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For a Weyl semimetal (WSM) in a magnetic field, a semiclassical description of the Fermi-arc surface state
dynamics is usually employed for explaining various unconventional magnetotransport phenomena, e.g., Weyl
orbits, the three-dimensional quantum Hall effect, and the high transmission through twisted WSM interfaces.
For a half-space geometry, we determine the low-energy quantum eigenstates for a four-band model of a WSM
in a magnetic field perpendicular to the surface. The eigenstates correspond to in- and out-going chiral Landau
level (LL) states, propagating (anti)parallel to the field direction near different Weyl nodes, which are coupled by
evanescent surface-state contributions generated by all other LLs. These replace the Fermi arc in a magnetic field.
Computing the phase shift accumulated between in- and out-going chiral LL states, we compare our quantum-
mechanical results to semiclassical predictions. We find quantitative agreement between both approaches.

DOI: 10.1103/PhysRevResearch.6.043201

I. INTRODUCTION

Two hallmark features of topological electronic systems
are their anomalous magnetotransport properties and the ex-
istence of robust boundary states. In the rich material class
of Weyl semimetals (WSMs) [1–4], these distinct features
manifest themselves in the chiral anomaly and in Fermi-arc
surface states, respectively. WSMs are three-dimensional (3D)
semimetals characterized by touching points of nondegener-
ate bands near the Fermi energy which are separated in the
Brillouin zone. These so-called Weyl nodes are effectively
described by massless relativistic Weyl fermions with con-
served chirality. In the presence of electromagnetic fields,
Weyl fermions exhibit the chiral anomaly which, on the level
of the electronic band structure, implies the formation of a
chiral zeroth Landau level (LL). This chiral LL state has a
gapless linear dispersion along a direction determined by the
chirality which is parallel or antiparallel to the magnetic field
[5–8]. On the other hand, Weyl nodes act as sources or sinks
of Berry curvature and give rise to nontrivial band topology
[3,9]. Correspondingly, topological surface states emerge near
the boundary of a WSM. Since the Nielsen-Ninomiya theorem
requires Weyl nodes to come in pairs of opposite chirality
[10], the energy contour of these surface states must terminate
at the projection of the bulk cones of two Weyl nodes on the
surface Brillouin zone and form an open disjoint curve—the
Fermi arc.

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Given the experimental observation of signatures for both
the chiral anomaly and Fermi arcs [11–14], it is natural to
ask how both phenomena conspire near the boundary of a
semi-infinite WSM in a homogeneous magnetic field oriented
perpendicular to the surface. In a semiclassical picture, the
presence of the Lorentz force implies that fermions slide
along the Fermi arc connecting two Weyl node projections.
Due to the open nature of the Fermi-arc energy contour, no
closed cyclotron orbit can form on the surface. Accordingly,
fermions have to tunnel into the bulk upon reaching the chiral
termination point of the Fermi arc [15] (see Fig. 1 for a
schematic illustration in a half-space geometry). Since the
only available bulk states at low energies are provided by the
chiral LL states, semiclassics predicts that fermions will then
move through the bulk and thereby escape from the surface.
Consequently, Fermi-arc states acquire a finite lifetime in a
perpendicular magnetic field B, and thus ultimately become
unstable. Indeed, as we show in detail for the model studied
below, for B �= 0, no stable surface states exist anymore. The
true eigenstates for B �= 0 have a component representing the
zeroth-order chiral Landau levels in the bulk of the system.
For B �= 0, Fermi-arc electrons thus escape from the surface
into the bulk via chiral Landau states, and therefore acquire a
finite lifetime.

Furthermore, in a WSM slab geometry (or in similar con-
fined nanostructures), fermions in a chiral LL state move
through the bulk and eventually tunnel into the opposite sur-
face. There, they will traverse the corresponding opposite
Fermi arc (in the semiclassical picture). In the simplest sce-
nario, the fermion subsequently occupies the chiral LL state
with opposite chirality and travels back to the initial Fermi
arc state. This closed trajectory resembles an exotic cyclotron
orbit, commonly referred to as “Weyl orbit.” Such orbits are
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FIG. 1. Schematic sketch of the half-space WSM geometry
(defined by z � 0) in a homogeneous magnetic field B = Bêz per-
pendicular to the surface. The 3D WSM has two bulk Weyl nodes at
momenta k = (±k0, 0, 0)T , corresponding to the red and blue circles
for their surface projections. For B = 0, the surface projections are
connected by a Fermi-arc surface state (green curve). For B �= 0, the
low-energy bulk physics is dominated by the n = 0 chiral LLs which
have opposite chirality near different Weyl nodes (pink and light
blue arrows show the respective propagation direction). Fermions
incoming from a bulk chiral LL enter the arc at the surface. After
sliding along the arc to the opposite Weyl node surface projection (in
a semiclassical picture), they tunnel into the outgoing chiral LL [15].

