 34.08 34.26 43.09 42.81 42.85 53.78 54.28 53.93
FEDASAM ✓ 39.30 37.46 36.27 44.76 43.48 43.95 50.00 49.65 50.81

C
IF

A
R

10

FEDAVG ✗

M
IX

U
P

62.26 63.61 65.54 65.63 68.44 68.21 82.38 84.46 83.58
FEDSAM ✗ 67.35 69.32 69.78 70.34 72.98 72.54 81.88 82.24 82.25
FEDASAM ✗ 70.61 71.31 71.62 72.19 72.84 72.72 82.36 82.75 83.08
FEDAVG ✓ 66.31 66.89 66.26 69.79 69.12 68.80 82.27 82.88 82.67
FEDSAM ✓ 72.42 70.65 69.75 73.36 72.29 72.44 81.04 81.18 81.15
FEDASAM ✓ 72.37 72.40 71.89 72.54 72.36 72.32 81.86 81.70 81.92

FEDAVG ✗

C
U

T
O

U
T

61.12 64.47 64.20 66.45 69.09 68.99 83.77 83.91 84.31
FEDSAM ✗ 63.69 66.30 67.25 67.66 71.39 70.67 83.03 83.84 83.49
FEDASAM ✗ 68.50 69.26 69.75 69.23 71.91 71.28 83.73 84.10 84.00
FEDAVG ✓ 65.54 65.60 65.79 69.94 69.55 69.63 83.35 83.39 83.64
FEDSAM ✓ 69.40 68.45 67.36 71.36 71.56 70.99 82.61 82.75 82.52
FEDASAM ✓ 71.30 71.12 70.91 72.79 71.76 71.09 83.06 83.31 83.11

However, when combined with the proposed methods, performance improve-
ments can be observed in heterogeneous scenarios compared to the baseline with
data augmentation (FEDAVG + data augmentation). Furthermore, the incorporation
of SWA yields a significant performance boost, suggesting its potential to facilitate
the effective use of data augmentation techniques in FL.

Comparison with the State of the Art

Here, FEDSAM and FEDASAM are compared with several state-of-the-art (SOTA) FL
algorithms, including FEDPROX [45], SCAFFOLD [280], FEDAVGM [290], FEDDYN

[288], and ADABEST [8]. The comparison is conducted both for the baseline
algorithms and for their combinations with SAM, ASAM, and SWA (Table 4.8).

FEDPROX introduces a proximal term to the local objective, but as expected from
previous research [405, 8], it does not lead to significant improvement. SCAFFOLD

employs control variates to mitigate client drift, exchanging parameters twice per

94 Generalization through the Lens of the Loss Landscape

Table 4.8 SOTA comparison on CIFAR10 and CIFAR100 (centralized performance under-
lined)

Algorithm
W/O SWA W/ SWA

α= 0 α= 0.05/0.5 α= 0 α= 0.05/0.5

5cl 20cl 5cl 20cl 5cl 20cl 5cl 20cl

C
IF

A
R

10

FEDAVG 65.00 68.52 69.24 73.07 69.71 70.19 73.48 73.81
FEDSAM 70.16 72.90 73.52 76.04 74.97 73.06 76.61 76.22
FEDASAM 73.66 76.09 75.61 76.98 76.44 76.36 76.12 76.86
FEDAVGM 10.00 10.00 10.00 78.51 10.00 10.00 10.00 84.00
FEDPROX 62.72 68.44 68.38 73.02 70.56 70.08 74.27 73.67
SCAFFOLD 32.25 15.56 54.46 44.76 11.98 10.00 33.25 24.11
FEDDYN 67.69 73.81 71.36 75.20 77.00 74.00 77.99 75.12
ADABEST 66.77 72.29 69.84 75.89 78.94 76.12 80.35 79.35

FEDAVGM +ASAM 77.30 84.89 77.06 84.92 80.88 85.98 78.29 86.03
FEDPROX +ASAM 73.74 75.76 75.32 77.03 76.89 75.92 76.65 76.95
SCAFFOLD +ASAM 77.78 77.93 77.59 77.80 75.66 75.30 75.32 75.29
FEDDYN +SAM 77.38 81.00 79.18 81.70 83.81 86.07 83.18 85.57
ADABEST +ASAM 77.48 78.43 78.41 79.72 82.00 80.80 81.87 80.81

C
IF

A
R

10
0

FEDAVG 30.25 38.59 40.43 42.17 39.34 39.85 43.90 42.09
FEDSAM 31.04 38.56 44.73 46.05 39.30 39.24 47.96 46.47
FEDASAM 36.04 40.81 45.61 47.78 42.01 41.62 49.17 48.27
FEDAVGM 1.00 40.64 4.60 47.88 1.00 53.50 4.60 53.69
FEDPROX 31.20 38.59 39.53 42.17 39.06 39.68 43.98 41.84
SCAFFOLD 1.00 1.00 33.26 1.00 1.00 1.00 5.76 1.00
FEDDYN 1.00 1.40 22.03 24.75 1.00 1.40 8.27 35.15
ADABEST 29.90 39.11 36.93 43.25 44.48 44.21 48.20 44.51

FEDAVGM + ASAM 1.00 39.61 4.60 51.65 1.00 51.58 4.60 56.19
FEDPROX +ASAM 36.10 40.91 44.81 48.17 43.90 42.06 48.66 48.19
SCAFFOLD +ASAM 43.65 42.61 46.50 46.76 40.63 39.07 44.87 44.28
FEDDYN + ASAM 22.16 23.51 38.43 38.60 17.51 19.22 38.60 31.06
ADABEST + ASAM 39.75 45.00 45.25 49.56 51.75 47.42 51.89 51.47

round. While achieving comparable performance to FEDAVG in the homogeneous
setting (84.5% on CIFAR10 and 51.9% on CIFAR100), its effectiveness suffers
significantly under data heterogeneity. Similar behavior is observed for FEDAVGM.

FEDDYN dynamically aligns local and global stationary points. However, as
noted in [8], it is susceptible to parameter explosion. Although achieving good
results on the simpler CIFAR10 dataset, it requires heavy gradient clipping and
cannot complete training on CIFAR100. ADABEST was proposed as a solution,
surpassing FEDAVG by a small margin.

The results demonstrate the consistent effectiveness of FEDASAM compared to
the SOTA baselines. It improves accuracy by approximately 6% points over the
best SOTA on both datasets. Furthermore, incorporating ASAM leads to notable
performance gains for all FL algorithms. In particular, FEDAVGM and SCAFFOLD

are enabled to train successfully in most highly heterogeneous settings. FEDDYN

achieves nearly doubled accuracy on CIFAR100, even with the limitations imposed by
gradient clipping. Finally, the best results are achieved with FEDASAM+SWA, which

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 95

Table 4.9 Accuracy Results (%) on LANDMARKS-USER-160K with FEDSAM, FEDASAM

and SWA

@5k rounds w/ SWA @75% w/ SWA @100%

FEDAVG 61.91 66.05 67.52
FEDSAM 63.72 67.11 68.12
FEDASAM 64.23 67.17 68.32

Centralized 74.03

stabilizes the learning process and allows models to converge close to centralized
performance with α= 0.

4.3.4 Results in Real-World Vision Scenarios

This section explores the applicability of the proposed method in real-world scenarios
beyond the standard small-scale classification tasks. The vision tasks of interest are
large-scale classification, semantic segmentation (SS) for autonomous driving and
domain generalization (DG).

Large-scale classification

To assess the performance of the proposed methods (SAM, ASAM, and SWA) in
a more realistic setting, the analysis is extended to the challenging LANDMARKS-
USER-160K [278]. This dataset incorporates real-world complexities such as non-
i.i.d. distribution of labels across clients and dataset size imbalance. For additional
information, refer to Section 3.4.1. The results, presented in Table 4.9, confirm the
significant benefits of applying client-side sharpness-aware optimizers (SAM and
ASAM) in these challenging scenarios. These improvements are further amplified
when combined with server-side weight averaging through SWA, especially if applied
at the end of training. This combination achieves final accuracy improvements of up
to 7% compared to the baseline.

Semantic Segmentation for Autonomous Driving

Semantic segmentation plays a critical role in autonomous driving applications,
requiring accurate identification and localization of objects within a scene. Given

96 Generalization through the Lens of the Loss Landscape

Table 4.10 Federated SS on Cityscapes and IDDA. Results in mIoU (%) @ 1.5k rounds

Algorithm Uniform Country Rainy mIoUseen unseen seen unseen

FEDAVG ✓

ID
D

A

63.31 48.60 65.16 27.38

C
IT

Y
S

C
A

P
E

S

43.61
FEDSAM ✓ 64.22 49.74 64.81 30.00 44.58
FEDASAM ✓ 62.74 48.73 64.74 31.32 45.86
FEDAVG+SWA ✓ 63.91 43.28 63.24 47.72 45.64
FEDSAM+SWA ✓ 62.26 46.26 63.69 48.40 45.29
FEDASAM+SWA ✓ 60.78 44.23 63.18 51.76 45.69

FEDAVG ✗ 42.06 36.04 39.50 24.59 38.65
FEDSAM ✗ 43.28 37.83 39.65 29.27 41.22
FEDASAM ✗ 43.67 36.11 41.68 30.07 42.27
FEDAVG+SWA ✗ 37.16 37.48 37.06 42.33 42.48
FEDSAM+SWA ✗ 44.26 40.45 38.15 45.25 43.42
FEDASAM+SWA ✗ 45.23 39.72 42.09 45.40 43.02
SILOBN ✗ 45.86 32.77 48.09 39.67 45.96
SILOBN + SAM ✗ 46.88 33.71 48.22 40.08 49.10
SILOBN + ASAM ✗ 46.57 35.22 48.33 40.76 49.75

the privacy concerns associated with data collected by self-driving cars, FL emerges
as a promising approach for training SS models while preserving data privacy [271].

This work leverages FedDrive [271], a benchmark specifically designed for
evaluating autonomous driving tasks in FL settings. The evaluation employs two
datasets: Cityscapes and IDDA, under both uniform (similar data distributions across
clients) and heterogeneous (diverse data distributions) scenarios. Cityscapes’ test
set includes unseen cities, challenging the model’s ability to generalize to novel
environments. The IDDA dataset is further divided into two sub-scenarios to assess
generalization under both semantic and appearance shifts. The former involves
images captured in the countryside, and the latter focuses on rainy conditions. The
model is evaluated on both previously encountered and unseen domains.

The results presented in Table 4.10 demonstrate that ASAM achieves the best
performance on both Cityscapes and the heterogeneous IDDA setting. To further
enhance performance, the research combines ASAM with SWA and SiloBN [191].
SiloBN maintains local Batch Normalization statistics on each client while sharing
learnable parameters across domains, promoting better adaptation to unseen data.
This combination achieves the state-of-the-art performance in this evaluation.

Domain Generalization

To evaluate the generalization performance of models trained with SAM, ASAM, and
SWA, they are tested on corrupted versions of the CIFAR datasets, namely CIFAR10-
C and CIFAR100-C. The test images are subjected to 19 different corruptions,

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 97

cle
an

br
igh

tn
es
s

co
nt
ra
st

de
foc

us
_b
lur

ela
sti
c_
tra

ns
for
m fog fro
st

ga
us
sia

n_
blu

r
ga
us
sia

n_
no
ise

gla
ss
_b
lur

im
pu
lse

_n
ois

e
jpe

g_
co
mp

re
ss
ion

mo
tio
n_
blu

r
pix

ela
te

sa
tu
ra
te

sh
ot
_n
ois

e
sn
ow

sp
at
te
r

sp
ec
kle

_n
ois

e
zo
om

_b
lur

0

10

20

30

40

50

60

70

80

FedAvg
SAM
ASAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(a) CIFAR10-C α= 0

cle
an

br
igh

tn
es
s

co
nt
ra
st

de
foc

us
_b
lur

ela
sti
c_
tra

ns
for
m fog fro
st

ga
us
sia

n_
blu

r
ga
us
sia

n_
no
ise

gla
ss
_b
lur

im
pu
lse

_n
ois

e
jpe

g_
co
mp

re
ss
ion

mo
tio
n_
blu

r
pix

ela
te

sa
tu
ra
te

sh
ot
_n
ois

e
sn
ow

sp
at
te
r

sp
ec
kle

_n
ois

e
zo
om

_b
lur

0

5

10

15

20

25

30

35

40

FedAvg
SAM
ASAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(b) CIFAR100-C α= 0

cle
an

br
igh

tn
es
s

co
nt
ra
st

de
foc

us
_b
lur

ela
sti
c_
tra

ns
for
m fog fro
st

ga
us
sia

n_
blu

r
ga
us
sia

n_
no
ise

gla
ss
_b
lur

im
pu
lse

_n
ois

e
jpe

g_
co
mp

re
ss
ion

mo
tio
n_
blu

r
pix

ela
te

sa
tu
ra
te

sh
ot
_n
ois

e
sn
ow

sp
at
te
r

sp
ec
kle

_n
ois

e
zo
om

_b
lur

0

10

20

30

40

50

60

70

80

FedAvg
SAM
ASAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(c) CIFAR10-C α= 0.05
cle

an
br
igh

tn
es
s

co
nt
ra
st

de
foc

us
_b
lur

ela
sti
c_
tra

ns
for
m fog fro
st

ga
us
sia

n_
blu

r
ga
us
sia

n_
no
ise

gla
ss
_b
lur

im
pu
lse

_n
ois

e
jpe

g_
co
mp

re
ss
ion

mo
tio
n_
blu

r
pix

ela
te

sa
tu
ra
te

sh
ot
_n
ois

e
sn
ow

sp
at
te
r

sp
ec
kle

_n
ois

e
zo
om

_b
lur

0

10

20

30

40

50

FedAvg
SAM
ASAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(d) CIFAR100-C α= 0.5

cle
an

br
igh

tn
es
s

co
nt
ra
st

de
foc

us
_b
lur

ela
sti
c_
tra

ns
for
m fog fro
st

ga
us
sia

n_
blu

r
ga
us
sia

n_
no
ise

gla
ss
_b
lur

im
pu
lse

_n
ois

e
jpe

g_
co
mp

re
ss
ion

mo
tio
n_
blu

r
pix

ela
te

sa
tu
ra
te

sh
ot
_n
ois

e
sn
ow

sp
at
te
r

sp
ec
kle

_n
ois

e
zo
om

_b
lur

0

10

20

30

40

50

60

70

80

FedAvg
SAM
ASAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(e) CIFAR10-C α= 100

cle
an

br
igh

tn
es
s

co
nt
ra
st

de
foc

us
_b
lur

ela
sti
c_
tra

ns
for
m fog fro
st

ga
us
sia

n_
blu

r
ga
us
sia

n_
no
ise

gla
ss
_b
lur

im
pu
lse

_n
ois

e
jpe

g_
co
mp

re
ss
ion

mo
tio
n_
blu

r
pix

ela
te

sa
tu
ra
te

sh
ot
_n
ois

e
sn
ow

sp
at
te
r

sp
ec
kle

_n
ois

e
zo
om

_b
lur

0

10

20

30

40

50

FedAvg
SAM
ASAM
FedAvg+SWA
SAM+SWA
ASAM+SWA

(f) CIFAR100-C α= 1000

Fig. 4.13 Domain generalization in FL with FEDSAM, FEDASAM and SWA. Results with
20 clients, severity level 5 on CIFAR10-C (left) and CIFAR100-C (right), under various
heterogeneity (α).

each with 5 severity levels. Results for the highest severity level are presented in
Section 4.3.4 and further support the effectiveness of seeking flat minima in FL.

4.3.5 Ablation Studies

Sensitivity to ρ . This analysis examines the sensitivity of FEDASAM and FEDSAM

to their hyperparameters using the CIFAR100 dataset with 5% client participation
as a reference. The analysis focuses on the neighborhood size ρ and ASAM’s
stability-adaptivity trade-off parameter η . High ρ values in FEDSAM lead to a rapid
performance decline (Figure 4.14a), suggesting better performance with smaller
neighborhoods. Conversely, FEDASAM exhibits greater robustness to ρ , maintaining
performance even with larger values (up to 0.5) in Figure 4.14b. Instead, as η

98 Generalization through the Lens of the Loss Landscape

0.00 0.05 0.10 0.20 0.50
SAM

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
)

= 0
= 0.5
= 1k

(a) SAM ρ

0.05 0.20 0.50 0.70 1.00 2.00
ASAM

0

10

20

30

40

50

Ac
cu

ra
cy

 (%
) w

ith

=
0.

2

= 0
= 0.5
= 1k

(b) ASAM ρ

0.000.01 0.10 0.20

30

35

40

45

50

55

Ac
cu

ra
cy

 (%
) w

ith

=
0.

5

= 0
= 0.5
= 1k

(c) ASAM η

Fig. 4.14 FEDSAM and FEDASAM sensibility to hyperparameters

increases in Figure 4.14c, performance improves linearly, indicating a more adaptive
approach potentially leading to better results.

SWA components. SWA is sensible to two main parameters: the cycle length
and the starting round. SWA’s learning rate decreases from γ1 to γ2 over a cycle
of length c (Equation (2.37)). To understand the main component affecting the
robustness proper of SWA the most, Table 4.11 compares SWA with constant (c = 1)
and cycling learning rate (c > 1), together with the standard FEDAVG changing
the clients’ learning rate based on c > 1. The results indicate that the server-side
weight averaging plays a more significant role in achieving stability and improved
performance. While the cyclical learning rate offers some benefit (better performance
compared to constant learning rate), its impact is less pronounced. This finding
suggests that the weight averaging is the core contributor to SWA’s effectiveness.
However, the cyclical learning rate is still preferred in further experiments due to
its slight performance improvement in challenging scenarios (low α and low client
participation) observed in the CIFAR100 dataset.

Table 4.12 investigates the impact of the starting round, i.e., the amount of pre-
training needed before the deployment of SWA. The table shows the performance
difference when applying SWA from various points in the training process (starting
at 5%, 25%, 50%, and 75% of total training) to FEDAVG with 5 clients per round.
The results suggest longer pre-training periods lead to greater effectiveness of SWA.

4.3.6 Discussion

In conclusion, this work investigated the performance degradation and training
slowdown observed in heterogeneous FL due to the limited generalization ability
of the learned global model. Inspired by recent research linking convergence to flat

4.3 Improving Generalization in Federated Learning by Seeking Flat Minima 99

Table 4.11 SWA ablation study: comparison between cyclical (c > 1) and constant learning
rate (c = 1) and contribution given by averaging stochastic weights. Highlighted in bold the
best result for each combination (algorithm, α, participating clients).

Dataset Algorithm Weights Avg c α= 0 α= 0.5/0.05 α= 1k/100

5cl 10cl 20cl 5cl 10cl 20cl 5cl 10cl 20cl

CIFAR100

FEDAVG
✓ 20

39.34 39.74 39.85 43.90 44.02 42.09 50.98 50.87 50.92
FEDSAM 39.30 39.51 39.24 47.96 46.76 46.47 53.90 53.67 54.36
FEDASAM 42.01 42.64 41.62 49.17 48.72 48.27 53.86 54.79 54.10

FEDAVG
✓ 1

38.86 39.82 40.19 43.86 43.93 42.67 51.33 51.05 51.11
FEDSAM 38.58 39.20 39.37 47.29 46.34 46.40 53.88 53.70 54.36
FEDASAM 42.50 42.40 41.76 48.67 48.50 47.95 54.16 55.07 54.19

FEDAVG
✗ 20

30.68 34.86 37.42 40.34 42.40 41.89 50.06 50.21 50.81
FEDSAM 31.51 35.87 37.81 44.08 45.80 46.43 53.76 53.46 54.28
FEDASAM 36.85 39.76 41.03 46.34 48.06 48.38 54.21 55.06 54.22

FEDAVG
✗ 1

30.25 36.74 38.59 40.43 41.27 42.17 49.92 50.25 50.66
FEDSAM 31.04 36.93 38.56 44.73 44.84 46.05 54.01 53.39 53.97
FEDASAM 36.04 39.76 40.81 45.61 46.58 47.78 54.81 54.97 54.50

CIFAR10

FEDAVG
✓ 10

69.71 69.54 70.19 73.48 72.80 73.81 84.35 84.32 84.47
FEDSAM 74.97 73.73 73.06 76.61 75.84 76.22 84.23 84.37 84.63
FEDASAM 76.44 75.51 76.36 76.12 76.16 76.86 84.88 84.80 84.79

FEDAVG
✓ 1

69.88 69.83 70.72 73.91 73.12 73.07 84.90 84.47 84.67
FEDSAM 75.17 74.00 73.53 76.93 76.06 76.55 84.53 84.54 84.77
FEDASAM 76.80 75.48 76.84 76.87 76.30 77.55 85.09 85.06 84.73

FEDAVG
✗ 10

61.41 63.96 67.39 67.17 69.88 72.19 84.18 84.15 84.45
FEDSAM 70.66 71.14 73.04 73.93 74.96 76.20 84.23 84.40 84.69
FEDASAM 75.07 74.87 76.37 75.37 76.17 77.14 84.68 84.72 84.71

FEDAVG
✗ 1

65.00 65.54 68.52 69.24 72.50 73.07 84.46 84.50 84.59
FEDSAM 70.16 71.09 72.90 73.52 74.81 76.04 84.58 84.67 84.82
FEDASAM 73.66 74.10 76.09 75.61 76.22 76.98 84.77 84.72 84.75

minima in the loss landscape to generalization in deep learning, the model’s behavior
was analyzed through the lens of loss surface geometry, linking poor generalization in
FL and convergence towards sharp minima. To address this gap, this work introduced
Sharpness-Aware Minimization (SAM), its adaptive variant (ASAM), and Stochastic
Weight Averaging (SWA) for FL, all of which encourage convergence towards flatter
minima. The effectiveness of this approach was demonstrated on several real-world
vision tasks (small and large scale image classification, semantic segmentation,
domain generalization) and datasets.

Impact

Following the success of FEDSAM, several follow-up works explored new insights
and enhancements. In Qu et al. [406], concurrent to FEDSAM, momentum is lever-
aged to improve the efficacy of SAM and convergence guarantees are provided.
FEDSPEED [407] utilizes perturbed gradients as SAM, aiming to reduce local overfit-
ting. FEDGAMMA [408] combines the stochastic variance reduction of SCAFFOLD

with SAM. Moreover, Shi et al. [409] demonstrate FEDSAM’s effectiveness in miti-
gating the negative effects of differential privacy, while DFEDSAM applies FEDSAM

100 Generalization through the Lens of the Loss Landscape

Table 4.12 SWA ablation study: comparison in accuracy (%) between SWA starting rounds,
with 5 clients per round. Server-side aggregation with FEDAVG.

Dataset c Start round Test Accuracy

α= 0 α= 0.5/0.05 α= 1k/100

CIFAR100 20
1000 24.53 34.52 49.38
5000 30.66 39.71 51.52
10000 36.21 42.55 51.01
15000 39.34 43.90 50.98

CIFAR10 10
500 55.57 60.50 79.09

2500 60.34 65.72 81.49
5000 66.22 70.55 83.79
7500 69.71 73.48 84.35

to distributed FL [410] and FEDKSAM to intrusion detection systems [411]. In [412],
an approach similar to FEDSAM is used for multi-task learning.

However, all these approaches primarily rely on local sharpness information, as-
suming that minimizing local sharpness directly translates to a globally flat minimum.
This assumption may not always hold true, as discrepancies often exist between
the geometries of local and global loss surfaces. Optimizing local sharpness alone
does not guarantee a resulting global model residing in a flat region of the global
loss landscape. Addressing these limitations, FEDSMOO [413] leverages ADMM
to enforce consistency between global and local sharpness, at the cost of doubled
communication. The next section proposes an alternative solution to achieve global
flatness while maintaining communication efficiency.

Limitations

Despite their effectiveness on various tasks and outperforming state-of-the-art per-
formance, FEDSAM, FEDASAM and SWA present some limitations.

As discussed in Section 4.1, FEDSAM introduces two key drawbacks. Firstly,
as highlighted in [413], FEDSAM assumes that local optimization for flat minima
translates to achieving globally flat regions. However, this may not always hold true,
particularly in heterogeneous settings where local and global loss landscapes exhibit
greater inconsistencies. Secondly, it requires double the computation compared
to optimizers like SGD due to the alternating ascent-descent steps. This can be a
significant hurdle for resource-constrained edge devices.

As shown in Table 4.12, the deployment of SWA instead is limited to later
training stages, rendering it unusable for most of the training process. This hinders
its applicability to broader scenarios.

4.3 Beyond Local Sharpness in Federated Learning 101

4.4 Beyond Local Sharpness: Communication-
Efficient Global Sharpness-aware Minimization
for Federated Learning

Data heterogeneity across edge devices (clients) can cause models to converge
to sharp minima, negatively impacting generalization and robustness. Recent ap-
proaches use client-side sharpness-aware minimization (SAM) to encourage flatter
minima, but the discrepancy between local and global loss landscapes often un-
dermines their effectiveness, as optimizing for local sharpness does not ensure
global flatness. This work introduces FEDGLOSS (Federated Global Server-side
Sharpness), a novel FL approach that directly optimizes for global sharpness on
the server using SAM. To reduce communication overhead, FEDGLOSS cleverly
approximates sharpness using the previous global gradient, eliminating the need for
additional client communication.

4.4.1 Motivation

Recent approaches like FEDSAM and its variants [407, 408] belong to a recent
trend leverages the geometry of the loss landscape to improve generalization [7,
406–408, 413]. These methods build upon the notion that convergence to sharp
minima correlates with poor generalization [204, 52, 414] and have shown their
effectiveness in various FL scenarios. However, they share a critical limitation: their
dependence solely on local sharpness information. The underlying assumption is
that minimizing sharpness during local training directly translates to achieving a
globally flat minimum. In real-world scenarios with significant data heterogeneity
(Figure 4.15), there can be substantial discrepancies between the local and global loss
landscapes. As a consequence, optimizing for local sharpness does not guarantee
that the global model will reside in a flat region.

Addressing these limitations, FEDSMOO [413] leverages the alternating direction
method of multipliers (ADMM) [289] to include global sharpness information in
SAM’s local training. While this approach reduces the inconsistency between local
and global geometries, it increases communication cost by requiring double the
bandwidth in each round. This hinders its real-world applicability, as FL relies
on minimizing communication overhead (i.e., both message size and exchange

102 Generalization through the Lens of the Loss Landscape

0.5

1

1.5

2
Loss

(a) CIFAR10 α= 0

0.5

1

1.5

2
Loss

(b) CIFAR10 α= 0.05

2

2.5

3

3.5

4
Loss

(c) CIFAR100 α= 0

2

2.5

3

3.5

4
Loss

(d) CIFAR100 α= 0.5

Fig. 4.15 Comparison of FEDAVG (solid) and FEDSAM (net) loss landscapes with varying
degrees of data heterogeneity (α) on the CIFAR datasets. FEDSAM’s effectiveness in
converging to global flat minima is highly influenced by the data heterogeneity, where
higher heterogeneity (α→ 0) leads to sharper minima, and the complexity of the task, e.g.,
higher sharpness for the more complex CIFAR100. This highlights the importance of
optimizing global sharpness. Model: CNN.

frequency) to avoid network congestion and account for potential connection failures,
that are common in practical deployments.

Given the limitations of existing methods, achieving convergence to global flat
minima while maintaining communication efficiency in heterogeneous FL remains a
critical challenge. To address this, this research introduces FEDGLOSS (Federated
Global Server-side Sharpness), that directly optimizes global sharpness by using
SAM on the server side, avoiding additional exchanges over the network. Such
adaptation is not straightforward, as SAM would require dual exchanges with each
client set per round to solve its optimization problem. Instead, FEDGLOSS approx-
imates the sharpness measure using available previous pseudo-gradients. As a
result, it facilitates faster training and keeps communication efficiency.

To summarize, this work contributes to the current research field as follows:

• Empirical proof of local-global discrepancies: it provides the first empirical
evidence showing the limitations of approaches that focus solely on local
sharpness. The proposed analysis highlights the inconsistency between local
and global loss geometries even when using sharpness-aware approaches like
FEDSAM, demonstrating that local flatness does not necessarily ensure a flat
global minimum. While reaching flat global solutions in simpler problems,
this work shows that their effectiveness diminishes as data complexity and
heterogeneity increase (Figure 4.15).

Extensive evaluations show that FEDGLOSS consistently outperforms state-
of-the-art methods across various benchmarks and achieves flatter minima,
validating its effectiveness without incurring extra communication.

4.4 Beyond Local Sharpness in Federated Learning 103

• To bridge this gap and motivated by communication efficiency, the proposed
novel FEDGLOSS directly optimizes for global sharpness on the server using
SAM, reducing the communication overhead and the clients’ computational
costs compared to previous works. FEDGLOSS consistently achieves flat-
ter minima and outperforms state-of-the-art methods across various vision
benchmarks.

• This work underlines the importance of aligning global and local solutions and
illustrates how SAM, especially on the server side, enables effective ADMM
use in FL. While typically ADMM-based methods suffer from parameter
explosion [8], the introduced findings indicate that by targeting flat minima,
SAM encourages smaller gradient steps and minimal weight updates, leading
to a significantly more stable algorithm.

4.4.2 The Inconsistency between Local and Global Sharpness

This section empirically investigates the hypothesis that discrepancies between local
and global loss landscapes impact FEDSAM’s performance, using a CNN model on
CIFAR10 and CIFAR100 datasets.

Figure 4.15 compares the loss surfaces of CNNs trained with FEDAVG and FED-
SAM on CIFAR10 and CIFAR100 under varying data heterogeneity. On the easier
CIFAR10, FEDSAM exhibits noticeably flatter minima w.r.t. FEDAVG, suggesting its
effectiveness in navigating simpler landscapes. However, their performance differ-
ence diminishes with increasing dataset complexity (CIFAR100) and heterogeneity
(α→ 0). This suggests that larger discrepancies between local and global geome-
tries arise as tasks become more complex and data distributions more diverse.
The observed difficulty in reaching flat regions under high heterogeneity (smoother
landscapes with α= 0.05 and 0.5) further motivates the introduction of FEDGLOSS.

To highlight the existing difference between local and global behavior, Fig-
ure 4.16 investigates the behavior of client models at the end of local training when
tested on their own data Dk (bottom landscape), prior to server-side aggregation, w.r.t.
the overall dataset D (top landscape). Each plot (Figures 4.16a to 4.16e) depicts the
behavior of one of the five randomly selected clients during the last training round
with FEDSAM, distinguished by the locally seen class. The inconsistency between
local and global behavior can be easily spotted: locally, each model lands in a flat

104 Generalization through the Lens of the Loss Landscape

Table 4.13 Maximum Hessian eigenvalues of local models, computed on global (λ1,g) and
local datasets (λ1,l) with CIFAR10 α= 0 and CIFAR100 α= 0. Each client is identified via
its local class. The lowest λ1,g in bold. FEDDYN does not converge on CIFAR100 with
α= 0 [7, 8], hence the lack of results (✗).

Local FEDAVG FEDSAM FEDDYN FEDDYN + SAM FEDSMOO FEDGLOSS (ours)
Class λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g λ1,l λ1,g

C
IF

A
R

10

airplane 9.1 239.1 100.6 36.4 752.5 347.8 199.6 12.0 122.1 26.5 190.1 4.3
cat 424.2 273.6 28.8 16.5 59.9 242.3 122.0 11.1 82.4 26.9 106.9 3.9
bird 18.4 237.0 106.4 35.7 894.0 371.2 200.2 12.0 134.2 25.7 200.1 4.1
airplane 483.5 269.5 103.2 30.6 761.6 348.9 206.9 12.3 122.8 25.2 207.8 4.0
frog 263.2 259.6 68.1 32.9 528.9 286.0 155.6 11.7 79.3 33.5 84.8 4.1

C
IF

A
R

10
0 sea 251.0 224.5 0.1 238.5

✗ ✗ ✗ ✗

33.2 31.4 28.3 19.6
snail 91.2 267.0 0.2 149.1 331.2 102.2 260.8 40.7
bear 108.4 215.2 6.7 129.3 428.6 121.0 220.3 49.6
skyscraper 613.3 300.1 1.3 194.6 143.5 40.2 269.2 22.2
possum 37.9 259.6 15.3 142.6 455.5 90.9 392.4 39.0

region; differently, the same model is found close to saddle points (Figures 4.16a
and 4.16e), or sharp minima (Figures 4.16b and 4.16d) in the global loss landscape.
For completeness, Figure 4.16f shows FEDSAM’s global model.

These findings are further corroborated by the Hessian eigenvalues presented
in Table 4.13. FEDSAM’s local maximum Hessian eigenvalue, denoted by λ1,l and
computed on each client’s individual dataset, is significantly lower than the global
eigenvalue λ1,g, calculated on the overall dataset, on the more complex CIFAR100.
This suggests that FEDSAM effectively achieves local convergence to flatter regions
of the loss landscape on individual devices. However, the higher global eigenvalue
indicates limitations in reaching a globally flat minimum. The challenge of achieving
flat regions under high heterogeneity and the gap between local and global flatness
support the introduction of FEDGLOSS.

4.4.3 Rethinking SAM in Federated Learning

In Equation (2.29), SAM is directly used to solve the local optimization problem,
without explicitly optimizing for global flatness. As shown in the previous section,
this can lead to possible discrepancies between local and global geometries of the
loss surface, which are exacerbated in non-i.i.d. settings. This work addresses these
limitations of FEDSAM by proposing FEDGLOSS (Federated Global Server-side
Sharpness), which optimizes both global sharpness and global consistency while
maintaining communication efficiency.

4.4 Beyond Local Sharpness in Federated Learning 105

0

5

10

15

20
Loss

(a) Local model trained
on class sea with FEDSAM

0

5

10

15

20
Loss

(b) Local model trained
on class snail with FED-
SAM

0

5

10

15

20
Loss

(c) Local model trained
on class bear with FED-
SAM

0

5

10

15

20
Loss

(d) Local model trained
on class skyscraper with
FEDSAM

0

5

10

15

20
Loss

(e) Local model trained
on class possum with FED-
SAM

0

5

10

15

20
Loss

(f) FEDSAM global model

Fig. 4.16 Global vs. local perspective on FEDSAM. CIFAR100 α= 0 with SAM as local
optimizer @ 20k rounds on CNN. (a) - (e): Local models trained on one class, tested on the
local (bottom landscape) or global dataset (top landscape). (f): Resulting global model @
t = 20k, computed using the reported clients’ models. Models trained with FEDSAM present
significant differences between local and global behaviors.

Aiming to optimize SAM’s objective (Equation (2.29)) on the global function,
FEDGLOSS modifies Equation (4.1) as follows

min
www

{
F (www) =

1
K ∑

k∈C
F k(www)

}
, F k(www)≜ max

∥ϵϵϵ∥≤ρ

fk(www+ϵϵϵ), (4.5)

where ϵϵϵ is the global perturbation. Calculating the true ϵϵϵ value requires the global
gradient ∇www f (Equation (2.31)) computed on the entire dataset D ≜ ∪k∈C Dk, which
is not directly available in FL due to local data privacy and communication constraints.
While FEDSMOO [413] tackles this issue by using ADMM on the sharpness with
the constraint ϵϵϵ= ϵϵϵk, it necessitates transmitting ϵϵϵ alongside the model parameters www
both to clients and back to the server in each round, hindering its practicality in real-
world scenarios with limited communication budgets. This observation motivates the

106 Generalization through the Lens of the Loss Landscape

question: how to minimize the global sharpness while maintaining communication
efficiency in FL?

Challenges of Server-side SAM

To address this question, this work proposes applying SAM on the server side. This
approach directly optimizes global sharpness, eliminating the need to align local
sharpness on the clients. At each round t, the global model has to be updated as
wwwt+1 ← wwwt−ηg∇www F (www)|wwwt + ϵ̂ϵϵt(www), where ϵ̂ϵϵt is the global perturbation at round t.
However, a key challenge arises: the computation of both ϵ̂ϵϵt and the sharpness-aware
gradient necessitates two transmissions with the clients, making its direct application
in server-side FL non-trivial. A straightforward solution is to emulate SAM’s double
computation step through two communication exchanges within each round t.

• Step 1: the server selects a subset C t of clients, sends them the global model
wwwt , which they update using their local data. The resulting pseudo-gradient
serves as an estimate of the global gradient, i.e., ∆ t

www ≈ ∇www F (wwwt), and is used
to compute ϵ̂ϵϵt(www) = ρ(∆ t

www/∥∆ t
www∥) and the perturbed model w̃wwt =wwwt + ϵ̂ϵϵt(www).

• Step 2: the server transmits w̃wwt to the same C t . Each client k computes
its update w̃wwt

k on the perturbed model, and the consequent global pseudo-
gradient ∆̃ t

www ≜ ∑k∈C t Nk/N(w̃wwt−w̃wwt
k) is an estimate of the sharpness-aware gra-

dient, ∇www F (www)|wwwt + ϵ̂ϵϵt(www).

This two-step approach, referred to as NAIVEFEDGLOSS, is conceptually simple
but suffers from communication inefficiency, doubling the communication and com-
putational cost compared to the original server-side with FEDAVG. In addition, this
method requires the same subset of clients C t to remain active for two consecutive
exchanges. This may be unrealistic in real-world settings often characterized by
network failures. These limitations highlight the need for an efficient alternative that
accounts for practical real-world FL factors.

4.4.4 Federated Global Server-side Sharpness

To overcome the challenges posed by NAIVEFEDGLOSS, following [219], FED-
GLOSS estimates ϵ̂ϵϵt using the perturbed global pseudo-gradient from the previous

4.4 Beyond Local Sharpness in Federated Learning 107

Table 4.14 Overview of FL methods using SAM. Differently from previous works, FED-
GLOSS uses SAM as server optimizer and allows any local optimizer.

Method SERVEROPT CLIENTOPT Global Communication Local Computation
Flatness Cost Cost

FEDSAM [7, 406] SGD SAM ✗ 1× 2×
FEDDYN [288] + SAM SGD SAM ✗ 1× 2×
FEDSPEED [407] SGD Similar to SAM ✗ 1× 2×
FEDGAMMA [408] SGD SAM ✓ 2× 2×
FEDSMOO [413] SGD SAM ✓ 2× 2×
FEDGLOSS SAM Any optimizer ✓ 1× 1× or 2×

round ∆̃ t−1
www at each round t. This approach leverages available information without

incurring extra communications and avoiding unnecessary computations. Intuitively,
the use of the previous pseudo-gradient to minimize the sharpness allows FED-
GLOSS to access information on the global loss landscape geometry, thus guiding
the global optimization towards flatter minima. Figure 4.17 depicts the proposed
approach.

From Equations (2.31) and (3.5), FEDGLOSS updates the global model wwwt as

1⃝Sharpness approximation with ∆̃
t−1
www : ϵ̃ϵϵt(www)≜ ρ

∆̃ t−1
www

∥∆̃ t−1
www ∥

(4.6)

2⃝Global model perturbation: w̃wwt ←wwwt + ϵ̃ϵϵt(www) (4.7)

3⃝Send w̃wwt to the clients, obtain w̃wwt
k and compute: ∆̃

t
www = ∑

k∈C t

Nk

N
(w̃wwt−w̃wwt

k) (4.8)

4⃝wwwt+1←wwwt−FEDGLOSS(wwwt , ∆̃ t
www,ηg, t) =wwwt−ηg∆̃

t
www, (4.9)

where with a slight abuse of notation SERVEROPT from Equation (3.5) was substi-
tuted with the server-side strategy proposed by FEDGLOSS. The notation follows
the colors of Figure 4.17 for better understanding.

Notably, as summarized in Table 4.14, FEDGLOSS enables SAM on the server
side while allowing any CLIENTOPT for local training, with computational costs
varying based on the chosen optimizer. This differs from previous methods con-
strained to the more computationally expensive SAM. In addition, differently from
FEDSMOO, FEDGLOSS maintains FEDAVG’s communication complexity while
optimizing for global flatness.

108 Generalization through the Lens of the Loss Landscape

ε̃t

−ηs∇F (wt + ε̃t) ≈ −ηs∆̃t
w

wt−1

wt

wt+1
FedAVG = wt − ηs∆t

w

wt+1
FedGloSS = wt − ηs∆̃t

w

wt + ε̃t = wt + ρ ∆̃t−1
w

‖∆̃t−1
w ‖

Fig. 4.17 Illustration of FEDGLOSS. The model wwwt is perturbed using ∆̃ t−1
www . The sharpness-

aware direction (dashed) is used to compute wwwt+1 (solid), which lands in a flat region.
Compared to FEDAVG.

Promoting global consistency with ADMM

The difference in using the approximated ϵ̃ϵϵt (FEDGLOSS) and the true ϵ̂ϵϵt

(NAIVEFEDGLOSS) is

δ
t
ϵ ≜ ∥ ϵ̃ϵϵt(www)− ϵ̂ϵϵt(www)∥= ρ

∥∥∥∥ ∆̃ t−1
www

∥∆̃ t−1
www ∥

− ∆ t
www

∥∆ t
www∥

∥∥∥∥ , (4.10)

where ∆̃ t−1
www is computed using the updates of the clients in C t−1 and ∆̃ t

www with
C t . Equation (4.10) suggests that δ t

ϵ is minimized when ∆̃ t−1
www and ∆̃ t

www are aligned.
However, in real-world heterogeneous FL, i) to due clients’ unavailability, only a
subset of them participates in training at each round, with C t likely differing from
C t−1, and ii) clients hold different data distributions, i.e., local optimization paths
likely converge towards different local minima, leading to unstable global updates
[280]. As a consequence, δ t

ϵ ̸→ 0 necessarily. Specifically, due to triangle inequality
and normalized gradients norms, δ t

ϵ ≤ 2ρ , with ρ < 0.2 in this case, i.e., larger
neighborhoods lead to increased difference.

To align local and global objectives - ensuring client and server gradient align-
ment and minimizing Equation (4.10) - FEDGLOSS leverages the Alternating Direc-
tion Method of Multipliers (ADMM) [289] on wwwt [288, 413, 407]. While alternative
approaches could be used, they either lack full immunity to data heterogeneity

4.4 Beyond Local Sharpness in Federated Learning 109

0.22

0.24
δt ε

0 5000 10000 15000 20000

Round

0.0145

0.0150

0.0155

CIFAR10, α = 0

CIFAR10, α = 0.05

CIFAR100, α = 0

CIFAR100, α = 0.5

w/ ADMM

w/o ADMM

Fig. 4.18 Trend of the difference δ t
ϵϵϵ (Equation (4.10)), which decreases as ADMM is used

and over training rounds. CIFAR datasets, CNN.

or have shown poor performance on realistic scenarios (e.g., variance reduction
[280, 408]). In contrast, ADMM has been proved to converge under arbitrary het-
erogeneity [288] and can thus be leveraged as a base algorithm for FEDGLOSS, as
shown in Algorithm 5.

ADMM makes use of the augmented Lagrangian function L (www,WWW ,σ) =

∑k∈C L(www,wwwk,σk) where WWW = {www1, · · · ,wwwC} and σ is the Lagrangian multiplier.
The problem solved by L is

1
K ∑

k∈C
(fk +σ

⊤
k (wwwt−wwwt

k)+
1

2β
∥wwwt−wwwt

k ∥2) s.t. www =wwwk (4.11)

with β > 0 being an hyperparameter. Equation (4.11) is split into C sub-problems
of the form wwwk,E = argminwwwk

{ fk−σ⊤k (wwwt−wwwk)+
1

2β
∥wwwt−wwwt

k ∥2}. The local dual
variable is updated as σk ← σk− 1

β
(wwwt

k,E−wwwt
k,0). The global one σ is updated by

adding the averaged wwwk−wwwt ∀k ∈ C .

Figure 4.18 confirms the effect of ADMM on gradient alignment: the difference
between the true and approximated perturbation, δ t

ϵ (Equation (4.10)), decreases
over training rounds and with the use of Lagrangian multipliers.

4.4.5 Experimental Results

The purpose of this section is to outline the datasets, models, and baseline methods
used in our experiments. For comprehensive details on the implementation and
hyperparameter settings, please refer to Chapter A.

110 Generalization through the Lens of the Loss Landscape

Algorithm 5 FEDGLOSS with SAM or SGD as local optimizers
1: Input: Global model www, clients C , rounds T , local epoch E, clients’ learning rate

ηl , clients’ SAM neighborhood size ρl , FEDGLOSS neighborhood size ρ , Lagrangian
hyperparameter β .

2: Initialize: www0, σ0 = σk = 0, ∆ 0
www = 0.

3: for each round t ∈ [1,T] do
4: ϵ̃ϵϵt(www) = ρ

∆ t−1
www

∥∆ t−1
www ∥2

▷ Global model perturbation with past pseudo-gradient

5: w̃wwt =wwwt + ϵ̃ϵϵt(www) ▷ Server approximated FEDGLOSS ascent step
6: Randomly select a subset of clients C t ⊂ C
7: for each client k ∈ C t in parallel do
8: wwwk,0 = w̃wwt ▷ Initialize local model with perturbed global model w̃wwt

9: Set iteration counter i = 1
10: for each epoch e ∈ [1,E] do
11: for each batch B ∈Dk do
12: gk,i = ∇ fB(wwwk,i−1) ▷ SGD gradient

13: ϵ̂k,i = ρl
gk,i
∥gk,i∥2

▷ SAM local perturbation

14: gk,i = ∇ fB(wwwk,i−1+ϵ̂k,i) ▷ Local sharpness-aware gradient
15: wwwk,i←wwwk,i−1−ηl[gk,i−σk +(wwwk,i−1−wwwk,0)/β] ▷ Local step w/ ADMM

16: i← i+1
17: end for
18: end for
19: σk← σk− (wwwk,E−w̃wwt)/β ▷ Update the local dual variable
20: Send back to the server the locally updated model wwwt

k =wwwk,E
21: end for
22: σ t+1 = σ t − 1

β |C | ∑k∈S (wwwt
k−wwwt) ▷ Update the global dual variable

23: ∆̃ t
www = ∑

Nk
N (w̃wwt −wwwt

k) ▷ Compute the global pseudo-gradient
24: wwwt+1 =wwwt−∆̃ t

www−βσ t+1 ▷ FEDGLOSS descent step with pseudo-grad ∆̃ t
www

25: end for

Setting

Federated datasets. The proposed experiments leverage established FL bench-
marks [394, 278, 290], encompassing a variety of tasks. The federated versions of
CIFAR10 (10 classes) and CIFAR100 (100 classes) [113] for small-scale classifica-
tion, based on the Dirichlet distribution. α∈ {0,0.05} for CIFAR10 and {0,0.5} for
CIFAR100 [290]. LANDMARKS-USER-160K [278] instead is chosen for large-scale
classification (2,028 classes). For additional information on the datasets, please refer
to Section 3.4.1.

4.4 Beyond Local Sharpness in Federated Learning 111

Models. To demonstrate the effectiveness of FEDGLOSS, experiments are run with
different model architectures. As done in [278, 7], the experiments are run using a
Convolutional Neural Network (CNN) similar to LeNet5 [112] on both CIFAR10
(10k rounds) and CIFAR100 (20k rounds). Additionally, ResNet18 [114] is deployed
on the more complex CIFAR100, running for 10k rounds. For LANDMARKS-USER-
160K, MobileNetv2 [415, 278], accounts for the reduced available resources at the
edge, with T = 1.3k.

Baselines. To study real-world settings in typical cross-device scenarios, only a
small fraction of clients is deemed available at each round. To test varying degrees
of client participation, the participation rate is set to 5% with the CNN on both
CIFARs and 10% with ResNet18, while 50 clients at each round are selected in
LANDMARKS-USER-160K (≈ 4%). FEDGLOSS is compatible with any local
optimizer (Section 4.4.4). The chosen algorithms are SGD and SAM to comply with
previous works and compare FEDGLOSS with state-of-the-art (SOTA) methods
for statistical heterogeneity in FL, distinguishing the results by optimizer type to
highlight performance differences. The SGD-based approaches are FEDAVG [34],
FEDPROX [45], which adds a regularization term to the local training to encourage
proximity between local and global parameters, FEDDYN [288] that uses ADMM for
global consistency, while SCAFFOLD [280] leverages stochastic variance reduction
to reduce the client drift. The SAM-based methods instead are FEDSAM [7, 406],
FEDDYN with SAM as a local optimizer, FEDSPEED [407], which combines SAM

on the client-side and ADMM, FEDGAMMA [408] that combines SCAFFOLD with
client-side SAM, and FEDSMOO [413], using ADMM for both global sharpness and
consistency.