predicted to cause unconventional quantum oscillations in the
magnetoconductivity, with a strong dependence on the sam-
ple thickness [15,16]. The initial prediction of Weyl orbits
sparked excitement in the WSM community and led to a vari-
ety of subsequent theoretical proposals [17], including nonlo-
cal transport experiments [18–20], the detection of chiral sep-
aration [21], and the chiral magnetic effect [22]. Weyl orbits
are also important ingredients for an unconventional so-called
3D quantum Hall effect (QHE) [23,24]. Both Shubnikov–de
Haas oscillations due to Weyl orbits and the 3D QHE were
thoroughly investigated in transport experiments for the Dirac
semimetal (DSM) Cd3As2 [25–31] (see also the review [17]).

In a DSM, Weyl nodes of opposite chirality share the same
position in momentum space but are stabilized by space group
symmetries of the crystal [3]. While the band structure is
topologically trivial, pairs of Dirac cones can be connected
by Fermi-arc surface states nevertheless. The semiclassical
argument for the surface-bulk hybridization of Weyl orbits can
be adapted to DSMs despite the formally closed energy con-
tour of surface states [15]. While clear experimental evidence
for the predicted signatures has been collected for Cd3As2

[25–30], their interpretation in terms of Weyl orbits remains
debated [17]. In particular, thin films of Cd3As2 show an
intricate dependence of the QHE on sample thickness [29,32].
Moreover, energy quantization due to Weyl orbits is difficult
to distinguish from the trivial size quantization of confined
bulk states [33]. Similar arguments might also apply to the
Weyl orbits reported in the noncentrosymmetric WSMs NbAs
[34], TaAs [35], and WTe2 [36]. So far, no Weyl orbits have
been observed in magnetic WSMs with broken time-reversal
symmetry [17]. However, recent experimental work on mag-
netic WSMs [37] and progress in quasiparticle interference
experiments [38] render near-future advances in Weyl-orbit
physics for this class of materials likely. These develop-
ments also motivated us to perform the study reported in the
present paper.

A related exciting topic concerns twisted WSM interfaces
[39–42] and tunnel junctions [43]. Upon twisting interfaces
with respect to each other, theory predicts a Fermi-arc recon-
struction, implying the existence of “homochiral” Fermi arcs
connecting Weyl nodes of equal chirality [40,41]. In a mag-
netic field perpendicular to the interface, incoming electrons
in a chiral LL may traverse the homochiral Fermi arc and
tunnel back into bulk states on the other side of the junction,
thereby achieving (almost) perfect transmission. Numerical
transport simulations show good agreement with this semi-
classical picture [43–45].

Adopting the half-space geometry, we here study the fate of
Fermi-arc surface states in WSMs in a magnetic field. We con-
struct a full quantum solution, going beyond semiclassics. To
this end, we study a four-band low-energy continuum model
for a magnetic WSM. While we find analytical solutions of
the eigenproblem for the DSM limit of two degenerate Weyl
nodes, we develop a numerical approach (with a controlled
cutoff procedure) to obtain the eigenstates for the WSM sce-
nario. We find that the eigenstates with lowest energy are
composed of in- and out-going chiral zeroth-order LLs which
are coupled by evanescent states localized near the surface.
These are generated by all remaining higher-order LLs and
cause a phase shift between in- and outgoing chiral LLs. In
a slab geometry, this phase shift is experimentally observable
through magnetoconductivity oscillations [15]. We compare
our numerical results for the phase shift to semiclassical pre-
dictions by varying the energy ε and a boundary parameter α

encoding the arc curvature in the surface momentum plane. In
addition, the energy derivative of the phase shift determines
the Fermi-arc lifetime which is finite for B �= 0. We show
how the lifetime depends on key parameters such as α, ε, and
B, and compare it to the semiclassical traversal time across
the Fermi arc.

The remainder of this paper is structured as follows. In
Sec. II we discuss the continuum WSM model employed here,
derive boundary conditions for the half-space geometry, and
present the surface state spectrum at zero magnetic field. We
include the magnetic field in Sec. III and construct the eigen-
states in the half-space geometry. In addition, we consider
the limit of a DSM and obtain analytical solutions in several
limiting cases. Subsequently, we derive the corresponding
semiclassical predictions in Sec. IV and compare them with
our quantum-mechanical results for the phase shift and for the
Fermi-arc lifetime. The paper closes with concluding remarks
in Sec. V. Details of our calculations can be found in the
Appendixes. A derivation of B = 0 Fermi-arc surface states
is given in Appendix A. Their spin and current structure are
discussed in Appendix B. We validate our numerical approach
for finite magnetic fields in Appendix C, and discuss the
Goos-Hänchen effect for the present setup in Appendix D.
Throughout this paper, we use units with Fermi velocity
vF = 1 and put h̄ = 1.