Achieving Local and Global Sharpness Consistency with FedGloSS

To assess the effectiveness of FEDGLOSS in promoting consistency between local
and global loss landscapes, Figure 4.19 replicates the analysis previously conducted
on FEDSAM (Figure 4.16) for direct comparison. The behavior of local models
is shown from both local and global perspectives (referred to as “Local loss” and
“Global loss”, respectively). Additionally, FEDSAM’s global perspective is included
for reference (net surface). Compared to FEDSAM, the gap between local and global
loss landscapes in FEDGLOSS is significantly smaller, and both global and local

112 Generalization through the Lens of the Loss Landscape

(a) Local model trained
on class sea with
FEDGLOSS

(b) Local model trained
on class snail with
FEDGLOSS

(c) Local model trained
on class bear
with FEDGLOSS

(d) Local model trained
on class skyscraper
with FEDGLOSS

(e) Local model trained
on class possum with
FEDGLOSS

2

2.5

3

3.5

4
Loss

(f) FEDGLOSS (net) vs.
FEDSAM (solid) global
model

Fig. 4.19 Global vs. local perspective on FEDGLOSS. CIFAR100 α= 0 with SAM as local
optimizer @ 20k rounds on CNN. (a) - (e): Local models trained on one class, tested on
the local (“Local loss”) or global dataset (“Global loss”). Corresponding global perspective
of local model trained with FEDSAM (net) added as reference. (f): FEDGLOSS (net) vs.
FEDSAM (solid) resulting global model @ t = 20k, computed using the reported clients’
models. FEDGLOSS achieves aligned low-loss flat regions, effectively reducing the
discrepancy between local and global sharpness.

loss surfaces are found in flat and low-loss regions. This suggests that the proposed
method effectively promotes convergence towards aligned low-loss flat regions,
minimizing the discrepancy between local and global sharpness. This results in
a global model residing in flatter minima in the global landscape (Figure 4.19f).
Table 4.13 reinforces the effectiveness of FEDGLOSS. By combining ADMM for
global consistency and server-side SAM for global flatness, FEDGLOSS prioritizes
achieving a flatter global minimum rather than a local one during training, as ev-
idenced by the lowest global maximum eigenvalue λ1,g, but larger λ1,l , across all
clients and methods. This strategy successfully steers the optimization process
towards a flatter global landscape, outperforming FEDSAM and FEDSMOO.

4.4 Beyond Local Sharpness in Federated Learning 113

(a) Local model trained
on class sea with
FEDSMOO

(b) Local model trained
on class snail with
FEDSMOO

(c) Local model trained
on class bear with
FEDSMOO

(d) Local model trained
on class skyscraper
with FEDSMOO

(e) Local model trained
on class possum with
FEDSMOO

2

2.5

3

3.5

4
Loss

(f) FEDGLOSS (net) vs.
FEDSMOO (solid) global
model

Fig. 4.20 Global vs. local perspective on FEDSMOO. CIFAR100 α= 0 with SAM as local
optimizer @ 20k rounds on CNN. (a) - (e): Local models trained on one class, tested on
the local (“Local loss”) or global dataset (“Global loss”). Corresponding global perspective
of local model trained with FEDGLOSS (net) added as reference. (f): FEDGLOSS (net) vs.
FEDSMOO (solid) resulting global model @ t = 20k, computed using the reported clients’
models. Local models trained with FEDGLOSS are found in lower and flatter regions
in the global loss landscape w.r.t. FEDSMOO.

Comparison with FEDSMOO. For completeness, the same analysis is repeated
on FEDGLOSS vs. the best-performing SOTA method FEDSMOO in Figure 4.20,
including the position in the global landscape of local models trained with FED-
GLOSS for reference. While FEDSMOO achieves improved consistency between
local and global sharpness compared to FEDSAM, it falls short of FEDGLOSS in
reaching a flatter global minimum. As the figure shows, FEDGLOSS local models
converge to flatter regions of the global landscape, demonstrably surpassing the
performance of FEDSMOO. These conclusions are confirmed by the values of the
maximum Hessian eigenvalues of the local models, computed on local and global
datasets (Table 4.13): FEDSMOO achieves flatter local minima but sharper global
regions w.r.t. FEDGLOSS.

114 Generalization through the Lens of the Loss Landscape

0.5

1

1.5

2
Loss

(a) CIFAR10 α= 0

0.5

1

1.5

2
Loss

(b) CIFAR10 α= 0.05

2

2.5

3

3.5

4
Loss

(c) CIFAR100 α= 0

2

2.5

3

3.5

4
Loss

(d) CIFAR100 α= 0.5

Fig. 4.21 Visualization of the loss landscapes of the CNN trained with FEDGLOSS (net)
and the best-performing SOTA FEDSMOO (solid). Comparison with varying degrees of
heterogeneity on CIFAR10 (left) and CIFAR100 (right). FEDGLOSS consistently achieves
flatter minima and lower loss values.

Table 4.15 FEDGLOSS against the state of the art on CIFAR datasets with varying degrees
of heterogeneity. Results distinguished by local optimizer, SGD (top) and SAM (bottom).
Comparison in terms of minimum communication cost, higher accuracy (%) and lower
maximum Hessian eigenvalue. Best results in bold. Model: CNN.

Method
CIFAR10 CIFAR100

Comm. α= 0 α= 0.05 α= 0 α= 0.5
Cost Accuracy λ1 Accuracy λ1 Accuracy λ1 Accuracy λ1

C
lie

nt
SG

D FEDAVG 1× 59.9±0.4 66.23±0.50 65.7±1.0 71.14±4.07 28.6±0.7 66.30±3.08 38.5±0.5 68.77±0.96
FEDPROX 1× 59.8±0.5 66.19±0.52 65.6±1.0 71.41±4.40 28.8±0.7 66.34±3.75 38.7±0.4 68.63±1.37
FEDDYN 1× 65.5±0.3 63.94±4.41 70.1±1.2 71.44±8.73 ✗ - ✗ -
SCAFFOLD 2× 25.1±3.7 166.54±6.93 54.0±2.6 180.51±30.08 ✗ - 30.0±1.1 120.01±0.76
FEDGLOSS (ours) 1× 69.5±0.4 58.26±3.49 75.5±0.3 56.28±4.19 42.5±0.6 96.01±9.00 47.9±0.5 107.35±7.5

C
lie

nt
SA

M FEDSAM 1× 70.2±0.9 10.35±0.07 71.5±1.08 9.43±0.28 28.7±0.5 58.38±2.93 39.6±0.5 57.54±1.21
FEDDYN 1× 79.3±3.1 10.04±5.38 81.5±0.6 6.58±0.20 ✗ - ✗ -
FEDSPEED 1× 70.9±0.4 10.92±0.17 72.3±1.1 9.97±0.12 28.9±0.5 58.23±3.18 39.7±0.5 58.00±1.86
FEDGAMMA 2× 58.9±1.8 4.79±0.20 61.9±1.8 4.55±0.20 ✗ - 29.4±1.4 99.86±6.74
FEDSMOO 2× 81.3±0.5 15.37±1.67 82.8±0.6 12.57±0.56 47.8±0.5 28.43±1.97 51.7±0.46 29.23±0.17
FEDGLOSS (ours) 1× 83.9±0.4 2.03±0.05 84.4±0.5 1.93±0.03 50.6±0.6 17.18±0.97 53.4±0.5 16.22±0.35

FedGloSS against the State of the Art

This section compares FEDGLOSS with the state-of-the-art methods described in
Section 4.4.5 on CIFAR10 and CIFAR100 with varying degrees of heterogeneity. The
methods are compared in terms of communication efficiency, accuracy, and global
flatness (measured by the lowest Hessian eigenvalue, λ1). As noted in Section 4.4.4,
FEDGLOSS is compatible with any local optimizer. To clearly illustrate performance
differences based on the choice of local optimizer, results with FEDGLOSS are
reported using both SGD and SAM, distinguishing the comparison by optimizer type.

CNN. The main results obtained with the CNN model are presented in Table 4.15.
Several observations highlight the advantages of FEDGLOSS. It is straightforward
to notice how FEDGLOSS achieves the best results among both SGD and SAM-
based approaches while maintaining communication efficiency. FEDGLOSS with

4.4 Beyond Local Sharpness in Federated Learning 115

FedAVG

FedProx

FedDyn

SCAFFOLD

FedSAM

FedDyn +
SAM

FedSpeed

FedGamma

FedSMOO

FedGloSS
100

101

102

λ
1

α = 0

α = 0.05

(a) CIFAR10

FedAVG

FedProx

SCAFFOLD

FedSAM

FedSpeed

FedGamma

FedSMOO

FedGloSS
100

101

102

λ
1

α = 0

α = 0.5

(b) CIFAR100

Fig. 4.22 Maximum Hessian eigenvalues in CIFAR10 (left) and CIFAR100 (right), with
varying data heterogeneity (α), CNN. Value shown only if the algorithm converged.

local SAM consistently outperforms the best-performing SOTA FEDSMOO by ≈
2.5 percentage points in accuracy across all dataset configurations with half the
communication cost. FEDGLOSS also reaches the flattest global minima (e.g.,
λ FEDGLOSS

1 = 2.03 vs. λ FEDSMOO
1 = 15.37 on CIFAR10 with α= 0), as shown in

Figure 4.21, achieving the best overall performance. FEDGLOSS with local SGD

overcomes by ≈ 4 percentage points all SGD-based approaches. As studied in
[8], FEDDYN suffers from parameter explosion in highly heterogeneous settings,
failing to converge on CIFAR100. Differently, FEDGLOSS successfully employs
ADMM to align global and local solutions, reaching the best results under extreme
heterogeneity. Finally, studies showed SCAFFOLD exhibits limited performance in
complex heterogeneous environments [281, 7], resulting in its inability to converge
on CIFAR alongside FEDGAMMA.

Lastly, Figure 4.22 compares the value of the maximum Hessian eigenvalues
λ1 of the considered algorithms. Results are distinguished by dataset (CIFAR10 on
the left, CIFAR100 on the right), data heterogeneity (α∈ {0,0.05} in CIFAR10 and
α∈ {0,0.5} in CIFAR100) and local optimizer (SGD or SAM). First, as expected,
SAM-based methods achieve flatter minima w.r.t. the counterpart. Notably, the main
competitor FEDSMOO presents higher sharpness than FEDSAM in the simpler CI-
FAR10, regardless of the data distribution. In addition, FEDGLOSS with local SAM

achieves the lowest sharpness (i.e., lowest λ1) on all configurations, outperforming
the state of the art and, specifically, all sharpness-aware methods.

ResNet18. Table 4.16 and Figure 4.23 further confirm FEDGLOSS’ effectiveness,
consistently outperforming SOTA methods with the more complex ResNet18 archi-
tecture, with ≈ 8 points higher accuracy w.r.t. FEDAVG with both SGD and SAM,

116 Generalization through the Lens of the Loss Landscape

1

2

3

4

5
Loss

(a) CIFAR10 α= 0.05
FEDGLOSS (net) vs.
FEDAVG (solid)

1

2

3

4

5
Loss

(b) CIFAR10 α= 0.05
FEDGLOSS (net) vs.
FEDSAM (solid)

1

2

3

4

5
Loss

(c) CIFAR10 α= 0.05
FEDGLOSS (net) vs.
FEDSMOO (solid)

2

3

4

5

6
Loss

(d) CIFAR100 α= 0.5
FEDGLOSS (net) vs.
FEDAVG (solid)

2

3

4

5

6
Loss

(e) CIFAR100 α= 0.5
FEDGLOSS (net) vs.
FEDSAM (solid)

2

3

4

5

6
Loss

(f) CIFAR100 α= 0.5
FEDGLOSS (net) vs.
FEDSMOO (solid)

Fig. 4.23 Loss landscapes with ResNet18 on CIFAR10 α= 0.05 (top) and CIFAR100 α= 0.5
(bottom). FEDGLOSS achieves the flattest and lowest-loss regions in the global landscape.

and +5 w.r.t. FEDSMOO, with the flattest solutions. The accuracy trends can be
found in Figures 4.24 to 4.26.

Homogeneous settings. For completeness, Table 4.17 evaluates FEDGLOSS
against the main methods FEDAVG, FEDSAM, FEDDYN and FEDSMOO in ho-
mogeneous FL settings. Here, client gradients are naturally more aligned due to
reduced client drift [280]. Thus, FEDGLOSS is tested with and without ADMM
for global consistency. As expected, it achieves similar accuracy with or without
ADMM, particularly when using SAM as the local optimizer. However, ADMMs
facilitate convergence to flatter minima (evidenced by lower λ1 values) by aligning
local and global convergence points. Notably, FEDGLOSS achieves the flattest
minima (lowest λ1) across both datasets, and the best accuracy on the more complex
CIFAR100. While FEDSMOO achieves slightly higher accuracy on CIFAR10, FED-
GLOSS finds a flatter minimum and achieves competitive accuracy with significantly
lower communication costs (halved).

4.4 Beyond Local Sharpness in Federated Learning 117

Table 4.16 FEDGLOSS against the state of the art with ResNet18 on CIFAR100 α= 0.5
and CIFAR10 α= 0.05. Comparison in accuracy (%).

Method Comm. cost C100 Accuracy C10 Accuracy

C
lie

nt
S

G
D FEDAVG 1× 37.4±0.2 72.6±0.1

FEDPROX 1× 37.6±0.1 72.2±0.2
FEDDYN 1× 38.8±0.6 70.2±0.6
SCAFFOLD 2× 38.6±0.1 70.8±0.6
FEDGLOSS (ours) 1× 46.7±0.6 79.1±0.5

C
lie

nt
S

A
M FEDSAM 1× 38.5±0.1 72.8±0.1

FEDDYN 1× 39.6±0.8 72.6±0.2
FEDSPEED 1× 38.7±0.6 72.6±0.1
FEDGAMMA 2× 38.8±0.3 72.2±0.1
FEDSMOO 2× 44.8±0.5 75.3±0.6
FEDGLOSS (ours) 1× 47.2±0.2 80.0±0.3

Table 4.17 FEDGLOSS against SOTA FL methods on homogeneous settings with CIFAR

datasets, compared in terms of communication costs, accuracy (%) and maximum Hessian
eigenvalue λ1. Model: CNN. Best result in bold and second best underlined.

Method Comm. ADMM CIFAR10 α= 100 CIFAR100 α= 1000
Cost Accuracy λ1 Accuracy λ1

FEDAVG 1× ✗ 84.0 68.4 50.1 49.4
FEDSAM 1× ✗ 84.7 36.2 53.4 32.6
FEDDYN (SGD) 1× ✓ 83.8 47.8 51.9 91.7
FEDDYN (SAM) 1× ✓ 84.5 27.9 52.5 46.0
FEDSMOO 2× ✓ 85.1 6.4 53.9 24.6

FEDGLOSS (SGD) 1× ✗ 84.0 67.7 50.5 50.8
1× ✓ 83.1 7.1 51.7 47.9

FEDGLOSS (SAM) 1× ✗ 84.8 36.2 55.8 13.9
1× ✓ 84.8 2.8 55.7 11.8

FedGloSS on Real-World Large-Scale Vision Datasets

To further validate FEDGLOSS’s effectiveness, its performance is evaluated on a
large-scale image classification task using the challenging LANDMARKS-USER-
160K dataset, which provides a closer representation of real-world scenarios. Ta-
ble 4.18 compares FEDGLOSS with local SAM against the best-performing base-
lines. Similar to the CIFAR100 experiments (Table 4.15), both SCAFFOLD and
FEDGAMMA fail to converge. FEDGLOSS is among the few methods, alongside
FEDSAM and FEDSMOO, that outperform FEDAVG. Importantly, FEDGLOSS once
again achieves the best overall performance (3.4% improvement over FEDAVG)
while maintaining reduced communication overhead.

ADMM and SAM Interaction in FedGloSS

ADMM-based methods are often prone to parameter explosion in highly heteroge-
neous FL settings with many clients [8]. This occurs as multiple gradients accumulate

118 Generalization through the Lens of the Loss Landscape

0 2000 4000 6000 8000 10000
Round

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGamma

FedSpeed

FedSMOO

FedSMOO + wp

FedGloSS (ours)

(a) α= 0 SAM

0 2000 4000 6000 8000 10000
Round

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGloSS (ours)

(b) α= 0 SGD

0 2000 4000 6000 8000 10000
Round

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGamma

FedSpeed

FedSMOO

FedGloSS (ours)

(c) α= 0.05 SAM

0 2000 4000 6000 8000 10000
Round

10

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)
Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGloSS (ours)

(d) α= 0.05 SGD

Fig. 4.24 Comparison of FEDGLOSS with state-of-the-art approaches. Accuracy trends
with CNN on CIFAR10 with varying degrees of heterogeneity (α∈ {0,0.05}). Methods
distinguished by local optimizer, SAM (a and c) or SGD (b and d). Results of centralized runs
(dashed lines) added as reference. FEDGLOSS consistently achieves the best performance.

Table 4.18 FEDGLOSS with local SAM with MobileNetv2, LANDMARKS-USER-160K

Method Comm. cost Accuracy (%)

FEDAVG 1× 56.3±0.2
FEDPROX 1× 55.0±0.2
FEDDYN 1× 55.2±0.6
SCAFFOLD 2× ✗
FEDSAM 1× 56.7±0.1
FEDDYN (w/ SAM) 1× 56.0±1.3
FEDGAMMA 2× ✗
FEDSMOO 2× 59.5±0.1
FEDGLOSS (ours) 1× 59.7±1.2

in the global dual variable σ (Section 4.4.4), causing the parameter norms to grow
uncontrollably. However, empirical results indicate that this issue is mitigated with
SAM (e.g., see FEDDYN vs. FEDGLOSS in Table 4.15). We hypothesize this is due
to SAM ’s nature: by targeting flat minima, it promotes smaller gradient steps and
minimal weight updates, resulting in a more stable algorithm. Figure 4.27 confirms
our hypothesis by showing SAM’s stability effectively lowers parameter norms and

4.4 Beyond Local Sharpness in Federated Learning 119

0 5000 10000 15000 20000
Round

0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGamma

FedSpeed

FedSMOO

FedSMOO + wp

FedGloSS (ours)

(a) α= 0 SAM

0 5000 10000 15000 20000
Round

0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGloSS (ours)

(b) α= 0 SGD

0 5000 10000 15000 20000
Round

0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)

Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGamma

FedSpeed

FedSMOO

FedGloSS (ours)

(c) α= 0.5 SAM

0 5000 10000 15000 20000
Round

0

10

20

30

40

50

60

A
cc

ur
ac

y
(%

)
Centr. SGD

Centr. SAM

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGloSS (ours)

(d) α= 0.5 SGD

Fig. 4.25 Comparison of FEDGLOSS with state-of-the-art approaches. Accuracy trends
with CNN on CIFAR100 with varying degrees of heterogeneity (α∈ {0,0.5}). Methods
distinguished by local optimizer, SAM (a and c) and SGD (b and d). Centralized upper
bound (dashed lines) added as reference. FEDGLOSS consistently achieves the best
performance.

the consequent risk of explosion, particularly when SAM is applied directly to the
global model, as in FEDGLOSS.

Communication Efficiency with FedGloSS

Communication cost is the main bottleneck in FL [277], making its optimization a
relevant challenge. As previously highlighted, FEDGLOSS considers communication
efficiency its primacy concern. Defined B the number of bits exchanged by FEDAVG

in T training rounds, Table 4.19 studies FEDGLOSS’ communication cost against
the SOTA baselines in terms of rounds necessary to reach FEDAVG’s performance
and quantity of exchanged bits. The ADMM-based methods are usually faster, with
FEDGLOSS being the fastest with ResNet18 and MobileNetv2. While FEDSMOO is
faster when using the CNN model, the transmitted bits double due to its increased

120 Generalization through the Lens of the Loss Landscape

0 2000 4000 6000 8000 10000
Round

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

Centr. SGD

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGamma

FedSpeed

FedSMOO

FedGloSS (ours)

(a) CIFAR100 α= 0.5
SAM

0 2000 4000 6000 8000 10000
Round

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

Centr. SGD

FedAVG

SCAFFOLD

FedDyn

FedSAM

FedGloSS (ours)

(b) CIFAR100 α= 0.5
SGD

0 2000 4000 6000 8000 10000
Round

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Centr. SGD

FedAVG

FedProx

SCAFFOLD

FedDyn

FedSAM

FedGamma

FedSpeed

FedSMOO

FedGloSS (ours)

(c) CIFAR10 α= 0.05
SAM

0 2000 4000 6000 8000 10000
Round

20

30

40

50

60

70

80

90

A
cc

ur
ac

y
(%

)

Centr. SGD

FedAVG

FedProx

SCAFFOLD

FedDyn

FedSAM

FedGloSS (ours)

(d) CIFAR10 α= 0.05
SGD

Fig. 4.26 Comparison of FEDGLOSS with state-of-the-art approaches. Accuracy trends
with ResNet18 on CIFAR100 (top) and CIFAR10 (bottom). Methods distinguished by local
optimizer, SAM (a and c) and SGD (b and d). FEDGLOSS consistently achieves the best
performance, both in terms of final accuracy and convergence speed.

communication cost, making FEDGLOSS the most efficient method in all cases.
The reference performances are 59.9% for CIFAR10 and 28.6% for CIFAR100.

Ablation Studies

Communication-efficient Sharpness. Following the demonstration of global
sharpness minimization’s importance, this paragraph studies the efficacy of using
the pseudo-gradient from the previous round ∆̃ t−1

www (Equation (4.10)) as an estimate
of the sharpness measure. FEDGLOSS uses past gradients as a reliable indication
on the global loss landscape and, by aligning global and local optimization paths
through ADMM, enables consistent trajectories across rounds.

Table 4.20 compares FEDGLOSS with its baseline, NAIVEFEDGLOSS (de-
scribed in Section 4.4.4), which computes the true perturbation ϵ̂ϵϵt at the expense of

4.4 Beyond Local Sharpness in Federated Learning 121

0 2000 4000 6000 8000 10000
Round

25

50

75

‖w
t ‖

FedDyn+SGD

FedDyn+SAM

FedSMOO

FedGloSS+SGD

FedGloSS+SAM

CIFAR10

CIFAR100

Fig. 4.27 Trend of model parameters norm, ∥wwwt ∥2, on SAM-based methods with ResNet18
on CIFAR datasets. SAM reduces the norm and the risk of parameters explosion, success-
fully enabling ADMM in heterogeneous FL.

Table 4.19 Communication costs comparison in terms of number of rounds and transmitted
bits w.r.t. FEDAVG (highlighted). “-” for not reached accuracy, “✗” for non-convergence.

Method

CNN ResNet18 MobileNetv2
CIFAR10 CIFAR100 CIFAR10 CIFAR100 LANDMARKS-USER-160K

α= 0 α= 0.05 α= 0 α= 0.5 α= 0.05 α= 0.5
Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost Rounds Cost

C
lie

nt
SG

D

FEDAVG 10k (1×) 1B 10k (1×) 1B 20k (1×) 1B 20k (1×) 1B 10k (1×) 1B 10k (1×) 1B 1.3k (1×) 1B
FEDPROX 7.6k (1.3×) 0.8B 7.9k (1.3×) 0.8B 18.7k (1.1×) 0.9B 18.6k (1.1×) 0.9B 8.8k (1.1×) 0.9B 8.3k(1.2×) 0.8B - -
FEDDYN 2k (5×) 0.2B 1.9k (5×) 0.2B ✗ ✗ - - 3.5k (2.9×) 0.4B - -
SCAFFOLD - - - - ✗ - - - - 8.9k (1.1×) 1.8B ✗

FEDGLOSS (ours) 3.4k (2.9×) 0.3B 3.8k (2.6×) 0.4B 5k (4×) 0.3B 4.7k (4.3×) 0.2B 2.4k (4.2×) 0.2B 1.9k (5.3×) 0.2B - -

C
lie

nt
SA

M

FEDSAM 6.3k (1.6×) 0.6B 7.8k (1.3×) 0.8B 18.3k (1.1×) 0.9B 16.3k (1.2×) 0.8B 9.2k (1.1×) 0.9B 7.8k (1.3×) 0.8B 1.3k (1×) 1B
FEDDYN 3k (3.3×) 0.3B 4.2k (2.4×) 0.4B ✗ ✗ 4.1k (2.4×) 0.4B 3.5k (2.9×) 0.4B - -
FEDSPEED 6.3k (1.6×) 1.3B 6.9k (1.4×) 1.4B 18.3k (1.1×) 1.8B 15.7k (1.3×) 1.6B 8.3k (1.2×) 0.7B 8.3k (1.2×) 1.7B 1.3k (1×) 2B
FEDGAMMA - - - - ✗ - - 9.3k (1.1×) 1.9B 8.1k (1.2×) 1.6B ✗

FEDSMOO 1.9k (5.3×) 0.4B 2.2k (4.5×) 0.4B 4.5k (4.4×) 0.5B 6.5k (3.1×) 0.7B 2.4k (4.2×) 0.5B 2.3k (4.3×) 0.5B 200 (6.5×) 0.3B
FEDGLOSS (ours) 2.2k (4.5×) 0.2B 2.2k (4.5×) 0.2B 6.3k (3.2×) 0.3B 5.2k (3.8×) 0.3B 2.4k (4.2×) 0.2B 1.9k (5.3×) 0.2B 200 (6.5×) 0.2B

doubled communication costs with a subset of selected clients. The results show that
FEDGLOSS achieves accuracy comparable to NAIVEFEDGLOSS while maintaining
communication efficiency. The performance difference is minimal or negligible.
This aligns with the observed sharpness of the achieved minima, as measured by the
maximum Hessian eigenvalue, λ1. To ensure a fair comparison in communication
cost, Table 4.20 also compares FEDGLOSS’ final accuracy with NAIVEFEDGLOSS’
performance at 50% training progress, showing that FEDGLOSS achieves higher
accuracy with the same number of exchanges, benefiting from the additional global
optimization steps deriving from its communication-efficient strategy. This shows
the proposed approximation does not slow convergence, as also confirmed by the
accuracy trends in Figure 4.28. In particular, this plot reports the accuracy trends of
the two methods, showing that NAIVEFEDGLOSS is slightly faster (≈ 1.1×) than
FEDGLOSS in CIFAR100, while FEDGLOSS surpasses the speed of the baseline af-

122 Generalization through the Lens of the Loss Landscape

Table 4.20 FEDGLOSS vs. its naïve implementation NAIVEFEDGLOSS in terms of commu-
nication cost, accuracy (50% and 100% of training), with change in performance in brackets,
and maximum Hessian eigenvalue λ1. SAM as CLIENTOPT.

Method Comm. CIFAR10 α= 0 CIFAR100 α= 0
Cost Acc@50% (↑) Acc@100% (↑) λ1 (↓) Acc@50% (↑) Acc@100% (↑) λ1 (↓)

NAIVEFEDGLOSS 2× 77.6±0.3 83.9±0.2 2.78±0.13 42.6±0.8 50.8±0.1 16.93±0.27
FEDGLOSS 1× 78.9±0.5 (+1.3) 83.9±0.4 2.03±0.05 (−0.75) 39.5±0.9 (−3.1) 50.6±0.6 (−0.2) 17.18±0.97 (+0.25)

CIFAR10 α= 0.05 CIFAR100 α= 0.5
Acc@50% (↑) Acc@100% (↑) λ1 (↓) Acc@50% (↑) Acc@100% (↑) λ1 (↓)

NAIVEFEDGLOSS 2× 78.7±0.1 84.4±0.2 2.75±0.09 49.4±0.5 53.7±0.3 15.84±0.52
FEDGLOSS 1× 79.7±0.4 (+1.2) 84.4±0.5 1.93±0.03 (−0.82) 47.2±1.1 (−2.2) 53.4±0.5 (−0.3) 16.22±0.35 (+0.38)

ter ≈ 25% of training in CIFAR10. However, both methods reach the same accuracy
at the of training.

0 2500 5000 7500 10000 12500 15000 17500 20000
Round

0

20

40

60

80

A
cc

ur
ac

y
(%

)

CIFAR10, α = 0

CIFAR10, α = 0.05

CIFAR100, α = 0

CIFAR100, α = 0.5

FedGloSS

NaiveFedGloSS

SAM centr.

Ours centr.

Fig. 4.28 Accuracy trends of FEDGLOSS vs. NAIVEFEDGLOSS. The comparison in-
cludes the centralized upper bounds of SAM and the adaptation of FEDGLOSS’ strategy
to the centralized scenario. CNN on CIFAR10 and CIFAR100 with varying heterogeneity
degree (α). NAIVEFEDGLOSS is ≈ 1.1× faster than its efficient alternative FEDGLOSS in
CIFAR100, while FEDGLOSS shows increased convergence speed after ≈ 25% of training
rounds in CIFAR10. However, both methods reach the same accuracy at the of training.
These results motivate the choice of FEDGLOSS over NAIVEFEDGLOSS.

Notably, FEDGLOSS’ strategy in centralized settings lowers the performance
w.r.t. SAM, thus reducing our centralized upper bound w.r.t. NAIVEFEDGLOSS. At
equal performance, FEDGLOSS narrows the gap to the upper bound: −2.4% on
CIFAR10 with α= 0 and −1.9% with α= 0.05 vs. respectively −3.2% and −2.7%
of NAIVEFEDGLOSS w.r.t. SAM. In CIFAR100 instead, −7% on α= 0 and −4.2%
on α= 0.5 of FEDGLOSS vs. −8.1% and −5.2% of NAIVEFEDGLOSS.

Lastly, Figure 4.29 shows that the use of the sharpness approximation does not
steer the optimization path: the models trained with FEDGLOSS and NAIVEFED-
GLOSS end up in the same basin (no loss barrier), with similar flatness. With the goal
of reducing the impact of the communication bottleneck while achieving superior
results, those results confirm our choice of FEDGLOSS over NAIVEFEDGLOSS.

4.4 Beyond Local Sharpness in Federated Learning 123

−0.5 0.0 0.5 1.0 1.5
Interpolation α

0

5

10

15

20

25

30
L

os
s

NaiveFedGloSS FedGloSS

CIFAR10, α = 0

CIFAR100, α = 0

Train

Test

Fig. 4.29 Loss barriers resulting from interpolating NAIVEFEDGLOSS and FEDGLOSS’
models, which are found in the same basin. CIFAR100 and CIFAR10 with CNN.

The Role of Global Consistency and Flatness. Table 4.21 isolates the impact of
global consistency and global sharpness minimization in FEDGLOSS under extreme
heterogeneity on the CIFAR datasets. As previously discussed, using the ADMM
for alignment of local and global convergence points is equivalent to FEDDYN

(Section 4.4.4), and FEDAVG with client-side SAM is FEDSAM. The table shows
both components significantly impact performance, with FEDGLOSS achieving the
best overall results. As expected, SGD-based approaches reach sharper minima than
the SAM-based counterpart, while the proposed method achieves the lowest Hessian
eigenvalue λ1 on both datasets, demonstrating the efficacy of using SAM on the
server side. Furthermore, unlike FEDDYN, FEDGLOSS is not prone to parameter
explosion (marked with ✗), achieving the best results even where FEDDYN fails to
converge [8]. The effectiveness of global sharpness minimization in FEDGLOSS is
further highlighted by comparing its loss landscapes with FEDSAM in Figure 4.30.

Table 4.21 Efficacy of global sharpness minimization in FEDGLOSS. Analysis of the effect
of ADMM for global consistency and server-side SAM for minimizing the global sharpness.
Comparison in terms of accuracy (%) and maximum Hessian eigenvalue, distinguished by
local optimizer. Model: CNN.

CLIENT Method Global Global CIFAR10 α= 0 CIFAR100 α= 0
OPT Consistency Sharpness Accuracy λ1 Accuracy λ1

SAM
FEDSAM ✗ ✗ 70.2±0.9 10.35±0.07 28.7±0.5 58.38±2.93

FEDDYN ✓ ✗ 79.3±3.1 10.04±5.38 ✗ -
FEDGLOSS ✓ ✓ 83.9±0.4 2.03±0.05 50.6±0.6 17.18±0.97

SGD
FEDAVG ✗ ✗ 59.9±0.4 66.23±0.50 28.6±0.7 66.30±3.08

FEDDYN ✓ ✗ 65.5±0.3 63.94±4.41 ✗ -
FEDGLOSS ✓ ✓ 69.5±0.4 58.26±3.49 42.5±0.6 96.01±9.00

124 Generalization through the Lens of the Loss Landscape

0.5

1

1.5

2
Loss

(a) CIFAR10 α= 0

0.5

1

1.5

2
Loss

(b) CIFAR10 α= 0.05

2

2.5

3

3.5

4
Loss

(c) CIFAR100 α= 0

2

2.5

3

3.5

4
Loss

(d) CIFAR100 α= 0.5

Fig. 4.30 Visualization of the loss landscapes of the CNN trained with FEDGLOSS (net)
and FEDSAM (solid). Comparison with varying degrees of heterogeneity on CIFAR10 (left)
and CIFAR100 (right). These plots validate the necessity for global sharpness.

4.4.6 Limitations

A key limitation of FEDGLOSS for real-world deployments is its reliance on stateful
clients for utilizing ADMMs. This necessitates each client to store information about
its most recently trained model. Beyond memory constraints, this requirement might
not be feasible in all cross-device FL settings due to the potential for a large number
of clients and the low probability of any single client being selected multiple times.

4.4.7 Discussion

This work tackled the challenge of limited generalization in heterogeneous Federated
Learning (FL), prioritizing communication efficiency for real-world use. Building
on research linking poor generalization to sharp minima in the loss landscape, the
proposed findings showed data heterogeneity worsens discrepancies between local
and global loss surfaces, a problem not resolved by methods focusing only on local
sharpness. To address this, a novel method, namely FEDGLOSS, finds flat minima
in the global loss landscape with server-side Sharpness-Aware Minimization and
achieves communication efficiency by approximating SAM’s sharpness through past
global pseudo-gradients, distinguishing it from prior approaches. This work revealed
SAM prevents ADMM-related parameter explosion by guiding optimization along
flat directions, enabling stable updates in heterogeneous FL.

Extensive evaluations showed FEDGLOSS outperforms SOTA methods in ac-
curacy, flatness and communication efficiency, making it a strong candidate for
real-world FL applications.

4.5 Window-based Model Averaging Improves Generalization in Heterogeneous
Federated Learning 125

4.5 Window-based Model Averaging Improves Gener-
alization in Heterogeneous Federated Learning

© 2023 IEEE. Reprinted, with permission, from Caldarola, D., Caputo, B., &
Ciccone, M. (2023). Window-based Model Averaging Improves Generalization in
Heterogeneous Federated Learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (pp. 2263-2271).

4.5.1 Motivation

Stochastic Weight Averaging (SWA) [237] has been shown to improve model ro-
bustness and reduce noise during training in heterogeneous FL by applying it to
the server-side aggregation. However, as discussed in Section 4.3.6, this approach
has a key limitation: it can only be effectively utilized in the later training stages
(typically after 75% of the training rounds are complete), limiting its overall impact.
The limitations of early SWA initialization are highlighted in Figure 4.31, where
the performance of FEDAVG+SWA is compared across different starting rounds.
The results demonstrate that SWA applied too early in the training process can lead
to saturation and result in worse performance compared to FEDAVG alone. This
emphasizes the importance of careful tuning for the starting round of SWA.

To overcome this limitation, this work introduces WIMA (Window-based Model
Averaging) to aggregate global models from different rounds using a window-based
approach, effectively capturing knowledge from multiple users and reducing the
bias from the last ones. By adopting a windowed view on the rounds, WIMA can
be applied from the initial stages of training. Importantly, this method does not
introduce any additional communication or client-side computation overhead.

4.5.2 Window-based Model Averaging (WiMA)

To overcome the instability and bias proper of training in heterogeneous cross-device
federated scenarios, this work introduces Window-based Model Averaging (WIMA).
Defined a window size of W rounds, at the end of round t ≥W , WIMA averages the

126 Generalization through the Lens of the Loss Landscape

0 2000 4000 6000 8000 10000
Round

0

5

10

15

20

25

A
cc

ur
ac

y
(%

)

FedAvg

SWA @ 0

SWA @ 1k

SWA @ 2k

SWA @ 5k

SWA @ 7.5k

WiMA (ours)

Fig. 4.31 Accuracy trends of WIMA and SWA starting at different rounds on CIFAR100
with α= 0, using FEDAVG as reference. SWA suffers from early initialization.

last W global models built using FEDAVG as:

wwwt+1
WIMA =wwwt ′+W

WIMA :=
1

W

t ′+W−1

∑
τ=t ′

wwwτ+1
FEDAVG, (4.12)

where t ′ = t−W +1 is the first round comprised in the window frame. The rationale
behind this approach is to enhance robustness of the global model towards distribution
shifts across rounds and diminish bias towards the last-seen clients by averaging
models that are still experiencing significant changes. By considering the last W
rounds, sufficient history is retained to stabilize the model without hindering the
training process, in contrast to what observed with SWA.

Unveiling the Window Contents

To understand the information stored inside the rolling window, Equation (4.12) can
be reformulated using FEDOPT (Equation (3.4)) as follows:

wwwt ′+W
WIMA =

1
W

t ′+W−1

∑
τ=t ′

wwwτ+1
FEDAVG (Equation (4.12))

=
1

W

t ′+W−1

∑
τ=t ′

∑
k∈C τ

Nk

N
wwwτ

k (FedAvg in Eq. 3.4)

=
1

W

t ′+W−1

∑
τ=t ′

(
wwwτ −ηg ∑

k∈C τ

Nk

N
(wwwτ −wwwτ

k)

)
. (4.13)

4.5 Window-based Model Averaging in Heterogeneous Federated Learning 127

For simplicity, it is first assumed all clients have access to the same number
of images, i.e. Nk

N = 1
Kt ∀k ∈ C t . Since the same number of clients is selected at

each round, 1
|C t | =

1
|C |t−1 = Kt ∀t ∈ [T]. By unraveling the summation over the

last W rounds and recursively writing each update wwwτ in Equation (4.13) using
Equation (3.4), WIMA model’s update becomes

wwwt ′+W
WIMA =

1
W

t ′+W−1

∑
τ=t ′

(
wwwτ − 1

Kτ ∑
i∈C τ

(wwwτ −wwwτ
i)
)

=
1

W

t ′+W−1

∑
τ=t ′

(
wwwτ − 1

Kτ ∑
i∈C τ

(
wwwτ−1− 1

Kτ−1 ∑
j∈C τ−1

(wwwτ−1−wwwτ−1
j)︸ ︷︷ ︸

wwwτ

−wwwτ
i
))

Kτ−1=Kτ

=
1

W

t ′+W−1

∑
τ=t ′

(
wwwτ − 1

Kτ ∑
i∈C τ

(
wwwτ−1+

− 1
Kτ ∑

j∈C τ−1

(wwwτ−2− 1
Kτ ∑

l∈C τ−2

(wwwτ−2−wwwτ−2
l)︸ ︷︷ ︸

wwwτ−1

−wwwτ−1
j)−wwwτ

i
))

= . . .

=
1

W

t ′+W−1

∑
τ=t ′

(
wwwτ − 1

Kτ ∑
i∈C τ

(
wwwτ−1− . . .− 1

Kτ ∑
m∈C 1

(www0− 1
|Kτ | ∑

l∈C 0

(www0+

−www0
l)−www1

m)− . . .−wwwτ−1
j)−wwwτ

i
))

As in standard SGD, each model implicitly contains information on the previous
updates. By unraveling the summation over τ ,

wwwt ′+W
WIMA =www0− 1

|K0|
(

∑
i∈C 0

(www0−www0
i)+ . . .+ ∑

i∈C t′
(wwwt ′−wwwt ′

i)︸ ︷︷ ︸
τ≤t ′

+

+
W −1

W︸ ︷︷ ︸
t ′+W−(t ′+1)=W−1

∑
i∈C t′+1

(wwwt ′+1−wwwt ′+1
i)+ . . .+

1
W ∑

i∈C t′+W−1

(wwwt ′+W−1−wwwt ′+W−1
i)

︸ ︷︷ ︸
t ′<τ<t ′+W

)

=wwwt ′− 1
|K0|

(W −1
W ∑

i∈C t′+1

(wwwt ′+1−wwwt ′+1
i)+ . . .

+
1

W ∑
i∈C t′+W−1

(wwwt ′+W−1−wwwt ′+W−1
i)

)

128 Generalization through the Lens of the Loss Landscape

Window over W rounds starting from round t

Fig. 4.32 Overview of WIMA. A window of size W slides across the sequence of global
models generated by server-side aggregation, from round t to round t +W . The WIMA
parameters are calculated as the average of the models within this window.

=wwwt ′− 1
|K0|

t ′+W−1

∑
τ=t ′+1

t ′+W− τ

W ∑
i∈C τ

(wwwτ −wwwτ
i).

By dropping the constraint Nk
N = 1

Kt ∀k ∈ C t and inserting the server learning rate ηg,
the results is summarized as

wwwt ′−ηg

t ′+W−1

∑
τ=t ′

t ′+W− τ

W ∑
i∈C τ

Ni

N
(wwwτ −wwwτ

i), (4.14)

or more in general,

wwwt ′−
t ′+W−1

∑
τ=t ′

t ′+W− τ

W
SERVEROPT(wwwτ ,∆ τ

www,ηg,τ). (4.15)

The term t ′+W−τ/W tends to 1 when τ= t ′, i.e., at the beginning of the queue, and
to 1/W when τ= t ′+W − 1, i.e., in the last round. Thus, Equation (4.15) can be
interpreted as W −1 SGD steps starting from the initial model wwwt ′ with a learning
rate decay that depends on the position in the queue, i.e., t ′+W−τ/W . Indeed, WIMA
assigns higher significance to previous updates, as they are perceived as more stable,
while also integrating new knowledge at a rate proportional to the window size
W . This sets it apart from methods like momentum, which prioritizes more recent
updates.

4.5 Window-based Model Averaging in Heterogeneous Federated Learning 129

0 2000 4000 6000 8000 10000
Round

0

10

20

30

40

50

A
cc

ur
ac

y
(%

)

FedAvg

FedAvg+WiMA

MIME SGDm

MIME SGDm+WiMA

SCAFFOLD

SCAFFOLD+WiMA

MIME

MIME+WiMA

Fig. 4.33 Accuracy trends of different SOTA algorithms on CIFAR100 α= 0 across rounds,
with and without WIMA (dashed lines). The application of WIMA results in smoother and
more stable trends, leading to enhanced robustness and improved performance.

4.5.3 Results in Real-World Vision Scenarios

This section introduces the experimental results of WIMA on the federated CIFAR10,
CIFAR100 (both Dirichlet and PAM), FEMNIST and LANDMARKS-USER-160K. For
the CIFAR datasets, the chosen architecture is ResNet20 with BN layers substitued
with GN ones. Following [34], a 2-layer Convolutional Neural Network is instead
trained on FEMNIST, and MobileNetv2 pre-trained on ImageNet on LANDMARKS-
USER-160K, as in [278, 7]. Additional information on the datasets and the imple-
mentation details can be found in Section 3.4.1 and Chapter A, respectively.

Reducing noise and increasing stability with WiMA

Thanks to the window-based average of global models, WIMA mitigates the negative
impact of statistical heterogeneity inherent in cross-device federated settings. As
shown in Figure 4.33, WIMA effectively smooths the learning trends, resulting in en-
hanced robustness and reduced instability. Notably, these benefits are observed across
all performance levels, with improvements evident in low-performing approaches
(e.g., MIME) as well as the best-performing ones (e.g., SCAFFOLD).

130 Generalization through the Lens of the Loss Landscape

Table 4.22 WIMA combined with state-of-the-art FL algorithms. For each configuration,
the first column reports the accuracy (%) reached by each standalone method; in the second
column, the performance achieved when adding WIMA. Between brackets the improvements
introduced by WIMA, underlined the best ones in each dataset. For simplicity, the table only
reports gains in improvements ≥ 1.5. Best overall accuracy in bold.

Algorithm
CIFAR10 CIFAR100 FEMNIST

α= 0 α= 0.05 α= 0 α= 0.5 PAM
w/ WIMA w/ WIMA w/ WIMA w/ WIMA w/ WIMA w/ WIMA

FEDAVG 64.37 69.95 (↑ 5.3) 68.50 72.69 (↑ 4.2) 23.00 27.91 (↑ 4.9) 31.21 34.45(↑ 3.2) 47.41 48.53 83.59 85.06 (↑ 1.5)

FEDAVGM 73.32 75.72 (↑ 2.4) 73.10 75.30 (↑ 2.2) 24.27 28.77 (↑ 4.5) 31.78 33.97 (↑ 2.2) 55.96 61.63 (↑ 5.7) 85.00 85.26
MIME SGD 74.92 80.65 (↑ 5.7) 78.82 82.81 (↑ 4.0) 17.55 29.05 (↑ 11.5) 27.30 40.37 (↑ 13.1) 54.33 57.44 (↑ 3.1) 85.37 86.40
MIME SGDM 74.58 76.20 (↑ 1.6) 78.39 80.38 (↑ 2.0) 25.78 30.11 (↑ 4.3) 38.42 43.08 (↑ 4.7) 54.62 57.28 (↑ 2.7) 86.67 87.40
MIMELITE 64.42 67.78 (↑ 3.4) 68.27 71.21 (↑ 2.9) 20.00 24.69 (↑ 4.7) 35.56 39.15 (↑ 3.6) 53.97 60.34 (↑ 6.4) 86.82 87.51
FEDCM 78.83 81.73 (↑ 2.9) 73.94 80.28 (↑ 6.3) 19.62 25.29 (↑ 5.7) 36.12 40.10 (↑ 4.0) 53.16 54.12 83.88 84.90
FEDACG 55.27 60.09 (↑ 4.8) 63.20 66.35 (↑ 3.2) 20.09 23.55 (↑ 3.5) 29.74 32.46 (↑ 2.7) 58.88 61.38 (↑ 2.5) 85.73 86.14
FEDPROX 64.25 69.90 (↑ 6.7) 67.82 71.90 (↑ 4.1) 22.59 27.58 (↑ 5.0) 30.70 33.68 (↑ 3.0) 55.91 62.25 (↑ 6.3) 84.50 85.21
SCAFFOLD 81.45 83.96 (↑ 2.5) 83.24 85.17 (↑ 1.9) 45.65 49.77 (↑ 4.1) 50.93 53.75 (↑ 2.8) 56.09 57.64 (↑ 1.6) 85.87 86.61
FEDDYN N/A N/A N/A N/A 5.88 8.48 (↑ 2.6) 20.88 24.54 (↑ 3.7) 57.42 63.00 (↑ 5.6) N/A N/A
ADABEST 66.05 73.95 (↑ 7.9) 71.54 77.42 (↑ 5.9) 24.92 31.41 (↑ 6.5) 37.45 43.81 (↑ 6.4) 54.98 57.57 (↑ 2.6) 84.95 86.02

The Effectiveness of WIMA combined with SOTA

Table 4.22 presents the results achieved by using WIMA on top of state-of-the-art
(SOTA) federated algorithms designed to handle statistical heterogeneity.

Looking at standalone algorithms (i.e., w/o WIMA), SCAFFOLD achieves the best
performances overall. FEDDYN is not able to converge in the most heterogeneous
settings, as already shown in [8, 7]. Notably, WIMA enables each method to
achieve better final accuracy, showcasing substantial improvements compared to
the algorithm without WIMA. The most significant gains are observed on the more
challenging CIFAR datasets. In particular, WIMA proves especially beneficial for
the worst-performing methods, increasing the final accuracy by over 11 points for
MIME SGD on both α values in CIFAR100. On the other hand, using the aggregation
proposed by WIMA is effective even on the overall best-performing SCAFFOLD,
or on the less challenging FEMNIST. Thus, all methods and settings are positively
affected by the increased robustness and stability introduced by WIMA.