II. WSM IN HALF SPACE

In this section, we discuss the four-band WSM model
employed in our paper. The 3D model (in the absence of a
magnetic field) is introduced in Sec. II A. We then discuss
the half-space geometry in terms of boundary conditions in
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Sec. II B. The Fermi-arc surface states for B = 0 are specified
in Sec. II C (see also Appendixes A and B for further details).

A. Model

We study a four-band continuum WSM model which in 3D
space, with conserved momentum k = (kx, ky, kz )T , is defined
by the Hamiltonian [3]

H (k) = k · στ z + k0σ
xτ 0, (1)

where k0 � 0 is the only free parameter. This parameter de-
termines the distance between the Weyl nodes in momentum
space. In Eq. (1), σμ and τμ are Pauli matrices acting on effec-
tive spin and orbital degrees of freedoms, respectively, where
μ = 0 refers to the identity and μ = x, y, z otherwise. We use
σ = (σ x, σ y, σ z ). While the limit k0 = 0 describes a degen-
erate Dirac cone centered at k = 0, i.e., a Dirac semimetal,
the model exhibits two separated Weyl nodes at momenta
k = ±k0êx for k0 > 0. Due to the block diagonal structure of
H , these Weyl nodes are decoupled. Their conserved chirality
χ is associated with the orbital degree of freedom, namely the
eigenvalues χ = ±1 of τ z.

We note that adding a mass term H ′ = mσ 0τ x in Eq. (1)
couples the Weyl nodes. However, for m < k0, the Weyl nodes
are thereby only shifted in momentum space and the low-
energy description is not changed in an essential manner [3].
We thus put m = 0 throughout this paper. The two Weyl nodes
are then fully decoupled in the bulk. This key simplification
allows us to obtain explicit results in a finite magnetic field.
Importantly, in our approach, the boundary conditions will
couple both Weyl nodes. Furthermore, while Eq. (1) formally
describes a type-I WSM with broken time-reversal symmetry
and the minimum number of two Weyl nodes, we expect
our arguments to apply to any WSM involving a pair of two
isolated type-I Weyl nodes.

Below, we use the standard representation of Pauli matri-
ces. States are written in the eigenbasis of σ z and τ z, i.e., |χ〉τ
for chirality χ = ±1 and |σ 〉σ for spin σ ∈ {↑,↓}, with the
spinor representations

|+〉τ =
(

1
0

)
τ

, |−〉τ =
(

0
1

)
τ

,

|↑〉σ =
(

1
0

)
σ

, |↓〉σ =
(

0
1

)
σ

. (2)

B. Half-space geometry and boundary conditions

We next proceed to the half-space geometry defined by
z � 0, where we have a planar boundary at z = 0 as illustrated
in Fig. 1. Since the surface projections of the two Weyl nodes
are separated, topological Fermi-arc surface states with an
open energy contour connecting the projected nodes arise
[3]. Before solving for the Fermi arcs, we first derive the
general boundary condition from the constraint of Hermiticity
of the Hamiltonian. For relativistic continuum models, such
an approach typically allows for a few free parameters with
physical implications on the surface state dispersion [46–49].
We note that a more realistic modeling of the boundary might
include band bending near the surface which can drastically
change the dispersion [50,51].

For a derivation that is also valid in the presence of a
finite magnetic field, we switch to real space by using the
substitution k → −i∇r in Eq. (1). Following standard argu-
ments [46–48], we impose 〈�1|H�2〉 − 〈H�1|�2〉 = 0 for
arbitrary states �1 and �2 in the half-space geometry to infer
a sufficient boundary condition:

�
†
1 (r⊥, z = 0) jz�2(r⊥, z = 0) = 0. (3)

Here, r⊥ = (x, y)T is the in-plane position and jz = σ zτ z is
the z component of the relativistic fermion particle current
operator, j = στ z. Physically, Eq. (3) thus prohibits any local
current flowing through the surface. This condition is ensured
for states that satisfy boundary conditions of the form

M�(r⊥, z = 0) = �(r⊥, z = 0), (4)

where M is an operator with the properties

jzM = −M† jz, M2 = 1, (5)

where 1 = σ 0τ 0 is the identity. In Eq. (4), we assumed a local
boundary condition where the matrix M does not depend on
the in-plane position r⊥. To parametrize all possible choices
of M, we define the operators

Mτ
γ = τ x cos γ + τ y sin γ , Mσ

δ = σ x cos δ + σ y sin δ, (6)

in orbital and spin space, respectively. The most general
Hermitian parametrization then involves four real parameters
(α, β, γ , δ) [52]:

Mαβγ δ = cos α
(
σ zMτ

γ cos β + σ 0Mτ
γ−π/2 sin β

)
+ sin α

(
τ 0Mσ

δ cos β + τ zMσ
δ−π/2 sin β

)
. (7)

An equivalent parametrization was found in Refs. [53,54]
in the context of graphene monolayers. On general grounds,
the number of free parameters in the boundary condition in-
creases with the number of higher-energy bands in the model
Hamiltonian [55,56]. Consequently, the low-energy spectrum
is not expected to change significantly when varying param-
eters within certain submanifolds of the full parameter space.
Below, we do not exploit the complete parameter freedom in
Eq. (7) but instead focus on a simple one-parameter boundary
matrix M allowing us to describe curved Fermi arcs.

C. Boundary spectrum at zero magnetic field

Given the boundary condition (4) with the general
parametrization (7), we next construct physical Fermi arc
solutions for B = 0, which are labeled by the conserved in-
plane momentum k⊥ = (kx, ky)T . The simplest approach is to
choose a block diagonal matrix M, e.g., the parametrization
M π

2 ,0,0,δ in Eq. (7), which allows one to solve the problem
for both Weyl nodes separately. The Fermi arc of a single
Weyl node, which after a shift of kx is effectively described
by Hχ = χk · σ, then becomes a semi-infinite line which ter-
minates at the Weyl cone projection at an angle determined by
the parameter δ [46–48]. The resulting surface-state spectrum
of the four-band WSM model thus yields two semi-infinite
arcs, in contrast to physical Fermi arcs which are open curves
connecting both Weyl cone projections. Here, we will use
boundary conditions which couple different Weyl nodes. This
approach is especially convenient for B �= 0.
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To this end, we consider off-diagonal boundary matrices M
satisfying [M, σ 0τ z] �= 0. The resulting boundary conditions
couple the Weyl nodes at the surface [52]. This picture is
analogous to the one in Ref. [54], where armchair edges in
graphene monolayers are modeled by boundary conditions
that are nondiagonal in the valley degree of freedom. Below,
we assume the boundary condition (4) with

Mα = Mα,0,0,0 = σ zτ x cos α + σ xτ 0 sin α. (8)

The parametrization (8) is a simple choice that allows us to
construct physical Fermi arcs with a curvature in the surface
momentum plane controlled by the single parameter α. A
curved arc is then symmetric under midpoint reflection, and
a straight arc is found for α = 0 (mod π ). As discussed in
Appendix A, the particular choice of Mα in Eq. (8) is moti-
vated by the observation that a straight arc requires [M, jy] =
0, where jy = σ yτ z is the in-plane current operator along êy.
For a microscopic analysis of a specific material, one may
instead employ boundary matrices M containing more param-
eters (while still coupling both Weyl nodes), possibly guided
by numerical calculations for lattice models. For simplicity,
however, we focus on the one-parameter family of matrices in
Eq. (8). In Appendix A, we derive the corresponding B = 0
surface-state spectrum presented next.

We find that a physical Fermi-arc contour at energy ε is
given by ky = qα (ε, kx ), where

qα (ε, kx ) = (ε sin α − k0)(ε − k0 sin α) − k2
x sin α

cos α

√
(ε sin α − k0)2 − k2

x sin2 α

. (9)

At zero energy, the contour terminates at both Weyl node sur-
face projections (kx = ±k0, ky = 0). The termination points
kx = ±kεα for ε �= 0 are implicitly given by

ε2 = (|kx| − k0)2 + [qα (ε, kx )]2. (10)

Assuming |ε| � k0 and expanding Eq. (9) to lowest order in
ε/k0, we estimate

kεα = k0 − 4ε sin α

3 − cos (2α)
. (11)

Moreover, we find the low-energy dispersion relation

ε(k⊥)  k2
0 − k2

x sin2 α

k2
0 − k2

x sin4 α

×
(

k2
0 − k2

x

k0
sin α −

√
k2

0 − k2
x sin2 α

ky

k0
cos α

)
.

(12)

For α = 0, the above expressions are exact and describe a
straight arc with ε(k⊥) = −ky. For α �= 0, the arc is curved
in the surface momentum plane as illustrated in Fig. 2(a).
We note that the Fermi arc for α → π − α with the same
energy ε follows by reflection with respect to the kx axis. In
effect, this transformation yields the Fermi arc for the same
boundary condition but in the opposite half space z � 0 (see
Appendix A). We briefly discuss the in-plane spin and current
densities associated with Fermi-arc states in Appendix B.