The same efficacy of WIMA can be appreciated in Table 4.23, using the large-
scale LANDMARKS-USER-160K. Without redundancy and loss of generality, the
performance of WIMA is presented when integrated with both the standard FedAvg
and the best-performing SCAFFOLD. Even in this more complex vision scenario,
WIMA achieves large gains in accuracy.

4.5 Window-based Model Averaging in Heterogeneous Federated Learning 131

Table 4.23 Large-scale experiments. Results in test accuracy (%) on LANDMARKS-USER-
160K. Best result in bold.

Algorithm w/o WIMA w/ WIMA
FEDAVG 58.17 63.05
SCAFFOLD 62.32 68.30

WiMA vs. SWA

Figure 4.31 compares the application of WIMA or SWA (with various starting
rounds) on top of the baseline, FEDAVG. As already discussed in Section 4.5.1, SWA

suffers from early initialization. Differently, thanks to the windowed view of the
global models across rounds, WIMA can be used from the beginning of training,
and presents a constantly stable and better trend than SWA.

WiMA Enables Reduced Client Participation

In Figure 4.34, the enhanced generalization capability achieved with WIMA allows
narrowing the gap with runs involving higher client participation rates. Specifically,
it compares the results of FEDAVG with and without the proposed method, using
varying numbers of clients selected at each round on CIFAR10. Experiments are run
using batch size 20 to account for more local iterations, highlighting the client drift.
WIMA enables the model with a 10% participation rate to attain a final accuracy
that is at least comparable to the run involving 1.5 times the number of devices
with α= 0 and twice that number with α= 0.05. When 20% of clients are involved
instead, WIMA reaches performances comparable (α= 0) or better (α= 0.05) than
FEDAVG involving half the devices (50% rate).

This result holds significant importance in cross-device settings, where devices
are often unavailable due to factors such as limited battery life, network connectivity
issues, and communication overload (Section 3.3). The ability to achieve improved
results with fewer clients involved aligns favorably with real-life requirements,
making it a valuable contribution.

132 Generalization through the Lens of the Loss Landscape

0

10

20

30

40

50

60

70

A
cc

ur
ac

y
(%

)

(a) α= 0

0

10

20

30

40

50

60

70

80

A
cc

ur
ac

y
(%

)

FedAvg 10%

FedAvg 15%

FedAvg 20%

FedAvg 50%

WiMA 10%

WiMA 20%

(b) α= 0.05

Fig. 4.34 WIMA performances compared with varying client participation rates at each round
on CIFAR10 using FEDAVG. a) WIMA achieves higher accuracy with 10% participation
compared to FEDAVG with 1.5 times the number of devices per round. WIMA with 20
clients performs similarly to FEDAVG with half the clients. b) WIMA with 10% rate
performs almost on par with FEDAVG w/o WIMA selecting 50% of the devices.

Table 4.24 WIMA accuracy (%) with varying W on the CIFAR datasets with α= 0. Best
results in bold.

Window size W
WIMA Accuracy (%)

CIFAR10 CIFAR100
5 67.25 22.71

10 69.12 25.70
50 69.79 22.75

100 69.94 27.91
200 68.74 27.72

Ablation Studies

Window size. The dimension W of the window used in WIMA plays a crucial role
in achieving a trade-off between retaining useful historical information and avoiding
excessively old data. Table 4.24 compares the accuracy reached with varying values
of W on the heterogeneous CIFARs. Smaller W values lead to lower performance
as the WIMA model fails to capture sufficient information from the underlying
distribution, while excessively large W values slow down training by relying on
outdated updates. The optimal results are obtained with W = 100 in both cases.

Better features quality with WiMA. Aiming to understand which part of the
architecture WIMA affects the most, Table 4.25 reports its performances when acting
only on the feature extractor, or the classifier, i.e., the output layer of the model. To

4.5 Window-based Model Averaging in Heterogeneous Federated Learning 133

Table 4.25 Accuracy (%) reached when applying WIMA only on the classifier, the feature
extractor, or all the model parameters (All) as reference.

Dataset α WIMA Classifier WIMA Feature extractor WIMA All

CIFAR10
0 47.76 59.03 59.53

0.05 71.01 76.72 78.87

CIFAR100
0 25.13 27.10 27.91

0.5 36.12 36.29 37.88

allow for more client-side fine-tuning, the batch size is set to 20 rather than 100. The
results demonstrate that WIMA is mainly acting on the feature extractor. Thanks to
the more robust and less biased output features, the classifier is consequently able to
give more accurate predictions.

4.5.4 Discussion

This work proposed Windowed Model Averaging (WIMA) to mitigate the negative
effects of statistical heterogeneity in Federated Learning. WIMA aims to reduce
noise and instability in the learning trends of models trained in non-i.i.d. FL settings.

To address these issues, WIMA averages the last W global models generated
by any server-side optimizer at each training round. This windowed approach
maintains sufficient historical information to stabilize the model without impeding
the training process. WIMA is readily combined with most existing state-of-the-art
FL algorithms, demonstrably improving their performance and leading to smoother,
more stable training trends.

The analysis suggests that WIMA primarily influences the network’s backbone,
generating improved output features that consequently enhance the classifier’s pre-
diction accuracy. Finally, WIMA helps narrow the performance gap compared to
settings with higher client participation rates, a desirable outcome for realistic FL
scenarios.

134 Generalization through the Lens of the Loss Landscape

4.6 Summary

This chapter introduced a new perspective on the use of the geometry of the loss
surface to explain and mitigate the lack of generalization in heterogeneous federated
learning, with a specific focus on vision tasks.

To summarize, the main contributions are as follows:

• Section 4.3 highlights the convergence to sharp minima of models trained in
heterogeneous FL, linking it to poor generalization proper of heterogeneous
federated settings.

• To address this issue, FEDSAM introduces Sharpness-aware Minimization
(SAM) on the client-side training to locally learn better models. The intuition
behind this approach is that the improved local models’ generalization ability
positively reflects on the global model. The work analyzes both SAM and its
adaptive version ASAM as valuable solutions, showing how the latter better
adapts to the FL scenario.

• In addition, Section 4.3 proposes to use SWA (Stochastic Weight Averaging)
on the server-side to aggregate global models across rounds and improve their
robustness to distribution shifts. The combination of server-side SWA and
client-side SAM/ASAM leads to the overall best performance.

• In heterogeneous scenarios, local and global loss landscapes are usually in-
consistent due to the difference in the optimization objectives, as shown in
Section 4.4. This limits the effectiveness of approaches like FEDSAM that
only account for local flatness. FEDGLOSS (Federated Global Server-side
Sharpness) addresses this issue by moving SAM the to server-side optimization,
thus optimizing for global flat minima.

• The use of SAM, especially on the server side, enables effective ADMM
use in FL. While typically ADMM-based methods suffer from parameter
explosion [8], the introduced findings indicate that by targeting flat minima,
SAM encourages smaller gradient steps and minimal weight updates, leading
to a significantly more stable algorithm.

• Lastly, while effective in stabilizing the learning trend and improving the
model robustness, SWA can only be applied during the latest training stages,

4.6 Summary 135

limiting its potential impact. This issue is overcome by WIMA (Window-based
Model Averaging), that can be used from the beginning of training thanks
to a window-based aggregation of global models (Section 4.5). Notably, the
use of WIMA is empirically equivalent to involving more clients for training
at each round, and does not require any additional communication exchange
or client-side computation. These advantages make WIMA an efficient and
scalable solution for real-world deployments.

Chapter 5

Cluster-based Approaches for
Improved Generalization and
Convergence Speed in Heterogeneous
Federated Learning

The way up to the top of the mountain is always longer
than you think. Do not fool yourself, the moment will

arrive when what seemed so near is still very far.

PAULO COELHO

This chapter explores leveraging client data distribution similarities and dis-
similarities to enhance the convergence speed of models trained in heterogeneous
federated learning settings. Section 5.2 introduces FEDSEQ, a sequential training
orchestration method that groups clients with diverse data distributions. In Sec-
tion 5.3 instead the user image style information is used to identify client similarities
and assign them to clusters, with each cluster receiving a dedicated model. Finally,
Section 5.4 describes a method employing a Graph Convolutional Neural Network to
model client interactions and similarities, facilitating weighted knowledge exchange.

5.1 Introduction 137

5.1 Introduction

In heterogeneous federated learning, most of the methods introduced in Section 3.3
struggle to reach the performance of the centralized upper bound. Thus, this chapter
approaches heterogeneity from a different angle, focusing on the training orchestra-
tion rather than modifying the local training objectives, to learn more robust models
before the server-side averaging step, resulting in reduced noise and achieving
centralized performance.

In particular, the presented works leverage similarities in the clients’ data distribu-
tions to build clusters. FEDSEQ (Section 5.2) groups together clients having dissimi-
lar distributions to speed up the training convergence, while LADD (Section 5.3) uses
the local style to assign cluster-specific models, and FEDCG (Section 5.4) clusters
the clients’ images into various domains and models the interactions among domains
through a graph. Both LADD and FEDCG work on unsupervised information.

The results presented in this chapter led to the publication of the following
papers:

• Caldarola, D., Mancini, M., Galasso, F., Ciccone, M., Rodolà, E., & Caputo,
B. (2021).
Cluster-driven Graph Federated Learning over Multiple Domains.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Workshop on Learning from Limited and Imperfect Data (pp.
2749-2758) (CVPRW 2021).

• Zaccone*, R., Rizzardi*, A., Caldarola, D., Ciccone, M., & Caputo, B. (2022).
Speeding Up Heterogeneous Federated Learning with Sequentially Trained
Superclients.
In 2022 26th International Conference on Pattern Recognition (pp. 3376-
3382). IEEE. (ICPR 2022)

• Shenaj*, D., Fanì*, E., Toldo, M., Caldarola, D., Tavera, A., Michieli, U.,
Ciccone, M., Zanuttigh, P., & Caputo, B. (2023).
Learning across Domains and Devices: Style-driven Source-free Domain
Adaptation in Clustered Federated Learning.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (pp. 444-454). (WACV 2023)

138 Cluster-based Approaches for Generalization and Convergence Speed in FL

• Silvi*, A., Rizzardi*, A., Caldarola*, D., Caputo, B., & Ciccone, M. (2024).
Accelerating Federated Learning via Sequential Training of Grouped Hetero-
geneous Clients.
IEEE Access.

5.2 Accelerating Federated Learning via Sequential Training of Grouped
Heterogeneous Clients 139

5.2 Accelerating Federated Learning via Sequential
Training of Grouped Heterogeneous Clients

© 2024 IEEE. Reprinted, with permission, from Silvi, A.*, Rizzardi, A.*, Caldarola,
D.*, Caputo, B., & Ciccone, M. (2024). Accelerating Federated Learning via
Sequential Training of Grouped Heterogeneous Clients. IEEE Access.

© 2022 IEEE. Reprinted, with permission, from Zaccone, R.*, Rizzardi, A.*, Cal-
darola, D., Ciccone, M., & Caputo, B. (2022). Speeding Up Heterogeneous Feder-
ated Learning with Sequentially Trained Superclients. In 2022 26th International
Conference on Pattern Recognition (ICPR) (pp. 3376-3382). IEEE.

Federated Learning facilitates training machine learning models in privacy-
preserving settings by enabling collaboration among edge devices without local data
sharing. However, this approach presents challenges due to the heterogeneity of local
datasets’ statistical distributions and clients’ computational capabilities. Notably,
the presence of highly non-i.i.d. data significantly hinders both the trained neural
network’s performance and its convergence rate, requiring more communication
rounds to achieve centralized performance.

This work proposes FEDSEQ (Federated Learning via Sequential Superclients
Training), a novel framework that leverages the sequential training of heterogeneous
client subgroups (termed superclients) to learn more robust models before server-side
averaging and speed up convergence, without breaking any privacy constraints. The
code is available at https://github.com/RickZack/FedSeq.

5.2.1 Introduction

FEDSEQ (Federated Learning via Sequential Superclients Training) is a novel
approach addressing statistical heterogeneity in FL, based on sequential training
among clients, carried out in parallel across distinct client groups to harness the
distributed setting’s parallelism. By allowing the model to access a larger portion
of data before the averaging step, the negative effects of data heterogeneity are
mitigated, speeding up the training and moving closer to the desired minimum. By
grouping clients having diverse local distributions together in a superclient, we
simulate the existence of a larger, homogeneous dataset while maintaining data

https://github.com/RickZack/FedSeq

140 Cluster-based Approaches for Generalization and Convergence Speed in FL

Fig. 5.1 To mitigate statistical heterogeneity in FL, FEDSEQ forms superclients by grouping
clients with distinct local data distributions (different colors), creating simulated larger and
homogeneous datasets. Sequential training takes place within the selected superclients at
each round. The current global model is received by the first client in the chain and sent back
by the last one.

privacy, as illustrated in Figure 5.1. Clients within the same superclient form a
chain and train the received model in a sequential manner. The final updates are
sent from the last client to the server and merged there. Intuitively, this scheme
emulates the training dynamics observed on devices with more extensive and
evenly distributed datasets, resulting in a favorable setting for FL.

Communication is known to be the main bottleneck in federated training, e.g.,
due to the clients’ unavailability and unreliability Section 3.3. While sequential train-
ing provides robustness against data heterogeneity, it can potentially result in slower
training progress. This occurs when slower clients end up in the same superclient,
leading to increased waiting times on the server side. To overcome this limitation,
FEDASYNCSEQ introduces asynchronous client-server communication by im-
plementing sequential training among superclients. Rather than merging updates
at the end of each training round, FEDASYNCSEQ allows the model updated by
one superclient to be sent directly to another one, enabling faster groups of clients
to complete multiple training iterations before merging their updates. At regular
intervals of every R rounds, the updates received by the server, potentially stemming
from varying numbers of training iterations, are aggregated. This approach not only
reduces the number of aggregation and synchronization steps with the server but also
allows the model to be trained on a larger number of clients before the averaging
step. Consequently, this brings the model closer to a centralized scenario, as ideally,
it encounters all superclients before being merged.

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients141

To further increase the parallelism as training moves on, FEDSEQ2PAR dynami-
cally updates the number of superclients and their corresponding client assignments
as the rounds progress. It prioritizes sequentiality, i.e. larger groups, during the initial
stages, and gradually transitions to parallelism, emphasizing smaller groups in the
later stages. This allows easier adaptation to varying numbers of devices and their
respective distributions.

Lastly, the robustness of the algorithm against threats posed by potentially mali-
cious participants is a crucial aspect in the FL paradigm [416, 364, 365]. Malevolent
clients may attempt to disrupt the training process by manipulating their input data
[417, 418], or even try to infer private information of other clients by exploiting the
received global model [252]. To assess whether the novel client-to-client sequential
training approach introduces any privacy vulnerabilities, this work conducts tests
against these attacks and observes that FEDSEQ often exhibits higher privacy
resistance compared to the widely-used FEDAVG [34], considered the de-facto
standard algorithm for Federated Learning.

To summarize, the main contributions are the following:

• The introduction of FEDSEQ, a new FL algorithm that learns from groups of
sequentially-trained clients (superclients).

• Several lightweight procedures to compare the clients’ probability distributions,
analyzing their impact on the creation of superclients.

• Three grouping strategies are evaluated and compared with the naïve random
assignment, showing the impact of group quality on the algorithm convergence.

• To speed up training, FEDASYNCSEQ decreases the need for synchronization
between superclients and server, and FEDSEQ2PAR increases parallelism.

• The extensive empirical analyses and tests demonstrate that the developed
approaches outperform the state of the art in terms of convergence performance
and speed in both i.i.d. and non-i.i.d. scenarios.

• FEDSEQ is shown to resist to common attacks against clients’ privacy, demon-
strating its robustness.

142 Cluster-based Approaches for Generalization and Convergence Speed in FL

5.2.2 Federated Learning via Sequential Superclients Training

Building upon the problem formulation introduced in Section 3.2, this section
details the components of the proposed method, distinguishing between FEDSEQ,
FEDASYNCSEQ and FEDSEQ2PAR.

Building Superclients

This section details how to create a superclient S from users with diverse local
distributions while respecting the privacy constraints, i.e., without accessing clients’
data directly. Ihe overall goal is to group clients with diverse data distributions
into superclients {Si}NS

i=1, aiming to minimize the divergence in distribution among
superclients. Sequential training is then performed by clients within the same group.
Intuitively, this approach allows local models to accumulate knowledge from the
overall data distribution, even when client datasets exhibit significant heterogeneity.

Assigning clients to equally-sized groups while minimizing distribution distance
is a challenging problem similar to the bin packing problem [419], and is NP-hard
in nature. Thus, this work proposes using multiple greedy strategies to estimate
the local distributions in a privacy-preserving way and solve the clients’ clustering
problem, being flexible towards dynamic and constantly evolving FL environments.

To this end, different grouping criteria GS are introduced, based on i) a client
distribution estimator ψ(.), providing privacy-preserving statistics on the local data
distribution, ii) a metric τ , for evaluating the distance between the estimated data
distributions, and iii) a grouping method φ(.), to assemble dissimilar clients, i.e.
GS := {ψ(.);τ ;φ(.)}. The approach is depicted in Figure 5.2.

Privacy-preserving Estimation of Clients’ Data Distributions. The model fwww
can be defined as a combination of a deep feature extractor hwwwfeat : X →Z and a
classifier gwwwclf : Z →Y , where www= {wwwfeat,wwwclf} is the entire set of model parameters
and Z the output feature space. The classification output is given by g◦h : X →Y ,
where the subscripts are dropped to ease the notation.

FEDSEQ exploits a pre-training phase to estimate the users’ data distribution.
Each client k ∈ C trains a common random model www0 on its dataset Dk for E epochs,

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients143

Building superclients

Distribution
estimate

Clients
grouping

Fig. 5.2 FEDSEQ pre-training phase to build superclients. a) The initial random global model
fwww0 is sent to all the clients, which train it using their local data Dk ∀k ∈ C . b) The local data
distributions are estimated (ψ) using the clients’ updates while preserving their privacy. c)
Based on the grouping strategy φ , clients are assigned to NS superclients.

resulting in fwww0
k
, which serves as a starting point for the following distribution

estimation approaches. The proposed client distribution estimators are

• ψclf: as the model classifier is biased towards the training data [201], its
parameters www0

k,clf serve as a proxy for the client’s local data distribution.

• ψconf relies on the predictions of the local models on a server-side public
dataset Dpub, i.e., { fwww0

k
(z) =: f 0

k , z ∈Dpub, k ∈ C }. Dpub contains J samples
for each class c ∈ [NC]. The predictions are averaged by class as pk,c =
1
J ∑x∈Dc f 0

k (x), where Dc ⊂Dpub is contains only samples of class c. The k-th
client’s confidence vector is defined as:

pk := softmax({pk,1, ..., pk,NC}) ∈ [0,1]NC (5.1)

Since the k-th model’s predictions are favorable towards the majority of the
classes seen in Dk [420], pk is an acceptable privacy-preserving representa-
tion of Dk. However, ψconf relies on the availability of a public dataset that
accurately reflects the overall data distribution — a requirement that can be
challenging to meet.

• ψt2v: to overcome the limitations of ψconf, ψt2v extracts vectorial represen-
tations of given tasks based on Task2Vec[421]. The representation is an

144 Cluster-based Approaches for Generalization and Convergence Speed in FL

approximation of the Fisher Information Matrix (FIM), defined as

F := E(x,y)∼ fwww(x,y)[∇wwwlog fwww(y|x)∇wwwlog fwww(y|x)T]. (5.2)

The FIM serves as a metric for the information content of a parameter regarding
the joint distribution fwww(x,y). If it has limited influence on the classification
performance for a specific task, its corresponding entry in the FIM will be low.
Thus, the FIM represents the task itself, here corresponding to each client’s
local dataset. Starting from a pre-trained set of weights w̃ww0, the classifier is fine-
tuned on Dk and the FIM is computed on the feature extractor parameters. The
resulting representations are demonstrated to capture taxonomic and semantic
similarities between tasks.

In the following sections, D̃k will indicate the estimate provided by ψ(.) for the
k-th device’s data distribution.

Grouping Clients. DS =
⋃

k∈CS
Dk is defined as the union of the data from the

clients CS ⊂ C belonging to a superclient S. The aim is to find the maximum
amount of superclients NS satisfying the following constraints: i) minimum number
of samples |DS|min, and ii) maximum number of clients KS,max per superclient. Given
ψ(.) and τ , FEDSEQ approximates the solution of the problem using:

• φrand, a naïve yet practical method that randomly assigns clients to superclients
until the stopping criterion is met.

• φkmeans: K-means [422] is first applied to obtain NS homogeneous clusters.
Each superclient is formed by iteratively extracting one client at a time from
each cluster, until |DS| ≥ |DS|min and KS ≤ KS,max∀S.

• φgreedy initially assigns one random client ki ∈ C to the superclient S. The next
k j ∈ C \{ki} is chosen so as the distance between ki and k j is maximized,
i.e. max j∈[K] τ (D̃ki,D̃k j). The process is repeated by iteratively maximiz-
ing τ (D̃ j,

1
|S|∑i∈|S| D̃i), with |S| being the cardinality of S, until the defined

constraints are met.

• While highly effective [423], the best-performing φgreedy is hindered by its
iterative nature, leading to slower execution. In response, the Inter-Cluster

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients145

Grouping (ICG) algorithm from [322] is adapted to the proposed approach
(φICG). Differently from ICG that requires superclients of equal size, FEDSEQ

relaxes this constraint by redistributing the unassigned clients.

The output of this procedure is a set S of NS superclients, where each super-
client Si includes KSi := |CSi| ≤ KS,max clients and |DSi| ≥ |DS|min data points, with

∑Si∈S KSi = K.

Sequential Training

This work proposes three alternatives to leverage sequential training within the
created superclients, namely FEDSEQ, FEDASYNCSEQ and FEDSEQ2PAR. The
approaches are summarized in Algorithm 6.

FedSeq. As shown in Figure 5.3, the clients {ki,1, . . . ,ki,|Si|} ∈ C belonging to
the superclient Si ∀i ∈ [NS] form a chain performing sequential training. At each
round t, the server selects a subset of St ∈S superclients. Within each superclient
Si, the first device ki,1 receives the global model fwwwt from the server and locally
trains it for Ek epochs on Dki,1 . The updated parameters wwwt+1

ki,1
are sent to the next

client of the sequence ki,2. Such training procedure continues until the last client k|Si|
updates the received model and sends it back to the server. The passage over all the
clients of the chain can be repeated ES times allowing a ring communication strategy.
However, ES ̸= 1 leads to an increase in communication as multiple messages have
to be exchanged between clients, which is why we discourage this approach and set
ES = 1 in our experiments. On the server-side, the superclients updates are averaged
following Equation (3.5). Intuitively, the training of the model over multiple clients’
data before the averaging step simulates the existence of a larger, homogeneous
dataset.

FedAsyncSeq. In realistic scenarios, synchronous federated training can become
impractical, especially when considering factors such as the latency of slower devices.
The delays can be further exacerbated by FEDSEQ since there is no control over the
capabilities of clients’ systems, and multiple slow clients may be grouped together
within the same superclient, leading to a significant increase in server-side waiting
time. To mitigate the challenges posed by latency and ensure efficient training,

146 Cluster-based Approaches for Generalization and Convergence Speed in FL

Algorithm 6 FedSeq, FedAsyncSeq and FedSeq2Par

Require: fwww0 , GS, KS,max, |DS|min. Epochs E, Ek, ES. T rounds. Clients C . Fraction
C of superclients selected at each round.

1: Growth function and parameters fgr, αgr and βgr.
2: S ← CREATE_SUPERCLIENTS

(
fwww0,GS,e,KS,max, |DS|min,K, fgr(αgr,βgr; t)

)
3: NS← |S |
4: www← [www0, . . . ,www0]1×CNS , p← [0, . . . ,0]1×CNS

5: for t = 1 to T do
6: if fgr(t,αgr,βgr)> |NS| then
7: S ← CREATE_SUPERCLIENTS(fwww0 ,GS,e,K, fgr (αgr,βgr; t))
8: NS← |S |
9: end if

10: S t ← Subsample fraction C of NS superclients
11: for Si ∈S t in parallel do
12: Shuffle clients in Si
13: wwwt

Si,0←wwwt ▷ FedSeq and FedSeq2Par
14: wwwt

Si,0←www[i]
15: for eS = 1 to ES do
16: wwwt+1

Si
← SEQUENTIALTRAINING(wwwt

Si,0, Ek)
17: end for
18: www[i]←wwwt+1

Si
, pi← pi + |DSi|

19: end for
20: wwwt+1← FEDAVG ({wwwt+1

Si
, ∀Si ∈S t}) ▷ FedSeq and FedSeq2Par

21: if t mod NS = 0 then
22: wwwt+1← ∑i

pi
p www[i], p = ∑i pi

23: www← [wwwt+1, . . . ,wwwt+1]1×CNS , p← [0, . . . ,0]1×CNS

24: end if
25: end for

FEDASYNCSEQ leverages sequentiality at the superclient level while allowing
asynchronous updates to be merged (Figure 5.4). Instead of aggregating the models
after every round, the server does so every R rounds. During this time frame, the
model received by each superclient Si is instantly sent to another random superclient
S j (where i ̸= j). This approach allows the fastest chains to continue with additional
training iterations instead of waiting for slower ones. After every R rounds, the
most recent updates from each chain of superclients, which may originate from
distinct rounds, are combined. This approach shares similarities with asynchronous
settings, where models are aggregated as soon as they become available. It is worth
noting that R can potentially equal T , meaning that the updated models are only

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients147

Training with FedSeq at round

Select superclients

Models aggregation

Round

Fig. 5.3 Sequential training with FEDSEQ. At each round t, a subset of superclients (here S1
and S2) is selected and receives wwwt , which is trained sequentially by the clients. Final updates
are sent back to the server, where they are aggregated with FEDAVG.

averaged at the end of training. This strategy reduces the number of aggregation
and synchronization steps with the server while enabling the model to potentially
observe the entire dataset before averaging. This brings the paradigm closer to the
centralized setting while still leveraging FL’s parallelism.

FedSeq2Par. Sequential training of the model through a long chain of clients with
highly diverse data distributions may lead to catastrophic forgetting [401]. This refers
to the model forgetting the knowledge acquired from the initial users while becoming
overly specialized to the most recently seen datasets [322]. Additionally, maintaining
a static sequence of clients within each superclient may result in the model learning
information based on the order of the clients, introducing biases or unintended
patterns. Building upon [322], this work introduces the Sequential-to-Parallel (STP)
approach in FEDSEQ2PAR to overcome these issues. Sequential training is exploited
during the initial stages, facilitating information exchange among heterogeneous
clients. Parallelism is gradually introduced by incrementally increasing the
number of superclients and reducing their sizes, promoting faster convergence.
The dynamic creation of superclients allows accounting for new clients, while
eliminating potential biases related to the static nature of superclients. Formally,
in each training round t, STP dynamically constructs an increasing number of
superclients {Si} fgr(αgr,βgr;t)

i=1 , where fgr(·, ·; ·) is a non-decreasing growth function
dependent on the training round t, and the hyperparameters αgr, βgr ∈ R+ control

148 Cluster-based Approaches for Generalization and Convergence Speed in FL

Round Round Round Round

Training time

Fig. 5.4 Training with FEDSEQ2PAR with R = 3. At round t, the global model is sent to the
selected superclients {S1,S5,S6}, having varying latency (full arrows). The first superclient
to complete training (S1) marks the start of the new round t + 1. As soon as the server
receives the updated model, it sends it to another superclient (e.g., from S1 to S4). Within the
time it takes for S5 to finish training, the faster S1 and S4 can also complete theirs. After R
rounds, the latest updates from each chain of superclients (circled in red) are combined, and
the process begins anew.

the growth rate and the initial number of superclients respectively. The choice of fgr

is critical for the behavior of STP. As in [322], three possible growth functions are
taken into account: linear, allowing for a smooth growth; logarithmic, promoting an
initial faster dynamic; exponential, with slower changes at first,

flinear(αgr,βgr, t) = βgr[αgr (t−1)+1], (5.3)

flog(αgr,βgr, t) = βgr[αgr lnt +1], (5.4)

fexp(αgr,βgr, t) = βgr(1+ αgr)
t−1. (5.5)

5.2.3 Experimental Results

This section introduces the experimental results on the proposed methods, highlight-
ing their improved convergence speed and generalization performance.

Datasets. FEDSEQ, FEDASYNCSEQ, and FEDSEQ2PARare evaluated on the fed-
erated CIFAR and FEMNIST image classification datasets. All datasets exhibit hetero-
geneous distributions concerning label skew. Differently from the CIFAR datasets,
FEMNIST also presents notable feature shifts attributed to diverse calligraphy styles
depicting the same letter or number, and the local dataset cardinality significantly

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients149

varies across clients. In order to set up a heterogeneous scenario for CIFAR10 and
CIFAR100, the local class distribution is sampled from a Dirichlet distribution with
α∈ {0,0.2,0.5} [290]. Both CIFAR datasets are divided into 500 clients with 100
images each. The i.i.d. and non-i.i.d. data distributions of FEMNIST introduced in
[394] follow the writers’ ownership, i.e., each client is a distinct writer. The non-i.i.d.
split accounts for both label skew and feature shift.

The methods are additionally tested on NLP (Natural Language Processing) tasks,
using SHAKESPEARE [394] and STACKOVERFLOW [424] datasets for next character
and next word predictions respectively. The i.i.d. and non-i.i.d. distributions of
SHAKESPEARE reflect some Shakespearean characters, with 100 clients owning
around 3,743 samples each, while the implementation of STACKOVERFLOW follows
[275], representing a realistic cross-device settings thanks to a larger number of
clients, 40k in total. As done in [275], due to its prohibitively large number of clients
and examples, testing on STACKOVERFLOW full dataset is performed only at the
end and a subsample is used during training.

More in-depth details can be found in Chapter A.

Algorithms. To validate the effectiveness of the proposed approaches, this study
conducts a comparison with state-of-the-art (SOTA) algorithms for heterogeneous FL.
In addition to the standard FEDAVG, FEDSEQ and its variants are tested against FED-
PROX, SCAFFOLD, FEDDYN, and FEDCYCLIC [425], which cyclically exchanges
models across clients without relying on a central server. In particular, FEDCYCLIC

can be seen as the extreme case of FEDSEQ with NS = 1 and no server-side aggre-
gation. FEDCYCLIC was chosen over FEDSTAR (from the same paper [425]) due
to the latter’s impractical communication overhead in realistic scenarios. FEDSTAR

indeed requires each client to send its updates to all the other participants, leading
to an exponential increase in communication costs. To ensure a fair comparison,
FEDCYCLIC is not trained on all clients at each round but randomly selects a fraction
C of the available ones. The same applies to all the other approaches and, most
importantly, the number of model updates within rounds is the same for all the
compared methods.

150 Cluster-based Approaches for Generalization and Convergence Speed in FL

Table 5.1 Comparison with state-of-the-art FL algorithms. Color coding: first, second and
third best results.

Algorithm CIFAR10 CIFAR100 FEMNIST SHAKESPEARE STACKOVERFLOW
α= 0 α= 0.2 α= 0.5 α= 0 α= 0.2 α= 0.5 NIID IID NIID IID -

Centralized 85.64±0.07 54.97±0.19 87.52±0.27 52.00±0.02 28.50±0.20

FEDAVG 71.27±0.29 76.32±0.36 77.39±0.43 42.68±0.22 48.79±0.55 49.51±0.61 81.55±0.11 83.06±0.12 48.68±0.12 48.50±0.07 24.68±0.15

FEDPROX 71.52±0.08 76.21±0.50 77.38±0.57 42.83±0.18 48.84±0.65 49.44±0.49 81.55±0.05 83.07±0.05 48.73±0.12 48.51±0.15 24.59±0.19

SCAFFOLD 78.82±0.15 78.02±1.13 78.51±0.24 42.17±0.10 51.06±0.03 51.03±0.12 82.56±0.07 82.70±0.01 50.91±0.19 50.91±0.12 26.10±0.15

FEDDYN 83.31±0.15 82.31±0.41 82.97±0.40 50.35±0.27 53.50±0.76 54.32±0.63 81.95±0.42 82.00±0.13 51.77±0.03 51.94±0.09 25.51±0.02

FEDCYCLIC 82.45±0.18 82.61±0.27 83.49±0.08 47.46±0.42 49.93±0.16 50.47±0.27 85.46±0.05 87.47±0.09 50.25±0.03 50.68±0.03 26.44±1.68

FEDSEQ (ours) 81.89±0.28 82.19±0.26 82.77±0.12 45.87±0.45 49.26±0.40 49.63±0.42 87.11±0.03 87.48±0.03 51.70±0.13 51.82±0.00 28.91±0.21

FEDASYNCSEQ (ours) 83.03±0.31 83.17±0.27 83.57±0.22 50.23±0.11 51.39±0.18 51.27±0.24 86.96±0.07 87.20±0.01 51.82±0.13 51.88±0.04 27.44±0.35

FEDSEQ2PAR (ours) 83.68±0.14 84.21±0.40 84.26±0.06 51.46±0.23 51.44±0.02 51.72±0.10 87.58±0.15 87.95±0.05 52.75±0.20 52.71±0.05 29.79±0.33

FedSeq Details. FEDSEQ and FEDSEQ2PAR build superclients using ψt2v and
the best corresponding φ(·). Local pre-training runs for 10 epochs chosen from
{1,5,10,20,30,40} (see Chapter A for details). R = NS in FEDASYNCSEQ.

FedSeq Outperforms the State of the Art

Table 5.1 shows that FEDSEQ and its extensions are either competitive or outperform
other SOTA algorithms on all tasks and datasets, especially on severe heterogeneous
data distributions. It is important to underline that both SCAFFOLD and FEDDYN

require stateful clients, and SCAFFOLD doubles the size of the communicated mes-
sage, differently from this work’s approaches. Being the extreme case of FEDSEQ

with NS = 1, FEDCYCLIC reaches similar performances on most of the datasets, im-
plying that having one single superclient containing all clients does not dramatically
increase performances and instead hugely increments the amount of training time, as
each client needs to wait for the previous one’s update.

Focusing on the extensions of FEDSEQ, both FEDASYNCSEQ and FEDSEQ2PAR

improve the baseline’s performances on all tasks. By aggregating superclients
updates every NS rounds not only the synchronization between clients and server
is less frequent, but the reached accuracy also improves. FEDSEQ2PARachieves
the best results in most cases, exploiting the benefits of sequential training and
parallelism, being the second best to FEDDYN only in the case of α= 0.2 and α= 0.5
in CIFAR100. However, differently from FEDSEQ2PAR, FEDDYN relies on stateful
clients, posing a significant challenge for real-world deployments with billions of
edge devices [8, 7]. In such large-scale settings, individual devices are unlikely to be
called upon for multiple training rounds. This transience renders their local states
obsolete quickly, compromising their effectiveness in subsequent training iterations.
The results obtained by FEDDYN on the more realistic FEMNIST (3,500 clients)

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients151

Fig. 5.5 Accuracy convergence plots of FEDSEQ, FEDASYNCSEQ, FEDSEQ2PAR (in bold)
and SOTA algorithms on vision datasets. On average, FEDSEQ2PAR is the best-performing
algorithm. All the proposed approaches can be distinguished for their improved speed.

underscore this point: it outperforms the baseline FEDAVG by only ≈ 0.4 points
in accuracy. In contrast, FEDSEQ’s variants, especially FEDSEQ2PAR, achieve a
significant improvement of +6 points over FEDAVG. These results confirm the
limitations of FEDDYN in real-world cross-device scenarios, where its reliance on
stateful clients becomes a significant disadvantage.

Convergence Speed. Figure 5.5 evidently shows that FEDSEQ and its extensions
not only achieve superior results but also exhibit accelerated performance. Figure 5.6
compares the rounds necessary to each algorithm to reach 70% and 90% of the
centralized accuracy on CIFAR10/100 and FEMNIST. FEDSEQ consistently demon-
strates significant improvements in convergence speed across all tasks, achieving a
speed-up factor of over 18x on FEMNIST presenting high cross-device variability.
Achieving superior overall accuracy, asynchronous training, and reduced latency
compared to FEDSEQ does not compromise the convergence speed of FEDASYNC-
SEQ. FEDSEQ2PAR notably improves convergence speed on all tasks and datasets
through its STP approach. FEDDYN enhances the convergence rates of FEDAVG

but experiences parameter explosion in highly imbalanced settings [8], requiring
gradient clipping techniques. Among the considered methods, FEDCYCLIC achieves
comparable or better results than FEDSEQ2PAR. However, it is important to note
that FEDCYCLIC, as an extreme case of FEDSEQ with NS = 1, eliminates any form
of parallelism inherent in distributed and FL settings. The results highlight the

152 Cluster-based Approaches for Generalization and Convergence Speed in FL

0 1000 2000 3000 4000 5000 6000 7000 8000

Rounds

70

75

80

85

90

P
er

ce
n

ta
ge

of
ce

n
tr

al
iz

ed
ac

cu
ra

cy

FedAvg

FedProx

SCAFFOLD

FedDyn

FedCyclic

FedSeq (ours)

FedAsyncSeq (ours)

FedSeq2Par (ours)

(a) CIFAR10 α= 0

0 2000 4000 6000 8000 10000 12000 14000

Rounds

70

75

80

85

90

P
er

ce
n

ta
ge

of
ce

n
tr

al
iz

ed
ac

cu
ra

cy

FedAvg

FedProx

SCAFFOLD

FedDyn

FedCyclic

FedSeq (ours)

FedAsyncSeq (ours)

FedSeq2Par (ours)

(b) CIFAR100 α= 0

0 100 200 300 400 500 600

Rounds

70

75

80

85

90

P
er

ce
n

ta
ge

of
ce

n
tr

al
iz

ed
ac

cu
ra

cy

FedAvg

FedProx

SCAFFOLD

FedDyn

FedCyclic

FedSeq (ours)

FedAsyncSeq (ours)

FedSeq2Par (ours)

(c) FEMNIST NIID

Fig. 5.6 Convergence rates in non-i.i.d. scenarios. Each plot shows the rounds necessary for
each method to reach 70% and 90% of the centralized accuracy. Not all the algorithms reach
the 90% target (missing line). FEDSEQ and its variants (in bold, stars) outperform the others
in all settings.

significance of sequential training for rapid convergence in initial rounds, while
the superior performance of FEDSEQ2PAR in later stages underlines the role of
parallelism in achieving both improved final performance and convergence speed up.

Communication Costs

Communication is the main bottleneck of federated training [277], due to the overload
of the networks and message size. Thus, when comparing the performance of FL
algorithms, their impact on the communication cost is of the utmost importance.
As already shown in Figures 5.5 and 5.6, all the introduced methods speed up the
convergence, implying that fewer communication rounds are needed to reach a target
performance. This work additionally compares the number of client-server exchanges
required by the proposed method (FEDSEQ) with leading SOTA algorithms. Table 5.2
demonstrates that FEDSEQ achieves less network communication thanks to its
client-to-client approach. Similar analyses can be easily extended to FEDSEQ2PAR

and FEDASYNCSEQ.

Given the total number of clients K, the fraction selected at each round C, the
total number of superclients NS, and the rounds T , the first analyzed scenario assumes
all superclients to be equally sized, i.e., KSi = KS j = K/NS =: KS∀i ̸= j. In FEDAVG,
the server sends the global model to the C ·K selected clients, which then send
back the updated version. As summarized in Table 5.2, this process accounts for
2C ·K exchanges over the network. The same goes for FEDPROX and FEDDYN.
SCAFFOLD requires double the communication. In FEDSEQ with equal KS instead,
the server-to-client (S2C) and client-to-server (C2S) communication only happens
between the first and last clients of the chain of each superclient respectively. Since

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients153

Table 5.2 Number of communication exchanges from server to client (C2S), client to server
(S2C) and client to client (C2C) at each round t and across all rounds T .

Method S2C C2S C2C Total Total
@ round T rounds

FEDAVG CK CK 0 2CK 2TCK
FEDPROX CK CK 0 2CK 2TCK
FEDDYN CK CK 0 2CK 2TCK
SCAFFOLD 2CK 2CK 0 4CK 4TCK
FEDCYCLIC 1 1 CK−1 CK +1 T (CK +1)
FEDSEQ KSi = KS j CNS CNS

(
K
NS
−1
)

CNS C (NS +K) TC(NS +K)

FEDSEQ KSi ̸= KS j CNS CNS ∑Si∈St KSi −CNS CNS+ TCNS+
+∑Si∈St KSi +∑t∈[T] ∑Si∈St KSi

the server selects C ·NS superclients, the process sums up to 2C ·NS exchanges.
Moreover, within each superclient, the clients exchange messages following the
chain, for a total of KS−1 transmissions ∀S. Considering all C ·NS groups involved,
this is equivalent to

(KS−1)C ·NS =

(
K
NS
−1
)

C ·NS =C ·K−C ·NS. (5.6)

By summing everything up, the total is 2C ·NS +C ·K−C ·NS =C(NS +K). Since
NS < K, the overall communication cost of FEDSEQ is smaller than FEDAVG,
FEDPROX, FEDDYN and SCAFFOLD. If superclients are not equally sized, the
client-to-client (C2C) cost is ∑Si∈St (KSi−1) = ∑Si∈St KSi−C ·NS, where |St |=C ·
NS, and the total becomes C ·NS+∑Si∈St KSi , i.e., depends on the size of the selected
superclients. However, to ensure a fair comparison, the proposed experiments select
KS,max such that K/KS,max ≈ NS, i.e., most of the superclients are of the same size,
falling back to the first scenario.

Results on NLP Datasets.

FEDSEQ and its variants are additionally evaluated on text classification tasks, namely
next character prediction with SHAKESPEARE [394] and next word prediction with
STACKOVERFLOW [424].

The results confirm the behavior of FEDSEQ, FEDASYNCSEQ and FEDSEQ2PAR

already noted on the vision datasets. These methods are confirmed to be the fastest
and best performing across all datasets, both in i.i.d. and non-i.i.d. settings (Figure 5.7
and table 5.1).

154 Cluster-based Approaches for Generalization and Convergence Speed in FL

Fig. 5.7 Accuracy convergence plots of FEDSEQ, FEDASYNCSEQ, FEDSEQ2PAR (in bold)
and SOTA algorithms on NLP datasets. On average, FEDSEQ2PAR is confirmed the best-
performing algorithm.

(a) CIFAR100. Similar-
ity matrix De.

(b) CIFAR100. Trend of
||De||.

(c) CIFAR10. Similarity
matrix De.

(d) CIFAR10. Trend of
||De||.

Fig. 5.8 Effect of pre-training K = 500 local models for e ∈ {1,5,10,20, 30,40} epochs on
CIFAR100 and CIFAR10. From the trends on both datasets, it can be noted that after e = 10
the slope of the curve decreases.

Ablation Studies

This section discusses the impact of each method component introduced in Sec-
tion 5.2.2.

Local Pre-Training. All grouping criteria introduced in Section 5.2.2 rely on an
approximation, denoted by D̃k and derived using function ψ , of each client’s data
distribution. Regardless of the chosen approximation method, the initial step for
constructing superclients involves a pre-training phase performed locally on each
client’s device. This phase lasts for e epochs. During pre-training, a randomly
initialized model fwww0 is trained on the local data for all methods except ψt2v, where
a pre-trained network’s classifier layers (referred to as the probe network) are fine-
tuned for the specific local task. The resulting model parameters are then used to
estimate the data distributions of individual users without compromising privacy.

The number of pre-training epochs (e) needs to be carefully chosen. Ideally, it
should be large enough for the model to learn from the local training set but small

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients155

0.0 0.2 0.5

α

0.0

0.5

1.0

1.5

2.0

2.5

P
re

se
rv

ed
co

m
p

on
en

ts
x1

0k Cifar10 - e = 10

Cifar10 - e = 20

Cifar100 - e = 10

Cifar100 - e = 20

Fig. 5.9 CIFAR datasets. Ratio of the preserved components after applying PCA with 90% of
explained variance when varying the number of local epochs e.

enough to avoid overwhelming the clients’ devices. Models trained on similar data
distributions are expected to exhibit greater similarity compared to those trained
on disparate distributions [421]. The experiments evaluate different values for
e ∈ {1,5,10,20,30,40}. For each value, a similarity matrix is constructed. This
matrix captures the cosine distance between models trained on each client’s data

for e epochs. Formally, De := {De
i j =

wwwi
e ·www j

e

||wwwi
e || ||www j

e ||
}, where wwwi and www j represent the

parameters of client i and j models trained for e epochs, respectively (all client pairs
are considered, i.e.,(i, j) ∈ (K×K)). Figure 5.8 depicts these matrices as heatmaps
for the CIFAR100 dataset. Figure 5.8b shows the trend of the matrix norm (∥De∥)
for each value of e. It is evident that 5 epochs are sufficient to achieve significantly
different models. The rate of change in similarity reduces after 10 epochs of pre-
training. Therefore, considering the trade-off between the informativeness of the
trained models and the computational burden on clients, a default value of e = 10
is chosen for client pre-training, regardless of the data distribution approximation
method used. Notably, these results are consistent across both datasets, indicating
that the chosen network architecture can effectively capture the characteristics of
both datasets.

Clients’ Data Distribution Estimation. The proposed method utilizes the pa-
rameters (ψclf) or pre-trained model predictions (ψconf, ψt2v) to compute a privacy-
preserving estimate of the clients’ dataset distribution. To mitigate the curse of
dimensionality [426] on the classifier parameters in ψclf, PCA [427] is applied, keep-
ing 90% of the explained variance. Figure 5.9 shows that the percentage of preserved
components decreases with the complexity of the dataset, e.g. fewer components are
needed for CIFAR10, and increases directly proportional to E. As for ψconf, not to

156 Cluster-based Approaches for Generalization and Convergence Speed in FL

(a) Distance matrices on ψconf (left)
and ψt2v (right) tasks embeddings.

(b) ψconf and ψt2v’s tasks embeddings similarity.

Fig. 5.10 CIFAR100, α= 0. (a) Focus on 75 clients. Each group of 25 clients has access
to either images of aquatic mammals, fishes or flowers. (b) Client with images of whales.
Comparison of embedding distances with clients containing images of progressively different
entities. ψt2v accurately recognizes the similarities between animals, in contrast to ψconf.

severely impact the original dataset, Dpub is built using 10 images per class from the
test set for computing the confidence vectors (Equation (5.1)). Once Dpub has served
its purpose, it is not used again.

Since a public dataset capturing the overall global distribution may not be avail-
able in realistic settings, this paper introduces ψt2v, based on Task2Vec [421], which
presents two main advantages: i) no external dataset is required, and ii) clients only
fine-tune the classifier, reducing the latency. Following [421], pre-trained ResNet18
is used as backbone for image classification tasks. To better understand the differ-
ence in their behavior, the embeddings of ψt2v (right) and ψconf (left) are compared
in Figure 5.10a. Specifically, it illustrates the distance between their embeddings
computed over the first 75 clients of CIFAR100 with α= 0. The first 25 clients
exclusively have images of aquatic mammals (beavers, dolphins, otters, seals, and
whales), the next 25 clients have images of fishes (aquarium fishes, flatfishes, rays,
sharks, and trouts), and the last 25 clients have images of various flowers. Vectors
from ψconf lack class similarity representation, while the ψt2v distance matrix reveals
that clients with fish and aquatic mammal images (red square) cluster together more
closely than those with flower images. In Figure 5.10b, one client with only whale
images is compared in terms of distance with other clients having progressively
dissimilar images to whales. Once again, ψt2v accurately recognizes the similarities
between animals, in contrast to ψconf. This behavior can be explained by looking at
the embedding of the k-th client with samples belonging to class c ∈ [Nc] given by

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients157

Table 5.3 FEDSEQ baselines: comparison of grouping criteria by varying φ , ψ and τ . Results
in terms of accuracy (%).