Next, we turn to the limit k0 → 0 describing the low-
energy theory of a DSM with a single degenerate cone. While

FIG. 2. Surface-state spectrum of the four-band model (1) in a
half space for B = 0. (a) Zero-energy Fermi-arc contours in the kx-ky

plane as described by Eq. (9) for different boundary parameters α

(see also Fig. 1). (b) Surface-state contour plot in the kx-ky plane
for a DSM (k0 → 0) with α/π = 0.1 for different energies ε(k⊥) as
indicated by the color bar, using a fixed scale p0 as reference. The
surface-state termination points result from the condition in Eq. (14).

the band structure is now topologically trivial, surface states
may nonetheless exist. Such states become important for B �=
0 (see Sec. IV). Deferring technical details to Appendix A,
we find topologically trivial surface states with the dispersion
relation

ε±(k⊥) = ±
√

k2
x + k2

y cos2 α, (13)

which only exist if the condition

ky sin α > 0 (14)

is satisfied. In particular, there are no surface state solutions
for either α = 0 (mod π ), corresponding to a straight arc for
finite k0, or ε = 0. Below, we focus on those two cases for
analytical results. For finite α or ε, however, surface states
emerge which form open energy contours. These contours
shrink with decreasing energy [see Fig. 2(b)].

III. HALF SPACE IN A MAGNETIC FIELD

In this section, we include the magnetic field B = Bêz

with B > 0 and study the WSM model in Sec. II for the
half-space geometry using the boundary condition (4) defined
by the matrix Mα in Eq. (8). The parameter α determines
the curvature of the B = 0 Fermi arc solutions. In Sec. III A,
we briefly review the eigenstates for the infinite 3D problem.
In Sec. III B, we then turn to the half-space problem and
construct the low-energy quantum-mechanical eigenstates.
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A. Landau quantization

We start with the free-space WSM model and we incorpo-
rate the homogeneous magnetic field B by minimal coupling,
k → −i∇r + e

c A, where e > 0 is the (absolute value of the)
electron charge and c is the speed of light. For convenience,
we choose the Landau gauge, A = −Byêx, where Eq. (1) gives

H = −i∇r · στ z − y

�2
B

σ xτ z + k0σ
xτ 0 =

(
H+ 0
0 H−

)
τ

(15)

with the magnetic length �B = √
c/eB. Note that the chosen

gauge retains translation invariance along êx. The momentum
component kx therefore remains a good quantum number.
Below, we consider the orbital magnetic field only and neglect
the Zeeman effect by following standard arguments [5–8].
Including a Zeeman term, say, of the form HZ ∝ σ zτ 0 shifts
the position of the Weyl nodes in the xz plane. While such an
effect can be readily taken into account, we assume here for
simplicity that its contribution is insignificant compared to the
second term in Eq. (1).

When solving for LL solutions, it is convenient to consider
the Weyl nodes separately. A single Weyl node with chiral-
ity χ = ±1 and momentum k = −χk0êx is described by the
Hamiltonian Hχ in spin space using the block diagonal form
in Eq. (15). For given χ and kx, we define the bosonic ladder
operator

a†
χ = �B√

2

(
y

�2
B

− kx − χk0 − ∂y

)
, (16)

with the commutator [aχ , a†
χ ] = 1. The transverse part of

Hχ = −iχ∂zσ
z + H⊥

χ is thereby written as

H⊥
χ = − χ√

2�B

[(aχ + a†
χ )σ x + i(aχ − a†

χ )σ y]. (17)

In the infinite 3D system (without boundary), the momentum
component kz is also conserved. It is then straightforward to
obtain the well-known relativistic LLs ε

χ

nkz
labeled by non-

negative integer n ∈ N0 [3]:

ε
χ

0,kz
= −χkz, ε

χ

±,n>0,kz
= ±χ

√
2n

�2
B

+ k2
z . (18)

Here, εχ

0,kz
is the dispersion of the gapless chiral LL, while n >

0 correspond to higher-order gapped LL states. Eigenstates are
expressed in terms of harmonic oscillator eigenfunctions:

ϕn(y) = Hn(y/�B)√
2nn!

√
π �B

e− 1
2 (y/�B )2

, (19)

where Hn is the nth-order Hermite polynomial. Writing
a†

χaχϕχ
n = nϕχ

n , the wave functions

ϕχ
n (y) = ϕn

(
y − �2

Bkx − χ�2
Bk0

)
(20)

incorporate a shift with respect to the Weyl node position. In
anticipation of the half-space geometry, we label the solutions
|ψχ

nε〉 of Hχ |ψχ
nε〉 = ε|ψχ

nε〉 in terms of energy ε instead of kz.
The chiral LL with n = 0 is then described by

ψ
χ

0,ε(y, z) = e−iχεz

√
2π

(
0

ϕ
χ

0 (y)

)
σ

. (21)

Since kx is conserved, we keep plane-wave factors eikxx and the
kx dependence of observables implicit below. Similar expres-
sions as Eq. (21) hold for the wave functions of n > 0 bulk
LLs [5].