Method φ τ
CIFAR10 CIFAR100 FEMNIST SHAKESPEARE

α= 0 α= 0.2 α= 0.5 α= 0 α= 0.2 α= 0.5 NIID IID NIID IID

FEDSEQ

- Random - 81.90 82.09 82.12 46.39 48.62 49.44 87.07 87.49 51.55 51.84

clf
K-means Euclidean 82.30 81.78 82.48 44.91 48.74 49.60 87.07 87.45 51.78 51.70
Greedy Cosine 79.95 82.06 83.32 45.22 48.92 49.62 87.12 87.42 51.72 51.88

conf
K-means Euclidean 82.04 81.99 82.37 43.55 49.43 49.79 87.10 87.50 51.79 51.87
Greedy KL 82.21 82.20 82.22 45.97 49.56 49.82 87.01 87.46 51.70 51.65
Greedy Gini Index 82.09 81.85 82.71 45.79 48.98 49.61 87.05 87.42 51.59 51.98

t2v
Greedy Norm-Cosine 82.28 82.48 82.86 46.51 50.06 50.31 87.11 87.48 51.65 51.82
ICG Euclidean 82.05 82.51 82.54 46.33 49.13 49.86 87.18 87.45 51.84 51.77

FEDASYNCSEQ t2v ∗ ∗ 83.40 83.37 83.85 50.38 51.64 51.58 86.96 87.20 51.93 52.02
FEDSEQ2PAR t2v ICG Euclidean 83.86 84.66 84.35 51.23 51.41 51.78 87.58 87.96 52.84 52.54
(*): (Greedy, Norm-Cosine) for CIFAR10/100; (K-means, Euclidean) for FEMNIST and SHAKESPEARE.

ψconf is

pk[i]≈

1 if i = c,

0 otherwise.
(5.7)

This aligns with the expectations, as fwww0
k

is trained to classify observations with label
c. As a result, the embeddings of clients seeing different classes (regardless of the
similarity of the depicted subjects) are equally distant. However, this contradicts the
intuitive understanding, as one would expect that similarities in data distributions
would manifest as closeness in the vector space. In contrast, the distance between
ψt2v embeddings aligns with the intuition on semantic and taxonomic relations
among entities. This behavior is evidently reflected in its performance in Table 5.3,
where ψt2v consistently outperforms the other approaches.

Grouping Criterion. Table 5.3 compares the different combinations of grouping
criteria GS. As for ψkmeans, a reasonable value for the number of clusters is Nc, and
the Euclidean distance is used to compare the resulting superclients. The confidence
vectors extracted by ψconf have the form of a probability distribution (Section 5.2.2),
additionally comparable via disomogeneity measures such as the KL divergence and
the Gini Index. The normalized embeddings obtained with Task2Vec are compared
with the cosine distance (“Norm-Cosine” in the Table) [421]. Notably, φrand returns
groups obtaining competitive results with the other grouping methods. The reason
lies in statistical considerations on the cross-device setting: with the number of
clients being large in all datasets, a randomly created group is unlikely to contain
clients belonging all to the same data distribution. ψt2v achieves the best performance
across all settings, demonstrating effective capture of task similarities. φicg is selected

158 Cluster-based Approaches for Generalization and Convergence Speed in FL

Table 5.4 Parallelism and test accuracy: FEDSEQ vs. FEDSEQ2PAR.

Dataset NS NS Parallelism Accuracy (α= 0 / NIID)

FEDSEQ FEDSEQ2PAR ↑ FEDSEQ FEDSEQ2PAR

CIFAR10 50 104 2.09x 81.89 83.68
CIFAR100 50 113 2.26x 45.87 51.46
FEMNIST 175 383 2.19x 87.11 87.58
SHAKESPEARE 25 52 2.09x 51.70 52.75
STACKOVERFLOW 1900 5966 3.14x 28.91 29.79

as grouping method due to its satisfying results and efficiency, useful in the dynamic
creation of superclients especially with several groups.

FedSeq2Par. As described in Section 5.2.2, the Sequential-to-Parallel approach
used in FEDSEQ2PAR is based on the function fgr(αgr,βgr, t) (Equations (5.3)
to (5.5)), that defines the number of superclients at each round t. This section
aims to understand which growth function better suits the analyzed settings (linear,
logarithmic, or exponential) and the effect of the parameters αgr (growth rate) and
βgr (initial number of superclients). αgr is chosen so that a fully parallel scenario
is reached in the last rounds, while favoring sequential training at the beginning.
βgr ∈ {5,10,20,25} for all datasets except for the larger STACKOVERFLOW, for
which βgr ∈ {50,100,200,250}. Figure 5.11 analyzes the impact of these parameters
on the non-i.i.d. splits of FEMNIST and SHAKESPEARE. Notably, starting with the
smallest number of superclients βgr consistently yields superior performance, as
it exploits sequentiality more. fexp has the best and most consistent results. Due
to the uniformity of these results, the same configuration is maintained across all
datasets. FEDSEQ2PAR is further compared with FEDSEQ in terms of number of
superclients and final performance in Table 5.4. For FEDSEQ2PAR, it is reported the
average number of superclients NS across rounds. Notably, NS is constantly larger
than NS, implying a more parallelized scenario on average with FEDSEQ2PAR w.r.t.
FEDSEQ even if βgr≪NS. This behavior positively reflects on the final performance,
confirming the efficacy of the STP approach.

5.2.4 Privacy Robustness

Recent FL literature has highlighted the potential for attackers to reconstruct sensitive
information through the clients’ updates [252]. Thus, concerns on the potential
privacy implications of the client-to-client sequential training approach introduced

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients159

5 10 20 25

βgr

0.
1

0.
15

0.
2

α
g
r

87.19 86.69 85.85 85.39

86.97 86.44 85.18 84.79

86.91 85.98 84.92 84.35

Linear

5 10 20 25

βgr

10
15

20

α
g
r

86.95 86.14 84.92 84.13

86.55 85.02 83.94 83.45

85.56 84.88 83.28 82.24

Logarithm

5 10 20 25

βgr

0.
00

2
0.

00
3

0.
00

4

α
g
r

87.31 87.56 87.55 87.25

87.71 87.20 87.50 87.34

87.46 87.24 86.92 86.72

Exponential

82

83

84

85

86

87

88

82

83

84

85

86

87

88

82

83

84

85

86

87

88

(a) FEMNIST

5 10 20 25

βgr

0.
1

0.
15

0.
2

α
g
r

51.87 52.14 52.15 52.14

52.22 52.13 52.11 51.66

52.72 52.15 51.78 51.10

Linear

5 10 20 25

βgr

10
15

20

α
g
r

51.67 51.78 50.84 50.63

51.95 51.20 49.71 48.91

51.37 49.41 48.70 48.81

Logarithm

5 10 20 25

βgr

0.
00

2
0.

00
3

0.
00

4

α
g
r

52.39 52.36 52.22 52.02

52.67 52.32 51.58 51.06

52.84 52.14 51.09 50.58

Exponential

48

49

50

51

52

53

48

49

50

51

52

53

48

49

50

51

52

53

(b) SHAKESPEARE

Fig. 5.11 Sensitivity of FEDSEQ2PAR to fgr and the growth parameters αgr and βgr. Results
in test accuracy (%) on the NIID split.

by FEDSEQ arise. Specifically, this extension poses the question: does FEDSEQ’s
client-to-client sequential training facilitate the retrieve of previous users’ personal
information by a malicious client? To answer, FEDSEQ is evaluated against two
famous attacks, namely the label flipping [418] (LFA) and the GAN recovery
attacks (GRA) [350], and study potential private information leakages. The well-
known gradient inversion attack [252] is not considered here, as its assumptions do
not align with our approach (e.g., access of the attacker to both initial and updated
models, knowledge of private labels). Differently, in this case, clients only receive
the updated parameters from the previous user and potentially malicious clients are
not aware of other users’ private labels.

Label Flipping Attack

LFA is an active privacy attack aiming at deteriorating the global model performances
by switching labels at training time. Here, the focus is on models solving the
classification task. To mislead the global model classification ability, the set of
malicious clients A := {ai}L·K

i=1 ⊆ C with L ∈ [0,1] willingly swaps the labels of

160 Cluster-based Approaches for Generalization and Convergence Speed in FL

their local data following a set of criteria {γi}L·K
i=1. The criterion γi defines the labels

to be swapped during the attack for each attacker ai. For instance, γi = γ j implies
that the attackers ai and a j will swap the same classes. This work tests two possible
situations:

1. Different attackers swap distinct classes, i.e., each attacker ai chooses its γi

independently (γrandom),

2. All the attackers swap the same classes, i.e., γi = γ j ∀i, j ∈A (γfixed).

GAN Recovery Attack

GRA is a passive privacy attack that aims at reconstructing other clients’ private
information using GAN architectures [351]. It is important to highlight that the
primary objective of GANs is to generate samples that closely resemble those
found in the training set without direct access to the original ones. GANs rely
on interactions with a discriminative deep neural network to learn and capture the
underlying data distribution [350]. They are trained to mimic the images encountered
by the discriminative network, starting from random initialization. However, a
potential concern arises when the discriminator is trained on private data, as it can
potentially be exploited to train a generator network capable of reconstructing the
sensitive data. This poses significant privacy and security concerns. Formally, the
GANs’ optimization problem [350] is

min
wwwG

max
wwwD

n

∑
i=1

log f (xi,wwwD)+
n

∑
j=1

log(1− f (g(z j,wwwG),wwwD)), (5.8)

where f (x,wwwD) : X →Y is a discriminative network parametrized by wwwD that, given
an image, outputs a class label. The generative network g(z,wwwG) : X →X receives
random noise as input and outputs an image. xi is the original image and g(z j) is a
randomly generated one. In GRA, at round t, an attacker ai ∈ C disguised as a client
exploits the incoming trained model wwwt as the discriminator of a GAN, i.e., wwwD←wwwt .
The generator g is then trained for Ea epochs to reconstruct inputs similar to the ones
previously accessed by wwwt , thus breaking the clients’ privacy.

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients161

Table 5.5 Label Flipping Attack experiments after 1k rounds. Results in accuracy (%) and
drop in accuracy (↓) w.r.t. to the reference. In bold smaller drops in each attack. Symbols:
“◦” (negligible or non-existing drops), “Fixed” (γfixed) and “Random” (γrandom).

LS L
CIFAR10 CIFAR100

Swapped
γ

FEDSEQ FEDAVG Swapped
γ

FEDSEQ FEDAVG
Labels Accuracy ↑ Drop ↓ Accuracy ↑ Drop ↓ Labels Accuracy ↑ Drop ↓ Accuracy ↑ Drop ↓

0.1 0.1

0↔2 Fixed

76.06 ◦ 48.72 ◦

INTRASC

Fixed

38.81 −0.89 12.57 −0.28
0.5 75.92 −0.20 47.55 −1.14 38.87 −0.83 12.35 −0.50

0.3 0.1 76.25 −0.15 47.74 −0.95 39.66 ◦ 12.45 −0.40
0.5 74.75 −1.35 48.30 −0.39 39.04 −0.66 11.55 −1.30

0.5 0.1 75.65 −0.45 47.55 −1.14 39.23 −0.47 12.35 −0.50
0.5 75.50 −0.60 47.44 −1.25 38.40 −1.30 11.02 −1.83

0.1 0.1

3↔5 Fixed

76.05 ◦ 47.92 −0.77

Random

39.36 −0.34 13.23 ◦
0.5 75.50 −0.60 47.93 −0.76 39.59 ◦ 13.05 ◦

0.3 0.1 75.75 −0.35 47.80 −0.89 39.67 ◦ 13.23 ◦
0.5 75.28 −0.82 47.74 −0.95 38.88 −0.82 12.47 −0.38

0.5 0.1 76.15 ◦ 47.93 −0.76 39.68 ◦ 13.05 ◦
0.5 75.09 −1.01 46.94 −1.75 38.98 −0.72 11.27 −1.58

0.1 0.1

Fixed

76.65 ◦ 47.36 −1.33

EXTRASC

Fixed

40.11 ◦ 12.37 −0.48
0.5 76.01 ◦ 48.12 −0.58 40.03 ◦ 12.20 −0.65

0.3 0.1 75.79 −0.31 48.29 −0.40 39.29 −0.41 13.08 ◦
0.5 75.19 −0.91 46.42 −2.27 38.73 −0.97 12.34 −0.51

0.5 0.1 75.35 −0.75 48.12 −0.58 38.95 −0.75 12.20 −0.65
0.5 0↔2 75.09 −1.01 46.94 −1.75 38.46 −1.24 12.30 −0.55

0.1 0.1 ↔3↔5

Random

76.52 ◦ 48.65 ◦

Random

39.17 −0.53 13.12 ◦
0.5 75.71 −0.39 47.52 −1.17 39.12 −0.58 12.83 ◦

0.3 0.1 75.98 −0.12 47.01 −1.68 39.54 ◦ 13.06 ◦
0.5 74.75 −1.35 46.70 −1.99 37.90 −1.80 11.81 −1.04

0.5 0.1 75.93 −0.17 47.52 −1.17 39.03 −0.67 13.12 ◦
0.5 73.46 −2.64 46.49 −2.20 37.76 −1.94 11.94 −0.91

Reference accuracy: FedSeq 76.10% - FEDAVG 48.69% Reference accuracy: FedSeq 39.70% - FEDAVG 12.85%

FedSeq Privacy Resilience

This section provides quantitative results of FEDSEQ’s resilience against the LFA
and GRA attacks. We show that FEDSEQ not only does not introduce additional
privacy liabilities w.r.t. FEDAVG, but it learns more robust models.

FedSeq against LFA. Table 5.5 summarizes the results on the different setups
proposed to evaluate the robustness of FEDSEQ to the LFA attack. The fraction
of malicious superclients LS is distinguished from the fraction of malicious clients
within each malevolent superclient L. The corresponding fraction of attackers in
FEDAVG becomes LS · L. LS is tested in {0.1,0.3,0.5} and L in {0.1,0.5}. For
example, LS = 0.1 and L = 0.5 implies that 10% of the superclients are malevolent,
and 50% of their clients are attackers.

Following [418], the four swapped classes in CIFAR10 are: airplanes (label 0)
exchanged with birds (label 2), and dogs (label 5) with cats (label 3). The additional
setting where all the aforementioned classes (0,2,3,5) are swapped at the same time is
evaluated as well. When using CIFAR100 instead, the concept of “superclass” proper
of the dataset is exploited (e.g., aquatic mammals, flowers). The swap happens either
between 20 classes that do not belong to the same superclass, i.e. one class for each

162 Cluster-based Approaches for Generalization and Convergence Speed in FL

(a) FID scores after GRA attack on FEDSEQ and
FEDAVG

(b) GRA attacker images reconstruction

Fig. 5.12 (a) GRA attack on global model with different accuracy. The resulting FID scores
on FEDSEQ are consistently higher, implying a less effective attack. (b) Examples of images
reconstructed by the GRA attacker at distinct rounds.

superclass (e.g., dolphins and roses), or between pairs of 20 labels belonging to the
same superclass (e.g., dolphins with whales). The former is referred to as EXTRASC,
and the latter as INTRASC.

To evaluate FEDSEQ against the easiest scenario for the attacker, all the exper-
iments are run with α= 100 on both CIFAR10 and CIFAR100, meaning that all
K clients see all the classes, and the LFA is always feasible. T is set equal to 1k.
Table 5.5 shows the results of the attack on each proposed configuration, analyzing
both the accuracy of the model on the overall test set and the drop w.r.t. the reference
experiment without attackers. On average, the fixed attacks are more effective than
the random ones. The reason behind this behavior is intuitive: when using γfixed, the
attackers never let the model learn the correct patterns for classifying the swapped
labels, differently from the random acting. Swapping 4 labels in CIFAR10 rather
than 2 brings on average more damage. For CIFAR100, the EXTRASC attacks are
significantly more effective: the model likely learns some common features for im-
ages belonging to the same superclass, leading to a reduced efficacy of the INTRASC

attack. Importantly, FEDSEQ outperforms FEDAVG on most scenarios both in terms
of accuracy and drop w.r.t. to the reference: this means FEDSEQ is still able to
achieve faster convergence if under attack, and is more robust than FEDAVG.

5.2 Accelerating FL via Sequential Training of Grouped Heterogeneous Clients163

FedSeq against GRA. The Fréchet inception distance (FID) [428] assesses the
quality of the images created by a generative model. Given a dataset D and its
reconstruction D̂ , the FID measures the distribution of their features, extracted
using an InceptionV3 network [429], using the Fréchet distance [428]. A lower
score indicates better-quality images. Within the context of an attack, the FID
has to be as large as possible, signifying the attacker’s inability to reconstruct
private data effectively. Unlike the approach in [350], the presented approach
refrains from incorporating a “fake” class in the classifier, deeming it unrealistic.
Instead, the attacker is allowed to utilize an additional binary dense layer on top
of the model to distinguish between “fake” and “real” data. Figure 5.12a results
from attacks on models with varying levels of accuracy. It is clear that the attack
conducted on FEDSEQ consistently yields higher FID scores in comparison to
FEDAVG, underscoring its enhanced privacy characteristics. Figure 5.12b shows
some examples of images reconstruction at different rounds.

5.2.5 Discussion

This work addressed the challenges of statistical heterogeneity in Federated Learning
by proposing FEDSEQ (Federated Learning via Sequential Superclients Training).
FEDSEQ leverages sequential training among heterogeneous client groups (super-
clients) to achieve more robust models before server-side averaging. The work
explores various strategies for effective client grouping based on data distribution.
To mitigate waiting times caused by slow superclients, FEDASYNCSEQ enables
asynchronous communication between clients and the server. Finally, FEDSEQ2PAR

dynamically adjusts the number of superclients per round to exploit both sequential
and parallel processing effectively.

Extensive evaluations on multiple FL benchmarks demonstrate the efficacy of
these approaches in terms of final performance, convergence speed, and privacy
preservation. Future work could include a deeper analysis of FEDSEQ’s convergence
properties. Theoretical and empirical studies on large-scale vision datasets could
offer valuable insights. Additionally, exploring the application of FEDSEQ beyond
classification tasks represents a promising avenue for further research. Finally, miti-
gating potential catastrophic forgetting within superclients due to client heterogeneity
is crucial. Developing techniques to address this issue and preserve knowledge across
clients would significantly enhance FEDSEQ’s overall effectiveness.

164 Cluster-based Approaches for Generalization and Convergence Speed in FL

5.3 Learning Across Domains and Devices: Style-
Driven Source-Free Domain Adaptation in Clus-
tered Federated Learning

© 2023 IEEE. Reprinted, with permission, from Shenaj, D.*, Fanì, E.*, Toldo, M.,
Caldarola, D., Tavera, A., Michieli, U., Ciccone, M., Zanuttigh, P., & Caputo, B.
(2023). Learning across domains and devices: Style-driven source-free domain
adaptation in clustered federated learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (pp. 444-454).

Federated Learning has gained significant attention as a potential approach
for tackling domain shift in real-world Semantic Segmentation (SS) tasks while
preserving data privacy. However, a common limitation in existing FL research is
the unrealistic assumption of labeled data availability on client devices.

This work presents two key contributions:

• Federated Source-Free Domain Adaptation (FFREEDA): a novel task for-
mulation for learning from unlabeled client data while leveraging a public,
labeled dataset on the server side.

• Learning Across Domains and Devices (LADD): a novel method for tack-
ling the FFREEDA task. utilizes the knowledge of a pre-trained model by
employing self-supervision with specialized regularization techniques for local
training. Additionally, it introduces a novel federated clustering aggregation
scheme based on the client styles.

Furthermore, this paper establishes a new benchmark for studying SS tasks within
an FL setting. Details of this benchmark are provided in Chapter 6.

The code is available at https://github.com/Erosinho13/LADD.

5.3.1 Motivation

FL offers a promising approach for tackling real-world vision tasks using data
collected from various users in diverse scenarios, while preserving data privacy. For
instance, FL can be applied in the context of semantic segmentation for self-driving

https://github.com/Erosinho13/LADD

5.3 Learning Across Domains and Devices 165

Unlabeled Target Data
Cluster Style 1

Unlabeled Target Data
Cluster Style 2

Unlabeled Target Data
Cluster Style N

Central
Server {

{

Fig. 5.13 Overview of FFREEDA. The clients’ data is unlabeled and the source labeled
dataset is kept on the server. Clients having similar styles are clustered together. Local
training leverages both global and cluster-specific model parameters.

cars, enabling obstacle detection and avoidance tasks [271]. However, a common
limitation in existing FL research for vision tasks is the assumption of labeled data
availability on client devices. This assumption is impractical due to the high cost
and significant manual effort associated with dense pixel-level annotations [297].

This work introduces a novel federated learning setting for semantic segmentation
that is more applicable to real-world autonomous driving applications. This setting,
denoted as Federated source-Free Domain Adaptation (FFREEDA), allows the server
to pre-train a model on labeled source data. However, differently from to the Source-
Free Domain Adaptation [430] setting, further access to the source data is prohibited
after this pre-training step.

In the setting proposed in FFREEDA, clients only have access to their own
unlabeled target datasets, which they cannot share with other clients or the server.
The scenario focuses on real-world situations with multiple clients, each possessing
a limited number of images. Following the pre-training phase, the training becomes
fully unsupervised. However, the objective of FFREEDA goes beyond solving a
traditional multi-target domain adaptation problem in SS. It aims to address specific
challenges that arise in FL settings, such as statistical and system heterogeneity
[45, 298], communication bottlenecks [431], and client privacy preservation [44,
329]. To the best of our knowledge, no prior work has tackled this combination of
problems simultaneously.

166 Cluster-based Approaches for Generalization and Convergence Speed in FL

To address the FFREEDA problem, a novel FL algorithm named Learning Across
Domains and Devices (LADD) is proposed. LADD assumes the presence of multiple
underlying data distributions across the clients. For instance, self-driving cars within
the same city might collect visually similar images due to geographical proximity.
Conversely, different weather conditions could lead to variations in the local datasets.

LADD addresses this heterogeneity by clustering clients based on the styles of
their images, aiming to group clients with similar data distributions. This clustering
helps to match the clients with their actual latent distributions. To improve commu-
nication efficiency and minimize parameter duplication, as shown in Figure 5.13,
LADD splits the model’s parameters into two categories:

• Shared parameters, globally aggregated across all clients.

• Cluster-specific parameters, only aggregated across clients within the same
cluster.

Furthermore, LADD leverages the source dataset during pre-training by employing
style transfer data augmentation [432]. This technique randomly incorporates target
styles into the source images, mimicking the target distributions encountered by
clients. Finally, LADD utilizes self-training with a custom pseudo-labeling strategy
and incorporates regularization techniques to stabilize the training process.

5.3.2 Federated source-Free Domain Adaptation

This section details the proposed algorithm in its pre-training strategy, aggregation
phase and adaptation techniques. The procedure is summarized in Figure 5.14 and
Algorithm 8.

Server-side Pre-Training with Style Transfer

The first stage of LADD involves pre-training the model on the labeled source
dataset DS. To mitigate domain shift between source and target data and improve the
generalization of the pre-trained model, a style transfer technique based on Fourier
Domain Transform (FDA) [432] is employed. This technique aims to bring the styles
of source and target images closer.

5.3 Learning Across Domains and Devices 167

Average Pre-training

...

Cluster
Style 1

Cluster
Style 2

Cluster
Style C

1. Style-transfer and pretraining 2. Style-based clustering

FDA
KD

3. Local training 4. Server-side aggregation

Fig. 5.14 Overview of LADD. 1) Each client k extracts the average style s̄k of its local data
DT

k using FDA. At server-side, the collected styles Ps are applied to the source dataset Ds

during the supervised pre-training. 2) Clients are clustered according to their style. 3) At
client-side, the cluster-specific teacher gc outputs the pseudo-labels, used for training f t

c ,
leveraging KD from the pre-trained model. 4) At the server-side aggregation, global (ΦΦΦ t+1)
and cluster-specific parameters (θθθ t+1

c) are separately aggregated.

During pre-training, client styles are transferred to the server and applied to
DS. Specifically, each client extracts a style representation, denoted as sk, from its
images. This style is obtained from a window of width ls located at the center of the
amplitude spectrum of the image, as described in [432]. Importantly, this window
captures the lowest spatial frequency coefficients, which do not contain sensitive
scene content, thus preserving client privacy.

The server-side maintains a pool of styles, denoted as Ps, which is the union
of average styles (s̄k) collected from all clients (i.e., Ps =

⋃
k∈C {s̄k}). The ran-

domly initialized model f (www) is then trained on the source dataset DS with data
augmentation using random styles from Ps.

Crucially, the style information is never shared directly among clients. Fur-
thermore, only a small number of images is needed from each client to compute
the average style s̄k. After pre-training, the source dataset is no longer used in the
training process.

Style-based Clustering

Federated Learning settings often involve clients with diverse data distributions. This
heterogeneity can hinder performance if models are naively aggregated across clients.
For instance, self-driving cars operating in the same geographical region might collect
visually similar data, while those in distant locations might encounter significantly
different environments. Additionally, clients may possess limited datasets, restricting
their ability to generalize solely from local training [7].

168 Cluster-based Approaches for Generalization and Convergence Speed in FL

Algorithm 7 LADD Clustering Selection Algorithm

Require: Clients C , target datasets DT
k ∀k ∈ [K], function G amma assigning each

client to one of the G clusters, hyper-parameters n,m,N ∈ N0, m < n
1: for H ∈ [n]m := {m,m+1, . . . ,n−1} do
2: for n ∈ [N] do
3: GH← K-MEANS

4: Compute ak(GH) = INTRACLUSTERDIST(GH,k)∀k ∈ C
5: end for
6: GH = argminGH

∑k∈C ak(GH)
7: Define aH

k := ak(GH)∀k ∈ C
8: Compute bH

k := bk(GH) = INTERCLUSTERDIST(GH,k)∀k ∈ C
9: Compute σ̄(GH) = SILHOUETTESCORE(aH

k ,b
H
k ∀k ∈ C)

10: end for
11: return G = argmaxH σ̄(GH)

12: function INTRACLUSTERDIST(G ,k)
13: return 1

|ΓG (k)|−1 ∑h∈ΓG (k),h̸=k ∥k,h∥2

14: end function
15: function INTERCLUSTERDIST(G ,k)
16: return minc∈G ,c̸=G ammaG (k)

1
|c|∑h∈c ∥k,h∥2

17: end function
18: function SILHOUETTESCORE(G ,a,b)
19: σk =

bk−ak
max(ak,bk)

if |G ammaG (k)|> 1, 0 otherwise, ∀k ∈ C

20: return 1
K ∑k∈C σk

21: end function

To address these challenges, this work proposes client clustering based on their
visual data styles, as detailed in Algorithm 7. Client styles are transferred to the
server and used to partition the client set C into a set of non-empty clusters G ,
denoting the different latent visual domains. The number of clusters is denoted by
G. Each cluster c has a centroid µc computed using the average styles s̄k of clients k
within the cluster.

Style-based Aggregation

The standard FEDAVG algorithm typically aggregates model updates from selected
clients at each round. This work proposes a clustered and layer-aware aggregation
approach instead. Several key elements are defined:

5.3 Learning Across Domains and Devices 169

• wt
k: Weights of the model for client k after E local training epochs at round t.

• θθθ t
k and ΦΦΦ t

k: Cluster-specific and global parameters of the local model wwwt
k,

respectively. Formally, wwwt
k = θθθ t

k∪ΦΦΦ t
k and θθθ t

k∩ΦΦΦ t
k = /0.

• C t ⊆ C : Subset of clients selected at round t.

The server performs a global aggregation of the global parameters ΦΦΦ t
k across all

selected clients in C t to obtain the updated global parameter set ΦΦΦ t+1. In contrast, the
cluster-specific parameters θθθ t

k are averaged within their respective clusters, resulting
in G sets of specific parameters θθθ t+1

c and G corresponding models f t+1
c (xxx;wwwt+1

c)

for c ∈ G , where wwwt+1
c = ΦΦΦ t+1∪θθθ t+1

c . It is important to note that the server does
not need to store independent models for each cluster. It can efficiently manage
this process by keeping only the cluster-specific parameters θθθ t+1

c and the global
parameters ΦΦΦ t+1, loading them as needed.

At test time, given the i-th target test image, the following steps are performed:

1. Extract the style stest,i.

2. Compute the ℓ2-norm between stest,i and all the cluster centroids µc for c ∈ G .

3. Identify the cluster c with the smallest ℓ2-norm.

4. Use the corresponding model f t+1
c (xxx;wwwt+1

c) to evaluate the test image.

By leveraging client clustering and a specific aggregation strategy, this approach
aims to improve the performance of federated semantic segmentation in the presence
of heterogeneous data distributions and limited client datasets.

Client-Side Unsupervised Training

Self-Supervised Training. At round t, given an image xxx on the k-th client, the local
model f t

k(xxx;wwwt
k) is trained by employing hard one-hot pseudo-labels ỹ(xxx) ∈ RNC×Np

with the same threshold mechanism proposed in [432], where NC is the number
of classes. To minimize the computational load on clients, this approach avoids
employing client-specific teacher networks. Instead, pseudo-labels are generated
using a cluster-specific teacher network, denoted as gt

c(xxx;wwwt
gc
). This network out-

puts predictions represented by ŷ(xxx) := gt
c(xxx;wwwgc). The teacher network parameters,

170 Cluster-based Approaches for Generalization and Convergence Speed in FL

Algorithm 8 LADD (Learning Across Domains and Devices)

Require: Source (labeled) dataset DS, clients k ∈C with target (unlabeled) datasets
DT

k , global model f (www) = f ({θ ,φ})

1: procedure CLUSTERING CLIENTS IN C AND PRE-TRAINING OF f ON DS

2: Extract the styles Ps
k for each k ∈ C

3: Define the style-based clusters from H
4: Train f (www) on DS with style-transfer from Ps =

⋃
k∈C Ps

k
5: end procedure

6: procedure ADAPTATION OF f ON DT

7: Initialize cluster models fc(wwwc)← f (www) and teachers gc(wwwgc)← f (www)
8: for each round t ∈ [T] do
9: Randomly extract C t ⊂ C

10: Let c := ΓH (k)
11: for all k ∈ C t in parallel do
12: Set fk(wwwk) = fc(wwwc)
13: φ t

k,θ
t
k← CLIENTUPDATE(fk, gc, f , DT

k)
14: end for
15: φ t+1← Aggregate φ t

k globally
16: θ t+1

c ← Aggregate θ t
k within the cluster c

17: if t mod ω ≡ 0 then
18: if t ≥ tSTART then
19: gt+1

c (wwwgc) = SWATUPDATE(gt
c)∀c

20: else
21: gc(wwwgc) = f t

c(www
t
c)∀c ∈ G

22: end if
23: end if
24: end for
25: end procedure

denoted by wwwt
gc

, are initialized as www0
gc
←www for all clusters c ∈ G . These parameters

are subsequently updated every ω rounds according to the rule wwwt
gc
←wwwt

c, where wwwt
c

represents the model parameters of cluster c at round t.

Regularization. Pseudo-labels allow the clients to mimic the presence of the labels.
However, after a few training iterations, the learning curve starts dropping [433].
The initial pre-training stage aims to bridge the gap between the knowledge extracted
from the source dataset DS and the knowledge required for success on the target

5.3 Learning Across Domains and Devices 171

datasets DT
k . However, as training progresses, the pre-trained model can become

overconfident in its predictions, leading to decreased effectiveness and increased
misclassifications. Therefore, it becomes crucial to mitigate this trend.

This work employs a Knowledge Distillation (KD) loss, denoted as LKD [69],
based on the soft predictions of the pre-trained model, to prevent the model, f t(www),
from forgetting the knowledge acquired during pre-training. Experiments demon-
strate that KD alone is insufficient to prevent overfitting, as the learning curve
exhibits a slight decline in the later adaptation rounds.

Inspired by the recent success of Stochastic Weight Averaging (SWA) [237] in
federated learning [7], a moving average is applied to the client-specific teacher
networks, gc, after a starting round tstart. This update rule is defined as:

wt+ω
gc

=
(wt

gc
nt

gc
+wt+ω

c)

(nt
gc
+1)

, (5.9)

where nt
gc
= (t−tstart)

ω
. This technique is referred to as SWA teacher (SWAt). SWAt

reduces noise, further stabilizes the learning curve, and allows the model to better
converge to the local minimum of the total loss function:

L = L PSEUDO +λKD L KD, (5.10)

where λKD is a hyperparameter controlling the impact of the KD loss.

5.3.3 LADD in Real-World Vision Scenarios

Experiments Setup

This work evaluates the proposed framework in a synthetic-to-real transfer learning
setting for autonomous driving applications, a common benchmark for domain adap-
tation methods. For details on the mentioned datasets, please refer to Section 3.4.2,
while additional information on training hyper-parameters is provided in Section A.5.

Source Domain. The source domain dataset is the synthetic Grand Theft Auto
V (GTA5) dataset. It contains 24,966 highly realistic road scenes depicting typical
US-like urban and suburban environments.

172 Cluster-based Approaches for Generalization and Convergence Speed in FL

(a) RGB (b) GT (c) Source Only (d) FedAvg + Self-Tr. (e) LADD (all)

Road Sidewalk Building Traffic Light Traffic Sign Vegetation Sky Person Rider Car Bus Bicycle Unlabeled

Fig. 5.15 GTA5→CrossCity qualitative results.

Target Domain. Three real-world (target) domain datasets are used in the exper-
iments: Cityscapes, CrossCity, and Mapillary Vistas. Unlabeled training data is
used from all target datasets. Results are reported on the original validation split for
Cityscapes and Mapillary Vistas, and on the test split for CrossCity. The federated
versions of the target datasets are described in Chapter 6.

Evaluation and Comparison Methods. To assess the effectiveness of the proposed
approach in the unexplored domain adaptation setting, this work compares it with
several established methods under both centralized and federated learning paradigms.
The lower bound is the source-only approach, where only source-labeled data is used
for model training. FTDA and Oracle establish upper bounds and assume access
to supervised target data. In the centralized setting, target data is available on the
server, while in the federated setting, it resides on the clients. FTDA utilizes target
data for fine-tuning a pre-trained source-only model, while Oracle simply performs
supervised FEDAVG training on the labeled target dataset. In addition, the Maximum
Classifier Discrepancy (MCD) [434] method is adapted to the FL scenario following
[297]. The state-of-the-art unsupervised domain adaptation (UDA) DAFormer [435]
is included for comparison in Cityscapes experiments (note: evaluated in the simpler
UDA setting where both source and target data are jointly available).

Experimental Results

This section introduces the results obtained with LADD on FFREEDA. Examples of
qualitative results can be seen in Figure 5.15.

5.3 Learning Across Domains and Devices 173

GTA5→ Cityscapes. The first setup involves the GTA5 to Cityscapes adaptation.
Experimental results are presented in Table 5.6. Although the GTA5 dataset provides
high-quality realistic images, it still suffers from a domain gap compared to real-
world images like those in Cityscapes. Training on supervised source data alone (i.e.,
source only) leads to a significant performance discrepancy compared to full target
supervision. Even with the state-of-the-art DAFormer method in a UDA setting (i.e.,
assuming joint availability of source supervised and aggregated target unsupervised
data, which violates the setup assumptions), there is a noticeable performance drop
of around 25% mIoU from the supervised oracle.

In this setup, a FL framework is assumed, with private target data distributed
among multiple clients and a large-scale source dataset only available on a central
server for pre-training. This introduces additional challenges not present in standard
centralized domain adaptation settings. Specifically, source and target data are
not accessible on the same device, and target data is available in small batches
distributed across devices. Furthermore, target data is heterogeneously distributed
among clients.

The increase in task complexity is evident from the performance drop of the
supervised target oracle and FTDA methods (which still assume target supervision).
This also applies to the MCD UDA approach, which loses almost 10% mIoU when
tested in a federated setting.

The proposed method achieves robust results in this challenging setting, with an
mIoU of around 36.5%. The efficient pre-training based on domain stylization, along
with the self-training optimization scheme, addresses the lack of source data at the
client side. Training stability, hindered by the small amount of target data available
within individual clients, is improved with KD and SWAt, as indicated by the small
standard deviation of results in Table 5.6.

Finally, an enhanced aggregation mechanism is provided, effectively sharing task
information among clients with similar input statistics (i.e., with smaller domain
gaps), according to style-based client clustering. Observations in Table 5.6 show
that LADD maintains a similar performance gap compared to the target oracle as
DAFormer achieves in a centralized UDA setting. Competitive results are achieved
with different variations of the proposed style-based clustering, such as keeping
only the classifier (i.e., LADD (cls)) or the whole network (i.e., LADD (all)) as
cluster-specific during aggregation.

174 Cluster-based Approaches for Generalization and Convergence Speed in FL

Table 5.6 FFREEDA: Results on federated heterogeneous Cityscapes

Setting Method mIoU (%)

Centralized
Oracle 66.64±0.33
Source Only 24.05±1.14
FTDA 65.74±0.48

Centralized
MCD 20.55±2.66
DAFormer 42.31±0.20

Federated
Oracle 58.16±1.02
FTDA 59.35±0.61

FL-UDA MCD 10.86±0.67
FFREEDA FEDAVG † + Self-Training 35.10±0.73
FFREEDA LADD (cls) 36.49±0.13
FFREEDA LADD (all) 36.49±0.14
†: Using same pre-trained model of LADD.

GTA5 → CrossCity. The performance of the proposed approach is further in-
vestigated in the GTA5→CrossCity scenario. Quantitative results are reported in
Table 5.7. A comparison is made with the naïve source only baseline, as well as with
MCD. Due to the lack of target supervision on training images, the upper bound of
the target oracle cannot be provided, nor the result of FTDA.

The diverse content and appearance of CrossCity’s road scenes, due to the
variable geographic origin of its samples, provide a heterogeneous target distribution.
The enhanced heterogeneity with respect to the more uniform Cityscapes dataset
in turn leads to a tougher challenge for federated training. For instance, the MCD
method, when extended from a centralized to a federated learning framework, suffers
from a substantial performance reduction. In contrast, LADD provides a much
higher accuracy in a federated setting, with more than 17% gain over federated
MCD, while also not requiring reuse of source data after the initial pre-training. This
indicates the robustness of LADD with respect to the statistical diversity of client
target data.

Finally, by allowing only a minimal amount of network parameters to be cluster-
dependent, a final accuracy very close to the best result is achieved, obtained without
any parameter sharing across clusters of clients. This result shows that LADD
demands limited communication overhead with respect to standard FEDAVG.

GTA5→Mapillary. The target data in this experiment originates from Mapillary
Vistas, a geographically diverse dataset distributed among clients according to
location. This distribution leads to even greater heterogeneity in client data compared

5.3 Learning Across Domains and Devices 175

Table 5.7 FFREEDA: Results on federated CrossCity

Setting Method mIoU (%)

Centralized
Source Only 26.49±1.46
MCD 27.15±0.87

FL-UDA MCD 24.80±1.56
FFREEDA FEDAVG † + Self-Training 33.59±1.25
FFREEDA LADD (cls) 39.87±0.14
FFREEDA LADD (all) 40.09±0.19
†: Using same pre-trained model of LADD.

Table 5.8 FFREEDA: Results on federated Mapillary

Setting Method mIoU%

Centralized
Oracle 61.46±0.21
Source Only 32.40±0.71
MCD 31.93±1.89

Federated Oracle 49.91±0.49
FL-UDA MCD 19.15±0.75
FFREEDA FedAvg† + Self-Training 38.97±0.21
FFREEDA LADD (cls) 40.16±1.02
FFREEDA LADD (all) 38.78±1.82
†: Using same pre-trained model of LADD.

to previous setups. The performance gap between the supervised target oracle in
centralized and federated settings is significant, with a decrease of approximately
11.5% mIoU observed (Table 5.8). This challenge is further amplified for the UDA
approach using MCD, which suffers a similar mIoU decrease (12%) when adapted
to the federated setting.

In contrast, the proposed method demonstrates robust performance. The best
configuration of LADD, which keeps only classifier weights cluster-specific (LADD
(cls)), surpasses the source-only baseline by over 8% mIoU and approaches the
performance of the federated oracle. This performance improvement signifies the
effectiveness of LADD in tackling domain adaptation within a distributed learning
environment. Furthermore, LADD outperforms a simpler framework based on
FEDAVG and self-training in its best configuration. This outcome supports the
efficacy of the additional modules in LADD in addressing the domain adaptation
challenge.

176 Cluster-based Approaches for Generalization and Convergence Speed in FL

5.3.4 Conclusion

This work presented FFREEDA (Federated Source-Free Domain Adaptation), a new
and challenging setting for source-free domain adaptation in federated learning for
semantic segmentation tasks. FFREEDA utilizes a labeled dataset on a central server
for pre-training, while local training on client devices leverages only unlabeled client
data.

To address the challenges of FFREEDA, a novel algorithm named LADD (Learn-
ing Across Domains and Devices) was proposed. LADD incorporates various tech-
niques, including style transfer, knowledge distillation, SWA teacher, and style-driven
clustering. This approach enables effective learning of both global and personal-
ized parameters. The achieved results demonstrate that LADD is competitive with
state-of-the-art methods in related tasks.

5.4 Cluster-driven Graph Federated Learning over Multiple Domains 177

5.4 Cluster-driven Graph Federated Learning over
Multiple Domains

© 2021 IEEE. Reprinted, with permission, from Caldarola, D., Mancini, M., Galasso,
F., Ciccone, M., Rodolà, E., & Caputo, B. (2021). Cluster-driven graph federated
learning over multiple domains. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 2749-2758).

5.4.1 Motivation

The clustering of clients, as detailed in Sections 5.2 and 5.3, presents a major
drawback: clustering may reduce heterogeneity by identifying the domains, but it
deprives each cluster model of the data and supervision of others. This work proposes
an alternative solution, namely FEDCG (Cluster-driven Graph Federated Learning),
based on Graph Convolutional Neural Networks (GCNs). In FEDCG, clustering
serves to address statistical heterogeneity, and GCNs enable sharing knowledge
across clients. FEDCG: i. identifies the domains via an FL-compliant clustering
and instantiates domain-specific modules (residual branches) for each domain; ii.
connects the domain-specific modules through a GCN at training time to learn the
interactions among domains and share knowledge; and iii. learns to cluster clients
according to their domain of belonging in an unsupervised way, via teacher-student
classifier-training iterations, and to address novel unseen test domains via their
domain soft-assignment scores.

5.4.2 Cluster-driven Graph Federated Learning

FEDCG leverages clustering and its potential to reduce statistical heterogeneity by
identifying homogeneous1. Concurrently, FEDCG is the first to model the domain-
domain interaction by means of a GCN, which connects domain-specific model
components. In the GCN, each node consists of domain-specific model parameters,
while the adjacency matrix is composed of the inverse pairwise distances between
the domain-specific parameters. In this way, FEDCG not only captures the specificity

1Homogeneous stands in this context for groupings that minimize intra-cluster vs. inter-cluster
variance.

178 Cluster-based Approaches for Generalization and Convergence Speed in FL

MM
MM

Test clientsTraining clients

M

domain specific
residual modules

shared modules

Fig. 5.16 In a federated scenario, clients and server exchange the parameters of the model
M. Each client has access to its local data, which can be non-i.i.d. and unbalanced. Each
color identifies a different distribution, i.e., a domain, such as pictures of skyscrapers or sea
landscapes. The model M is made of domain-agnostic layers (in gray) and a GCN containing
domain- specific parameters, added as residual. According to the domains of the input
images, the corresponding nodes of the GCN are activated. At test time, new domains can be
addressed as a soft combination of the discovered ones, e.g., skyscrapers over the sea.

of each domain but also allows each domain to benefit from the updates of others,
sharing knowledge at training (Figure 5.16).

Clustering is based on unsupervised teacher-student [69] classifier-training iter-
ations and it generalizes to unseen test-time domains. The clustering technique is
based on pseudo-labels, assigned by a teacher and learned by a student, in rounds
of refinements. This is accomplished within the FL training paradigm, respecting
the client’s privacy, and allows to estimate soft-assignments for unseen novel test
domains.

Federated Clustering

Statistical heterogeneity, arising from domain variations within the data, can be
mitigated by employing domain-specific modules. However, identifying these dif-

5.4 Cluster-driven Graph Federated Learning over Multiple Domains 179

ferent domains presents a challenge in federated learning settings, mainly due to
data partitioning (client-partitioned data hinders direct server-side clustering) and
non-stationarity (optimal clusters for the training data may not generalize to the test
set).

This work addresses the first challenge by proposing a clustering procedure based
on two domain classifiers: a teacher and a student. These classifiers iteratively group
clients’ images such that the resulting groupings are easier to classify. This approach
aims to overcome the limitations imposed by data distribution across clients.

Formally, assuming the data contain D domains, with D being a hyperparam-
eter, two domain classifiers can be initialized, the teacher gφ and the student gϕ

parametrized by φ and ϕ respectively. Each domain-classifier is a function, mapping
images to a probability vector Q defined over the D domains, i.e. g· : X → Q.
Given an input image, the teacher provides domain pseudo-labels as a target to refine
student’s predictions. In particular, the client student parameters ϕk is trained by
iteratively minimizing the cross-entropy loss between the teacher and student domain
predictions over Dk. Thus, for a client k ∈ K, the parameters ϕk of the student are:

ϕk = argmin
ϕ
− 1

nk
∑

(x,y)∈Dk

loggd̂
ϕ(x) , (5.11)

where d̂ is the pseudo-label given by the teacher for x, i.e. d̂ = argmaxd∈D gd
φ
(x)

and gd
∗(x) denotes the probability of x to belong to the d-th domain as given by

g∗. Equation (5.11) rewards the student from being able to classify according
to the pseudo labels, and implicitly encourages agreement on the pseudo-labels,
thus on the clustering, which most easily may be agreed upon. Then the domain
classifier parameters ϕ are updated after each round with standard FEDAVG, i.e.
ϕ = 1

∑
Kt
i=1 Nk

∑k∈C t Nkϕk.

The idea behind this approach is inspired from deep clustering with self-
labelling [436], i.e., the teacher and the student networks would find the equilibrium
once they group images in such a way so they can be more easily recognized. This
reconnects to the DNNs being natural deep image priors [437], working well for
image-related tasks even if just randomly initialized. And it may intuitively match
that a “bad” labelling would leave no alternative to a DNN but to overfit [32], which
may be hard to imitate by the student. Differently from [436], since there is no
access to data and cluster labels, the teacher gφ is used to provide them locally in

180 Cluster-based Approaches for Generalization and Convergence Speed in FL

each client. Both φ and ϕ are randomly initialized and φ is fixed during training.
After T rounds, with T being a hyperparameter, the parameters φ of the teacher are
updated with the current student ones ϕ , iteratively.

Note that, unlike previous works [438], this clustering algorithm can assign
unseen data to clusters at test time, thanks to the domain classifier. In particular, the
cluster assignment of a test image xxx corresponds to the domain probabilities given
by the student gϕ . Since gϕ(xxx) is soft, data belonging to unseen domains can be
addressed as a combination of existing ones. Additionally, in this formulation, one
client’s data samples may belong to multiple clusters, considering the more general
case where each client may contain more than one data distribution.

Cluster-specific Models

Since the model can identify data clusters through the previously described procedure,
the function fwww can be specialized to each domain. Inspired by multi-domain
learning [439–443], this can be achieved with domain-specific components. For
simplicity, the parameters www can be split into two sets, i.e. www = {wwwa,wwws} where wwwa

are the domain-agnostic parameters and wwws the domain-specific ones. Note that
wwws is actually a set wwws = {wwwd

s }D
d=1 where wwwd

s are the parameters specific to the d-th
domain. To tailor the model to a specific domain, multiple ways exist to include wwws,
such as direct influence on the agnostic parameters wwwa [440, 442, 443] or residual
activations [439, 441]. This works follows the latter strategy, since the former relies
on the robustness of wwwa, which is harder to guarantee in FL. Let us assume fwww to be
a deep neural network with a set of layers L, denoting as f ℓwww the function applied at
layer ℓ ∈ L. Given input from a domain and the features zℓ extracted at the previous
layer, the output of the ℓ-th layer is:

zℓ = f ℓwwwa
(z)+λl

D

∑
d=1

wd · f ℓwwwd
s
(z) , (5.12)

where λl is a learnable parameter balancing the effect of the domain-specific compo-
nents and wd is the weight of domain d. During training, the assumption is that data
belongs to a single cluster, given by the pseudo-labels of the teacher, thus wd is 1 if
d = d̂ and 0 otherwise. At test time, the aim is to having learned a model capable
of dealing with data from arbitrary domains by simply combining residuals of seen

5.4 Cluster-driven Graph Federated Learning over Multiple Domains 181

ones. Thus wd = gd
ϕ(x), weighting the impact of each domain-specific component

by the student output probabilities. Note that the formulation in Equation (5.12) is
general, with f ℓwww being any layer of a standard convolutional neural network, and can
be applied to the whole network or just some layers (the last layers in this case).

In FL, the central domain-specific parameters must be updated without access to
local data and after each round. In practice, following Equation (3.5), FEDAVG is
applied on both domain-agnostic and domain-specific parameters in each training
round.

Knowledge Sharing between Cluster-specific Models

The goal is to learn a model that can adapt to the specificity of each domain. Here
it is proposed to refine the domain-specific parameters by making them interact.
Specifically, the interaction of the domain-specific parameters of each layer ℓ are
modeled via a graph G ℓ = (V ℓ,E ℓ), where the nodes i∈ V ℓ are the set of all domain-
specific parameters at layer ℓ, and ei j ∈ E ℓ are the edges connecting two domain
nodes i and j which may interact together. This implies that if a domain has few
assigned samples, its parameters will be rarely updated and thus not robust enough
to capture the specificity of the domain and generalize to unseen samples of the same
domain.

In particular, this work proposes to use a GCN [118] to model the interaction
of domain-specific parameters. The matrix Vℓ collects the value of each node, i.e.
all domain-specific parameters at layer ℓ: Vℓ = [www1

s|l, . . . ,www
D
s|l]

⊺ ∈D×q, with q = |wwwd
s|l|

the number of parameters per domain. The graph-version V̂ℓ of the domain-specific
parameters Vℓ is computed as:

V̂ℓ = σ(A Vℓ Wℓ) , (5.13)

where σ is an activation function (e.g. ReLU), A ∈D×D is the adjacency matrix
defined across the domains, and Wℓ ∈q×q′ is a weight projection matrix, projecting
the domain-specific parameters into dimension q′. Here, for simplicity, q = q′. In
FEDCG, the domain-specific parameters of Equation (5.12) are substituted with the
ones computed in Equation (5.13). Similarly to all other parameters of the network,
W is updated at every training round with FEDAVG. In case q is large, W can be
implemented as a multi-layer bottleneck.

182 Cluster-based Approaches for Generalization and Convergence Speed in FL

The values in the adjacency matrix encode, for each edge, how close two domains
are; since there are no priors on the structure of the graph, G ℓ is modeled as a fully-
connected weighted graph. Without direct access to the data server-side, the distance
among two domains is computed directly in the (domain-specific) parameter’s space.
In practice, the similarity hi, j among domains i, j is

hi, j =
1

∥wwwi
s−www j

s∥2
, (5.14)

and the corresponding value Ai j in the adjacency matrix becomes

Ai j =

β if i = j
(1−β)·hi j

∑
D
d=11i̸=dhid

otherwise

where β is a hyper-parameter weighing the impact of the self-connection, set to 0.5,
and 1i ̸=m is an indicator function being 1 when i ̸= m and 0 otherwise.

In this formulation, each client receives not only the set of parameters www, but
also the adjacency matrix. With this definition, the gradient of a domain-specific
component is forced to flow to all others through the GCN. Consequently, an update
on a domain-specific component will influence all domain-specific parameters, even
the ones of the domains not present in the current training round. Moreover, given two
domains i, j with i ̸= j, the influence of j on i in each layer is directly proportional to
the adjacency matrix value Ai j. This means that the more two sets of domain-specific
parameters are close, the higher is their mutual influence. Finally, while the GCN is
a way to ensure information flow across domains during training, at inference one
can just precompute V̂ℓ for each layer, to save memory usage.

5.4.3 Experiments Results

FEDCG is evaluated on the CelebA and FEMNIST image classification datasets,
proposed in [394].

5.4 Cluster-driven Graph Federated Learning over Multiple Domains 183

Server

Client
ClassificationDomain clustering

Domain-specific parameters
Knowledge
distillation

Teacher

Student

...

Fig. 5.17 FEDCG framework. The server sends the model fθ to the clients selected for the
federated round, together with the teacher gφ and student gϕ domain classifiers. On the
client-side, the domain classifier clusters the local data xxx, producing as output the domain of
belonging d̂ of each image. At training time, the hard label d̂ is predicted by gφ and is used
as input to train gϕ through a process based on knowledge distillation. At test time, d̂ is given
by gϕ and is a weighted combination of the discovered domains. In FEDCG, the network
fθ is made of a domain-agnostic part (in gray) and a residual domain-specific one (in blue).
The domain-specific parameters are produced by the GCN, receiving as input A,Wℓ,Vℓ and
d̂. After training both fθ and gϕ on its data, the client k sends back to the server the updated
weights θk and ϕk. On the server-side, the updates are aggregated with FEDAVG.

Using Domain Information

Oracle Domain Knowledge. To establish a baseline for model evaluation, domain
labels are initially defined manually by leveraging prior knowledge from the dataset’s
image metadata (40 attributes, Table 5.9). This approach isolates the impact of
incorporating domain-specific information within the model, independent of the
clustering procedure. The most balanced data subdivisions with low target feature
correlation were identified from the 40 attributes, resulting in n= 5 selected attributes
and N = 32 total domains: “attractive”, “heavy makeup”, “high cheekbones”, “mouth
slightly open” and “wavy hair”.

Domain-Specific Models. The initial approach involved replacing the standard
single server model with N separate models, each trained and tested solely on images
from its assigned domain. As shown in Table 5.9, this strategy leads to a significant
performance drop (33.61% vs. 86.88% FEDAVG) due to insufficient data per model,
hindering generalization. This demonstrates the ineffectiveness of training a separate
full model for each domain in this scenario.

184 Cluster-based Approaches for Generalization and Convergence Speed in FL

Table 5.9 Ablation studies on CelebA dataset with N = 32 domains extracted from images
meta-data. A is the adjacency matrix that weights the domains contributions: the symbols
(eye,U,H) respectively stand for identity, uniform and weighted (with inverse Hamming
distance) matrices. W is the weight projection matrix and ReLU the non-linear activation.

Model A W ReLU Acc(%)
Domain-specific models - - - 33.61

GCN

U ✗ ✗ 84.39
H ✗ ✗ 82.10
U ✓ ✗ 87.92
H ✓ ✗ 84.25

FEDCG

U ✓ ✗ 86.96
H ✓ ✗ 88.65
U ✓ ✓ 87.97
H ✓ ✓ 89.57

Modeling Domain Relationships. To account for relationships between domains,
a 1-layer graph convolutional network is introduced as a graph model. The impact of
the GCN is evaluated by testing a simpler model variant without the weight trans-
formation matrix W. Different choices for the adjacency matrix A were explored,
including uniform weighting (U), domain weighting based on similarity (H), specifi-
cally the normalized inverse of the Hamming distance between domain numerical
representations (binary metadata). Table 5.9 shows that using a GCN consistently
improves performance compared to domain-specific models. While the uniform
adjacency matrix performs slightly better than the weighted one in this case, both
benefit from the inclusion of the projection matrix W. These results highlight the
importance of interaction between domain-specific nodes. However, they remain
unsatisfactory, falling below or just above FEDAVG performance (GCN-H with W).
This suggests domain information is still not fully exploited within the model.

Residual Domain-Specific Layers. The use of domain-specific parameters to
generate residual activations (Equation (5.12)) as implemented in FEDCG is investi-
gated, compared to the GCN without a domain-agnostic component. Table 5.9 shows
that while the model with a uniform adjacency matrix (U) experiences a performance
decrease from GCN to FEDCG (87.92% vs. 86.96%), the model with a weighted
adjacency matrix (H) exhibits a significant increase, from 84.25% accuracy with
GCN to 88.65% with FEDCG. Two conclusions can be drawn: i) Utilizing residual
layers to refine domain-agnostic activations (FEDCG) outperforms relying solely
on domain-specific components (GCN). ii) When integrated as residuals, domain-
specific components are more effective with weighted (H) rather than uniform (U)

5.4 Cluster-driven Graph Federated Learning over Multiple Domains 185

Table 5.10 Ablation studies on CelebA dataset with domains given by a priori knowledge
or online clustering procedures. In the A init column, “eye” stands for identity matrix and
“rand” for random. The third column specifies the clustering, i.e. clusters generated with
K-means or the teacher-student classifier (“Clf”).

FEDCG layers A Init Clusters D Soft domains Acc(%)

All

Eye
K-means

2 ✗ 88.36
3 ✗ 87.97
4 ✗ 87.21

Eye Clf
2 ✗ 88.03
3 ✗ 88.59
4 ✗ 88.74

Rand Clf
2 ✗ 88.73
3 ✗ 88.24
4 ✗ 88.55

Eye Clf
2 ✓ 87.88
3 ✓ 88.74
4 ✓ 88.67

Last Eye Clf

2 ✓ 88.31
3 ✓ 88.13
4 ✓ 89.18
32 ✓ 88.40

connections. This is evident from FEDCG-H surpassing FEDCG-U by 1.7% in
accuracy. The importance of the ReLU non-linearity applied to the residual GCN
output was also examined. The non-linearity improves FEDCG for both uniform
(+1%) and weighted (+0.9%) domain connections. The final FEDCG model with a
1-layer GCN filtered by a ReLU and a weighted adjacency matrix outperforms the
baseline FEDAVG by 2.6 points in accuracy, demonstrating the effectiveness of the
design choices.

Domain Identification

The previous section explored domain-specific component integration with oracle
domain information. Here, the assumption of such knowledge is dropped, and the
effectiveness of domains discovered through the clustering procedure on FEDCG is
investigated. These domains are identified using the teacher-student domain classifier.
Results are presented in Table 5.10.

Clustered Domains. The performance of the proposed domain classifier is com-
pared to K-means clustering applied to the parameters of models trained indepen-
dently on each client. FEDCG performs localized clustering, accessing only a subset

186 Cluster-based Approaches for Generalization and Convergence Speed in FL

of clients during each round. As shown in Table 5.10, the clustering procedure
achieves performance that is either on par (D = 2) or superior (D = 3,4) to K-means
clustering. Notably, as the number of clusters increases, the performance of K-means
decreases (from 88.36% with D = 2 to 87.21 with D = 4), while FEDCG with the
same residual GCN exhibits performance improvements (from 88.03% with D = 2
to 88.74 with D = 4). This indicates the effectiveness of the localized clustering
procedure, which captures the presence of different domains within each client
without requiring a dedicated model per client, unlike K-means.

Adjacency Matrix Initialization. The impact of different initialization strategies
for the GCN’s adjacency matrix A is now investigated. Two choices are considered:
i) disconnected domains (identity matrix, Eye), ii) randomly connected domains (ran-
dom adjacency matrix, Rand). Table 5.10 demonstrates that FEDCG’s performance
is not dependent on the specific initialization strategy, achieving over 88.5% for all
choices with D = 4. However, using random initialization, the performance does not
improve with an increasing number of domains. This suggests the importance of
careful initialization of A as the number of domains grows. Consequently, a uniform
initialization strategy is employed in subsequent experiments. This approach allows
the model to refine domain-specific components independently before merging them
based on their distance (see Section 5.4.2).

Soft vs. Hard Domain Assignment. The effect of using a soft combination of
domains at test time is compared to a hard assignment derived from the domain
classifier predictions. In both cases, the performances are close for all D, indicating
that the domain classifier provides reliable domain predictions at test time. The soft
assignment approach is used in subsequent experiments due to its higher flexibility.

Domain-Specific Layers on Last Layer Only. Finally, the application of domain-
specific modules only on the last layer of the network (rather than all layers) is
investigated to determine if good performance could be achieved while reducing
the number of parameters required by FEDCG. As shown in the experiments, using
domain-specific parameters on the last layer provides the best overall results (89.18%
with D = 4), improving the best combination by 0.44%. Since this choice allows

5.4 Cluster-driven Graph Federated Learning over Multiple Domains 187

Table 5.11 FEDCG comparison with the state of the art on CelebA and FEMNIST

Dataset Model Accuracy (%)

CelebA
FEDAVG 86.88
FEDCG 89.18

FEMNIST

FEDAVG 77.81
FEDCG 83.41
FEDPROX 75.00
SCAFFOLD 84.20

FEDCG to utilize fewer parameters while maintaining good performance, the use of
domain-specific parameters will be limited to the last layers in the next section.

Comparison with the State of the Art

Table 5.11 compares FEDCG with FEDPROX, FEDAVG and SCAFFOLD on both
FEMNIST and CelebA. FEDCG uses the domain-specific parameters applied on the
last layer, D = 4, soft domain assignments at test time and the adjacency matrix
initialized as identity.

FEDCG largely outperforms FEDAVG in both scenarios, achieving 89.18%
accuracy compared to 86.88% of FEDAVG on CelebA, and 83.41% accuracy com-
pared to 77.81% of FEDAVG on FEMNIST. This latter improvement (+5.6%) is
remarkable given the higher complexity of the classification task in FEMNIST. Com-
paring FEDCG with FEDPROX and SCAFFOLD on FEMNIST, FEDCG outperforms
FEDPROX by a large margin (+8.41%) while being slightly inferior to SCAFFOLD

(i.e.-0.79%).

5.4.4 Conclusions

This work introduced FEDCG, the first cluster- driven approach addressing statistical
heterogeneity in federated learning with Graph Convolutional Neural Networks.
FEDCG uses an iterative clustering algorithm based on teacher and student domain
classifiers. This clustering procedure serves to discover different input distributions,
i.e., domains, and to instantiate domain-specific parameters accordingly. The domain-
specific parameters are connected through a GCN that enables their interaction and
knowledge sharing during training. These parameters influence the activation of
the main, domain-agnostic, network due to weighted residual activations. Thanks

188 Cluster-based Approaches for Generalization and Convergence Speed in FL

to the domain classifiers and connections of the GCN, new input distributions and
unseen users can be addressed at test time via their do- main soft-assignment scores.
Experimental results showed that FEDCG outperforms the FEDAVG on multiple
benchmarks, demonstrating the efficacy of each component.

5.5 Summary

This chapter discussed the use of clustering-based techniques to group similar (Sec-
tions 5.3 and 5.4) or dissimilar clients (Section 5.2).

The main findings are the following:

• The local data distribution can be estimated without breaking the privacy
constraints.

• Grouping together clients with dissimilar distributions, aiming to build ho-
mogeneous overall groups, helps speeding up convergence and reaching the
centralized performance.

• In the vision domain, the style is a privacy-preserving information and can be
used to model the local distributions.

• The model obtained with SWA can be used to distill knowledge into a less
advanced student model in unsupervised scenarios.

• Graph Neural Networks can be used to model relationships between similar
clients. This allows for knowledge sharing and fosters a degree of personaliza-
tion within the federated learning framework.

Chapter 6

Novel Benchmarks for Federated
Computer Vision

The computer was born to solve problems
that did not exist before

BILL GATES

This chapter introduces new benchmarks designed to facilitate research on com-
puter vision tasks within federated learning settings, aiming to support advancements
in this field. Section 6.2 explores the specific requirements of federated learning
for autonomous driving, particularly focusing on the task of semantic segmentation.
Section 3.4.3 presents an adaptation of the Visual Place Recognition task for the
federated learning environment.

190 Novel Benchmarks for Federated Computer Vision

6.1 Introduction

Federated learning has emerged as a powerful paradigm for training machine learning
models on distributed datasets residing on various devices. This approach offers
significant advantages in privacy preservation, as data remains on user devices,
and communication overhead is minimized. However, applying FL effectively to
computer vision (CV) tasks presents unique challenges.

The lack of standardized benchmarks specifically designed for federated CV
hinders progress in this field. Traditional CV benchmarks often assume centralized
training with access to vast, curated datasets. However, in federated settings, data
is fragmented across devices, potentially exhibiting significant heterogeneity in
distributions, labels, and image quality. This heterogeneity can lead to performance
degradation in models trained via federated learning.

Developing robust and comprehensive benchmarks for federated CV is critical
for several reasons:

• Evaluating Model Performance: standardized benchmarks provide a com-
mon ground for comparing the effectiveness of different FL algorithms on
specific CV tasks. This facilitates objective evaluation and fosters innovation
in the design of FL approaches for computer vision.

• Understanding Challenges: benchmarks can help us identify and quantify the
specific challenges encountered when applying FL to CV tasks. These insights
can guide research efforts towards addressing issues like data heterogeneity,
privacy concerns, and communication efficiency.

• Facilitating Algorithm Development: By providing realistic and well-defined
federated learning scenarios, benchmarks enable researchers to develop and
test novel algorithms specifically tailored for the complexities of federated CV.

In conclusion, establishing well-designed benchmarks for federated CV is crucial
for advancing research and development in this crucial field. These benchmarks will
serve as a cornerstone for evaluating model performance, understanding the unique
challenges of federated CV, and ultimately, enabling the development of robust and
efficient federated learning algorithms for computer vision tasks.

6.1 Introduction 191

This thesis introduces three novel benchmarks designed to support research in
federated CV. These benchmarks address distinct challenges within this domain:

Federated Semantic Segmentation for Autonomous Driving : autonomous vehi-
cles will likely collect sensitive data, necessitating privacy-preserving ap-
proaches like FL for semantic segmentation tasks. FEDDRIVE highlights
the need for benchmarks and algorithms specifically designed for FL-based
semantic segmentation in the context of autonomous driving.

Federated Learning with Unlabeled Data for Semantic Segmentation : build-
ing on FEDDRIVE, FFREEDA introduces benchmarks and methods that lever-
age unlabeled data on client devices during federated learning for semantic
segmentation. This approach aligns with the more realistic scenario where
client data may contain a significant amount of unlabeled information.

Visual Place Recognition : edge computing plays a crucial role in applications
where vehicles need to recognize their location. FedVPR adapts the Visual
Place Recognition (VPR) task to the FL setting and introduces a corresponding
benchmark.

The works discussed in this section are published in the following venues:

• Fantauzzo*, L., Fanì*, E., Caldarola, D., Tavera, A., Cermelli, F., Ciccone, M.,
& Caputo, B. (2022).
FEDDRIVE: Generalizing Federated Learning to Semantic Segmentation in
Autonomous Driving.
In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(pp. 11504-11511). IEEE. (IROS 2022)

• Shenaj*, D., Fanì*, E., Toldo, M., Caldarola, D., Tavera, A., Michieli, U.,
Ciccone, M., Zanuttigh, P., & Caputo, B. (2023).
Learning across Domains and Devices: Style-driven Source-free Domain
Adaptation in Clustered Federated Learning.
In Proceedings of the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (pp. 444-454). (WACV 2023)

• Dutto, M., Berton, G., Caldarola, D., Fanì, E., Trivigno, G., & Masone, C.
(2024).

192 Novel Benchmarks for Federated Computer Vision

Collaborative Visual Place Recognition through Federated Learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, Workshop on Federated Learning for Computer Vision. (CVPRW
2024)

6.2 Federated Semantic Segmentation for Autonomous Driving 193

6.2 Federated Semantic Segmentation for Au-
tonomous Driving

This section introduces the novel benchmarks proposed for solving semantic seg-
mentation tasks for autonomous driving in federated scenarios.

6.2.1 Motivation

Research in autonomous driving aims at improving our safety and driving experience.
In order to derive and execute trustworthy actions autonomously, vehicles must be
able to perceive and understand their surroundings [444–447]. To ensure the safety
of the passengers, an autonomous vehicle needs to determine precisely whether there
is a danger such as an obstruction or a pedestrian, and consequently decide whether
to slow down or accelerate. To do so, vehicles rely on the semantic segmentation
task [448–451], whose goal is to provide a semantic prediction for every pixel of
the image, giving a deep understanding of the surrounding environment. However,
training robust semantic segmentation models requires having access to large scale
datasets possibly representing all the conditions that can be encountered in the real
world. One possible solution is to collect images from the customers’ vehicles which,
being already on the road, face different situations and cover multiple geographic
locations, weather conditions, viewpoints, etc. While collecting the images from
vehicles is an effortless process, sending them to a central server to train a model
could potentially violate the users privacy. Indeed, other nodes of the communication
infrastructure may access personal and privacy-protected information, thus violating
the regulations in force [452–454]. A clever solution to train a model using all the
clients’ data while protecting their privacy is introduced by federated learning [34].
However, FL is a relatively new field and current methods mainly focus on simple
vision tasks. Hence, the usage of FL for Semantic Segmentation in realistic urban
environments opens the door to issues relating to the variety of witnessed scenes:
images captured outdoors suffer from enormous variability in light, reflections, points
of view, atmospheric conditions and types of settings, resulting in various domains
(Figure 6.1).

Aiming to fuel the FL research on complex vision scenarios, this thesis introduces
two benchmarks for SS in FL: FEDDRIVE [271] proposes the federated adaptations of

194 Novel Benchmarks for Federated Computer VisionFederated Semantic Segmentation
for Autonomous Driving

134

Daylight Sunset Night

CLASS HETEROGENEITY DOMAIN SHIFT

User living in a city:
skyscrapers, taxis,

many people, …

User by the mountains:
trees, family houses, bikes, …

Different point of views, weather conditions, …

Fantauzzo, Lidia, et al. "FedDrive: Generalizing Federated Learning to Semantic Segmentation in Autonomous Driving.“ IROS (2022).
Shenaj, Donald, et al. "Learning Across Domains and Devices: Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning." WACV (2022).

Fig. 6.1 Examples of distribution and domain shifts in autonomous driving scenarios. Due to
personal habits and geographical locations, users may be subject to different scenery (e.g.,
mountain landscapes vs. city views), or shifts in visual domains (e.g., light conditions).

the Cityscapes and IDDA datasets, while studying the impact of batch normalization
layers on generalization in such scenarios; FFREEDA [366] instead takes a step
further in the application in real-world scenarios, removing the assumption on labeled
client-side data. The considered datasets are CrossCity, GTA5, and Mapillary Vistas
datasets.

6.2.2 FedDrive

© 2022 IEEE. Reprinted, with permission, from Fantauzzo, L., Fanì, E., Caldarola,
D., Tavera, A., Cermelli, F., Ciccone, M., & Caputo, B. (2022, October). FEDDRIVE:
Generalizing federated learning to semantic segmentation in autonomous driving. In
2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
(pp. 11504-11511). IEEE.

FEDDRIVE is the first benchmark introducing semantic segmentation for au-
tonomous driving in federated scenarios, with a focus on statistical heterogeneity
across clients.

Each client (vehicle) usually observes part of a meta-distribution or different
factors of variation (geographical location, viewpoint, weather, illumination), which
are generally different from other clients. Thus, this benchmark focuses on two key
elements: i) high statistical heterogeneity, and ii) domain generalization. To address
these issues, FEDDRIVE benchmarks state-of-the-art FL algorithms FEDAVG [34],
SILOBN [405], FEDBN [193], and different server optimizers [290, 275]. To deal

6.2 Federated Semantic Segmentation for Autonomous Driving 195

with the domain shift, the mentioned algorithms are combined with style-transfer
methods [293, 455] to obtain a model capable of effectively generalizing on unseen
domains.

Federated Datasets Adaptation

To investigate the different challenges of Federated Learning in autonomous driving,
this work introduces a novel benchmark based on Cityscapes [396], and IDDA [174]
datasets, proposing multiple federated versions for each of them, based on different
levels of data heterogeneity between clients. Table 6.1 summarizes the multiple
experimental settings emulating realistic scenarios.

Federated Cityscapes. Cityscapes is one of the most popular datasets for semantic
segmentation and is a set of real photos taken in the streets of 50 different cities
with good weather conditions. The dataset contains 2,975 images for training and
500 for testing, providing annotations for 19 semantic classes. The first and more
naïve choice for adapting the dataset to the federated scenario consists of uniformly
splitting it among a fixed number of clients, i.e. each image is randomly drawn
and assigned to one of the users. While this distribution allows for performance
evaluation in a federated environment, it does not consider the real-world challenge
of statistical heterogeneity. Therefore, an additional split, denoted as heterogeneous,
is introduced, taking into account the information about the city where the photo was
taken, resulting in a non-i.i.d. domain distribution across clients. Specifically, there
are 8 clients for each of the 18 training cities for a total of 144 devices, with images of
each city divided among its clients. The test client contains all the images belonging
to cities never seen at training time for both the uniform and the heterogeneous
settings.

Federated IDDA. IDDA is a synthetic dataset for semantic segmentation in the
field of self-driving cars, providing annotations for 16 semantic classes with a broad
variety of driving conditions, characterized by three axes: 7 towns (ranging from
Urban to Rural environments), 5 viewpoints (simulating different vehicles), and 3
weather conditions (Noon, Sunset and Rainy scenarios) for a total of 105 domains.
FEDDRIVE provides both a homogeneous and a heterogeneous adaptation of IDDA
to FL. In the uniform distribution, each client has access to 48 images drawn randomly

196 Novel Benchmarks for Federated Computer Vision

Table 6.1 Summary of the settings in FEDDRIVE

Dataset Setting Distribution # Clients # Samples per user Test clients

Cityscapes - Uniform 146 10 - 40 Unseen domains (new cities)
- Heterogeneous 144 10 - 45 Unseen domains (new cities)

IDDA
country uniform 90 48 Seen + unseen (country) domains

Heterogeneous 90 48 Seen + unseen (country) domains

Rainy Uniform 69 48 Seen + unseen (rainy) domains
Heterogeneous 69 48 Seen + unseen (rainy) domains

from the whole dataset. Since such distribution is highly unrealistic, it is only used
as reference for the model’s performance. The heterogeneous federated version of
IDDA requires each client to see images belonging to a single domain. In addition,
the generalization capabilities of the learned model are tested on two left-out clients,
one with images belonging to the already seen training domains (seen-dom) and
one with never seen ones (unseen-dom). IDDA is further distinguished into two
possible settings in order to analyze both semantic and appearance shift. As for the
former, the unseen-dom test client contains images of a country town, while in the
second case, the photos are taken in rainy conditions. These two setting variations
are respectively identified as country and rainy.

Benchmark

The algorithms benchmarked on FEDDRIVE are FEDAVG, FEDBN and SILOBN,
which leverage the BN layers to learn domain-specific features.

To further overcome the limits of decentralized datasets, Continuous Frequency
Space Interpolation (CFSI) [293] is applied to the images. Given an image xxxk

from the k-th client, the frequency space signal can be derived from the Fast Fourier
Transform (FFT). The low-level information (e.g., color, brightness) is reflected in
the amplitude spectrum of the FFT. To share the distribution information among
local clients, a distribution bank A = {A1, . . . ,AK} is firstly created, where each
Ak = {A i

k}
Nk
i=1 contains all amplitude spectrum of images from the k-th client. A

continuous interpolation of the frequencies is used to transfer multi-source distri-
bution to each local client. [293] interpolates each client image to each domain
distribution. Still, due to the significant computation required by the style transfer
methods, this is not scalable or feasible in a realistic setting with several domains. As
a result, CFSI transformation is only applied to half of the client data and only one

6.2 Federated Semantic Segmentation for Autonomous Driving 197

6RXUFH 7DUJHW &)6, /$%

,'
'
$

&
LW\
VF
DS
HV

Fig. 6.2 CFSI and LAB applied to random images from Cityscapes and IDDA

target amplitude spectrum is randomly sampled from the shared distribution bank
A . The interpolation ratio λ is used to sample images uniformly in a range [0,1].

Another useful technique for DG is LAB-based Image Translation (LAB)
[455]. To share the distribution information across local clients, a shared bank
L = L1, . . . ,LK is created, where each Lk = {µ i

k,σ
i
k}

Nk
i=1 is the set of means and

standard deviations for each image of client k, transformed in the LAB color space.
As previously done with CFSI, only half of the client data is translated. More
specifically, a RGB image xxxRGB

S of a client k is firstly converted to the LAB color
space xxxLAB

S . Then, the mean µS and the standard deviation are computed for each
channel of xxxLAB

S . A random pair of (µT ,σT) is sampled from the distribution bank
L . The xxxLAB

S image style is then translated as follows:

x̂xxLAB
S =

xxxLAB
S −µS

σS
∗σT +µT . (6.1)

Following the alignment of the distribution, the translated LAB image x̂LAB
S is

converted back to the RGB color space as x̂RGB
S , for the subsequent training phase.

Figure 6.2 compares CFSI and LAB.

The resulting benchmark is presented in Tables 6.2 and 6.3, with examples of
qualitative results in Figure 6.3.

Overall, the improvements brought by SILOBN are limited in Cityscapes since
the domain shift across cities is mostly related to semantic rather than style. Test
images, in fact, belong to cities never seen during training but to the same country
and are taken on similar weather conditions. For the same reason, DG methods do
not contribute to performance improvement: SILOBN obtains 44.20% mIoU on

198 Novel Benchmarks for Federated Computer Vision

Table 6.2 FEDDRIVE: Cityscapes results

Method mIoU ± std (%)

FEDAVG (uniform) 45.71 ± 0.37
FEDAVG 43.85 ± 1.24
FEDAVG + CFSI 41.50 ± 0.98
FEDAVG + LAB 39.20 ± 1.37
SILOBN 44.20 ± 1.43
SILOBN + CFSI 40.48 ± 1.40
SILOBN + LAB 42.23 ± 1.23

Table 6.3 FEDDRIVE: IDDA results in mIoU ± std (%).

country rainy
Method seen unseen seen unseen

FEDAVG (uniform) 63.57 ± 0.60 49.74 ± 0.79 62.72 ± 3.65 27.61 ± 2.80
FEDAVG 42.43 ± 1.78 40.01 ± 1.26 38.18 ± 1.40 26.75 ± 2.32
FEDAVG + CFSI 54.70 ± 1.12 45.70 ± 1.73 55.24 ± 1.65 31.05 ± 2.68
FEDAVG + LAB 56.59 ± 0.90 45.68 ± 1.04 58.85 ± 0.89 26.82 ± 1.78
FEDBN 54.39 - 56.45 -
SILOBN 58.82 ± 2.93 45.32 ± 0.90 62.48 ± 1.42 50.03 ± 0.79
SILOBN + CFSI 61.22 ± 3.88 49.17 ± 1.01 63.04 ± 0.31 50.54 ± 0.88
SILOBN + LAB 64.32 ± 0.76 50.43 ± 0.63 65.85 ± 0.91 53.99 ± 0.79

average, while combining it with CFSI and LAB, it achieves, respectively, 40.48%
and 42.23%. In particular, both CFSI and LAB act on the style of the image rather
than on its content. A slight drop in performance is instead obtained since the
network requires more time to converge with a stronger data augmentation given by
the style transfer methods. Qualitative results in Figure 6.3 confirm that SILOBN
with LAB does not improve the performance w.r.t. FEDAVG.

As for IDDA, on the unseen test client, the performances are lower, especially in
the rainy setting, where the mIoU drops by 35 mIoU percentage points on average
with respect to the seen test client. This underlines the significant domain shift
introduced by the unseen test client. It is important to remark that country and
rainy settings provide different challenges, as can be seen from Figure 6.3. The
country domain has a similar style w.r.t. the training clients, since the images are
taken in different weather conditions, but has other semantic characteristics, e.g. it
rarely contains sidewalks near the road, as instead frequently happens on the training
clients. On the opposite, the rainy domain has similar semantic characteristics but an
essentially different appearance since there are no rainy images on training. When
introducing a domain imbalance, the performance of FEDAVG has a significant drop,
especially in the seen test client. On average, the performance on the seen test client
drops by nearly 23 mIoU percentage points, achieving 42.43% on the country setting
and 38.18% on the rainy one. This result emphasizes the domain imbalance across
training clients and the high statistical heterogeneity of this setting. Differently, the

6.2 Federated Semantic Segmentation for Autonomous Driving 199

performance drop on the unseen test client is limited, with a drop of about 2 mIoU
percentage points on the country and a drop of about 12 mIoU percentage points
on the rainy setting. The introduction of techniques able to cope with statistical
heterogeneity largely improves the performance on the seen test client. FEDBN
and SILOBN show an improvement, on average, of 14 mIoU percentage points on
country and of 21 mIoU percentage points on rainy settings, strongly reducing the
domain gap between training clients. Moreover, analyzing the results on the unseen
test client, we see two different behaviors of SILOBN. On the country setting, it
shows only a limited improvement with respect to FEDAVG: 40.01±1.26% FEDAVG

vs 45.32±0.90% SILOBN. Differently, it largely improves the performance on the
rainy setting: 26.75± 2.32% FEDAVG vs 50.03± 0.79% SILOBN. These results
confirm that SILOBN strongly reduces the domain shift related to the appearance.
Still, it does not alleviate much the semantic domain shift present in the country
domain. Overall, applying CFSI and LAB style transfer methods improve the
performance across domains and settings.

,'
'
$
�

FR
XQ
WU\

6RXUFH /$% 7HVW *URXQG�7UXWK)HG$YJ 6LOR%1���/$%

,'
'
$
�

UD
LQ
\

&
LW\
VF
DS
HV

Fig. 6.3 Example of qualitative results on FEDDRIVE with various methods

200 Novel Benchmarks for Federated Computer Vision

6.2.3 Federated source-Free Domain Adaptation

© 2023 IEEE. Reprinted, with permission, from Shenaj, D.*, Fanì, E.*, Toldo, M.,
Caldarola, D., Tavera, A., Michieli, U., Ciccone, M., Zanuttigh, P., & Caputo, B.
(2023). Learning across domains and devices: Style-driven source-free domain
adaptation in clustered federated learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision (pp. 444-454).

As detailed in Section 5.3, this thesis introduces FFREEDA (Federated source-
Free Domain Adaptation), a new framework enabling learning from unlabeled
clients’ local datasets by leveraging a labeled public dataset. This section discusses
the benchmarks introduced for this specific scenario, summarized in Table 6.4.

The source dataset (i.e., the public labeled server-side dataset) is the synthetic
GTA5 dataset, containing ≈ 25k highly realistic road scenes of typical urban and
suburban environments in the United States. As for the target datasets instead, three
different options are proposed: Cityscapes [396], CrossCity [384] and Mapillary Vis-
tas [397]. Cityscapes provides street-view images from 50 cities in Central Europe,
for a total of 2,975 training images (unlabeled) and 500 validation images, used as
test set. CrossCity includes more diverse locations and appearances, collecting driv-
ing scenes from multiple cities around the world (i.e., Rome, Rio, Tokyo, and Taipei).
Finally, the Mapillary Vistas dataset collects geo-localized street-view images from
all around the world. This setting considers the largest number of overlapping classes
among GTA5 and the real datasets (i.e., 19 for Cityscapes and Mapillary, and 13 for
CrossCity).

The federated partitioning of the datasets is done as follows. Cityscapes is split
following FEDDRIVE [271], i.e., 144 clients, where each client has between 10 and
45 samples belonging to a single city from the dataset.

CrossCity is divided by assigning 27±10 images taken from the same city to
each client, where the number of samples per client is uniformly sampled. The
resulting distributions are balanced across cities, as shown in Figure 6.4.

In Mapillary, the provided GPS information is leveraged to discover clients with
spatially near images. Starting from the original training set of 18000 images, 31
were discarded due to missing GPS coordinates. K-means was then applied to the
GPS coordinates six times, one per continent. The k-Means algorithm is constrained
to assign every client a random number of images in the range from 16 to 100. This

6.2 Federated Semantic Segmentation for Autonomous Driving 201

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(a) Rio

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t
(b) Rome

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(c) Taipei

17 21 25 29 33 37
#images / client

0

5

10

15

20

25

30

Co
un

t

(d) Tokyo

13 17 21 25 29 33 37 41 45
#images / client

0

2

4

6

8

10

12

14

16

Co
un

t

(e) Cumulative

Fig. 6.4 Histogram of images per clients in the proposed federated CrossCity split

(a) Africa

30 40 50 60 70 80 90 100
#images / client

0

10

20

30

40

50

Co
un

t

(b) Asia

30 40 50 60 70 80 90 100
#images / client

0

10

20

30

40

50

Co
un

t

(c) Europe

30 40 50 60 70 80 90 100
#images / client

0

10

20

30

40

50

Co
un

t

(d) North America

30 40 50 60 70 80 90 100
#images / client

0

10

20

30

40

50

Co
un

t

(e) Oceania

30 40 50 60 70 80 90 100
#images / client

0

10

20

30

40

50

Co
un

t

(f) South America

30 40 50 60 70 80 90 100
#images / client

0

10

20

30

40

50

Co
un

t

(g) Cumulative

30 40 50 60 70 80 90 100
#images / client

0

20

40

60

80

100

120

140

160

Co
un

t

Fig. 6.5 Histogram of images per clients in the proposed federated Mapillary Vistas split

procedure resulted in 357 clients, where each client observes samples from only one
continent. The final distributions of the number of images per client are shown in
Figure 6.5. Unlike the other scenarios, here the variability across the distributions
obtained in different continents is larger due to the highly imbalanced nature of
the dataset. Also, note that the two entries with the highest values, 16 and 100,
correspond to the extreme values of the constrained k-Means process.

Table 6.4 FFREEDA: Federated splits for semantic segmentation in FL. For each dataset, the
following information are reported: the number of classes NC, the size of training and test
sets, the number of clients and the min-max range of images per client.

Dataset NC |DT | |DT
test | K # Img/Client (range)

Cityscapes 19 2,975 500 144 [10,45]
CrossCity 13 12,800 400 476 [17,37]
Mapillary 19 17,969 2,000 357 [16,100]

202 Novel Benchmarks for Federated Computer Vision

6.3 Federated Visual Place Recognition

© 2024 IEEE. Reprinted, with permission, from Dutto, M., Berton, G., Caldarola, D.,
Fanì, E., Trivigno, G., & Masone, C. (2024). Collaborative Visual Place Recognition
through Federated Learning. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 4215-4225).

Visual Place Recognition (VPR) [73] aims to estimate the location of an image
by treating it as a retrieval problem. VPR uses a database of geo-tagged images and
leverages deep neural networks to extract a global representation, called descriptor,
from each image. While the training data for VPR models often originates from
diverse, geographically scattered sources (geo-tagged images), the training process
itself is typically assumed to be centralized. This research revisits the task of VPR
through the lens of Federated Learning (FL), addressing several key challenges
associated with this adaptation. VPR data inherently lacks well-defined classes,
and models are typically trained using contrastive learning, which necessitates a
data mining step on a centralized database. Additionally, client devices in federated
systems can be highly heterogeneous in terms of their processing capabilities. The
proposed FedVPR framework not only presents a novel approach for VPR but also
introduces a new, challenging, and realistic task for FL research, paving the way to
other image retrieval tasks in FL.

6.3.1 Introduction

The ability to recognize the place depicted in a picture is of the utmost importance
for many modern applications performed by camera-equipped mobile systems. For
example, in autonomous driving and mobile robotics, this ability is used for localiza-
tion in instances where GPS measurement is unavailable or unreliable [456, 457],
or in facilitating loop closure within SLAM (Simultaneous Localization and Map-
ping) pipelines [458]. Additionally, mobile phone applications heavily rely on this
functionality for tasks like scene categorization [459] and augmented reality sup-
port [460]. Likewise, wearable devices leverage this capability to provide useful
information to the user [461]. From a technical perspective, this task is referred to as
Visual Place Recognition (VPR) [73] and is naturally framed as an image retrieval
problem. The query image to be localized is compared via features-space k-nearest
neighbor (kNN) [462] to a database of images representing the known or already-

6.3 Federated Visual Place Recognition 203

Local
Database

Query
Local
Model

Local
Model

Local
Database

Local
Database

Local
ModelQuery

Query

Client 1

Client 2

Client k

Central Server

Global
Model

b. Models Aggregation

a. Local training

a. Local training a. Local training

Fig. 6.6 Federated Visual Place Recognition (FedVPR): the training of Visual Place
Recognition models is revisited from the perspective of Federated Learning, with clients
distributed across geographical areas, each possessing heterogeneous computational and
communication resources and availability. Instead of relying on a central database for mining,
each client builds its own database of geo-tagged images and uses it for local training based
on contrastive learning (step a.). Subsequently, it communicates its model weights to the
server, where they are aggregated into a new global model (step b.).

visited places. Given that the database samples are usually labeled with geo-tags
(such as GPS coordinates), the most similar images retrieved from the database
serve as hypotheses of the queried location. This approach entails representing each
image with a single vector (global feature descriptor) so that the kNN can efficiently
compute the similarity between two images, e.g., as an Euclidean distance.

Recent research on VPR has been focusing predominantly on the development
of deep neural networks capable of extracting global feature descriptors that are
both compact and highly informative for place recognition while leveraging large
collections of data from highly heterogeneous distributions [463–468]. However, this
centralized formulation assumes the images are readily available on one computer or
a central server, which does not suit the distributed nature of the VPR applications
previously discussed well. In an ideal scenario where mobile phones, wearable
devices, and autonomous vehicles are deployed across numerous cities globally, it
becomes crucial to leverage images collected by these diverse distributed devices
without transferring their data to a central server, both for cost and privacy-related

204 Novel Benchmarks for Federated Computer Vision

reasons. Furthermore, it would be beneficial to leverage the onboard computational
capabilities of these devices to aid in model training.

In light of these considerations, this work aims to adapt the training paradigm of
VPR models to the Federated Learning framework (Figure 6.6). Possible examples
of the described scenario can be a company deploying a fleet of self-driving vehicles,
wanting to improve the performances of its localization-and-mapping pipeline, a
swarm of drones, or even general-purpose content-based image retrieval. However,
this procedure is not straightforward. Unlike the conventional FL literature that
revolves around classification problems [394, 275, 7], VPR lacks a clear division of
data into classes. Instead, the collected images are labeled with continuous space
annotations (commonly in the form of GPS coordinates), and models are usually
trained with contrastive learning techniques [469], which are often performed in
conjunction with computationally heavy mining over a large centralized database
[469–472]: in a federated setting, this would be unfeasible due to (i) the low com-
putational capacity of the clients and (ii) the privacy concerns that a centralized
database would create.

The contributions can be listed as follows:

• Introduction of the first formulation of the VPR task in a federated learning
framework. The importance of this formulation is twofold: for the VPR field,
it opens up a new research direction with important practical implications; for
the FL field, it provides a new downstream task that can broaden the horizon
of the research community.

• Adaptation of the Mapillary Street-Level-Sequences (MSLS) dataset [473] to
FL, to replicate realistic scenarios with varying degrees of statistical hetero-
geneity across clients.

• The clients’ data heterogeneity is addressed through critical design decisions
such as client split, local iteration scheduling, and data augmentation, achieving
centralized-level performances while accounting for power and computational
requirements.

6.3 Federated Visual Place Recognition 205

6.3.2 Framework

Building upon the notation introduced in Section 2.1.2 for centralized VPR and
the FL problem statement in Section 3.2, the FedVPR (Federated Visual Place
Recognition) framework is defined as follows.

Each client k ∈C has access to a privacy-protected dataset Dk made of Nk images
xxx ∈ X associated with a GPS location. While the server-side maintains the standard
aggregation with FEDAVG, the client-side training requires detailing the mining
procedure.

Local Mining. As discussed in Section 2.1.2, the mining process is crucial for
learning as it ensures that the network is fed with informative samples during training.
Differently from the centralized scenario where the model has access to the whole
dataset for training, here the challenge lies in performing mining without (i) increas-
ing the communication costs by exchanging continuous information between clients
and server, ii) downloading enormous quantities of data on resource-constrained de-
vices and (iii) exchanging data with other clients or the server, which could result in
privacy leaks. In FedVPR, to avoid the aforementioned bottlenecks and any privacy
concerns, the mining is limited to the database images previously collected by each
client. The local data collection likely satisfies the requirement of having access to
hard negative samples (i.e., visually similar images of different places) to success-
fully train the feature extractor. However, its limited variability is an important factor
that can slow down convergence and ultimately affects performances.

Hierarchical FL. Lastly, since here the clients’ data distributions are linked with
the users’ geographical locations (e.g., a device likely spends most time within a
single region), this work additionally explores the hierarchical FL (H-FL) setup
[317]. In H-FL, clients are grouped into K clusters according to their geographical
proximity. A specialized model Fwwwc is assigned to each cluster c. Once every Tc

rounds, the cluster-specific models are aggregated. This implies the existence of
multiple servers. FedVPR explores a dual-level framework: the first-tier servers
handle inter-clusters interactions (e.g., among cities or continents), while second-tier
ones manage the intra-cluster exchanges (e.g., between users living in the same city,
or continent).

206 Novel Benchmarks for Federated Computer Vision

Table 6.5 Characteristics of the proposed FEDVPR datasets, associated with FEDAVG

performances

FL dataset Radius
(m)

Sequences
per client

Images
per client

Number of
clients R@1 (%)

Centralized - - - - 66.0 ± 0.4

Random - 64 ± 1 3655 ± 676 700 40.2 ± 0.0

Clustering - 36 ± 32 2018 ± 1266 678 57.3 ± 1.2

Proximity
1000 17 ± 18 897 ± 808 1303 51.7 ± 1.7
2000 33 ± 48 1834 ± 2050 713 61.0 ± 0.6
4000 75 ± 148 4270 ± 6515 316 66.1 ± 0.3

Federated Mapillary Street-Level-Sequences Dataset

Our experiments center on the Mapillary Street-Level-Sequences (MSLS) dataset
[473], geographically distributed across 30 cities worldwide, mimicking a FL sce-
nario. The dataset is split into non-overlapping train, validation, and test sets. Each
set comprises distinct cities: Amsterdam and Manila for validation, San Francisco
and Copenhagen for testing, and the remaining cities for training. Similar to other
VPR datasets, each subset is further divided into databases and queries. Queries
represent images to be localized, while databases act as the system’s prior knowledge
of the area. Notably, the dataset excels due to its rich diversity. It encompasses a
vast number of cities captured by various users, resulting in a wide range of cameras,
weather conditions, times of day, and scenarios across both urban and rural envi-
ronments. These characteristics perfectly align with the demands of FedVPR’s use
case.

This work’s first contribution lies in proposing three novel splits for the MSLS
dataset. These splits mimic real-world scenarios with varying data distributions
across devices. Users are grouped based on geographical proximity, similarity in city
features (e.g., architecture), or randomness. Table 6.5 summarizes the introduced
benchmark and Figure 6.7 reports the resulting statistics on clients and images
distribution.

Proximity. This split emulates user movements within a neighborhood or a proxi-
mal geographical area. While clients in smaller towns may explore different localities,
users in large cities like Tokyo or San Francisco are inclined to stay within their
neighborhoods. The MSLS dataset is first divided geographically, with each city
representing a separate entity. Within each city, clients are formed iteratively. An

6.3 Federated Visual Place Recognition 207

initial query image is chosen from a sequence available in that city. All other ge-
ographically close sequences, i.e., within a given radius from the coordinates of
the selected image, are then grouped with the chosen query image. This group is
considered a valid client only if it contains at least two queries and two database
sequences. The resulting number of training clients depends on the chosen radius,
selected in {1000,2000,4000} meters. Twelve clients are randomly selected from
the pool of validated training clients to serve as the validation set. The test set is kept
on the server side.

Clustering. The proximity split assumes similar features (e.g., architecture) in
nearby areas. However, distant neighborhoods might share more similarities (e.g.,
busy streets, shops) than geographically close ones. To capture such nuances, the
clustering split utilizes the K-means algorithm [89] at the city level, grouping images
based on their visual and environmental characteristics. To ensure a balanced number
of clients while capturing similarities, the value of Kcl (number of clusters) is set
for each city individually. The number of clients obtained in the proximity split
with a radius of 2000 meters is the reference, i.e., Kcl = 713. The same selection
criterion of the proximity split is then applied to define the valid clients. 12 clients
are maintained for validation, and the test set is on the server.

Random. Following the approach of [290, 271, 474],a random split of MSLS
is introduced to emulate a uniform distribution and facilitate the understanding
of the effects of statistical heterogeneity induced by domain shift. Each dataset’s
client includes images from all cities, and validation is conducted on the same local
dataset. If a city does not have enough data for all clients, the existing sequences
are duplicated until each client can access at least one sequence from each city. Any
remaining sequences are redistributed among clients. The test set remains on the
server side.

Benchmark

The experiments are run using a ResNet18 truncated after the third convolutional
layer. The pooling layer is GeM. Each round engages 5 clients, with each client
running a single local epoch. This process is repeated across a total of T = 300
rounds.