In the following, we focus on the ultraquantum regime,
|ε| <

√
2/�B. While n > 0 bulk LLs do not exist in this

regime, it is possible to construct evanescent solutions in the
half-space geometry by solving the eigenproblem for imag-
inary momentum kz = iκ with κ = κnε > 0. The evanescent
solution for n > 0 is given by

ψχ
nε(y, z) = √

κnε e−κnεz

(
χeiχγnεϕ

χ

n−1(y)

ϕχ
n (y)

)
σ

, (22)

with the inverse penetration length

κnε =
√

2n/�2
B − ε2 (23)

and the phase γnε defined by

eiγnε = − �B√
2n

(ε + iκnε ). (24)

One can rationalize the appearance of this complex phase
factor by noticing that evanescent solutions do not carry any
current along êz, i.e., 〈ψχ

nε|σ z|ψχ
nε〉 = 0 for n > 0.

B. Half-space geometry

1. Coupling of Weyl nodes at the boundary

We now proceed to the half-space geometry z � 0 sketched
in Fig. 1 (see Sec. II for the B = 0 case). We first rewrite the
boundary condition (4) with the matrix Mα in Eq. (8) as

Vα (z)�(r) = 0, Vα (z) = δ(z)(1 − Mα ). (25)

Our ansatz for solving Eq. (25) is a superposition of all eigen-
states of H in Eq. (15) with given ε and kx. We focus on
the ultraquantum regime |ε| <

√
2/�B, where n > 0 LL states

only contribute through evanescent-state solutions in Eq. (22).
Combining the results of Eqs. (21) and (22) gives

|�ε〉 =
∑
χ=±

∑
n�0

cχ
nε

∣∣ψχ
nε

〉
σ
|χ〉τ, (26)

where the cχ
nε are complex coefficients which have to be de-

termined. Equation (25) states that |�ε〉 is an element of the
kernel of Vα . Matrix elements of this operator, restricted to
the subspace with fixed energy ε, are of the form

[Vα (ε)]χ,χ ′
n,n′ = τ〈χ | σ

〈
ψχ

nε

∣∣Vα (z)
∣∣ψχ ′

n′ε

〉
σ
|χ ′〉τ . (27)

For convenience, we rescale them as

[V̂α (ε)]χ,χ ′
n,n′ = (κnεκn′ε )−

1
2 [Vα (ε)]χ,χ ′

n,n′ (28)

with κ0,ε = 1/2π . Matrix elements between a chiral n = 0 LL
and n � 0 LLs with equal chirality χ are given by

[V̂α (ε)]χ,χ

0,n = δn,0 − χeiχγnε δn,1 sin α, (29)

while for n, n′ > 0, we find

[V̂α (ε)]χ,χ

n,n′ = 2δn,n′ − χeiχγn+1,ε δn,n′−1 sin α

− χe−iχγnε δn,n′+1 sin α. (30)
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Matrix elements for opposite chiralities resemble the coupling
of Weyl nodes in terms of the boundary condition. For n � 0,
we obtain

[V̂α (ε)]χ,−χ

0,n = 〈
ϕ

χ

0

∣∣ϕ−χ
n

〉
cos α. (31)

Finally, for n, n′ > 0, we find

[V̂α (ε)]χ,−χ

nn′ = cos α
(
e−iχ (γnε+γn′ε )

〈
ϕ

χ

n−1

∣∣ϕ−χ

n′−1

〉 + 〈
ϕχ

n

∣∣ϕ−χ

n′
〉)
.

(32)

The overlap 〈ϕχ
n |ϕ−χ

m 〉 involves shifted harmonic oscillator
eigenfunctions associated with different Weyl nodes. Perform-
ing the integration for n � m yields [57]

〈ϕ−
n |ϕ+

m 〉 =
∫

dy ϕn
(
y − l2

Bk0
)
ϕm

(
y + l2

Bk0
)

=
√

2n−m
m!

n!
λn−m

B Ln−m
m

(
2λ2

B

)
e−λ2

B , (33)

with the dimensionless quantity

λB = k0�B, (34)

which measures the decoupling of the Weyl nodes by the
magnetic field. In Eq. (33), Lm

n is a generalized nth-order
Laguerre polynomial. In Appendix C, we describe a recursion
relation allowing for the numerically efficient computation of
the overlaps in Eq. (33). The remaining terms follow from
the relation 〈ϕ+

n |ϕ−
m 〉 = (−1)n−m〈ϕ−

n |ϕ+
m 〉. We note that the

overlaps allow for a perturbative treatment in the large-field
limit λB � 1. Let us also mention in passing that similar ex-
pressions appear when computing matrix elements of the bulk
mass term mσ 0τ x. In that case, the coupling opens a gap in the
dispersion of the chiral LLs of the order of 〈ϕ+

0 |ϕ−
0 〉 = e−λ2

B .
This result is consistent with the WKB approximation for a
two-band WSM model with two Weyl nodes [58,59].