208 Novel Benchmarks for Federated Computer Vision

(a) Clients per city (b) Clients per continent (c) Images per city (d) Images per continent

Fig. 6.7 Clients and images distributions in the federated MLSL

The Hierarchical Federated Learning (H-FL) [475, 476] experiments propose
two hierarchy types, delineated by geographical proximity: City and Continental
levels, where clients within the same city or continent respectively are aggregated to
form the cluster-specific models. This results in 21 clusters in the former case and 4
in the latter.

Splits comparison. The vanilla FEDAVG algorithm is tested across the different
introduced datasets, as illustrated in Table 6.5. Interestingly, the performance of
FEDAVG on the Random FL dataset significantly lags behind that of other ones,
despite the scenario closely resembling uniform splits as seen in prior works [290,
271, 474]. However, as highlighted in [477], optimal performance necessitates hard
negatives to be situated within a distance range of 25 meters to a few kilometers from
the query, a condition not met in this dataset where images within the same client
can belong to various locations worldwide. The experiments on the Proximity and
Clustering FL datasets yielded comparable performance. Interestingly, the Proximity
split achieved slightly better results on average. This difference is likely because
images within clients of the Proximity split have closer GPS coordinates compared
to those in the Clustering split. Additionally, clients in the Proximity FL datasets
with radii of 2000m and 4000m also contain a larger number of images compared to
their counterparts in the Clustering datasets. The proximity experiment employing
a radius of 4000m demonstrates performance levels roughly akin to the centralized
baseline. However, opting for a larger radius results in fewer clients, each possessing
a greater number of images and sequences, thereby resembling a cross-silo scenario
[277]. Conversely, reducing the radius yields a larger number of clients but with
a markedly limited quantity of images and sequences per client. Given all these
considerations, the focus is shifted solely to the proximity FL dataset with a 2000m

6.3 Federated Visual Place Recognition 209

Table 6.6 Comparison of the vanilla baseline FEDAVG with Hierarchical FL methods and
various server optimizers. Notation: CC for continent-level middle servers in H-FL, C for
city-level middle servers, SGDm for SGD with server-side momentum, T rounds, C clients
participating at each round.

Algorithm Server Optimizer R@1 (%)

FEDAVG

SGD 61.0 ± 0.6
SGDm 61.2 ± 1.4
Adam 61.1 ± 1.2

AdaGrad 61.6 ± 0.3

H-FL (CC) SGD 46.9 ± 1.3
FEDAVG T = 75, C = 20 SGD 55.6 ± 0.8

H-FL (C) SGD 33.3 ± 0.1
FEDAVG T = 15, C = 105 SGD 44.2 ± 0.4

radius in the upcoming experiments. This choice strikes a balance between the
number of clients and the volume of data per client.

Baselines. Table 6.6 presents a comparative analysis between FedAvg with various
server-side optimizers and baselines sourced from the Hierarchical Federated Learn-
ing (H-FL) literature [475, 476]. This work distinguishes between H-FL at city (C)
and continent level (CC). To ensure a fair comparison with H-FL, which selects 5
clients from each cluster per round, FEDAVG is run with 20 clients per round and
T = 75, and 105 participating clients for T = 15 rounds. Both H-FL experiments
exhibit a reduction in recall by approximately 10%. This substantial decline in
performance is associated with clusters tending to overfit the local distributions,
thereby diminishing the meaningfulness of aggregation compared to training with
all clients collectively. Concerning the server optimizers, AdaGrad demonstrates
slightly superior performance compared to others. As a result, the standard SGD
without momentum is chosen for the other baselines.

Data Quantity Skewness in FedVPR. Table 6.5 highlights significant variations
in the number of sequences or images among clients (i.e., quantity heterogeneity),
particularly evident in the Proximity split with a radius of 2000m - the reference
federated dataset. This paragraph analyzes how this phenomenon affects the final
performance.

In heterogeneous settings, an increased number of local training steps (updates
within a client over a batch of data) fosters client drift and destructive interference
during aggregation (Chapter 4). Thus, a larger local dataset leads to more updates

210 Novel Benchmarks for Federated Computer Vision

Table 6.7 Addressing the clients’ quantity heterogeneity. The R@1 (%) of the FEDAVG

baseline (grey background) is compared with the ones of FEDAVG and FEDVC with a fixed
number of iterations per client per round. B is the local mini-batch size.

Local Iterations Rounds FEDAVG FEDVC

min(⌊|Dk |/B⌋ ,2500) 300 61.0 ± 0.6 -
125 3200 66.6 ± 0.8 62.3 ± 1.1
250 1600 66.0 ± 1.7 65.9 ± 1.0
500 800 66.4 ± 1.6 67.7 ± 0.4

1000 400 61.7 ± 2.4 66.8 ± 0.5
2000 200 58.8 ± 1.8 65.2 ± 0.9
4000 100 57.3 ± 2.5 60.6 ± 1.0

and potentially negatively impacts the training process. Motivated by these insights,
table 6.7 investigates how the data quantity skewness and the number of local training
iterations affect performances of algorithms trained within the FedVPR framework,
focusing on FEDAVG and the state-of-the-art algorithm FEDVC (Federated Virtual
Clients) [278]. FEDVC specifically addresses variations in client data sizes by
splitting large datasets into smaller clients and replicating smaller ones. This ensures
all participating virtual clients contribute roughly the same amount of data during
each training round. To prevent knowledge loss, larger clients are resampled with
higher probability.

Given a fixed amount of total iterations Itot , the analysis either varies the local
iterations Iloc, or the training rounds T such that Iloc×T×|C t |= Itot . With larger Iloc,
smaller datasets are used multiple times within a client, while fewer iterations might
lead to an incomplete view of larger datasets. We set Itot = 2,000,000, |C |t = 5 and
vary Iloc and T .

This analysis reveals that reducing the influence of data imbalances can improve
performance by up to 5%. However, there exists a trade-off between communication
rounds and final accuracy. As shown in Table 6.7, increasing T (more communica-
tion) while reducing the local steps leads to performance improvement. Conversely,
excessively increasing local computation at the expense of the number of rounds
deteriorates the final performance. Finally, FEDVC’s sampling strategy, which favors
larger clients, consistently improves performance when each device performs more
than 500 local updates per round. However, for fewer local updates (125 and 250),
FEDVC shows a decrease in accuracy.

6.4 Summary 211

6.4 Summary

In conclusion, this chapter introduced three novel benchmarks for studying computer
vision tasks in FL, adapting both semantic segmentation for autonomous driving and
visual place recognition to the federated setting.

FEDDRIVE is among the first works to propose using FL for autonomous vehicles,
focusing on the semantic segmentation task. The proposed benchmark is based on the
Cityscapes and IDDA datasets, and highlights the impact of style transfer techniques
and batch normalization layers on the final model generalization ability.

FFREEDA proposes a more realistic task within the context of SS for FL, remov-
ing the need for labeled client-side data. The proposed benchmark introduces the
federated adaptations of the CrossCity and Mapillary datasets.

FEDVPR adapts the Visual Place Recognition task to federated learning, intro-
ducing hierarchical FL to reflect the users’ geographical distribution. The proposed
datasets is Mapillary Street-Level-Sequences.

Chapter 7

Conclusion

Somewhere, something incredible
is waiting to be known

CARL SAGAN

This chapter discusses final considerations on the presented results (Section 7.1),
highlights potential open directions and future works (Section 7.2).

7.1 Contributions Summary 213

7.1 Contributions Summary

This thesis investigated the critical challenge of generalization in federated learning
(FL), particularly for complex real-world cross-device scenarios. These settings
involve at least hundreds of clients, which autonomously collect their own data,
inevitably influenced by factors like personal habits and geographical location. This
leads to varying data distributions and inherent biases in the local datasets. In addi-
tion, edge devices are usually characterized by limited computational resources and
varying availability. All these factors negatively impact and slow down the training
process. This thesis aimed to improve the model generalization and robustness to dis-
tribution shifts, and speed up convergence in heterogeneous federated settings while
maintaining communication efficiency, with a particular interest for vision-oriented
solutions.

First, building upon research showing that convergence to sharp minima in the
loss surface may cause poor generalization, this thesis explored the connection
between the geometry of the global model’s loss landscape and the lack of general-
ization in heterogeneous FL. This analysis revealed that FL global models tend to end
up in sharp regions, especially under extreme data heterogeneity. As a consequence,
this work investigated the potential benefits of promoting globally flat minima. To
this end, as detailed in Chapter 4, FEDSAM and FEDGLOSS successfully leverage
sharpness-aware minimization (SAM), resulting in improved global model general-
ization and convergence speedup in several tasks. Among their several advantages,
differently from other state-of-the-art approaches, FEDSAM and FEDGLOSS enable
the effective deployment in FL of both strong data augmentations and Lagrangian
multipliers for local and global stationary points alignment.

Chapter 4 also revealed the importance of techniques that leverage previous
global updates for improved robustness of the global model by introducing SWA

and WIMA on the server side. By averaging the last server models, the proposed
methods efficiently lead to more stable solutions and improved convergence speed
without requiring any additional communication exchange or local computational
effort. Their usage makes the federated training process more robust to potential
clients’ unavailability and data distribution shifts.

In addition, this research proposed alternative frameworks to the standard client-
server training paradigm. By introducing various privacy-preserving techniques to

214 Conclusion

infer the local data distributions - such as leveraging style information or classifier
parameters - these novel methods enable the grouping of similar clients to develop
tailored solutions. Moreover, this thesis challenges the conventional approach in FL
of grouping similar clients to enhance performance. Instead, it proposes utilizing
groups of dissimilar clients to achieve better model quality and convergence speed,
as discussed in Chapter 5.

Furthermore, current research in FL focuses on either developing a global model
that generalizes across the overall underlying distribution or creating solutions
personalized to individual clients’ data. This thesis argues that both approaches
risk potential information loss. As a solution, this work proposes leveraging Graph
Convolutional Neural Networks to effectively capture domain-specific information
while facilitating knowledge exchange between similar clients (Chapter 5).

Finally, recognizing the need to bridge the gap between research and applications
and aiming to promote future vision-oriented studies, novel benchmarks for complex
vision tasks were developed. Chapter 6 introduces benchmarks designed for feder-
ated semantic segmentation in autonomous driving and collaborative visual place
recognition, addressing the critical lack of suitable evaluation tools in these domains.

By investigating these key areas, this thesis has contributed to advancing FL for
real-world vision applications. The proposed solutions pave the way for the devel-
opment of more generalizable and robust FL models that can effectively handle the
complexities of heterogeneous settings. Additionally, the proposed benchmarks pro-
vide a valuable foundation for continued research and development of FL algorithms
for real-world computer vision tasks.

7.2 Open Directions and Future Works

This section discusses potential open directions and future works for improving
generalization in heterogeneous federated learning, distinguished by the domain of
application.

7.2 Open Directions and Future Works 215

7.2.1 Flatness and generalization

This thesis introduced the intuition of leveraging the loss landscape perspective to
analyze the behavior of local and global models in heterogeneous FL. However,
these works have only scratched the surface, as many questions remain open.

First, some straightforward improvements of FEDSAM and FEDGLOSS are
worth discussing. As outlined in Chapter 4, SAM requires double the computation
cost at each iteration, which poses a significant challenge for deploying FEDSAM in
resource-constrained devices commonly found in real-world scenarios. In centralized
settings, this issue is addressed by several works that aim to improve SAM’s efficiency
without losing in performance, as discussed in Section 2.4. However, none of these
efficiency-aware alternatives has been studied in the FL scenario. To this end, an
open direction consists in finding a sharpness-aware approach the better fits the
constraints of FL.

Moreover, existing global flatness-aware methods - FEDGLOSS, FEDSMOO, and
FEDGAMMA- rely on stateful clients to perform operations such as the alternating
direction method of multipliers for aligning local and global solutions (FEDGLOSS
and FEDSMOO) or stochastic variance reduction (FEDGAMMA). This dependency
may be impractical in cross-device FL scenarios involving millions of clients, many
of whom are unlikely to participate in the training process more than once, potentially
reducing the effectiveness of these methods. This underscores the need for alternative
approaches to global flatness in FL that avoid reliance on stateful clients while
maintaining communication efficiency and minimizing local computational effort
compared to FEDSAM.

In addition, the proposed study on FEDGLOSS revealed that SAM enables the
effective use of ADMM in FL, reducing the known risk of parameters explosion [8]
by promoting smaller gradients. This lays the groundwork for future exploration
on understanding whether similar stability can be achieved through alternative
regularization techniques or optimization strategies.

Furthermore, recent studies in centralized learning suggest that SAM’s success
in achieving better generalization extends beyond its ability to select flat minima,
involving several other factors [230, 231, 478, 479]. For instance, according to [478],
SAM modifies the optimization trajectory by encouraging solutions that align with
specific eigenvectors of the Hessian matrix, or it simplifies the learned representations

216 Conclusion

by reducing the feature rank in intermediate layers of networks [231]. Similarly,
Andriushchenko et al. [230] argue that SAM up-weights gradients from low-loss
examples during training and amplifies the gradient contributions from less noisy
samples, thereby prioritizing robust features.

These findings motivate further investigation into the behavior of SAM in FL.
Notably, the centralized focus of these studies overlooks challenges unique to FL,
such as small, imbalanced datasets, client drift, and server-side aggregation. A
promising direction for future research is to explore the underlying mechanisms
driving SAM’s effectiveness in FL, particularly whether its use in local training
implicitly regularizes client drift, how the implicit re-weighing mechanism of SAM

impacts the quality of the locally learned model and the resulting global one, and
how SAM locally interacts with the global trajectory implicitly memorized in the
momentum term.

Lastly, by promoting convergence to flat minima, SAM leads to small gradient
steps and implicitly promotes sparser solutions [227]. Such advantage could be
exploited in FL scenarios to introduce both flatness-driven compression strategies for
reduced message size over the network and sharpness-aware lottery ticket hypotheses
for finding smaller sub-networks with equal performance [480].

7.2.2 Model Merging

Current research often uses FEDAVG as the base algorithm for further developments,
relying on its basic approach of updating the global model through a weighted av-
erage of the model parameters. However, it has been extensively shown how this
implementation is not robust to practical factors like the presence of data heterogene-
ity. A promising line of research looks at alternative model merging techniques.

From the perspective of the loss landscape, mode connectivity and neural net-
works subspaces [236, 481, 482] remain an under-explored area of research in FL.
Mode connectivity refers to the phenomenon where different local minima, or solu-
tions, in the loss landscape are connected by a low-loss path. This path suggests that
multiple solutions may have similar generalization properties, and the model can
transition between them without significant increases in loss. In the context of FL,
leveraging this approach could enable the learning of local solutions that are mode

7.2 Open Directions and Future Works 217

connected, meaning that each solution achieves comparable loss across all clients’
tasks, thus removing the need for merging altogether.

Other interesting approaches include [483], which focuses on merging models
that have been trained on different tasks without the need for retraining or fine-tuning.
This directly translates to the FL scenario, where multiple clients have access to
different tasks or datasets.

7.2.3 Beyond Label Skew: Spurious Correlations in FL

Most of current research on heterogeneous FL focuses on the issues arising from label
skew and domain generalization, disregarding other aspects, such as the presence of
spurious correlations, which are particularly impactful in vision tasks. As discussed
in Chapter 4, spurious correlations [198] are patterns that appear predictive in the
training data but are misleading at test time (e.g., the image background), and severely
impact the final generalization performance. Current understanding suggests that
the impact of spurious correlations in FL is still to be studied in depth and many
questions remain unanswered. For instance, the presence of simpler and less complex
tasks in the clients’ local datasets can impact the features learned by the model and
is unclear whether the learned local model may rely more on spurious information
compared to the resulting global model.

In addition, recent research [484] shows that SAM implicitly balances the quality
of diverse features, with positive implications for imbalanced dataset affected by the
presence of spurious information. Thus, a clear path of research would consist in
understanding the role of spurious correlations in heterogeneous FL, their impact
on SAM’s behavior and on the loss landscape geometry, and how the two aspects
combine when using methods like FEDSAM and FEDGLOSS (Chapter 4).

To address this gap and further the practical application of FL, the research
community should prioritize the development of robust and comprehensive FL
benchmarks that explicitly study spurious correlations.

References

[1] Charlie Giattino, Edouard Mathieu, Veronika Samborska, and
Max Roser. Data page: Cumulative number of notable
ai systems by domain. https://ourworldindata.org/grapher/
cumulative-number-of-notable-ai-systems-by-domain, 2023. Data
adapted from Epoch, part of the publication "Artificial Intelligence".

[2] Charlie Giattino, Edouard Mathieu, Veronika Samborska, and
Max Roser. Data page: Datapoints used to train notable ar-
tificial intelligence systems. https://ourworldindata.org/grapher/
artificial-intelligence-number-training-datapoints, 2023. Data adapted from
Epoch, part of the publication "Artificial Intelligence".

[3] Epoch. Training computation (petaflop). Dataset: Parameter, Compute and
Data Trends in Machine Learning, 2024. with major processing by Our World
in Data.

[4] Charlie Giattino, Edouard Mathieu, Veronika Samborska,
and Max Roser. Data page: Hardware and energy cost to
train notable ai systems. https://ourworldindata.org/grapher/
hardware-and-energy-cost-to-train-notable-ai-systems, 2023. Data
adapted from Epoch. In: Artificial Intelligence. Retrieved from Our World in
Data.

[5] Epoch AI. Parameter, compute and data trends in machine learning.
https://epochai.org/data/epochdb/visualization, 2023. Published online at
epochai.org.

[6] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi
Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham
Cormode, Rachel Cummings, et al. Advances and open problems in federated
learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210,
2021.

[7] Debora Caldarola, Barbara Caputo, and Marco Ciccone. Improving general-
ization in federated learning by seeking flat minima. In European Conference
on Computer Vision, pages 654–672. Springer, 2022.

https://ourworldindata.org/grapher/cumulative-number-of-notable-ai-systems-by-domain
https://ourworldindata.org/grapher/cumulative-number-of-notable-ai-systems-by-domain
https://ourworldindata.org/grapher/artificial-intelligence-number-training-datapoints
https://ourworldindata.org/grapher/artificial-intelligence-number-training-datapoints
https://ourworldindata.org/grapher/hardware-and-energy-cost-to-train-notable-ai-systems
https://ourworldindata.org/grapher/hardware-and-energy-cost-to-train-notable-ai-systems
https://epochai.org/data/epochdb/visualization

References 219

[8] Farshid Varno, Marzie Saghayi, Laya Rafiee Sevyeri, Sharut Gupta, Stan
Matwin, and Mohammad Havaei. Adabest: Minimizing client drift in fed-
erated learning via adaptive bias estimation. In European Conference on
Computer Vision, pages 710–726. Springer, 2022.

[9] Gediminas Adomavicius and Alexander Tuzhilin. Toward the next generation
of recommender systems: A survey of the state-of-the-art and possible exten-
sions. IEEE transactions on knowledge and data engineering, 17(6):734–749,
2005.

[10] Eugene Cheng-Xi Aw, Garry Wei-Han Tan, Tat-Huei Cham, Ramakrishnan
Raman, and Keng-Boon Ooi. Alexa, what’s on my shopping list? transforming
customer experience with digital voice assistants. Technological Forecasting
and Social Change, 180:121711, 2022.

[11] Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, Yang Zhou, Kaizhao Liang,
Jintai Chen, Juanwu Lu, Zichong Yang, Kuei-Da Liao, et al. A survey on
multimodal large language models for autonomous driving. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
958–979, 2024.

[12] OpenAI. Chatgpt. https://chat.openai.com, 2023.

[13] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S Yu, and
Lichao Sun. A comprehensive survey of ai-generated content (aigc): A history
of generative ai from gan to chatgpt. arXiv preprint arXiv:2303.04226, 2023.

[14] Junyi Chai and Anming Li. Deep learning in natural language processing:
A state-of-the-art survey. In 2019 International Conference on Machine
Learning and Cybernetics (ICMLC), pages 1–6. IEEE, 2019.

[15] Touseef Iqbal and Shaima Qureshi. The survey: Text generation models in
deep learning. Journal of King Saud University-Computer and Information
Sciences, 34(6):2515–2528, 2022.

[16] Chenshuang Zhang, Chaoning Zhang, Sheng Zheng, Mengchun Zhang,
Maryam Qamar, Sung-Ho Bae, and In So Kweon. A survey on audio diffusion
models: Text to speech synthesis and enhancement in generative ai. arXiv
preprint arXiv:2303.13336, 2023.

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. International Conference on Learning
Representations, 2021.

[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual
Learning for Image Recognition. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition, CVPR ’16, pages 770–778. IEEE,
2016.

https://chat.openai.com

220 References

[19] Shikun Zhang, Omid Jafari, and Parth Nagarkar. A survey on machine learning
techniques for auto labeling of video, audio, and text data. arXiv preprint
arXiv:2109.03784, 2021.

[20] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J. Leonard, David
Cox, Peter Corke, and Michael J. Milford. Visual place recognition: A survey.
IEEE Transactions on Robotics, 32(1):1–19, 2016.

[21] OpenAI. Dall-e. https://openai.com/dall-e, 2023.

[22] Sai Munikoti, Ian Stewart, Sameera Horawalavithana, Henry Kvinge, Tegan
Emerson, Sandra E Thompson, and Karl Pazdernik. Generalist multimodal
ai: A review of architectures, challenges and opportunities. arXiv preprint
arXiv:2406.05496, 2024.

[23] Devon Myers, Rami Mohawesh, Venkata Ishwarya Chellaboina, Anantha Lak-
shmi Sathvik, Praveen Venkatesh, Yi-Hui Ho, Hanna Henshaw, Muna Al-
hawawreh, David Berdik, and Yaser Jararweh. Foundation and large language
models: fundamentals, challenges, opportunities, and social impacts. Cluster
Computing, 27(1):1–26, 2024.

[24] Nobel Prize Outreach AB. Press release: The 2024 nobel prize in physics,
2024. Accessed: 31 October 2024.

[25] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov,
Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek,
Anna Potapenko, et al. Highly accurate protein structure prediction with
alphafold. nature, 596(7873):583–589, 2021.

[26] Nobel Prize Outreach AB. Press release: The 2024 nobel prize in chemistry,
2024. Accessed: 31 October 2024.

[27] Vivek Ramanujan, Thao Nguyen, Sewoong Oh, Ali Farhadi, and Ludwig
Schmidt. On the connection between pre-training data diversity and fine-
tuning robustness. Advances in Neural Information Processing Systems, 36,
2024.

[28] Lalit Pandey, Samantha Wood, and Justin Wood. Are vision transformers more
data hungry than newborn visual systems? Advances in Neural Information
Processing Systems, 36, 2024.

[29] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Alt-
man, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[30] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-
mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, An-
gela Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783,
2024.

https://openai.com/dall-e

References 221

[31] Kaiyang Zhou, Yongxin Yang, Timothy Hospedales, and Tao Xiang. Learning
to generate novel domains for domain generalization. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,
Proceedings, Part XVI 16, pages 561–578. Springer, 2020.

[32] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol
Vinyals. Understanding deep learning requires rethinking generalization. In
ICLR, 2017.

[33] David Reinsel. How you contribute to today’s growing datasphere and its
enterprise impact, 2019. IDC Blog, Accessed: 2024-10-21.

[34] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. Communication-efficient learning of deep networks
from decentralized data. In Artificial intelligence and statistics, pages 1273–
1282. PMLR, 2017.

[35] EU. Regulation (EU) 2016/679 of the European Parliament and of the Council
on the protection of natural persons with regard to the processing of personal
data and on the free movement of such data, and repealing Directive 95/46/EC
(General Data Protection Regulation). General Data Protection Regulation,
679, 2016.

[36] Abigail Goldsteen, Gilad Ezov, Ron Shmelkin, Micha Moffie, and Ariel
Farkash. Data minimization for gdpr compliance in machine learning models.
AI and Ethics, 2(3):477–491, 2022.

[37] Prakhar Ganesh, Cuong Tran, Reza Shokri, and Ferdinando Fioretto. The data
minimization principle in machine learning. arXiv preprint arXiv:2405.19471,
2024.

[38] Kallista Bonawitz, Peter Kairouz, Brendan Mcmahan, and Daniel Ramage.
Federated learning and privacy. Communications of the ACM, 65(4):90–97,
2022.

[39] Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani
Donchev, Adhiguna Kuncoro, Marc’Aurelio Ranzato, Arthur Szlam, and
Jiajun Shen. Diloco: Distributed low-communication training of language
models. arXiv preprint arXiv:2311.08105, 2023.

[40] Lane, Nicholas and Sani, Lorenzo and Iacob, Alex. Introducing flowerllm,
2024. Accessed: 2024-10-28.

[41] Andrew Hard, Kanishka Rao, Rajiv Mathews, Swaroop Ramaswamy,
Françoise Beaufays, Sean Augenstein, Hubert Eichner, Chloé Kiddon, and
Daniel Ramage. Federated learning for mobile keyboard prediction. arXiv
preprint arXiv:1811.03604, 2018.

[42] Google. Learn how google improves speech models, 2024. Accessed: 2024-
10-22.

222 References

[43] Karen Hao. How apple personalizes siri without hoovering up your data, 2019.
Accessed: 2024-10-22.

[44] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated
learning: Challenges, methods, and future directions. IEEE signal processing
magazine, 37(3):50–60, 2020.

[45] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. Federated optimization in heterogeneous networks. Pro-
ceedings of Machine learning and systems, 2:429–450, 2020.

[46] Yang Liu, Anbu Huang, Yun Luo, He Huang, Youzhi Liu, Yuanyuan Chen,
Lican Feng, Tianjian Chen, Han Yu, and Qiang Yang. Fedvision: An online
visual object detection platform powered by federated learning. In Proceedings
of the AAAI conference on artificial intelligence, volume 34, pages 13172–
13179, 2020.

[47] Alan M Turing. Computing machinery and intelligence. Springer, 2009.

[48] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Rein-
forcement learning: A survey. Journal of artificial intelligence research,
4:237–285, 1996.

[49] Pawel Ladosz, Lilian Weng, Minwoo Kim, and Hyondong Oh. Exploration in
deep reinforcement learning: A survey. Information Fusion, 85:1–22, 2022.

[50] Xu Wang, Sen Wang, Xingxing Liang, Dawei Zhao, Jincai Huang, Xin Xu,
Bin Dai, and Qiguang Miao. Deep reinforcement learning: A survey. IEEE
Transactions on Neural Networks and Learning Systems, 2022.

[51] Thomas M Moerland, Joost Broekens, Aske Plaat, Catholijn M Jonker, et al.
Model-based reinforcement learning: A survey. Foundations and Trends® in
Machine Learning, 16(1):1–118, 2023.

[52] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyan-
skiy, and Ping Tak Peter Tang. On large-batch training for deep learning:
Generalization gap and sharp minima. International Conference on Learning
Representations, 2017.

[53] Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better:
closing the generalization gap in large batch training of neural networks.
Advances in Neural Information Processing Systems, 30, 2017.

[54] Yiding Jiang, Dilip Krishnan, Hossein Mobahi, and Samy Bengio. Predicting
the generalization gap in deep networks with margin distributions. Interna-
tional Conference on Learning Representations, 2019.

[55] Lin Chen, Yifei Min, Mingrui Zhang, and Amin Karbasi. More data can
expand the generalization gap between adversarially robust and standard
models. In International Conference on Machine Learning, pages 1670–1680.
PMLR, 2020.

References 223

[56] Rie Johnson and Tong Zhang. Inconsistency, instability, and generalization gap
of deep neural network training. Advances in Neural Information Processing
Systems, 36, 2024.

[57] Douglas M Hawkins. The problem of overfitting. Journal of chemical
information and computer sciences, 44(1):1–12, 2004.

[58] H Jabbar and Rafiqul Zaman Khan. Methods to avoid over-fitting and under-
fitting in supervised machine learning (comparative study). Computer Science,
Communication and Instrumentation Devices, 70(10.3850):978–981, 2015.

[59] Xue Ying. An overview of overfitting and its solutions. In Journal of physics:
Conference series, volume 1168, page 022022. IOP Publishing, 2019.

[60] Daniel Bashir, George D Montañez, Sonia Sehra, Pedro Sandoval Segura,
and Julius Lauw. An information-theoretic perspective on overfitting and
underfitting. In AI 2020: Advances in Artificial Intelligence: 33rd Australasian
Joint Conference, AI 2020, Canberra, ACT, Australia, November 29–30, 2020,
Proceedings 33, pages 347–358. Springer, 2020.

[61] Rahul Krishnan, Dawen Liang, and Matthew Hoffman. On the challenges
of learning with inference networks on sparse, high-dimensional data. In
International conference on artificial intelligence and statistics, pages 143–
151. PMLR, 2018.

[62] Jake Lever, Martin Krzywinski, and Naomi Altman. Points of significance:
model selection and overfitting. Nature methods, 13(9):703–705, 2016.

[63] Irving John Good. Rational decisions. Journal of the Royal Statistical Society:
Series B (Methodological), 14(1):107–114, 1952.

[64] Claude Elwood Shannon. A mathematical theory of communication. The Bell
system technical journal, 27(3):379–423, 1948.

[65] Yanming Guo, Yu Liu, Theodoros Georgiou, and Michael S Lew. A review of
semantic segmentation using deep neural networks. International journal of
multimedia information retrieval, 7:87–93, 2018.

[66] Hongshan Yu, Zhengeng Yang, Lei Tan, Yaonan Wang, Wei Sun, Mingui
Sun, and Yandong Tang. Methods and datasets on semantic segmentation: A
review. Neurocomputing, 304:82–103, 2018.

[67] Shijie Hao, Yuan Zhou, and Yanrong Guo. A brief survey on semantic
segmentation with deep learning. Neurocomputing, 406:302–321, 2020.

[68] Gabriela Csurka, Diane Larlus, Florent Perronnin, and France Meylan. What
is a good evaluation measure for semantic segmentation? In Bmvc, volume 27,
pages 10–5244. Bristol, 2013.

[69] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a
neural network. arXiv preprint arXiv:1503.02531, 2015.

224 References

[70] Zhi-Hua Zhou. A brief introduction to weakly supervised learning. National
science review, 5(1):44–53, 2018.

[71] Yu-Feng Li, Lan-Zhe Guo, and Zhi-Hua Zhou. Towards safe weakly super-
vised learning. IEEE transactions on pattern analysis and machine intelli-
gence, 43(1):334–346, 2019.

[72] Stephanie Lowry, Niko Sünderhauf, Paul Newman, John J Leonard, David
Cox, Peter Corke, and Michael J Milford. Visual place recognition: A survey.
ieee transactions on robotics, 32(1):1–19, 2015.

[73] Carlo Masone and Barbara Caputo. A survey on deep visual place recognition.
IEEE Access, 9:19516–19547, 2021.

[74] Feng Wang and Huaping Liu. Understanding the behaviour of contrastive
loss. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 2495–2504, 2021.

[75] Relja Arandjelovic, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
Netvlad: Cnn architecture for weakly supervised place recognition. In Pro-
ceedings of the IEEE conference on computer vision and pattern recognition,
pages 5297–5307, 2016.

[76] Gabriele Berton, Riccardo Mereu, Gabriele Trivigno, Carlo Masone, Gabriela
Csurka, Torsten Sattler, and Barbara Caputo. Deep visual geo-localization
benchmark. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 5396–5407, 2022.

[77] Matthew Schultz and Thorsten Joachims. Learning a distance metric from
relative comparisons. Advances in Neural Information Processing Systems,
16, 2003.

[78] Horace B Barlow. Unsupervised learning. Neural computation, 1(3):295–311,
1989.

[79] Zoubin Ghahramani. Unsupervised learning. In Summer school on machine
learning, pages 72–112. Springer, 2003.

[80] Trevor Hastie, Robert Tibshirani, Jerome Friedman, Trevor Hastie, Robert
Tibshirani, and Jerome Friedman. Unsupervised learning. The elements of
statistical learning: Data mining, inference, and prediction, pages 485–585,
2009.

[81] Dmitry Krotov and John J. Hopfield. Unsupervised learning by com-
peting hidden units. Proceedings of the National Academy of Sciences,
116(16):7723–7731, March 2019.

[82] Markus Ringnér. What is principal component analysis? Nature biotechnol-
ogy, 26(3):303–304, 2008.

References 225

[83] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection:
A survey. ACM computing surveys (CSUR), 41(3):1–58, 2009.

[84] Jiaqi Liu, Guoyang Xie, Jinbao Wang, Shangnian Li, Chengjie Wang, Feng
Zheng, and Yaochu Jin. Deep industrial image anomaly detection: A survey.
Machine Intelligence Research, 21(1):104–135, 2024.

[85] Absalom E Ezugwu, Abiodun M Ikotun, Olaide O Oyelade, Laith Abualigah,
Jeffery O Agushaka, Christopher I Eke, and Andronicus A Akinyelu. A
comprehensive survey of clustering algorithms: State-of-the-art machine
learning applications, taxonomy, challenges, and future research prospects.
Engineering Applications of Artificial Intelligence, 110:104743, 2022.

[86] Abiodun M Ikotun, Absalom E Ezugwu, Laith Abualigah, Belal Abuhaija,
and Jia Heming. K-means clustering algorithms: A comprehensive review,
variants analysis, and advances in the era of big data. Information Sciences,
622:178–210, 2023.

[87] Gbeminiyi John Oyewole and George Alex Thopil. Data clustering: applica-
tion and trends. Artificial Intelligence Review, 56(7):6439–6475, 2023.

[88] Lior Rokach and Oded Maimon. Clustering methods. Data mining and
knowledge discovery handbook, pages 321–352, 2005.

[89] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on
information theory, 28(2):129–137, 1982.

[90] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The
k-means algorithm: A comprehensive survey and performance evaluation.
Electronics, 9(8):1295, 2020.

[91] Jie Gui, Tuo Chen, Jing Zhang, Qiong Cao, Zhenan Sun, Hao Luo, and
Dacheng Tao. A survey on self-supervised learning: Algorithms, applications,
and future trends. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[92] Zejian Shi, Minyong Shi, and Chunfang Li. The prediction of character
based on recurrent neural network language model. In 2017 IEEE/ACIS 16th
International Conference on Computer and Information Science (ICIS), pages
613–616. IEEE, 2017.

[93] Milind Soam and Sanjeev Thakur. Next word prediction using deep learn-
ing: A comparative study. In 2022 12th International Conference on Cloud
Computing, Data Science & Engineering (Confluence), pages 653–658. IEEE,
2022.

[94] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436–444, 2015.

226 References

[95] Kunihiko Fukushima. Visual feature extraction by a multilayered network
of analog threshold elements. IEEE Transactions on Systems Science and
Cybernetics, 5(4):322–333, 1969.

[96] Hans-Dieter Block. The perceptron: A model for brain functioning. i. Reviews
of Modern Physics, 34(1):123, 1962.

[97] Athanasios Voulodimos, Nikolaos Doulamis, Anastasios Doulamis, and Efty-
chios Protopapadakis. Deep learning for computer vision: A brief review.
Computational intelligence and neuroscience, 2018(1):7068349, 2018.

[98] Abhinav Goel, Caleb Tung, Yung-Hsiang Lu, and George K Thiruvathukal. A
survey of methods for low-power deep learning and computer vision. In 2020
IEEE 6th World Forum on Internet of Things (WF-IoT), pages 1–6. IEEE,
2020.

[99] Ayoub Benali Amjoud and Mustapha Amrouch. Object detection using deep
learning, cnns and vision transformers: a review. IEEE Access, 2023.

[100] Daniel W Otter, Julian R Medina, and Jugal K Kalita. A survey of the usages
of deep learning for natural language processing. IEEE transactions on neural
networks and learning systems, 32(2):604–624, 2020.

[101] Jasmin Bharadiya. A comprehensive survey of deep learning techniques
natural language processing. European Journal of Technology, 7(1):58–66,
2023.

[102] Xiaodong He and Li Deng. Deep learning for image-to-text generation: A
technical overview. IEEE Signal Processing Magazine, 34(6):109–116, 2017.

[103] Dennis W Ruck, Steven K Rogers, and Matthew Kabrisky. Feature selection
using a multilayer perceptron. Journal of neural network computing, 2(2):40–
48, 1990.

[104] Marius-Constantin Popescu, Valentina E Balas, Liliana Perescu-Popescu,
and Nikos Mastorakis. Multilayer perceptron and neural networks. WSEAS
Transactions on Circuits and Systems, 8(7):579–588, 2009.

[105] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
networks, 61:85–117, 2015.

[106] Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for
learning in graph domains. In Proceedings. 2005 IEEE international joint
conference on neural networks, 2005., volume 2, pages 729–734. IEEE, 2005.

[107] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions on
neural networks, 20(1):61–80, 2008.

[108] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

References 227

[109] Stephen Grossberg. Recurrent neural networks. Scholarpedia, 8(2):1888,
2013.

[110] Alex Graves, Marcus Liwicki, Horst Bunke, Jürgen Schmidhuber, and Santi-
ago Fernández. Unconstrained on-line handwriting recognition with recurrent
neural networks. Advances in Neural Information Processing Systems, 20,
2007.

[111] Yajie Miao, Mohammad Gowayyed, and Florian Metze. Eesen: End-to-end
speech recognition using deep rnn models and wfst-based decoding. In 2015
IEEE workshop on automatic speech recognition and understanding (ASRU),
pages 167–174. IEEE, 2015.

[112] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-
based learning applied to document recognition. Proceedings of the IEEE,
86(11):2278–2324, 1998.

[113] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classifica-
tion with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25, 2012.

[114] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. corr abs/1512.03385 (2015), 2015.

[115] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In International
conference on machine learning, pages 448–456. pmlr, 2015.

[116] Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the
European conference on computer vision (ECCV), pages 3–19, 2018.

[117] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 32(1):4–24, 2020.

[118] Thomas N Kipf and Max Welling. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representa-
tions, 2017.

[119] Si Zhang, Hanghang Tong, Jiejun Xu, and Ross Maciejewski. Graph convolu-
tional networks: a comprehensive review. Computational Social Networks,
6(1):1–23, 2019.

[120] Xinhua Zhang. Empirical risk minimization. Encyclopedia of Machine
Learning and Data Mining, pages 392–393, 2017.

[121] Shun-ichi Amari. Backpropagation and stochastic gradient descent method.
Neurocomputing, 5(4-5):185–196, 1993.

228 References

[122] Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman,
David Pfau, Tom Schaul, Brendan Shillingford, and Nando De Freitas. Learn-
ing to learn by gradient descent by gradient descent. Advances in Neural
Information Processing Systems, 29, 2016.

[123] Aatila Mustapha, Lachgar Mohamed, and Kartit Ali. An overview of gra-
dient descent algorithm optimization in machine learning: Application in
the ophthalmology field. In Smart Applications and Data Analysis: Third
International Conference, SADASC 2020, Marrakesh, Morocco, June 25–26,
2020, Proceedings 3, pages 349–359. Springer, 2020.

[124] William Carlisle Thacker. The role of the hessian matrix in fitting models to
measurements. Journal of Geophysical Research: Oceans, 94(C5):6177–6196,
1989.

[125] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradi-
ent descent only converges to minimizers. In Conference on learning theory,
pages 1246–1257. PMLR, 2016.

[126] Herbert Robbins and Sutton Monro. A stochastic approximation method. The
annals of mathematical statistics, pages 400–407, 1951.

[127] Akhilesh Gotmare, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher.
A closer look at deep learning heuristics: Learning rate restarts, warmup and
distillation. International Conference on Learning Representations, 2019.

[128] David C Plaut and Geoffrey E Hinton. Learning sets of filters using back-
propagation. Computer Speech & Language, 2(1):35–61, 1987.

[129] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[130] Boris Hanin. Which neural net architectures give rise to exploding and
vanishing gradients? Advances in Neural Information Processing Systems,
31, 2018.

[131] Meenal V Narkhede, Prashant P Bartakke, and Mukul S Sutaone. A review
on weight initialization strategies for neural networks. Artificial intelligence
review, 55(1):291–322, 2022.

[132] Jingzhao Zhang, Tianxing He, Suvrit Sra, and Ali Jadbabaie. Why gradi-
ent clipping accelerates training: A theoretical justification for adaptivity.
International Conference on Learning Representations, 2020.

[133] Nils Bjorck, Carla P Gomes, Bart Selman, and Kilian Q Weinberger. Under-
standing batch normalization. Advances in Neural Information Processing
Systems, 31, 2018.

References 229

[134] Shibani Santurkar, Dimitris Tsipras, Andrew Ilyas, and Aleksander Madry.
How does batch normalization help optimization? Advances in Neural
Information Processing Systems, 31, 2018.

[135] Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio. Generalization
in deep learning. In Mathematical Aspects of Deep Learning. Cambridge
University Press, 2022.

[136] Pan Zhou and Jiashi Feng. Understanding generalization and optimization
performance of deep cnns. In International Conference on Machine Learning,
pages 5960–5969. PMLR, 2018.

[137] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms
for hyper-parameter optimization. Advances in neural information processing
systems, 24, 2011.

[138] James Bergstra and Yoshua Bengio. Random search for hyper-parameter
optimization. Journal of machine learning research, 13(2), 2012.

[139] Devansh Arpit, Víctor Campos, and Yoshua Bengio. How to initialize your
network? robust initialization for weightnorm & resnets. Advances in Neural
Information Processing Systems, 32, 2019.

[140] Donghyun Kim, Kaihong Wang, Stan Sclaroff, and Kate Saenko. A broad
study of pre-training for domain generalization and adaptation. In European
Conference on Computer Vision, pages 621–638. Springer, 2022.

[141] Fadi Thabtah, Suhel Hammoud, Firuz Kamalov, and Amanda Gonsalves. Data
imbalance in classification: Experimental evaluation. Information Sciences,
513:429–441, 2020.

[142] Justin M Johnson and Taghi M Khoshgoftaar. Survey on deep learning with
class imbalance. Journal of Big Data, 6(1):1–54, 2019.

[143] Vedant Nanda, Samuel Dooley, Sahil Singla, Soheil Feizi, and John P Dick-
erson. Fairness through robustness: Investigating robustness disparity in
deep learning. In Proceedings of the 2021 ACM Conference on Fairness,
Accountability, and Transparency, pages 466–477, 2021.

[144] Lisa Torrey and Jude Shavlik. Transfer learning. In Handbook of research
on machine learning applications and trends: algorithms, methods, and
techniques, pages 242–264. IGI global, 2010.

[145] Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A
brief review of domain adaptation. Advances in data science and information
engineering: proceedings from ICDATA 2020 and IKE 2020, pages 877–894,
2021.

[146] Gilles Blanchard, Gyemin Lee, and Clayton Scott. Generalizing from several
related classification tasks to a new unlabeled sample. Advances in neural
information processing systems, 24, 2011.

230 References

[147] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Do-
main generalization: A survey. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(4):4396–4415, 2022.

[148] Arthur Gretton, Alex Smola, Jiayuan Huang, Marcel Schmittfull, Karsten
Borgwardt, and Bernhard Schölkopf. Covariate shift by kernel mean matching.
2008.

[149] Jing Zhang, Zewei Ding, Wanqing Li, and Philip Ogunbona. Importance
weighted adversarial nets for partial domain adaptation. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages
8156–8164, 2018.

[150] Kaichao You, Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I
Jordan. Universal domain adaptation. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 2720–2729,
2019.

[151] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951.

[152] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for
large-scale sentiment classification: A deep learning approach. In Proceedings
of the 28th international conference on machine learning (ICML-11), pages
513–520, 2011.

[153] Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, and
Mario Marchand. Domain-adversarial neural networks. arXiv preprint
arXiv:1412.4446, 2014.

[154] Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain gen-
eralization with adversarial feature learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 5400–5409,
2018.

[155] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to
generalize: Meta-learning for domain generalization. In Proceedings of the
AAAI conference on artificial intelligence, volume 32, 2018.

[156] Ning Qian. On the momentum term in gradient descent learning algorithms.
Neural networks, 12(1):145–151, 1999.

[157] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the
importance of initialization and momentum in deep learning. In International
Conference on Machine Learning, pages 1139–1147. PMLR, 2013.

[158] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

[159] Guillaume Leclerc and Aleksander Madry. The two regimes of deep network
training. arXiv preprint arXiv:2002.10376, 2020.

References 231

[160] Yanli Liu, Yuan Gao, and Wotao Yin. An improved analysis of stochastic
gradient descent with momentum. Advances in Neural Information Processing
Systems, 33:18261–18271, 2020.

[161] Ali Ramezani-Kebrya, Ashish Khisti, and Ben Liang. On the generalization
of stochastic gradient descent with momentum, 2021.

[162] Samy Jelassi and Yuanzhi Li. Towards understanding how momentum im-
proves generalization in deep learning. In International Conference on Ma-
chine Learning, pages 9965–10040. PMLR, 2022.

[163] Rebecca C Fitzgerald, Antonis C Antoniou, Ljiljana Fruk, and Nitzan Rosen-
feld. The future of early cancer detection. Nature medicine, 28(4):666–677,
2022.

[164] Asma Cherif, Arwa Badhib, Heyfa Ammar, Suhair Alshehri, Manal Kalkatawi,
and Abdessamad Imine. Credit card fraud detection in the era of disruptive
technologies: A systematic review. Journal of King Saud University-Computer
and Information Sciences, 35(1):145–174, 2023.

[165] Wei Wei, Jinjiu Li, Longbing Cao, Yuming Ou, and Jiahang Chen. Effective
detection of sophisticated online banking fraud on extremely imbalanced data.
World Wide Web, 16:449–475, 2013.

[166] Rangachari Anand, Kishan G Mehrotra, Chilukuri K Mohan, and Sanjay
Ranka. An improved algorithm for neural network classification of imbalanced
training sets. IEEE transactions on neural networks, 4(6):962–969, 1993.

[167] Gustavo EAPA Batista, Ronaldo C Prati, and Maria Carolina Monard. A study
of the behavior of several methods for balancing machine learning training
data. ACM SIGKDD explorations newsletter, 6(1):20–29, 2004.

[168] Samira Pouyanfar, Yudong Tao, Anup Mohan, Haiman Tian, Ahmed S Kaseb,
Kent Gauen, Ryan Dailey, Sarah Aghajanzadeh, Yung-Hsiang Lu, Shu-Ching
Chen, et al. Dynamic sampling in convolutional neural networks for imbal-
anced data classification. In 2018 IEEE conference on multimedia information
processing and retrieval (MIPR), pages 112–117. IEEE, 2018.

[169] Hansang Lee, Minseok Park, and Junmo Kim. Plankton classification on im-
balanced large scale database via convolutional neural networks with transfer
learning. In 2016 IEEE international conference on image processing (ICIP),
pages 3713–3717. IEEE, 2016.

[170] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando
Pereira, and Jennifer Wortman Vaughan. A theory of learning from different
domains. Machine learning, 79:151–175, 2010.

[171] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V
Chawla, and Francisco Herrera. A unifying view on dataset shift in clas-
sification. Pattern recognition, 45(1):521–530, 2012.

232 References

[172] Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin
Recht, and Ludwig Schmidt. Measuring robustness to natural distribution
shifts in image classification. Advances in Neural Information Processing
Systems, 33:18583–18599, 2020.

[173] Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Do-
main generalization in vision: A survey. arXiv preprint arXiv:2103.02503, 2,
2021.

[174] Emanuele Alberti, Antonio Tavera, Carlo Masone, and Barbara Caputo. Idda:
A large-scale multi-domain dataset for autonomous driving. IEEE Robotics
and Automation Letters, 5(4):5526–5533, 2020.

[175] Ashish Rauniyar, Desta Haileselassie Hagos, Debesh Jha, Jan Erik Håkegård,
Ulas Bagci, Danda B Rawat, and Vladimir Vlassov. Federated learning for
medical applications: A taxonomy, current trends, challenges, and future
research directions. IEEE Internet of Things Journal, 2023.

[176] David A Van Dyk and Xiao-Li Meng. The art of data augmentation. Journal
of Computational and Graphical Statistics, 10(1):1–50, 2001.

[177] Riccardo Volpi, Hongseok Namkoong, Ozan Sener, John C Duchi, Vittorio
Murino, and Silvio Savarese. Generalizing to unseen domains via adversarial
data augmentation. Advances in Neural Information Processing Systems, 31,
2018.

[178] Sen Wu, Hongyang Zhang, Gregory Valiant, and Christopher Ré. On the
generalization effects of linear transformations in data augmentation. In
International Conference on Machine Learning, pages 10410–10420. PMLR,
2020.

[179] Kiran Maharana, Surajit Mondal, and Bhushankumar Nemade. A review:
Data pre-processing and data augmentation techniques. Global Transitions
Proceedings, 3(1):91–99, 2022.

[180] Terrance DeVries and Graham W Taylor. Improved regularization of con-
volutional neural networks with cutout. arXiv preprint arXiv:1708.04552,
2017.

[181] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz.
mixup: Beyond empirical risk minimization. International Conference on
Learning Representations, 2018.

[182] Daniel Justus, John Brennan, Stephen Bonner, and Andrew Stephen McGough.
Predicting the computational cost of deep learning models. In 2018 IEEE
international conference on big data (Big Data), pages 3873–3882. IEEE,
2018.

[183] Ben Cottier, Robi Rahman, Loredana Fattorini, Nestor Maslej, and David
Owen. The rising costs of training frontier ai models. arXiv preprint
arXiv:2405.21015, 2024.

References 233

[184] Nobel Dhar, Bobin Deng, Dan Lo, Xiaofeng Wu, Liang Zhao, and Kun Suo.
An empirical analysis and resource footprint study of deploying large language
models on edge devices. In Proceedings of the 2024 ACM Southeast Confer-
ence, ACM SE ’24, page 69–76, New York, NY, USA, 2024. Association for
Computing Machinery.

[185] Yi Sheng, Junhuan Yang, Yawen Wu, Kevin Mao, Yiyu Shi, Jingtong Hu,
Weiwen Jiang, and Lei Yang. The larger the fairer? small neural networks
can achieve fairness for edge devices. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, pages 163–168, 2022.

[186] Pierre Baldi and Peter J Sadowski. Understanding dropout. Advances in
neural information processing systems, 26, 2013.

[187] Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and
Samuel Rota Bulo. Just dial: Domain alignment layers for unsupervised
domain adaptation. In Image Analysis and Processing-ICIAP 2017: 19th In-
ternational Conference, Catania, Italy, September 11-15, 2017, Proceedings,
Part I 19, pages 357–369. Springer, 2017.

[188] Fabio Maria Carlucci, Lorenzo Porzi, Barbara Caputo, Elisa Ricci, and Samuel
Rota Bulo. Autodial: Automatic domain alignment layers. In Proceedings
of the IEEE international conference on computer vision, pages 5067–5075,
2017.

[189] Massimiliano Mancini, Samuel Rota Bulo, Barbara Caputo, and Elisa Ricci.
Adagraph: Unifying predictive and continuous domain adaptation through
graphs. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6568–6577, 2019.

[190] John Bronskill, Jonathan Gordon, James Requeima, Sebastian Nowozin, and
Richard Turner. Tasknorm: Rethinking batch normalization for meta-learning.
In International Conference on Machine Learning, pages 1153–1164. PMLR,
2020.

[191] Mathieu Andreux, Jean Ogier du Terrail, Constance Beguier, and Eric W
Tramel. Siloed federated learning for multi-centric histopathology datasets.
In Domain Adaptation and Representation Transfer, and Distributed and
Collaborative Learning: Second MICCAI Workshop, DART 2020, and First
MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020, Lima,
Peru, October 4–8, 2020, Proceedings 2, pages 129–139. Springer, 2020.

[192] Seonguk Seo, Yumin Suh, Dongwan Kim, Geeho Kim, Jongwoo Han, and
Bohyung Han. Learning to optimize domain specific normalization for domain
generalization. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXII 16, pages 68–83.
Springer, 2020.

234 References

[193] Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou.
Fedbn: Federated learning on non-iid features via local batch normalization.
International Conference on Learning Representations, 2021.

[194] Mattia Segu, Alessio Tonioni, and Federico Tombari. Batch normalization
embeddings for deep domain generalization. Pattern Recognition, 135:109115,
2023.

[195] Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas
Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, and Alexey Ku-
rakin. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705,
2019.

[196] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network ro-
bustness to common corruptions and perturbations. International Conference
on Learning Representations, 2019.

[197] Hengyue Liang, Le Peng, and Ju Sun. Selective classification under distribu-
tion shifts. arXiv preprint arXiv:2405.05160, 2024.

[198] Brian D Haig. What is a spurious correlation? Understanding Statistics:
Statistical Issues in Psychology, Education, and the Social Sciences, 2(2):125–
132, 2003.

[199] Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer
re-training is sufficient for robustness to spurious correlations. International
Conference on Learning Representations, 2023.

[200] Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On
feature learning in the presence of spurious correlations. Advances in Neural
Information Processing Systems, 35:38516–38532, 2022.

[201] Mi Luo, Fei Chen, Dapeng Hu, Yifan Zhang, Jian Liang, and Jiashi Feng. No
fear of heterogeneity: Classifier calibration for federated learning with non-iid
data. Advances in Neural Information Processing Systems, 34:5972–5984,
2021.

[202] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for con-
volutional neural networks. In International conference on machine learning,
pages 6105–6114. PMLR, 2019.

[203] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor
Darrell, and Saining Xie. A convnet for the 2020s. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages
11976–11986, 2022.

[204] Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation,
9(1):1–42, 1997.

References 235

[205] Sepp Hochreiter and Jürgen Schmidhuber. Simplifying neural nets by dis-
covering flat minima. Advances in neural information processing systems, 7,
1994.

[206] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua Bengio. Sharp
minima can generalize for deep nets. In International Conference on Machine
Learning, pages 1019–1028. PMLR, 2017.

[207] Gintare Karolina Dziugaite and Daniel M Roy. Computing nonvacuous
generalization bounds for deep (stochastic) neural networks with many more
parameters than training data. arXiv preprint arXiv:1703.11008, 2017.

[208] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visu-
alizing the loss landscape of neural nets. In Neural Information Processing
Systems, 2018.

[209] Yiding Jiang, Behnam Neyshabur, Hossein Mobahi, Dilip Krishnan, and Samy
Bengio. Fantastic generalization measures and where to find them. arXiv
preprint arXiv:1912.02178, 2019.

[210] Carlo Baldassi, Clarissa Lauditi, Enrico M Malatesta, Gabriele Perugini, and
Riccardo Zecchina. Unveiling the structure of wide flat minima in neural
networks. Physical Review Letters, 127(27):278301, 2021.

[211] Huanran Chen, Shitong Shao, Ziyi Wang, Zirui Shang, Jin Chen, Xiaofeng
Ji, and Xinxiao Wu. Bootstrap generalization ability from loss landscape
perspective. In European Conference on Computer Vision, pages 500–517.
Springer, 2022.

[212] Xingxuan Zhang, Renzhe Xu, Han Yu, Hao Zou, and Peng Cui. Gradient norm
aware minimization seeks first-order flatness and improves generalization. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 20247–20257, June 2023.

[213] Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur.
Sharpness-aware minimization for efficiently improving generalization. Inter-
national Conference on Machine Learning, 2021.

[214] Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers
outperform resnets without pre-training or strong data augmentations. In
International Conference on Learning Representations, 2022.

[215] Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization
improves language model generalization. arXiv preprint arXiv:2110.08529,
2021.

[216] Jiawei Du, Hanshu Yan, Jiashi Feng, Joey Tianyi Zhou, Liangli Zhen, Rick
Siow Mong Goh, and Vincent YF Tan. Efficient sharpness-aware minimiza-
tion for improved training of neural networks. International Conference on
Learning Representations, 2022.

236 References

[217] Wenxuan Zhou, Fangyu Liu, Huan Zhang, and Muhao Chen. Sharpness-aware
minimization with dynamic reweighting. arXiv preprint arXiv:2112.08772,
2021.

[218] Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards
efficient and scalable sharpness-aware minimization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
12360–12370, 2022.

[219] Jinseong Park, Hoki Kim, Yujin Choi, and Jaewook Lee. Differentially private
sharpness-aware training. In International Conference on Machine Learning,
pages 27204–27224. PMLR, 2023.

[220] Cynthia Dwork. Differential privacy: A survey of results. In Theory and
Applications of Models of Computation, pages 1–19. Springer, 2008.

[221] Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent Tan, and Joey Tianyi Zhou.
Sharpness-aware training for free. Advances in Neural Information Processing
Systems, 35:23439–23451, 2022.

[222] Renkun Ni, Ping-yeh Chiang, Jonas Geiping, Micah Goldblum, Andrew Gor-
don Wilson, and Tom Goldstein. K-sam: Sharpness-aware minimization at
the speed of sgd. arXiv preprint arXiv:2210.12864, 2022.

[223] Maximilian Mueller, Tiffany Vlaar, David Rolnick, and Matthias Hein. Nor-
malization layers are all that sharpness-aware minimization needs. Advances
in Neural Information Processing Systems, 36, 2024.

[224] Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam,
Nicha Dvornek, Sekhar Tatikonda, James Duncan, and Ting Liu. Surrogate
gap minimization improves sharpness-aware training. International Confer-
ence on Learning Representations, 2022.

[225] Yixuan Zhou, Yi Qu, Xing Xu, and Hengtao Shen. Imbsam: A closer look at
sharpness-aware minimization in class-imbalanced recognition. In Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pages
11345–11355, 2023.

[226] Yun Yue, Jiadi Jiang, Zhiling Ye, Ning Gao, Yongchao Liu, and Ke Zhang.
Sharpness-aware minimization revisited: Weighted sharpness as a regulariza-
tion term. arXiv preprint arXiv:2305.15817, 2023.

[227] Peng Mi, Li Shen, Tianhe Ren, Yiyi Zhou, Tianshuo Xu, Xiaoshuai Sun,
Tongliang Liu, Rongrong Ji, and Dacheng Tao. Systematic investigation of
sparse perturbed sharpness-aware minimization optimizer. arXiv preprint
arXiv:2306.17504, 2023.

[228] Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam:
Adaptive sharpness-aware minimization for scale-invariant learning of deep
neural networks. In International Conference on Machine Learning, pages
5905–5914. PMLR, 2021.

References 237

[229] Gonçalo Mordido, Sarath Chandar, and François Leduc-Primeau. Sharpness-
aware training for accurate inference on noisy dnn accelerators. arXiv preprint
arXiv:2211.11561, 2022.

[230] Maksym Andriushchenko and Nicolas Flammarion. Towards understanding
sharpness-aware minimization. In International Conference on Machine
Learning, pages 639–668. PMLR, 2022.

[231] Maksym Andriushchenko, Dara Bahri, Hossein Mobahi, and Nicolas Flam-
marion. Sharpness-aware minimization leads to low-rank features. arXiv
preprint arXiv:2305.16292, 2023.

[232] Yan Dai, Kwangjun Ahn, and Suvrit Sra. The crucial role of normalization in
sharpness-aware minimization. arXiv preprint arXiv:2305.15287, 2023.

[233] Yihao Zhang, Hangzhou He, Jingyu Zhu, Huanran Chen, Yifei Wang, and
Zeming Wei. On the duality between sharpness-aware minimization and
adversarial training. International Conference on Machine Learning, 2024.

[234] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon
Tran, and Aleksander Madry. Adversarial examples are not bugs, they are
features. Advances in neural information processing systems, 32, 2019.

[235] Ammar Mohammed and Rania Kora. A comprehensive review on ensemble
deep learning: Opportunities and challenges. Journal of King Saud University-
Computer and Information Sciences, 35(2):757–774, 2023.

[236] Timur Garipov, Pavel Izmailov, Dmitrii Podoprikhin, Dmitry P Vetrov, and
Andrew G Wilson. Loss surfaces, mode connectivity, and fast ensembling of
dnns. Advances in neural information processing systems, 31, 2018.

[237] Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and
Andrew Gordon Wilson. Averaging weights leads to wider optima and better
generalization. Conference on Uncertainty in Artificial Intelligence, 2018.

[238] Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun
Park, Yunsung Lee, and Sungrae Park. Swad: Domain generalization by
seeking flat minima. Advances in Neural Information Processing Systems,
34:22405–22418, 2021.

[239] Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J Kusner. When do
flat minima optimizers work? Advances in Neural Information Processing
Systems, 35:16577–16595, 2022.

[240] Jean Kaddour. Stop wasting my time! saving days of imagenet and bert
training with latest weight averaging. arXiv preprint arXiv:2209.14981, 2022.

[241] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs,
Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi,
Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of

238 References

multiple fine-tuned models improves accuracy without increasing inference
time. In International conference on machine learning, pages 23965–23998.
PMLR, 2022.

[242] Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and
Hassan Ghasemzadeh. Linear mode connectivity in multitask and continual
learning. NeurIPS, 2018.

[243] Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein.
Visualizing the loss landscape of neural nets. Advances in neural information
processing systems, 31, 2018.

[244] Peng Xu, Bryan He, Christopher De Sa, Ioannis Mitliagkas, and Chris Re. Ac-
celerated stochastic power iteration. In International Conference on Artificial
Intelligence and Statistics, pages 58–67. PMLR, 2018.

[245] Noah Golmant, Zhewei Yao, Amir Gholami, Michael Mahoney, and Joseph
Gonzalez. pytorch-hessian-eigenthings: efficient pytorch hessian eigendecom-
position, October 2018.

[246] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. Federated learning: Strategies
for improving communication efficiency. arXiv preprint arXiv:1610.05492,
2016.

[247] Liangqi Yuan, Ziran Wang, Lichao Sun, S Yu Philip, and Christopher G
Brinton. Decentralized federated learning: A survey and perspective. IEEE
Internet of Things Journal, 2024.

[248] Adrian Nilsson, Simon Smith, Gregor Ulm, Emil Gustavsson, and Mats
Jirstrand. A performance evaluation of federated learning algorithms. In
Proceedings of the second workshop on distributed infrastructures for deep
learning, pages 1–8, 2018.

[249] John Nguyen, Jianyu Wang, Kshitiz Malik, Maziar Sanjabi, and Michael
Rabbat. Where to begin? on the impact of pre-training and initialization
in federated learning. Advances in Neural Information Processing Systems
Workshop, 2022.

[250] Yue Tan, Guodong Long, Jie Ma, Lu Liu, Tianyi Zhou, and Jing Jiang. Fed-
erated learning from pre-trained models: A contrastive learning approach.
Advances in Neural Information Processing Systems, 35:19332–19344, 2022.

[251] Hong-You Chen, Cheng-Hao Tu, Ziwei Li, Han-Wei Shen, and Wei-Lun Chao.
On the importance and applicability of pre-training for federated learning.
International Conference on Learning Representations, 2023.

[252] Jonas Geiping, Hartmut Bauermeister, Hannah Dröge, and Michael Moeller.
Inverting gradients-how easy is it to break privacy in federated learning?
Advances in Neural Information Processing Systems, 33:16937–16947, 2020.

References 239

[253] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. Decentralized
collaborative learning of personalized models over networks. In Artificial
Intelligence and Statistics, pages 509–517. PMLR, 2017.

[254] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu.
Can decentralized algorithms outperform centralized algorithms? a case study
for decentralized parallel stochastic gradient descent. Advances in Neural
Information Processing Systems, 30, 2017.

[255] Sawsan AbdulRahman, Hanine Tout, Hakima Ould-Slimane, Azzam Mourad,
Chamseddine Talhi, and Mohsen Guizani. A survey on federated learning:
The journey from centralized to distributed on-site learning and beyond. IEEE
Internet of Things Journal, 8(7):5476–5497, 2020.

[256] Paolo Bellavista, Luca Foschini, and Alessio Mora. Decentralised learning in
federated deployment environments: A system-level survey. ACM Computing
Surveys (CSUR), 54(1):1–38, 2021.

[257] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz Koushanfar.
Peer-to-peer federated learning on graphs. arXiv preprint arXiv:1901.11173,
2019.

[258] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram,
and Salman Avestimehr. Spreadgnn: Serverless multi-task federated learning
for graph neural networks. arXiv preprint arXiv:2106.02743, 2021.

[259] Hong Xing, Osvaldo Simeone, and Suzhi Bi. Federated learning over wireless
device-to-device networks: Algorithms and convergence analysis. IEEE
Journal on Selected Areas in Communications, 39(12):3723–3741, 2021.

[260] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei
Wang. Federated learning for healthcare informatics. Journal of healthcare
informatics research, 5:1–19, 2021.

[261] H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning
differentially private recurrent language models. International Conference on
Learning Representations, 2018.

[262] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Bren-
dan McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth.
Practical secure aggregation for privacy-preserving machine learning. In
proceedings of the 2017 ACM SIGSAC Conference on Computer and Commu-
nications Security, pages 1175–1191, 2017.

[263] Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez
Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Grego-
rio Martínez Pérez, and Alberto Huertas Celdrán. Decentralized federated
learning: Fundamentals, state of the art, frameworks, trends, and challenges.
IEEE Communications Surveys & Tutorials, 2023.

240 References

[264] Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine
learning: Concept and applications. ACM Transactions on Intelligent Systems
and Technology (TIST), 10(2):1–19, 2019.

[265] Tomisin Awosika, Raj Mani Shukla, and Bernardi Pranggono. Transparency
and privacy: the role of explainable ai and federated learning in financial fraud
detection. IEEE Access, 2024.

[266] Zichen Xu, Li Li, and Wenting Zou. Exploring federated learning on battery-
powered devices. In Proceedings of the ACM Turing Celebration Conference-
China, pages 1–6, 2019.

[267] Dinh C Nguyen, Ming Ding, Pubudu N Pathirana, Aruna Seneviratne, and
Albert Y Zomaya. Federated learning for covid-19 detection with generative
adversarial networks in edge cloud computing. IEEE Internet of Things
Journal, 9(12):10257–10271, 2021.

[268] Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krishnamachari, and
A Salman Avestimehr. Federated learning for the internet of things: Appli-
cations, challenges, and opportunities. IEEE Internet of Things Magazine,
5(1):24–29, 2022.

[269] Shiva Raj Pokhrel and Jinho Choi. A decentralized federated learning ap-
proach for connected autonomous vehicles. In 2020 IEEE Wireless Communi-
cations and Networking Conference Workshops (WCNCW), pages 1–6. IEEE,
2020.

[270] Yijing Li, Xiaofeng Tao, Xuefei Zhang, Junjie Liu, and Jin Xu. Privacy-
preserved federated learning for autonomous driving. IEEE Transactions on
Intelligent Transportation Systems, 23(7):8423–8434, 2021.

[271] Lidia Fantauzzo, Eros Fanì, Debora Caldarola, Antonio Tavera, Fabio Cer-
melli, Marco Ciccone, and Barbara Caputo. Feddrive: Generalizing federated
learning to semantic segmentation in autonomous driving. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
11504–11511. IEEE, 2022.

[272] Vishnu Pandi Chellapandi, Liangqi Yuan, Christopher G Brinton, Stanislaw H
Żak, and Ziran Wang. Federated learning for connected and automated
vehicles: A survey of existing approaches and challenges. IEEE Transactions
on Intelligent Vehicles, 2023.

[273] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimiza-
tion. International Conference on Learning Representations, 2015.

[274] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods
for online learning and stochastic optimization. Journal of machine learning
research, 12(7), 2011.

References 241

[275] Sashank Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush,
Jakub Konečnỳ, Sanjiv Kumar, and H Brendan McMahan. Adaptive federated
optimization. International Conference on Learning Representations, 2021.

[276] Kate Donahue and Jon Kleinberg. Optimality and stability in federated learn-
ing: A game-theoretic approach. Advances in Neural Information Processing
Systems, 34:1287–1298, 2021.

[277] Li Li, Yuxi Fan, Mike Tse, and Kuo-Yi Lin. A review of applications in
federated learning. Computers & Industrial Engineering, 149:106854, 2020.

[278] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Federated visual classi-
fication with real-world data distribution. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part X 16, pages 76–92. Springer, 2020.

[279] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. Federated learning with non-iid data. arXiv preprint
arXiv:1806.00582, 2018.

[280] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi,
Sebastian Stich, and Ananda Theertha Suresh. Scaffold: Stochastic controlled
averaging for federated learning. In International Conference on Machine
Learning, pages 5132–5143. PMLR, 2020.

[281] Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang.
On the convergence of fedavg on non-iid data. International Conference on
Learning Representations, 2020.

[282] Sai Praneeth Karimireddy, Martin Jaggi, Satyen Kale, Mehryar Mohri,
Sashank J Reddi, Sebastian U Stich, and Ananda Theertha Suresh. Mime:
Mimicking centralized stochastic algorithms in federated learning. Advances
in Neural Information Processing Systems, 2020.

[283] Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong
Xu. Feddc: Federated learning with non-iid data via local drift decoupling
and correction. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 10112–10121, 2022.

[284] Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on
non-iid data: A survey. Neurocomputing, 465:371–390, 2021.

[285] Xiaodong Ma, Jia Zhu, Zhihao Lin, Shanxuan Chen, and Yangjie Qin. A
state-of-the-art survey on solving non-iid data in federated learning. Future
Generation Computer Systems, 135:244–258, 2022.

[286] Zili Lu, Heng Pan, Yueyue Dai, Xueming Si, and Yan Zhang. Federated
learning with non-iid data: A survey. IEEE Internet of Things Journal, 2024.

242 References

[287] Bingyan Liu, Nuoyan Lv, Yuanchun Guo, and Yawen Li. Recent advances
on federated learning: A systematic survey. Neurocomputing, page 128019,
2024.

[288] Durmus Alp Emre Acar, Yue Zhao, Ramon Matas Navarro, Matthew Mattina,
Paul N Whatmough, and Venkatesh Saligrama. Federated learning based on
dynamic regularization. International Conference on Learning Representa-
tions, 2021.

[289] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, Jonathan Eckstein, et al.
Distributed optimization and statistical learning via the alternating direction
method of multipliers. Foundations and Trends® in Machine learning, 3(1):1–
122, 2011.

[290] Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects
of non-identical data distribution for federated visual classification. Neurips
Workshop on Federated Learning, 2019.

[291] Jing Xu, Sen Wang, Liwei Wang, and Andrew Chi-Chih Yao. Fedcm: Feder-
ated learning with client-level momentum. arXiv preprint arXiv:2106.10874,
2021.

[292] Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient
federated learning with acceleration of global momentum. arXiv preprint
arXiv:2201.03172, 2022.

[293] Quande Liu, Cheng Chen, Jing Qin, Qi Dou, and Pheng-Ann Heng. Feddg:
Federated domain generalization on medical image segmentation via episodic
learning in continuous frequency space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1013–1023,
2021.

[294] Junming Chen, Meirui Jiang, Qi Dou, and Qifeng Chen. Federated domain
generalization for image recognition via cross-client style transfer. In Pro-
ceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pages 361–370, 2023.

[295] Yuwei Sun, Ng Chong, and Hideya Ochiai. Feature distribution matching for
federated domain generalization. In Asian Conference on Machine Learning,
pages 942–957. PMLR, 2023.

[296] Xingchao Peng, Zijun Huang, Yizhe Zhu, and Kate Saenko. Federated
adversarial domain adaptation. International Conference on Learning Repre-
sentations, 2020.

[297] Chun-Han Yao, Boqing Gong, Hang Qi, Yin Cui, Yukun Zhu, and Ming-
Hsuan Yang. Federated multi-target domain adaptation. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Computer Vision, pages
1424–1433, 2022.

References 243

[298] Umberto Michieli and Mete Ozay. Are all users treated fairly in federated
learning systems? In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2318–2322, 2021.

[299] Jianyu Wang, Vinayak Tantia, Nicolas Ballas, and Michael Rabbat. Slowmo:
Improving communication-efficient distributed sgd with slow momentum.
International Conference on Learning Representations, 2019.

[300] Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Fedadc: Accelerated
federated learning with drift control. In 2021 IEEE International Symposium
on Information Theory (ISIT), pages 467–472. IEEE, 2021.

[301] Rudrajit Das, Anish Acharya, Abolfazl Hashemi, Sujay Sanghavi, Inderjit S
Dhillon, and Ufuk Topcu. Faster non-convex federated learning via global
and local momentum. In Uncertainty in Artificial Intelligence, pages 496–506.
PMLR, 2022.

[302] Geeho Kim, Jinkyu Kim, and Bohyung Han. Communication-efficient feder-
ated learning with accelerated client gradient. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 12385–12394,
2024.

[303] Daliang Li and Junpu Wang. Fedmd: Heterogenous federated learning via
model distillation. Advances in Neural Information Processing Systems Work-
shop, 2019.

[304] Wenke Huang, Mang Ye, and Bo Du. Learn from others and be yourself in het-
erogeneous federated learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 10143–10153, 2022.

[305] Eros Fanì, Raffaello Camoriano, Barbara Caputo, and Marco Ciccone. Accel-
erating heterogeneous federated learning with closed-form classifiers. Inter-
national Conference on Machine Learning, 2024.

[306] Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated
meta-learning with fast convergence and efficient communication. arXiv
preprint arXiv:1802.07876, 2018.

[307] Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive
gradient-based meta-learning methods. Advances in Neural Information
Processing Systems, 32, 2019.

[308] Yihan Jiang, Jakub Konečnỳ, Keith Rush, and Sreeram Kannan. Improving
federated learning personalization via model agnostic meta learning. arXiv
preprint arXiv:1909.12488, 2019.

[309] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized feder-
ated learning: A meta-learning approach. Advances in Neural Information
Processing Systems, 2020.

244 References

[310] Durmus Alp Emre Acar, Yue Zhao, Ruizhao Zhu, Ramon Matas, Matthew
Mattina, Paul Whatmough, and Venkatesh Saligrama. Debiasing model
updates for improving personalized federated training. In International con-
ference on machine learning, pages 21–31. PMLR, 2021.

[311] Wenbo Zheng, Lan Yan, Chao Gou, and Fei-Yue Wang. Federated meta-
learning for fraudulent credit card detection. In Proceedings of the Twenty-
Ninth International Conference on International Joint Conferences on Artifi-
cial Intelligence, pages 4654–4660, 2021.

[312] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-
learning for fast adaptation of deep networks. In International conference on
machine learning, pages 1126–1135. PMLR, 2017.

[313] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet S Talwalkar.
Federated multi-task learning. Advances in Neural Information Processing
Systems, 30, 2017.

[314] Luca Corinzia, Ami Beuret, and Joachim M Buhmann. Variational federated
multi-task learning. arXiv preprint arXiv:1906.06268, 2019.

[315] Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and
Richard Vidal. Federated multi-task learning under a mixture of distributions.
Advances in Neural Information Processing Systems, 34:15434–15447, 2021.

[316] Jiayi Chen and Aidong Zhang. Fedmsplit: Correlation-adaptive federated
multi-task learning across multimodal split networks. In Proceedings of the
28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
pages 87–96, 2022.

[317] Christopher Briggs, Zhong Fan, and Peter Andras. Federated learning with
hierarchical clustering of local updates to improve training on non-iid data. In
2020 International Joint Conference on Neural Networks (IJCNN), pages 1–9.
IEEE, 2020.

[318] Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered federated
learning: Model-agnostic distributed multitask optimization under privacy
constraints. IEEE transactions on neural networks and learning systems,
32(8):3710–3722, 2020.

[319] Moming Duan, Duo Liu, Xinyuan Ji, Yu Wu, Liang Liang, Xianzhang Chen,
Yujuan Tan, and Ao Ren. Flexible clustered federated learning for client-level
data distribution shift. IEEE Transactions on Parallel and Distributed Systems,
33(11):2661–2674, 2021.

[320] Yihan Yan, Xiaojun Tong, and Shen Wang. Clustered federated learning in
heterogeneous environment. IEEE Transactions on Neural Networks and
Learning Systems, 2023.

References 245

[321] Martin Papenberg and Gunnar W Klau. Using anticlustering to partition data
sets into equivalent parts. Psychological Methods, 26(2):161, 2021.

[322] Shenglai Zeng, Zonghang Li, Hongfang Yu, Yihong He, Zenglin Xu, Dusit
Niyato, and Han Yu. Heterogeneous federated learning via grouped sequential-
to-parallel training. In International Conference on Database Systems for
Advanced Applications, pages 455–471. Springer, 2022.

[323] Apple Machine Learning Research. Personalized hey siri, April 2018.

[324] Zhiyong Chen and Shugong Xu. Learning domain-heterogeneous speaker
recognition systems with personalized continual federated learning. EURASIP
Journal on Audio, Speech, and Music Processing, 2023(1):33, 2023.

[325] Qiong Wu, Xu Chen, Zhi Zhou, and Junshan Zhang. Fedhome: Cloud-edge
based personalized federated learning for in-home health monitoring. IEEE
Transactions on Mobile Computing, 21(8):2818–2832, 2020.

[326] Yiqiang Chen, Xin Qin, Jindong Wang, Chaohui Yu, and Wen Gao. Fedhealth:
A federated transfer learning framework for wearable healthcare. IEEE
Intelligent Systems, 35(4):83–93, 2020.

[327] Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized
federated learning. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[328] Fahad Sabah, Yuwen Chen, Zhen Yang, Muhammad Azam, Nadeem Ahmad,
and Raheem Sarwar. Model optimization techniques in personalized federated
learning: A survey. Expert Systems with Applications, page 122874, 2023.

[329] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex
Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzoc-
chi, Brendan McMahan, et al. Towards federated learning at scale: System
design. Proceedings of machine learning and systems, 1:374–388, 2019.

[330] Chaoyang He, Murali Annavaram, and Salman Avestimehr. Group knowledge
transfer: Federated learning of large cnns at the edge. Advances in Neural
Information Processing Systems, 33:14068–14080, 2020.

[331] Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. Efficient
split-mix federated learning for on-demand and in-situ customization. Inter-
national Conference on Learning Representations, 2022.

[332] Zihao Zhao, Yuzhu Mao, Yang Liu, Linqi Song, Ye Ouyang, Xinlei Chen,
and Wenbo Ding. Towards efficient communications in federated learning: A
contemporary survey. Journal of the Franklin Institute, 360(12):8669–8703,
2023.

246 References

[333] Mark Braverman, Ankit Garg, Tengyu Ma, Huy L Nguyen, and David P
Woodruff. Communication lower bounds for statistical estimation problems
via a distributed data processing inequality. In Proceedings of the forty-eighth
annual ACM symposium on Theory of Computing, pages 1011–1020, 2016.

[334] Yanjun Han, Ayfer Özgür, and Tsachy Weissman. Geometric lower bounds
for distributed parameter estimation under communication constraints. In
Conference On Learning Theory, pages 3163–3188. PMLR, 2018.

[335] Leighton Pate Barnes, Yanjun Han, and Ayfer Ozgur. Lower bounds for
learning distributions under communication constraints via fisher information.
Journal of Machine Learning Research, 21(236):1–30, 2020.

[336] Emre Ozfatura, Kerem Ozfatura, and Deniz Gündüz. Time-correlated spar-
sification for communication-efficient federated learning. In 2021 IEEE In-
ternational Symposium on Information Theory (ISIT), pages 461–466. IEEE,
2021.

[337] Runmeng Du, Daojing He, Zikang Ding, Miao Wang, Sammy Chan, and
Xuru Li. Gsasg: Global sparsification with adaptive aggregated stochastic
gradients for communication-efficient federated learning. IEEE Internet of
Things Journal, 2024.

[338] Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie,
and Ramtin Pedarsani. Fedpaq: A communication-efficient federated learning
method with periodic averaging and quantization. In International conference
on artificial intelligence and statistics, pages 2021–2031. PMLR, 2020.

[339] Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar.
Adaptive quantization of model updates for communication-efficient federated
learning. In ICASSP 2021-2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 3110–3114. IEEE, 2021.

[340] Yuzhu Mao, Zihao Zhao, Guangfeng Yan, Yang Liu, Tian Lan, Linqi Song,
and Wenbo Ding. Communication-efficient federated learning with adaptive
quantization. ACM Transactions on Intelligent Systems and Technology (TIST),
13(4):1–26, 2022.

[341] Xinyan Dai, Xiao Yan, Kaiwen Zhou, Han Yang, Kelvin KW Ng, James
Cheng, and Yu Fan. Hyper-sphere quantization: Communication-efficient sgd
for federated learning. arXiv preprint arXiv:1911.04655, 2019.

[342] Mohammad Mohammadi Amiri, Deniz Gunduz, Sanjeev R Kulkarni, and
H Vincent Poor. Federated learning with quantized global model updates.
arXiv preprint arXiv:2006.10672, 2020.

[343] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Towards understanding biased
client selection in federated learning. In International Conference on Artificial
Intelligence and Statistics, pages 10351–10375. PMLR, 2022.

References 247

[344] Yae Jee Cho, Jianyu Wang, and Gauri Joshi. Client selection in federated
learning: Convergence analysis and power-of-choice selection strategies.
arXiv preprint arXiv:2010.01243, 2020.

[345] Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowledge distil-
lation for heterogeneous federated learning. In International conference on
machine learning, pages 12878–12889. PMLR, 2021.

[346] Changlin Song, Divya Saxena, Jiannong Cao, and Yuqing Zhao. Feddistill:
Global model distillation for local model de-biasing in non-iid federated
learning. arXiv preprint arXiv:2404.09210, 2024.

[347] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi,
Ilia Shumailov, and Nicolas Papernot. When the curious abandon honesty:
Federated learning is not private. In IEEE 8th European Symposium on
Security and Privacy, pages 175–199. IEEE, 2023.

[348] Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi,
Ilia Shumailov, and Nicolas Papernot. Is federated learning a practical pet
yet? arXiv:2301.04017, 2023.

[349] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. Model inversion attacks
that exploit confidence information and basic countermeasures. In Proceed-
ings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security, pages 1322–1333. ACM, 2015.

[350] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep models
under the gan: information leakage from collaborative deep learning. In Pro-
ceedings of the 2017 Association for Computing Machinery Special Interest
Group on Security, Audit and Control (SIGSAC) conference on computer and
communications security, pages 603–618, 2017.

[351] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-
sarial networks. Communications of the Association for Computing Machinery,
63:139–144, 2020.

[352] Luca Melis, Congzheng Song, Emiliano De Cristofaro, and Vitaly Shmatikov.
Exploiting unintended feature leakage in collaborative learning. In 2019 IEEE
symposium on security and privacy, pages 691–706. IEEE, 2019.

[353] Zhuohang Li, Jiaxin Zhang, Luyang Liu, and Jian Liu. Auditing privacy
defenses in federated learning via generative gradient leakage. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 10132–10142, 2022.

[354] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Mem-
bership inference attacks against machine learning models. In 2017 IEEE
Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2017.

248 References

[355] Eugene Bagdasaryan, Andreas Veit, Yiqing Hua, Deborah Estrin, and Vitaly
Shmatikov. How to backdoor federated learning. In Proceedings of the Twenty-
Third International Conference on Artificial Intelligence and Statistics, pages
2938–2948. PMLR, 2020.

[356] Ligeng Zhu, Song Liu, and Yin Han. Deep leakage from gradients. In
Advances in Neural Information Processing Systems, volume 32, 2019.

[357] Yuxin Wen, Jonas Geiping, Liam Fowl, Micah Goldblum, and Tom Gold-
stein. Fishing for user data in large-batch federated learning via gradient
magnification. arXiv:2202.00580, 2022.

[358] Haokun Fang and Quan Qian. Privacy preserving machine learning with
homomorphic encryption and federated learning. Future Internet, 13(4):94,
2021.

[359] Jing Ma, Si-Ahmed Naas, Stephan Sigg, and Xixiang Lyu. Privacy-preserving
federated learning based on multi-key homomorphic encryption. International
Journal of Intelligent Systems, 37(9):5880–5901, 2022.

[360] Anass El Ouadrhiri and Ahmed Abdelhadi. Differential privacy for deep and
federated learning: A survey. IEEE Access, 10:22359–22380, 2022.

[361] Kang Wei, Jun Li, Ming Ding, Chuan Ma, Howard H Yang, Farhad Farokhi,
Shi Jin, Tony QS Quek, and H Vincent Poor. Federated learning with differ-
ential privacy: Algorithms and performance analysis. IEEE Transactions on
Information Forensics and Security, 15:3454–3469, 2020.

[362] Najeeb Moharram Jebreel, Josep Domingo-Ferrer, Alberto Blanco-Justicia,
and David Sánchez. Enhanced security and privacy via fragmented federated
learning. IEEE Transactions on Neural Networks and Learning Systems,
pages 1–15, 2022.

[363] Sheng Shen, Shruti Tople, and Prateek Saxena. Auror: Defending against
poisoning attacks in collaborative deep learning systems. In Proceedings
of the 32nd Annual Conference on Computer Security Applications, pages
508–519. ACM, 2016.

[364] Lingjuan Lyu, Han Yu, Xingjun Ma, Chen Chen, Lichao Sun, Jun Zhao, Qiang
Yang, and S Yu Philip. Privacy and robustness in federated learning: Attacks
and defenses. IEEE Transactions on Neural Networks and Learning Systems,
2022.

[365] Junbo Wang, Amitangshu Pal, Qinglin Yang, Krishna Kant, Kaiming Zhu,
and Song Guo. Collaborative machine learning: Schemes, robustness, and
privacy. IEEE Transactions on Neural Networks and Learning Systems, pages
1–18, 2022.

[366] Donald Shenaj, Giulia Rizzoli, and Pietro Zanuttigh. Federated learning in
computer vision. IEEE Access, 2023.

References 249

[367] Micah J Sheller, G Anthony Reina, Brandon Edwards, Jason Martin, and
Spyridon Bakas. Multi-institutional deep learning modeling without sharing
patient data: A feasibility study on brain tumor segmentation. In International
MICCAI Brainlesion Workshop, pages 92–104. Springer, 2018.

[368] Wenqi Li, Fausto Milletarì, Daguang Xu, Nicola Rieke, Jonny Hancox, Wen-
tao Zhu, Maximilian Baust, Yan Cheng, Sébastien Ourselin, M Jorge Cardoso,
et al. Privacy-preserving federated brain tumour segmentation. In Interna-
tional workshop on machine learning in medical imaging, pages 133–141.
Springer, 2019.

[369] Liping Yi, Jinsong Zhang, Rui Zhang, Jiaqi Shi, Gang Wang, and Xiaoguang
Liu. Su-net: an efficient encoder-decoder model of federated learning for
brain tumor segmentation. In International Conference on Artificial Neural
Networks, pages 761–773. Springer, 2020.

[370] Cosmin I Bercea, Benedikt Wiestler, Daniel Rueckert, and Shadi Albarqouni.
Feddis: Disentangled federated learning for unsupervised brain pathology
segmentation. arXiv preprint arXiv:2103.03705, 2021.

[371] Chris Xing Tian, Haoliang Li, Yufei Wang, and Shiqi Wang. Privacy-
preserving constrained domain generalization for medical image classification.
arXiv preprint arXiv:2105.08511, 2021.

[372] Holger R Roth, Ken Chang, Praveer Singh, Nir Neumark, Wenqi Li, Vikash
Gupta, Sharut Gupta, Liangqiong Qu, Alvin Ihsani, Bernardo C Bizzo, et al.
Federated learning for breast density classification: A real-world implemen-
tation. In Domain Adaptation and Representation Transfer, and Distributed
and Collaborative Learning: Second MICCAI Workshop, DART 2020, and
First MICCAI Workshop, DCL 2020, Held in Conjunction with MICCAI 2020,
Lima, Peru, October 4–8, 2020, Proceedings 2, pages 181–191. Springer,
2020.

[373] Pragati Baheti, Mukul Sikka, KV Arya, and R Rajesh. Federated learning on
distributed medical records for detection of lung nodules. In VISIGRAPP (4:
VISAPP), pages 445–451, 2020.

[374] Amelia Jiménez-Sánchez, Mickael Tardy, Miguel A González Ballester, Diana
Mateus, and Gemma Piella. Memory-aware curriculum federated learning for
breast cancer classification. Computer Methods and Programs in Biomedicine,
229:107318, 2023.

[375] Pengfei Guo, Puyang Wang, Jinyuan Zhou, Shanshan Jiang, and Vishal M
Patel. Multi-institutional collaborations for improving deep learning-based
magnetic resonance image reconstruction using federated learning. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition,
pages 2423–2432, 2021.

250 References

[376] Chun-Mei Feng, Yunlu Yan, Shanshan Wang, Yong Xu, Ling Shao, and
Huazhu Fu. Specificity-preserving federated learning for mr image recon-
struction. IEEE Transactions on Medical Imaging, 2022.

[377] Gokberk Elmas, Salman UH Dar, Yilmaz Korkmaz, Emir Ceyani, Burak
Susam, Muzaffer Ozbey, Salman Avestimehr, and Tolga Çukur. Federated
learning of generative image priors for mri reconstruction. IEEE Transactions
on Medical Imaging, 2022.

[378] Xuanang Xu, Hannah H Deng, Tianyi Chen, Tianshu Kuang, Joshua C Barber,
Daeseung Kim, Jaime Gateno, James J Xia, and Pingkun Yan. Federated cross
learning for medical image segmentation. In Medical Imaging with Deep
Learning, pages 1441–1452. PMLR, 2024.

[379] Bingjie Yan, Jun Wang, Jieren Cheng, Yize Zhou, Yixian Zhang, Yifan Yang,
Li Liu, Haojiang Zhao, Chunjuan Wang, and Boyi Liu. Experiments of
federated learning for covid-19 chest x-ray images. In Advances in Artificial
Intelligence and Security: 7th International Conference, ICAIS 2021, Dublin,
Ireland, July 19-23, 2021, Proceedings, Part II 7, pages 41–53. Springer,
2021.

[380] Sadaf Naz, Khoa T Phan, and Yi-Ping Phoebe Chen. A comprehensive
review of federated learning for covid-19 detection. International Journal of
Intelligent Systems, 37(3):2371–2392, 2022.

[381] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. Google landmarks
dataset v2-a large-scale benchmark for instance-level recognition and retrieval.
In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 2575–2584, 2020.

[382] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex
Shepard, Hartwig Adam, Pietro Perona, and Serge Belongie. The inaturalist
species classification and detection dataset. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8769–8778,
2018.

[383] Jiahuan Luo, Xueyang Wu, Yun Luo, Anbu Huang, Yunfeng Huang, Yang
Liu, and Qiang Yang. Real-world image datasets for federated learning. arXiv
preprint arXiv:1910.11089, 2019.

[384] Shangchao Su, Bin Li, Chengzhi Zhang, Mingzhao Yang, and Xiangyang
Xue. Cross-domain federated object detection. In 2023 IEEE International
Conference on Multimedia and Expo (ICME), pages 1469–1474. IEEE, 2023.

[385] Umberto Michieli, Marco Toldo, and Mete Ozay. Federated learning via
attentive margin of semantic feature representations. IEEE Internet of Things
Journal, 10(2):1517–1535, 2022.

References 251

[386] Jiaxu Miao, Zongxin Yang, Leilei Fan, and Yi Yang. Fedseg: Class-
heterogeneous federated learning for semantic segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8042–8052, 2023.

[387] Divyansh Aggarwal, Jiayu Zhou, and Anil K Jain. Fedface: Collaborative
learning of face recognition model. In 2021 IEEE International Joint Confer-
ence on Biometrics (IJCB), pages 1–8. IEEE, 2021.

[388] Weiming Zhuang, Xin Gan, Xuesen Zhang, Yonggang Wen, Shuai Zhang, and
Shuai Yi. Federated unsupervised domain adaptation for face recognition. In
2022 IEEE International Conference on Multimedia and Expo (ICME), pages
1–6. IEEE, 2022.

[389] Qiang Meng, Feng Zhou, Hainan Ren, Tianshu Feng, Guochao Liu, and
Yuanqing Lin. Improving federated learning face recognition via privacy-
agnostic clusters. arXiv preprint arXiv:2201.12467, 2022.

[390] Alex Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

[391] Wei Li and Andrew McCallum. Pachinko allocation: Dag-structured mix-
ture models of topic correlations. In Proceedings of the 23rd international
conference on Machine learning, pages 577–584, 2006.

[392] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed,
Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Ra-
binovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1–9, 2015.

[393] Gregory Cohen, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik.
Emnist: Extending mnist to handwritten letters. In 2017 international joint
conference on neural networks (IJCNN), pages 2921–2926. IEEE, 2017.

[394] Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub
Konečnỳ, H Brendan McMahan, Virginia Smith, and Ameet Talwalkar. Leaf:
A benchmark for federated settings. Workshop on Data Privacy and Confi-
dentiality, 2019.

[395] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning
face attributes in the wild. In Proceedings of International Conference on
Computer Vision (ICCV), December 2015.

[396] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus
Enzweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele.
The cityscapes dataset for semantic urban scene understanding. In Proc. of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016.

252 References

[397] Gerhard Neuhold, Tobias Ollmann, Samuel Rota Bulo, and Peter Kontschieder.
The mapillary vistas dataset for semantic understanding of street scenes. In
Proceedings of the IEEE international conference on computer vision, pages
4990–4999, 2017.

[398] Yi-Hsin Chen, Wei-Yu Chen, Yu-Ting Chen, Bo-Cheng Tsai, Yu-Chiang
Frank Wang, and Min Sun. No more discrimination: Cross city adaptation of
road scene segmenters. In Proceedings of the IEEE International Conference
on Computer Vision, pages 1992–2001, 2017.

[399] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Playing
for data: Ground truth from computer games. In Computer Vision–ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October
11-14, 2016, Proceedings, Part II 14, pages 102–118. Springer, 2016.

[400] Frederik Warburg, Soren Hauberg, Manuel Lopez-Antequera, Pau Gargallo,
Yubin Kuang, and Javier Civera. Mapillary street-level sequences: A dataset
for lifelong place recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 2626–2635, 2020.

[401] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume
Desjardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Ag-
nieszka Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neu-
ral networks. Proceedings of the national academy of sciences, 114(13):3521–
3526, 2017.

[402] Rich Caruana. Multitask learning. Machine learning, 28(1):41–75, 1997.

[403] Cihang Xie, Mingxing Tan, Boqing Gong, Jiang Wang, Alan L Yuille, and
Quoc V Le. Adversarial examples improve image recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 819–828, 2020.

[404] Irwan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, Aravind Srini-
vas, Tsung-Yi Lin, Jonathon Shlens, and Barret Zoph. Revisiting resnets:
Improved training and scaling strategies. Advances in Neural Information
Processing Systems, 34, 2021.

[405] Qinbin Li, Yiqun Diao, Quan Chen, and Bingsheng He. Federated learning on
non-iid data silos: An experimental study. arXiv preprint arXiv:2102.02079,
2021.

[406] Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. General-
ized federated learning via sharpness aware minimization. In International
Conference on Machine Learning, pages 18250–18280. PMLR, 2022.

[407] Yan Sun, Li Shen, Tiansheng Huang, Liang Ding, and Dacheng Tao. Fedspeed:
Larger local interval, less communication round, and higher generalization
accuracy. International Conference on Learning Representations, 2023.

References 253

[408] Rong Dai, Xun Yang, Yan Sun, Li Shen, Xinmei Tian, Meng Wang, and
Yongdong Zhang. Fedgamma: Federated learning with global sharpness-
aware minimization. IEEE Transactions on Neural Networks and Learning
Systems, 2023.

[409] Yifan Shi, Yingqi Liu, Kang Wei, Li Shen, Xueqian Wang, and Dacheng
Tao. Make landscape flatter in differentially private federated learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 24552–24562, 2023.

[410] Yifan Shi, Li Shen, Kang Wei, Yan Sun, Bo Yuan, Xueqian Wang, and
Dacheng Tao. Improving the model consistency of decentralized federated
learning. In International Conference on Machine Learning, pages 31269–
31291. PMLR, 2023.

[411] Xueying Zhang, Yun Li, Tianyu Gong, Zhe Wang, and Fuyan Wang. Fed-
ksam*: A two-phase federated learning intrusion detection algorithm. In 2024
43rd Chinese Control Conference (CCC), pages 8827–8831, 2024.

[412] Hoang Phan, Lam Tran, Ngoc N Tran, Nhat Ho, Dinh Phung, and Trung
Le. Improving multi-task learning via seeking task-based flat regions. arXiv
preprint arXiv:2211.13723, 2022.

[413] Yan Sun, Li Shen, Shixiang Chen, Liang Ding, and Dacheng Tao. Dynamic
regularized sharpness aware minimization in federated learning: Approach-
ing global consistency and smooth landscape. International Conference on
Machine Learning, 2023.