In any case, convergence of the overlaps limn→∞
〈ϕ+

n |ϕ−
m 〉 = 0 is ensured for arbitrary λB. This fact justifies the

introduction of a cutoff N for the LL index, n < N , reducing
the numerical solution of the boundary problem to a linear
algebra problem:

Vα (ε)cε = 0, (35)

where Vα (ε) is a 2N × 2N matrix formed by the matrix ele-
ments (27) of the lowest N LLs and cε is a vector containing
the corresponding coefficients cχ

nε. The numerical solution of
Eq. (35) then determines the eigenstates of the WSM in the
half-space geometry for B �= 0. In Appendix C, we carefully
verify the controlled nature of the above cutoff procedure and
the accuracy of the boundary condition.

Due to current conservation, coefficients with the same
(n, ε, kx ) but different chiralities have the same absolute value,
|c+

nε| = |c−
nε|. In particular, we are interested in the phase shift

θα (ε) between in- and out-going chiral n = 0 Landau states:

c−
0,ε = eiθα (ε)c+

0,ε. (36)

We note that all phases below are defined only modulo 2π .
The phase shift θα (ε) depends on the global phase choices for
the basis states in Eq. (26). While for a fixed phase choice,
θα (ε) is formally gauge invariant, observable quantities must
also be independent of the phase choice. Full gauge invariance

is ensured below by only considering phase-shift differences,
� = θα′ (ε′) − θα (ε). When combined with the corresponding
phase shift on the opposite surface in a slab geometry, one
can infer the magnetoconductivity oscillation period of the
corresponding Weyl orbit from Eq. (36) [15]. We compare our
quantum-mechanical results for � to semiclassical estimates
in Sec. IV.

We note that for a straight arc at zero energy, α = 0 (mod
2π ) and ε = 0, with the basis choice in Eq. (26), one finds

θα=0(ε = 0) = π. (37)

We verify Eq. (37) by evaluating the boundary condition
at y = �2

Bkx, where ϕ+
n (�2

Bkx ) = (−1)nϕ−
n (�2

Bkx ). By virtue of
|c+

nε| = |c−
nε| and the boundary condition, we then arrive at

c+
n,0 = (−1)n+1c−

n,0, and thus at Eq. (37).
Since eigenstates in the half-space geometry can be written

in the form (26), a nontrivial y dependence arises since the
separation between Weyl nodes in momentum space appears
in the argument of Eq. (20). As shown in Appendix D, this
observation implies that an electron incident on the surface
undergoes a shift (assuming ε > 0)

δy = −2�2
Bk0 (38)

in the y direction. This effect can be interpreted semiclassi-
cally in terms of chiral transport associated to Fermi arcs (see
Appendix B).

2. Dirac semimetal

In order to identify contributions to the phase shift (36)
picked up by fermions traversing the Fermi arc in Sec. IV,
let us briefly consider the analogous problem in the DSM
limit k0 → 0. The corresponding linear system follows from
Eq. (35) by inserting diagonal overlaps 〈ϕ−

n |ϕ+
m 〉 = δnm in

Eqs. (31) and (32). For analytical results, we focus on cases
without topologically trivial surface states for B = 0, i.e., we
consider either α = 0 (mod π ) or ε = 0.

First, for α = 0 (mod 2π ), it is straightforward to show
that the boundary condition (4) with M0 = σ zτ x is satisfied
by antisymmetric superpositions of chiral LLs:

|�ε〉 = 1√
2

(|ψ+
0,ε〉σ |+〉τ − |ψ−

0,ε〉σ |−〉τ ). (39)

With the above basis choice, we then obtain the phase shift
θα=0(ε) = θDSM

α=0 (ε) = π for arbitrary ε. Similarly, one finds
θDSM
π (ε) = 0.

Second, for ε = 0 but arbitrary α, by using γn,ε=0 = −π/2,
the linear system (35), expressed in terms of the rescaled
coefficients ĉχ

n = √
κn,ε=0cχ

n,ε=0, simplifies to

0 = ĉχ

0 + cos α ĉ−χ

0 + i sin α ĉχ

1 ,

0 = 2ĉχ
n − i sin α

(
ĉχ

n+1 − ĉχ

n−1

)
. (40)

The physical solution of the recursion relation is (we here
assume cos α > 0)

ĉ+
0 = −ĉ−

0 , ĉχ
n =

(
i tan

α

2

)n
ĉχ

0 . (41)
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FIG. 3. Gauge invariant phase shift �DSM
α (ε) vs energy ε for chi-

ral LLs in a DSM (k0 → 0) for several values of α [see Eq. (43)]. The
shown results were obtained by a numerical solution of the quantum-
mechanical problem. We use p0�B = 3 with a reference scale p0,
where ε is shown in units of p0 (with vF = 1). The ultraquantum
regime |ε| <

√
2/�B is indicated by vertical dotted lines.