[414] Ming Jiang, Shi Chen, Jinhui Yang, and Qi Zhao. Fantastic answers and where
to find them: Immersive question-directed visual attention. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pages
2980–2989, 2020.

[415] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 4510–4520, 2018.

[416] Lingjuan Lyu, Han Yu, and Qiang Yang. Threats to federated learning: A
survey. arXiv:2003.02133, 2020.

[417] Luis Muñoz-González, Battista Biggio, Ambra Demontis, Andrea Paudice,
Vasin Wongrassamee, Emil C Lupu, and Fabio Roli. Towards poisoning of
deep learning algorithms with back-gradient optimization. In Proceedings
of the 10th Association for Computing Machinery workshop on artificial
intelligence and security, pages 27–38, 2017.

[418] Vale Tolpegin, Stacey Truex, Mehmet Emre Gursoy, and Ling Liu. Data
poisoning attacks against federated learning systems. In European Symposium
on Research in Computer Security, pages 480–501. Springer, 2020.

254 References

[419] Michael R Garey and David S Johnson. “strong”np-completeness results:
Motivation, examples, and implications. Journal of the Association for Com-
puting Machinery, 25(3):499–508, 1978.

[420] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering, 21(9):1263–1284, 2009.

[421] Alessandro Achille, Michael Lam, Rahul Tewari, Avinash Ravichandran,
Subhransu Maji, Charless C Fowlkes, Stefano Soatto, and Pietro Perona.
Task2vec: Task embedding for meta-learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 6430–6439,
2019.

[422] Douglas Steinley. K-means clustering: a half-century synthesis. British
Journal of Mathematical and Statistical Psychology, 59(1):1–34, 2006.

[423] Riccardo Zaccone, Andrea Rizzardi, Debora Caldarola, Marco Ciccone, and
Barbara Caputo. Speeding up heterogeneous federated learning with sequen-
tially trained superclients. In 2022 26th International Conference on Pattern
Recognition (ICPR), pages 3376–3382. IEEE, 2022.

[424] The TensorFlow Federated Authors. Tensorflow federated stack overflow
dataset, 2019.

[425] Shreyansh Jain and Koteswar Rao Jerripothula. Federated learning for com-
mercial image sources. In Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision, pages 6534–6543, 2023.

[426] Richard Bellman. Dynamic programming. Science, 153:34–37, 1966.

[427] Karl Pearson F.R.S. Liii. on lines and planes of closest fit to systems of points
in space. The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11):559–572, 1901.

[428] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. Gans trained by a two time-scale update rule converge to a
local nash equilibrium. Advances in Neural Information Processing Systems,
2017.

[429] Xiaoling Xia, Cui Xu, and Bing Nan. Inception-v3 for flower classification. In
2nd international conference on image, vision and computing, pages 783–787.
IEEE, 2017.

[430] Yuang Liu, Wei Zhang, and Jun Wang. Source-free domain adaptation for
semantic segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 1215–1224, 2021.

[431] Jenny Hamer, Mehryar Mohri, and Ananda Theertha Suresh. Fedboost: A
communication-efficient algorithm for federated learning. In International
Conference on Machine Learning, pages 3973–3983. PMLR, 2020.

References 255

[432] Yanchao Yang and Stefano Soatto. Fda: Fourier domain adaptation for
semantic segmentation. In IEEE Conf. Comput. Vis. Pattern Recog., pages
4085–4095, 2020.

[433] Francois Fleuret et al. Uncertainty reduction for model adaptation in semantic
segmentation. In IEEE Conf. Comput. Vis. Pattern Recog., pages 9613–9623,
2021.

[434] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tatsuya Harada. Max-
imum classifier discrepancy for unsupervised domain adaptation. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 3723–3732, 2018.

[435] Lukas Hoyer, Dengxin Dai, and Luc Van Gool. Daformer: Improving network
architectures and training strategies for domain-adaptive semantic segmenta-
tion. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 9924–9935, 2022.

[436] Asano YM., Rupprecht C., and Vedaldi A. Self-labelling via simultane-
ous clustering and representation learning. In International Conference on
Learning Representations, 2020.

[437] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior.
In CVPR, 2018.

[438] Ming Xie, Guodong Long, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing
Jiang. Multi-center federated learning. arXiv preprint arXiv:2005.01026,
2020.

[439] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple
visual domains with residual adapters. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 506–516, 2017.

[440] Amir Rosenfeld and John K Tsotsos. Incremental learning through deep
adaptation. IEEE transactions on pattern analysis and machine intelligence,
42(3):651–663, 2018.

[441] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Efficient
parametrization of multi-domain deep neural networks. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages
8119–8127, 2018.

[442] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a
single network to multiple tasks by learning to mask weights. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 67–82, 2018.

[443] Massimiliano Mancini, Elisa Ricci, Barbara Caputo, and Samuel Rota Bulo.
Boosting binary masks for multi-domain learning through affine transforma-
tions. Machine Vision and Applications, 31(6):1–14, 2020.

256 References

[444] Shu Jiang, Yu Wang, Weiman Lin, Yu Cao, Longtao Lin, Jinghao Miao,
and Qi Luo. A high-accuracy framework for vehicle dynamic modeling in
autonomous driving. In IROS, 2021.

[445] Kosmas Tsiakas, Ioannis Kostavelis, Antonios Gasteratos, and Dimitrios
Tzovaras. Autonomous vehicle navigation in semi-structured environments
based on sparse waypoints and lidar road-tracking. In IROS, 2021.

[446] Timothy Ha, Gunmin Lee, Dohyeong Kim, and Songhwai Oh. Road graphical
neural networks for autonomous roundabout driving. In IROS, 2021.

[447] Viswadeep Lebakula, Bo Tang, Christopher Goodin, and Cindy L. Bethel.
Shape estimation of negative obstacles for autonomous navigation. In IROS,
2021.

[448] Liang-Chieh Chen, George Papandreou, Iasonas Kokkinos, Kevin Murphy,
and Alan L Yuille. Deeplab: Semantic image segmentation with deep con-
volutional nets, atrous convolution, and fully connected crfs. T-PAMI, 40,
2017.

[449] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar, Jose M Alvarez,
and Ping Luo. Segformer: Simple and efficient design for semantic segmenta-
tion with transformers. NeurIPS, 34, 2021.

[450] Gabriel L Oliveira, Wolfram Burgard, and Thomas Brox. Efficient deep
models for monocular road segmentation. In IROS, 2016.

[451] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu, Chunhua Shen, and
Nong Sang. Bisenet v2: Bilateral network with guided aggregation for
real-time semantic segmentation. International Journal of Computer Vision,
129(11):3051–3068, 2021.

[452] Hongyi Zhang, Jan Bosch, and Helena Holmström Olsson. End-to-end feder-
ated learning for autonomous driving vehicles. In IJCNN, 2021.

[453] Anh Nguyen, Tuong Do, Minh Tran, Binh X. Nguyen, Chien Duong, Tu Phan,
Erman Tjiputra, and Quang D. Tran. Deep federated learning for autonomous
driving. In 2022 IEEE Intelligent Vehicles Symposium (IV), 2022.

[454] Yijing Li, Xiaofeng Tao, Xuefei Zhang, Junjie Liu, and Jin Xu. Privacy-
preserved federated learning for autonomous driving. IEEE TITS, 2021.

[455] Jianzhong He, Xu Jia, Shuaijun Chen, and Jianzhuang Liu. Multi-source
domain adaptation with collaborative learning for semantic segmentation.
CoRR, 2021.

[456] Zhuoqun Liu, Fan Guo, Heng Liu, Xiaoyue Xiao, and Jin Tang. CMLocate:
A cross-modal automatic visual geo-localization framework for a natural
environment without gnss information. IET Image Processing, 17(12):3524–
3540, 2023.

References 257

[457] Lauri Suomela, Jussi Kalliola, Harry Edelman, and Joni-Kristian Kämäräinen.
Placenav: Topological navigation through place recognition. arXiv preprint
arXiv:2309.17260, 2023.

[458] Pierre-Yves Lajoie and Giovanni Beltrame. Swarm-slam: Sparse decen-
tralized collaborative simultaneous localization and mapping framework for
multi-robot systems. IEEE Robotics and Automation Letters, 9(1):475–482,
2024.

[459] Mike Chatzidakis, Junye Chen, Oliver Chick, Eric Circlaeays, Sowmya
Gopalan, Yusuf Goren, Kristine Guo, Michael Hesse, Omid Javidbakht, Vojta
Jina, Kalu Kalu, Anil Katti, Albert Liu, Richard Low, Audra McMillan, Joey
Meyer, Steve Myers, Alex Palmer, David Park, Gianni Parsa, Paul Pelzl, Re-
han Rishi, Michael Scaria, Chiraag Sumanth, Kunal Talwar, Karl Tarbe, Shan
Wang, and Mayank Yadav. Learning iconic scenes with differential privacy.
Expo Talk at International Conference on Machine Learning, 2023.

[460] Paul-Edouard Sarlin, Mihai Dusmanu, Johannes L. Schönberger, Pablo Spe-
ciale, Lukas Gruber, Viktor Larsson, Ondrej Miksik, and Marc Pollefeys.
LaMAR: Benchmarking localization and mapping for augmented reality. In
Shai Avidan, Gabriel Brostow, Moustapha Cissé, Giovanni Maria Farinella,
and Tal Hassner, editors, Eur. Conf. Comput. Vis., pages 686–704, Cham,
2022. Springer Nature Switzerland.

[461] Ruiqi Cheng, Kaiwei Wang, Jian Bai, and Zhijie Xu. Unifying visual localiza-
tion and scene recognition for people with visual impairment. IEEE Access,
8:64284–64296, 2020.

[462] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[463] Gabriele Berton, Carlo Masone, and Barbara Caputo. Rethinking visual geo-
localization for large-scale applications. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages
4878–4888, June 2022.

[464] Amar Ali-bey, Brahim Chaib-draa, and Philippe Giguère. Gsv-cities: Toward
appropriate supervised visual place recognition. Neurocomputing, 513:194–
203, 2022.

[465] Gabriele Berton, Gabriele Trivigno, Barbara Caputo, and Carlo Masone.
Eigenplaces: Training viewpoint robust models for visual place recognition.
In Proceedings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 11080–11090, October 2023.

[466] Amar Ali-bey, Brahim Chaib-draa, and Philippe Giguère. Mixvpr: Feature
mixing for visual place recognition. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pages 2998–3007, 2023.

258 References

[467] María Leyva-Vallina, Nicola Strisciuglio, and Nicolai Petkov. Data-efficient
large scale place recognition with graded similarity supervision. In IEEE
Conf. Comput. Vis. Pattern Recog., pages 23487–23496, 2023.

[468] Sergio Izquierdo and Javier Civera. Optimal transport aggregation for visual
place recognition, 2023.

[469] Relja Arandjelović, Petr Gronat, Akihiko Torii, Tomas Pajdla, and Josef Sivic.
NetVLAD: CNN architecture for weakly supervised place recognition. IEEE
Trans. Pattern Anal. Mach. Intell., 40(6):1437–1451, 2018.

[470] Hyo Jin Kim, Enrique Dunn, and Jan-Michael Frahm. Learned contextual
feature reweighting for image geo-localization. In IEEE Conf. Comput. Vis.
Pattern Recog., pages 3251–3260, 2017.

[471] Liu Liu, Hongdong Li, and Yuchao Dai. Stochastic attraction-repulsion
embedding for large scale image localization, 2019.

[472] Yixiao Ge, Haibo Wang, Feng Zhu, Rui Zhao, and Hongsheng Li. Self-
supervising fine-grained region similarities for large-scale image localization.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-Michael Frahm,
editors, Computer Vision – ECCV 2020, pages 369–386, Cham, 2020. Springer
International Publishing.

[473] Frederik Warburg, Søren Hauberg, Manuel López-Antequera, Pau Gargallo,
Yubin Kuang, and Javier Civera. Mapillary street-level sequences: A dataset
for lifelong place recognition. In 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2623–2632, 2020.

[474] Eros Fanì, Marco Ciccone, and Barbara Caputo. Feddrive v2: an analy-
sis of the impact of label skewness in federated semantic segmentation for
autonomous driving. 5th Italian Conference on Robotics and Intelligent
Machines, 2023.

[475] Lumin Liu, Jun Zhang, Shenghui Song, and Khaled B. Letaief. Hierarchical
federated learning with quantization: Convergence analysis and system design.
IEEE Transactions on Wireless Communications, 22(1):2–18, 2023.

[476] Shunfeng Chu, Jun Li, Kang Wei, Yuwen Qian, Kunlun Wang, Feng Shu,
and Wen Chen. Design of two-level incentive mechanisms for hierarchical
federated learning, 2023.

[477] Gabriele Berton, Riccardo Mereu, Gabriele Trivigno, Carlo Masone, Gabriela
Csurka, Torsten Sattler, and Barbara Caputo. Deep visual geo-localization
benchmark, 2023.

[478] Kaiyue Wen, Tengyu Ma, and Zhiyuan Li. How sharpness-aware minimization
minimizes sharpness? In The Eleventh International Conference on Learning
Representations, 2023.

References 259

[479] Kayhan Behdin and Rahul Mazumder. Sharpness-aware minimization: An
implicit regularization perspective. stat, 1050:23, 2023.

[480] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. arXiv preprint arXiv:1803.03635, 2018.

[481] Mitchell Wortsman, Maxwell C Horton, Carlos Guestrin, Ali Farhadi, and
Mohammad Rastegari. Learning neural network subspaces. In International
Conference on Machine Learning, pages 11217–11227. PMLR, 2021.

[482] Thang Doan, Seyed Iman Mirzadeh, and Mehrdad Farajtabar. Continual
learning beyond a single model. In Conference on Lifelong Learning Agents,
pages 961–991. PMLR, 2023.

[483] George Stoica, Daniel Bolya, Jakob Brandt Bjorner, Pratik Ramesh, Taylor
Hearn, and Judy Hoffman. Zipit! merging models from different tasks without
training. In The Twelfth International Conference on Learning Representa-
tions, 2024.

[484] Jacob Mitchell Springer, Vaishnavh Nagarajan, and Aditi Raghunathan.
Sharpness-aware minimization enhances feature quality via balanced learning.
International Conference on Learning Representations, 2024.

[485] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary De-
Vito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

[486] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip Gibbons. The
non-iid data quagmire of decentralized machine learning. In International
Conference on Machine Learning, pages 4387–4398. PMLR, 2020.

[487] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. Fedjax: Federated learning
simulation with jax. arXiv preprint arXiv:2108.02117, 2021.

[488] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

[489] Jonathan Heek, Anselm Levskaya, Avital Oliver, Marvin Ritter, Bertrand
Rondepierre, Andreas Steiner, and Marc van Zee. Flax: A neural network
library and ecosystem for JAX, 2020.

[490] James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris
Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas,
Skye Wanderman-Milne, and Qiao Zhang. JAX: composable transformations
of Python+NumPy programs, 2018.

260 References

[491] Abhinav Shrivastava, Abhinav Gupta, and Ross Girshick. Training region-
based object detectors with online hard example mining. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 761–769,
2016.

[492] Debora Caldarola, Barbara Caputo, and Marco Ciccone. Window-based model
averaging improves generalization in heterogeneous federated learning. In
Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 2263–2271, 2023.

[493] Jae Hun Ro, Ananda Theertha Suresh, and Ke Wu. FedJAX: Federated
learning simulation with JAX. arXiv preprint arXiv:2108.02117, 2021.

[494] Andrej Karpathy. mingpt. https://github.com/karpathy/minGPT, 2022.

[495] Wikimedia Foundation. Wikimedia downloads.

https://github.com/karpathy/minGPT

Appendix A

Implementation Details

A.1 Appendix for Improving Generalization in Feder-
ated Learning by Seeking Flat Minima

This section provides a detailed description of the datasets and models employed
in this work. Additionally, information regarding the selected hyper-parameters
and their fine-tuning schedule is provided. To enhance robustness and reliability,
all results presented throughout the paper are averaged over the last 100 training
rounds. Unless explicitly mentioned, the PyTorch framework [485] was used, and
experiments were conducted on a single NVIDIA GeForce GTX 1070 GPU.

A.1.1 Models

CIFAR10 and CIFAR100

Dirichlet-based CIFAR. When using the Dirichlet-based version of the CIFAR

datasets, the model of choice is a Convolutional Neural Network (CNN) similar to
LeNet5 [112] on both datasets, following the setting of [278]. The network has two
64-channels convolutional layers with kernel of size 5×5, each followed by a 2×2
max-pooling layer, ended by two fully connected layers with 384 and 192 channels
respectively and a linear classifier.

262 Implementation Details

CIFAR-PAM. The chosen model is ResNet18, replacing Batch Normalization [115]
layers with group normalization (GN) ones [116], as suggested by [486], with two
groups for each GN layer. Experiments were run using FedJAX [487] on a cluster
with NVIDIA V100 GPUs.

Landmarks-User-160k

Similarly to [278], MobileNetV2 [415] pre-trained on ImageNet [488] is used for
training on LANDMARKS-USER-160K, with GN layers in place of BN. Since no
details on the model are available, the network feature multiplier is set to α= 1 and
the number of groups of the GN layers to 8. No bottleneck layer before the classifier
is applied, as specified in [278]. To reduce training time, the code is developed using
Flax [489] for both pre-training and centralized baselines, and FedJAX [487] for the
implementation of the federated algorithms. Both libraries are based on JAX [490]
and allow for efficient data parallelization. Implementation of the MobileNetV2
backbone used for all the experiments is available here1. All large-scale classification
experiments have been performed using an NVIDIA DGX A100 40GB.

The model trained on ImageNet reaches ≈ 68% top-1 accuracy on the validation
set, due to the presence of GN layers, which tend to perform slightly worse than BN
when trained on ImageNet, and reduced hyperparemters tuning. The pre-training on
ImageNet was run on 8 GPUs with a total batch size of 2048 images.

Cityscapes and IDDA

As proposed by the authors of FedDrive, the lightweight BiSeNetv2 [451] is em-
ployed for training, accounting for possible lower computational capabilities of the
edge devices.

A.1.2 Hyper-parameters Tuning

Each dataset comes with its own hyper-parameters setup. The final choices of training
hyper-parameters are summarized in Table A.1. Table A.2 and A.3 respectively show
the values used for SAM/ASAM and SWA.

1https://github.com/rwightman/efficientnet-jax/tree/a65811fbf63cb90b9ad0724792040ce93b749303

https://github.com/rwightman/efficientnet-jax/tree/a65811fbf63cb90b9ad0724792040ce93b749303

A.1 Appendix for Improving Generalization in Federated Learning by Seeking Flat
Minima 263

Table A.1 Best performing training parameters

Dataset ηl Batch size Weight decay Epochs Client Rounds Clients
momentum per round

CIFAR10 0.01 64 4 ·10−4 1 0 10k {5,10,20}
CIFAR100 0.01 64 4 ·10−4 1 0 20k {5,10,20}
CIFAR100-PAM 0.01 20 4 ·10−4 1-2 0.9 10k {10,20}
LANDMARKS-USER-160K 0.1 64 4 ·10−5 5 0 5k 10
CITYSCAPES (unif.) 0.05 8 5 ·10−4 2 0.9 1.5k 5
CITYSCAPES (het.) 0.05 8 5 ·10−4 2 0.9 1.5k 5
IDDA (country) 0.1 8 0 2 0.9 1.5k 5
IDDA (rainy) 0.1 8 0 2 0.9 1.5k 5

CIFAR10 and CIFAR100

For both datasets, the training hyper-parameters follow the choice of [278]. The
client learning rate ηl is tuned between the values {0.01,0.1} and set to 0.01, the
batch size is 64, E ∈ {1,2} is tested for the number of local epochs and the former
is chosen. As for the weight decay the value 4 ·10−4 leads to better performances
than 0. The local optimizer is SGD with no momentum. No learning rate scheduler
is used for simplicity. The local loss function is the cross-entropy loss. As for
the server-side, when testing FEDAVGM, the server-side momentum β = 0.9. The
training proceeds for 10k rounds on CIFAR10 and 20k rounds on CIFAR100.

Mixup and Cutout. Following the setup of [181], αmixup= 1, resulting in λ

uniformly distributed between 0 and 1. As for Cutout instead, the cutout size is
16×16 pixels for CIFAR10 and 8×8 for CIFAR100, as proposed by [180].

SAM and ASAM. The parameter ρ of SAM is searched in
{0.01,0.02,0.05,0.1,0.2,0.5}. As for ASAM, the value of ρ is tuned in
{0.05,0.1,0.2,0.5,0.7,1.0,2.0} and η ∈ {0.0,0.01,0.1,0.2}. The choices made
for each dataset and α are shown in Table A.2. There is no distinction of values as
clients vary per round.

SWA. As shown in Section 4.3.5, SWA’s starting round is tested in
{5%,25%,50%,75%} of the rounds budget and, as expected [237], the best contribu-
tion is given if applied from 75% of the training onwards. The value of the learning
rate γ1 is set to 0.01 and γ2 ∈ {10−5,10−4,10−3}, selecting γ2 = 10−4. The cycle

264 Implementation Details

Table A.2 FEDSAM and FEDASAM hyper-parameters

Dataset Distribution SAM ASAM

ρ ρ η

CIFAR10
α= 0 0.1 0.7 0.2
α= 0.05 0.1 0.7 0.2
α= 100 0.02 0.05 0.2

CIFAR100
α= 0 0.02 0.5 0.2
α= 0.5 0.05 0.5 0.2
α= 1000 0.05 0.5 0.2

CIFAR100-PAM α= 0.1 0.05 0.5 0/0.2
LANDMARKS-USER-160K - 0.05 0.5 0/0.2
CITYSCAPES het/unif 0.01 0.1 0.2
IDDA het/unif 0.01 0.5 0.2

length c is tested in {5,10,20} and set to 10 for CIFAR10 and 20 for CIFAR100.
Table A.3 summarizes the choices.

CIFAR100-PAM

The hyper-parameters follow the same choice of [275] (see Table A.1). Accuracies
are reported at 5K and 10K communication rounds.

Mixup and Cutout. Same as CIFAR100.

SAM and ASAM. The hyper-parameters search replicates the on used for the
Dirichlet-based CIFAR100. The best values of ρ for SAM and ASAM in all con-
figurations are 0.05 and 0.5, respectively. For ASAM, η = 0.2 is the best choice
when cutout or no augmentations are applied, while η = 0 works best in the case of
Mixup.

SWA. Same as CIFAR100.

Landmarks-User-160k

In contrast with the setting proposed by the original paper [278], here, FEDAVGM
with momentum β = 0.9 is unstable with 10 participating clients and requires
reducing the server learning rate to 0.1 to train the model. Better performance and
faster convergence can be obtained with 50 clients per round and β = 0.9. However,

A.1 Appendix for Improving Generalization in Federated Learning by Seeking Flat
Minima 265

to maintain consistency with other experiments and deal with limited resources, 10
clients per round are selected. All hyper-parameters are described in Table A.1.

SAM/ASAM. The parameter ρ of SAM is searched in {0.01,0.05,0.1}. As for
ASAM, the value of ρ is tuned in {0.1,0.3,0.5} and η ∈ {0.0,0.1,0.2}.

SWA. SWA starting round is tested at both the 75% and 100% of training, i.e. the
3750-th and 5000-th rounds. The cycle lenghts are tested as c ∈ {5,10,20} and
learning rate γ2 ∈ {10−2,10−3,10−4}. The best performing learning rates (γ1,γ2)

are respectively (10−1,10−3) and the cycle length is 5.

Cityscapes and IDDA

For both Cityscapes and IDDA, the choice of hyper-parameters follows [271]. The
clients’ initial learning rate is 0.05 on Cityscapes and 0.1 on IDDA, the weight decay
is 5 ·10−4 on Cityscapes, while it is not used on IDDA, 2 local epochs, the client
optimizer is SGD with momentum 0.9. Differently from [271], here mixed precision
is not used, thus the batch size is reduced from 16 to 8. A polynomial learning
rate scheduler is applied locally, following [451]. The optimization is based on the
Online Hard-Negative Mining [491], which selects the 25% of the pixels having the
highest cross-entropy loss. The training is spanned across 1.5k rounds.

SAM and ASAM. The parameter ρ of SAM is searched in {0.01,0.05,0.1}. As
for ASAM, the value of ρ is tuned in the set {0.05,0.1,0.5} and η ∈ {0.0,0.1,0.2}.

SWA. Following the setup established for the CIFAR datasets, SWA starts at the
75% of training, i.e. the 1125th round. The learning rates (γ1,γ2) are respectively
(10−1,10−3) for IDDA and (5 ·10−2,5 ·10−4) for Cityscapes. The cycle length is 5
for both datasets.

266 Implementation Details

Table A.3 SWA hyper-parameters

Dataset c γ1 γ2 Start round

CIFAR10 10 10−2 10−4 7500
CIFAR100 20 10−2 10−4 15000
CIFAR100-PAM 5 10−2 10−4 15000
LANDMARKS-USER-160K 5 10−1 10−3 3750/5000
CITYSCAPES 5 5 ·10−2 5 ·10−4 1125
IDDA 5 10−1 10−3 1125

A.2 Appendix for Beyond Local Sharpness:
Communication-Efficient Global Sharpness-aware
Minimization for Federated Learning

The model setup follows the one described in Section A.1.1.

A.2.1 Hyper-parameters Tuning

Table A.4 reports the training hyper-parameters associated to each dataset and model
pairing. Table A.5 instead summarizes the hyper-parameters search grid tested
for each method (in bold the chosen ones). All runs are averaged over 3 seeds. In
addition, following previous works [288, 7, 492], each result is the averaged accuracy
of the last 100 rounds to reduce the noise typical of heterogeneous FL settings.

Experiments with FEDGLOSS revealed that a larger local ρ value led to higher
final accuracy, while a smaller ρ facilitated faster convergence during the initial
training stages. Based on this observation, the local ρ value is scheduled to change
over the first Ts training rounds as follows:

ρ(t) =

ρ0 + (ρ−ρ0)/Ts · t if t ≤ Ts

ρ otherwise,

starting from ρ0 = 0.001.

A.3 Appendix for Window-based Model Averaging Improves Generalization in
Heterogeneous Federated Learning 267

Table A.4 General training hyper-parameters common to all methods, distinguished by
dataset and model architecture. Symbols: local epochs E, local learning rate η , weight decay
wd, client-side momentum βl , batch size B.

Dataset Model Rounds Clients Client optimization
per round E η wd βl B

CIFAR10 CNN 10000 5 1 10−2 4 ·10−4 0 64

CIFAR100 CNN 20000 5 1 10−2 4 ·10−4 0 64
ResNet18GN 10000 10 1 10−2 10−5 0.7 64

LANDMARKS-USER-160K MobileNetv2 1300 50 5 0.1 4 ·10−5 0 64

Table A.5 Search grid used to find optimal hyper-parameters for each combination of method,
dataset and model. Best performing values in bold.

Method HParam CIFAR10 CIFAR100 LANDMARKS-USER-160KCNN ResNet18 CNN ResNet18

FEDSAM ρ [0.05, 0.1, 0.15, 0.2] [0.01, 0.02, 0.05] [0.005, 0.01, 0.02, 0.05] [0.01, 0.02, 0.05] [0.05]

FEDPROX µ [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1]

FEDDYN
α [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.001, 0.01, 0.1] [0.01] [0.001, 0.01]

ρ (SAM-based only) [0.15] [0.01] [0.01, 0.02] [0.01] [0.05]

FEDSPEED
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.005, 0.01, 0.02, 0.05] [0.01] [0.05]
α [0.9, 0.95, 0.99] [0.9, 0.95] [0.9, 0.95, 0.99] [0.9, 0.95] [0.95]
λ [10, 100, 1000] [10, 100, 1000] [10, 100, 1000] [10, 100, 1000] [100, 1000]

FEDGAMMA ρ [0.15] [0.01] [0.01] [0.01] [0.05]

FEDSMOO
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.005, 0.01, 0.05, 0.1, 0.2] [0.01] [0.05, 0.1, 0.2, 0.3]
β [5, 10, 100] [1, 2, 5, 10] [10, 100] [5, 10, 100] [10, 50, 100, 1000]

FEDGLOSS (ours)
ρs [0.01, 0.1, 0.15] [0.01, 0.05, 0.1, 0.5] [0.01, 0.05, 0.1, 0.2] [0.01, 0.05, 0.1, 0.5] [0.005, 0.01, 0.02]
ρ [0.05, 0.1, 0.15, 0.2] [0.01] [0.05, 0.1, 0.2] [0.01] [0.05, 0.1, 0.2, 0.3]
β [5, 10, 100] [1, 2, 5, 10] [10, 100] [5, 10, 100] [10, 50, 100]
Ts [1000, 2000, 4000] [0] [1000, 2000, 5000, 10000, 15000] [0] [0]

A.3 Appendix for Window-based Model Averaging Im-
proves Generalization in Heterogeneous Federated
Learning

This section provides the implementation details for the experiments using WIMA
(Window-based Model Averaging), introduced in Section 4.5.

Large-scale experiments were performed using an NVIDIA DGX A100, while
the others run on one NVIDIA GeForce GTX 1070. The code was built starting from
the FedJAX framework [493]. All runs are averaged over 3 seeds.

A.3.1 Training Details

On the server side, the standard FedAvg with ηg = 1 without momentum is the
aggregation algorithm of choice, unless otherwise specified. The clients locally train
with SGD.

268 Implementation Details

Experiments on the Dirichlet’s CIFAR datasets are run for 10k rounds, selecting
10 clients at each round, i.e. with 10% participation rate. In the local training, the
learning rate is 0.1 from {0.1,0.01}, momentum 0 from {0,0.9}, weight decay 0 un-
less otherwise specified, batch size 100 among {32,64,100,128}, and the trainining
is run for 1 local epoch chosen from {1,2,4}

For CIFAR100/PAM, T = 10k rounds with 20% participation rate, using learning
rate 0.05, weight decay 4e-4, batch size 20, server-side momentum 0.9 from [7].

For FEMNIST the client learning rate is 0.1 from {0.1,0.01,0.001}, momentum
0 from {0,0.9}, weight decay 0, batch size 10 from {10,20,32}. T = 1,500 rounds
with 10 clients per round (≈ 0.3% participation rate), performing 1 local epoch each.

GLDV2 follows the setup of [7] except for the batch size equal to 50. The model
is trained for 3k rounds with 10 clients selected at the time.

In SHAKESPEARE, local learning rate is 1, momentum 0, weight decay 0, batch
size 4, 1 epoch from [282]. Training is spanned over 1,500 rounds with 10 clients
per round (≈ 1.4% participation rate).

The WIMA parameter W is set to 100 for all settings except for GLDV2, where
W = 370.

For all datasets, the reported final results are averaged over the last 100 rounds
for increased robustness [7].

A.3.2 SOTA Algorithms Hyper-parameters

This section provides details on the tuning intervals for the state-of-the-art (SOTA)
algorithms used for comparison.

WIMA is applied on top of methods proposed for addressing statistical hetero-
geneity in FL. Looking at momentum-based approaches, the selected algorithms
are FEDAVGM [290] (server-side momentum β = 0.9, ηg ∈ {0.1,1}), MIME SGD

(ηg ∈ {0.1,1}) and SGDM [282], i.e. with momentum 0.9, MIMELITE SGDM
[282] (ηg ∈ {0.1,1}, momentum 0.9), FEDCM [291] (αCM∈ {0.05,0.1,0.5}) and
FEDACG [292] (βACG ∈ {0.01,0.001}, λACG ∈ {0.8,0.85,0.9}). Other methods
are SCAFFOLD [280], FEDPROX [45] (µPROX ∈ {0.1,0.01,0.001}), FEDDYN [288]
(αDYN∈ {0.01,0.001}) and ADABEST [8] (µADABEST ∈ {0.01,0.02}, βADABEST ∈
{0.5,0.6,0.7,0.8,0.9,0.95}) to reduce the client drift.

A.4 Appendix for Accelerating Federated Learning via Sequential Training of
Grouped Heterogeneous Clients 269

Lastly, WIMA is compared with SWA applied from 75% of training onward, for
which c ∈ {10,20} and the second learning rate is equal to ηl ·10−2, following [7].

A.4 Appendix for Accelerating Federated Learning via
Sequential Training of Grouped Heterogeneous
Clients

This section provides the implementation details for the experiments presented in
Section 5.2. The used framework is PyTorch [485], and all the experiments were
conducted on one NVIDIA GeForce GTX 1070 with 3 different seeds. As proposed
by previous works [7, 288] accounting for the learning trends instability, the results
are averaged over the last 100 rounds.

A.4.1 Datasets and Models

CIFAR100 and CIFAR10. This work utilizes the widely used CIFAR datasets
(CIFAR10 and CIFAR100) as benchmarks for image classification tasks in FL. These
datasets consist of 10 classes (CIFAR10) and 100 classes (CIFAR100), respectively.
Following the protocol established in [290], the class distribution for each client
is sampled from a Dirichlet distribution with varying concentration parameters
α∈ {0,0.2,0.5}. This, combined with the number of clients (K = 500), creates a
realistic scenario where clients have small and unbalanced datasets, reflecting the
inherent statistical heterogeneity in FL.

A Convolutional Neural Network (CNN) similar to LeNet-5 is employed, fol-
lowing the setup in [278, 7]. The network architecture consists of two convolutional
layers, each with 64 channels and a 5x5 kernel size. Each convolutional layer is
followed by a 2x2 max-pooling layer. These layers are then connected to two fully-
connected (FC) layers with 284 and 192 channels, respectively. Finally, a linear
classifier with a size dependent on the number of classes (10 for CIFAR10 and 100
for CIFAR100) is used for output.

270 Implementation Details

FEMNIST. The FEMNIST dataset [394] is a federated version of the EMNIST

dataset and consists of images containing 62 different digits and uppercase/lowercase
English letters. The data is distributed among 3,500 clients based on the author’s
identity, resulting in a naturally heterogeneous dataset (NIID split) due to variations
in handwriting styles. Additionally, the number of training examples and covered
letters varies between authors, further increasing the heterogeneity. An IID split
proposed in [394] is also adopted, where each of the 3,500 clients has a balanced
local dataset.

The CNN architecture used in [275] is employed for training. The network con-
sists of two convolutional layers with 32 and 64 channels, respectively. These layers
are followed by a 2x2 max-pooling layer and two dropout layers with probabilities
of 0.25 and 0.5. A fully-connected layer with 128 channels is placed between the
dropout layers. Finally, a linear classifier with 62 channels (corresponding to the
number of possible characters) is used for output.

SHAKESPEARE. The SHAKESPEARE language modeling dataset, built from the
works of William Shakespeare, is included for next-character prediction tasks as
described in [394]. Each client represents a Shakespearean character and has access
only to their lines from the corresponding play. Non-i.i.d. (NIID) and i.i.d. splits are
adopted following the approach in [394]. The experiment is limited to 100 clients,
each with 2k training examples, as established in [288]. The inherent heterogeneity
in the NIID split arises from the distinct speaking styles of various characters.

A Long Short-Term Memory (LSTM) network architecture is employed for
training, following the setup in [288]. The network first transforms an 80-character
sequence into an 80x8 matrix using learned embeddings. This matrix is then fed into a
two-layer LSTM with a hidden size of 100. The output is passed to a fully-connected
layer with 90 channels (corresponding to the 86 characters in the Shakespeare
dataset along with 4 special characters for padding, out-of-vocabulary words, and
beginning/end of line markers).

As for the data preprocessing, sequences of 80 characters are selected, and the
task is to predict the next 80 characters. This is achieved by shifting the input
sequence by one position (treating the last character as the predicted output) and
inserting special characters when necessary.

A.4 Appendix for Accelerating Federated Learning via Sequential Training of
Grouped Heterogeneous Clients 271

Table A.6 Best performing training hyperparameters on FEDSEQ

Dataset Client lr Batch size Weight decay Server lr

CIFAR10 0.01 64 4 ·10−4 1
CIFAR100 0.01 64 4 ·10−4 1
FEMNIST 0.01 20 0 1
SHAKESPEARE 1 100 0 1
STACKOVERFLOW 10−1/2 16 0 1

STACKOVERFLOW. The STACKOVERFLOW dataset [424], sourced from the
StackOverflow website, consists of questions and answers. Each client holds a
maximum of 1,000 sentences from a single user, leading to heterogeneity due to
varying user typing styles. This dataset presents the most challenging scenario in
terms of the number of devices (K = 40,000) used in the experiments. To balance
efficiency with a reasonable accuracy estimate, test examples are restricted to 10,000
random samples per round. The final test accuracy is obtained using the entire test
dataset.

A LSTM network architecture is employed for training, following the setup in
[275]. The network processes sequences of 20 characters. These sequences are first
converted into a 20x96 matrix using a learned embedding layer. The resulting matrix
is then fed into a single-layer LSTM with 670 channels. Finally, the output is passed
through two fully-connected layers with channel sizes of 96 and 10,004, respectively.
The larger layer size corresponds to the number of characters in the vocabulary
(excluding special tokens) plus four special tokens for padding, out-of-vocabulary
words, and end-of-sentence markers.

Regarding the data preprocessing, each client’s dataset is limited to a maximum
of 1,000 sentences. Sentences are further truncated to contain at most 20 words.
Special tokens for padding and out-of-vocabulary words are inserted when necessary.
Finally, each word is converted to its corresponding index based on the 10,000 most
frequent words in the dataset. Words not found in this vocabulary are replaced with
the special out-of-vocabulary token.

A.4.2 Hyper-parameters Tuning

Table A.6 summarizes the chosen hyper-parameters for each dataset. For all methods,
local training happens for one epoch with SGD (without momentum and learning rate

272 Implementation Details

scheduler) and in FEDSEQ ES = Ek = 1. Cosine annealing is used in the centralized
experiments.

CIFAR datasets. Following the hyper-parameters choices of [278] on both datasets,
the client learning rate is set to 0.01, the weight decay to 4 · 10−4, momentum 0
and batch size 64. We run the experiments for T = 10k rounds on CIFAR10 and
T = 20k on CIFAR100, accounting for the tasks’ difficulty. For the centralized
scenario we also add a momentum of 0.9, training for 300 epochs. In FEDSEQ and
FEDASYNCSEQ, ψt2v is the distribution estimator and φgreedy the grouping method,
with |DS|min = 1000 and KS,max = 11. In FEDSEQ2PAR, ψt2v and φicg are chosen,
with fexp, αgr= 4.6 ·10−4 and βgr = 5. For ψt2v, ResNet18 pre-trained on ImageNet
is used as in [421].

As for the SOTA algorithms, FEDPROX is tested with µ ∈ {10−4,10−3,10−2}
and choose µ = 0.01. In FEDDYN αdyn= 0.1 is chosen from {10−3,10−2,10−1}.
To ensure convergence in the most heterogeneous scenarios, the gradient is clipped
to 30.

FEMNIST. Client learning rate is tested in {0.05,0.01, 0.005,0.001} and the
weight decay in {0,1 ·10−4}, choosing respectively 0.01 and 0, with momentum 0
and batch size 20.The federated experiments are run for 1500 rounds.

The best performing parameters for the clustering methods in FEDSEQ and
FEDASYNCSEQ are ψt2v and φkmeans, with |DS|min = 4120 and KS,max = 21, while
FEDSEQ2PAR uses ψt2v and φicg, with fexp, αgr= 3 ·10−3 and βgr = 5.

FedProx’s µ is tested between {10−4,10−3,10−2} with 10−3 being the best
performing, while for FedDyn αdyn∈ {10−3,10−2,1.5 · 10−2} and choose 10−3,
with gradient clipping of 30 because of convergence issues.

SHAKESPEARE. Shakespeare’s hyper-parameters follow the implementation of
[288] : the client’s learning rate is set to 1, with weight decay 10−4 to prevent
overfitting. Momentum is 0 and the batch size is 100. T = 250 in FL and E = 75 in
the centralized setting.

FEDSEQ and FEDASYNCSEQ use ψt2v and φgreedy with |DS|min = 8000 and
KS,max = 5, while for FEDSEQ2PAR the best performing hyper-parameters are fexp,

A.5 Appendix for Learning Across Domains and Devices: Style-Driven Source-Free
Domain Adaptation in Clustered Federated Learning 273

αgr= 1.8 · 10−2 and βgr = 5. GPT-2 from [494] is used as pre-trained model for
ψt2v. Since there was no character-level language model that was not already trained
on the Shakespeare dataset, charGPT was trained for 100k epochs with learning
rate 5 · 10−4 on cleaned articles from English Wikipedia [495], following [494]’s
implementation. The model is made of 6 hidden layers, 6 attention heads (referred
to as ’gpt-mini’) 2

For FEDPROX, µ = 10−3 from {10−4,10−3,10−2}, and αdyn= 10−3 for FED-
DYN from {10−3,10−2,1.5 ·10−2}.

A.5 Appendix for Learning Across Domains and De-
vices: Style-Driven Source-Free Domain Adapta-
tion in Clustered Federated Learning

Table A.7 LADD datasets training hyper-parameters

Dataset T Kt η λKD ω tSTART

CrossCity 1000 4 1.0 ·10−2 20 1 400
Cityscapes 300 5 5e−5 10 5 200
Mapillary 100 1.0 ·10−2 6 5 50

A.5.1 Training Details

Server Pre-Training. The model was pre-trained on the GTA5 dataset using a
power-law decreasing learning rate schedule with a starting value of η = 5 ·10−3

and a power of 0.9. SGD optimizer with momentum of 0.9 and no weight decay
was employed. The pre-training phase lasted for Npre-train = 15k steps. Each client
computes the style on all its images using a window of size 3×3 and sends the mean
style to the server, before the pre-training starts.

Federated Adaptation. Experiments were conducted on the CrossCity, Cityscapes,
and Mapillary datasets. Details on the hyper-parameters can be found in Table A.7

2Model available at https://huggingface.co/andrea-silvi/charGPT_
pretrained.

https://huggingface.co/andrea-silvi/charGPT_pretrained
https://huggingface.co/andrea-silvi/charGPT_pretrained

274 Implementation Details

Data augmentation techniques including random scaling (0.7,2), random cropping
at 1024×512, color jittering with brightness, contrast and saturation equal to 0.5,
and image normalization were applied. Rescaling was forced to width equal to 1024.

Appendix B

Project Funding and Computational
Resources

This thesis has been partially funded by the ERC projects 853489-DEXIM, 802554-
SPECGEO, 637076-RoboExNovo and the MIUR grant “Dipartimenti di eccel-
lenza 2018-2022”. It was supported by Consorzio Interuniversitario Nazionale
per l’Informatica (CINI), the FAIR — Future Artificial Intelligence Research and
European Union (EU) Next-GenerationEU and the Blanceflor Foundation (travel
fund).

Computational resources were partly provided by CINECA (Iscra B “FedVis”,
Iscra C “Fed-PERS”, Iscra C “FedUDAS”) and Politecnico di Torino (HPC@PoliTo).

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Context and Motivation
	1.2 Research Questions and Contributions
	1.3 Thesis Outline
	1.4 Publications List

	2 Preliminaries
	2.1 Machine Learning
	2.1.1 Supervised Learning
	2.1.2 Weakly-Supervised Learning
	2.1.3 Unsupervised Learning
	2.1.4 Self-Supervised Learning

	2.2 Deep Neural Networks
	2.2.1 Convolutional Neural Networks
	2.2.2 Graph Neural Networks

	2.3 Optimization in Machine Learning
	2.3.1 Gradient Descent
	2.3.2 Training Deep Neural Networks

	2.4 Generalization in the Real World
	2.4.1 Domain Adaptation vs@汥瑀瑯步渠. Domain Generalization
	2.4.2 Momentum Improves Generalization
	2.4.3 On the Impact of Data Distribution
	2.4.4 The Critical Choice of the Model
	2.4.5 Generalization through the Lens of the Loss Landscape

	2.5 Visualization of the Loss Landscape

	3 Federated Learning
	3.1 Federated Framework
	3.1.1 Federated vs@汥瑀瑯步渠. Centralized Learning
	3.1.2 Centralized vs@汥瑀瑯步渠. Peer-to-Peer Federated Learning
	3.1.3 Horizontal vs@汥瑀瑯步渠. Vertical Federated Learning
	3.1.4 Cross-silo vs@汥瑀瑯步渠. Cross-device Federated Learning

	3.2 Problem Statement
	3.3 Challenges in the Real World: Literature Review
	3.3.1 Statistical Heterogeneity
	3.3.2 System Heterogeneity
	3.3.3 Communication Efficiency
	3.3.4 Privacy Concerns
	3.3.5 Federated Vision Applications

	3.4 Datasets
	3.4.1 Image Classification
	3.4.2 Semantic Segmentation
	3.4.3 Visual Place Recognition

	4 Generalization through the Lens of the Loss Landscape
	4.1 Introduction
	4.2 Where Heterogeneous Federated Learning Fails at Generalizing
	4.2.1 Convergence Under Label Skew

	4.3 Improving Generalization in Federated Learning by Seeking Flat Minima
	4.3.1 Motivation
	4.3.2 Federated Sharpness-Aware Minimization
	4.3.3 Generalization and Convergence Speed-up with FedSAM
	4.3.4 Results in Real-World Vision Scenarios
	4.3.5 Ablation Studies
	4.3.6 Discussion

	4.4 Beyond Local Sharpness: Communication-Efficient Global Sharpness-aware Minimization for Federated Learning
	4.4.1 Motivation
	4.4.2 The Inconsistency between Local and Global Sharpness
	4.4.3 Rethinking SAM in Federated Learning
	4.4.4 Federated Global Server-side Sharpness
	4.4.5 Experimental Results
	4.4.6 Limitations
	4.4.7 Discussion

	4.5 Window-based Model Averaging Improves Generalization in Heterogeneous Federated Learning
	4.5.1 Motivation
	4.5.2 Window-based Model Averaging (WiMA)
	4.5.3 Results in Real-World Vision Scenarios
	4.5.4 Discussion

	4.6 Summary

	5 Cluster-based Approaches for Improved Generalization and Convergence Speed in Heterogeneous Federated Learning
	5.1 Introduction
	5.2 Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients
	5.2.1 Introduction
	5.2.2 Federated Learning via Sequential Superclients Training
	5.2.3 Experimental Results
	5.2.4 Privacy Robustness
	5.2.5 Discussion

	5.3 Learning Across Domains and Devices: Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning
	5.3.1 Motivation
	5.3.2 Federated source-Free Domain Adaptation
	5.3.3 LADD in Real-World Vision Scenarios
	5.3.4 Conclusion

	5.4 Cluster-driven Graph Federated Learning over Multiple Domains
	5.4.1 Motivation
	5.4.2 Cluster-driven Graph Federated Learning
	5.4.3 Experiments Results
	5.4.4 Conclusions

	5.5 Summary

	6 Novel Benchmarks for Federated Computer Vision
	6.1 Introduction
	6.2 Federated Semantic Segmentation for Autonomous Driving
	6.2.1 Motivation
	6.2.2 FedDrive
	6.2.3 Federated source-Free Domain Adaptation

	6.3 Federated Visual Place Recognition
	6.3.1 Introduction
	6.3.2 Framework

	6.4 Summary

	7 Conclusion
	7.1 Contributions Summary
	7.2 Open Directions and Future Works
	7.2.1 Flatness and generalization
	7.2.2 Model Merging
	7.2.3 Beyond Label Skew: Spurious Correlations in FL

	References
	Appendix A Implementation Details
	A.1 Appendix for Improving Generalization in Federated Learning by Seeking Flat Minima
	A.1.1 Models
	A.1.2 Hyper-parameters Tuning

	A.2 Appendix for Beyond Local Sharpness: Communication-Efficient Global Sharpness-aware Minimization for Federated Learning
	A.2.1 Hyper-parameters Tuning

	A.3 Appendix for Window-based Model Averaging Improves Generalization in Heterogeneous Federated Learning
	A.3.1 Training Details
	A.3.2 SOTA Algorithms Hyper-parameters

	A.4 Appendix for Accelerating Federated Learning via Sequential Training of Grouped Heterogeneous Clients
	A.4.1 Datasets and Models
	A.4.2 Hyper-parameters Tuning

	A.5 Appendix for Learning Across Domains and Devices: Style-Driven Source-Free Domain Adaptation in Clustered Federated Learning
	A.5.1 Training Details

	Appendix B Project Funding and Computational Resources