Without need for a cutoff N and up to normalization, we
thereby arrive at the exact solution:

|�ε=0〉 ∝
∑
χ=±

χ
∑
n�0

1√
κn,0

(
i tan

α

2

)n
|ψχ

n,0〉σ |χ〉τ . (42)

Clearly, the phase shift is again given by θDSM
α (ε = 0) = π .

Remarkably, the superposition state (42) involves evanescent
contributions even though no surface state exists for ε = 0
with B = 0 and k0 = 0 [see Eqs. (13) and (14)]. An analogous
calculation leads to θDSM

π−α (0) = 0.
For finite α and finite ε, we solve the problem numerically

as described above. As shown in Fig. 3, we then find a finite
gauge invariant phase shift, which we define as

�DSM
α (ε) = θDSM

α (ε) − θDSM
π (ε). (43)

(The reason for subtracting the phase for α = π is explained
in Sec. IV.) For small α and ε, this phase shift turns out to be
small compared to the corresponding phase shifts in WSMs
(see Sec. IV). Since the main focus of this paper is on the
WSM case, we leave a detailed (semiclassical) discussion of
phase shifts in DSMs to future studies.

IV. RESULTS AND COMPARISON TO SEMICLASSICS

The semiclassical theory for Fermi arcs in WSMs in a
magnetic field is well established [15,16]. According to this
standard picture, fermions in the chiral LL tunnel into a
Fermi-arc state upon reaching the surface. The Lorentz force
then drives the fermion along the arc to the other Weyl cone
projection of opposite chirality, where it can tunnel back into
the bulk and thereby escape from the surface. In a slab geom-
etry, this process is repeated on the opposite surface, and the
semiclassical trajectory forms a closed Weyl orbit which can
be described using semiclassical quantization [15,16].

In the half-space geometry, the semiclassical trajectory
is open and no quantization is expected. This enables us
to disentangle bulk and surface contributions. The latter are

FIG. 4. Schematic illustration of closed trajectories in the sur-
face momentum plane used for the semiclassical calculation of the
gauge invariant phase �α (ε) in Eq. (47). A curved Fermi arc (green)
with 0 < cos α < 1 is joined with a straight Fermi arc (purple) for
α = π . Arrows indicate the direction of k̇ as described by Eq. (44).
We show the corresponding closed trajectories (a) for zero energy
(ε = 0), (b) for ε < 0, and (c) for ε > 0. For ε �= 0, the curved
arc termination points, (kx, ky ) = (±kεα, qα (ε, kεα )), differ from the
Weyl node projections (±k0, 0) corresponding to the circle centers in
panels (b) and (c). To match the arc termination points of the curved
arc and the straight reference arc, we employ a rescaling k0 → kεα

for the straight arc case. For details, see main text.

determined by the semiclassical equations of motion for an
electron moving along the Fermi arc (with k = k⊥) [15,60]:

k̇ = − 1

�2
B

vk × êz, ṙ = vk = ∇kε(k), (44)

where vk is the group velocity in the x-y plane and ε = ε(k)
is the arc dispersion relation. Here, we neglect the anomalous
velocity contribution due to the Berry curvature of generic
Fermi-arc states [60,61]. This approximation can be justified
by noting that the Berry curvature vanishes for a straight arc
and we consider the small-α case below. As a consequence, k̇
is tangential to the energy contour.

A. Phase shifts accumulated along Fermi-arc curves

We first consider the phase shift θα (ε) between the chiral
LLs in Eq. (36) for a curved Fermi arc with 0 < cos α < 1. In
a semiclassical picture, this phase shift can be estimated by a
phase-space integral of the schematic form

θα (ε) =
∫

dr ·
(

k − e

c
A

)
. (45)

For gauge invariant phases, we need closed trajectories in
real space. This issue is closely related to the fact that the
quantum-mechanical phase shift θα (ε) discussed in Sec. III B
becomes gauge invariant only after switching to a phase-shift
difference. For the semiclassical counterpart, we resolve this
issue by introducing a straight reference arc which reconnects
the termination points of the curved Fermi arc. We thereby
obtain a closed trajectory in the surface momentum plane (see
Fig. 4), where the phase �α (ε) accumulated along the trajec-
tory is gauge invariant. To ensure that also the corresponding
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FIG. 5. Comparison of quantum-mechanical results and semiclassical estimates for the gauge invariant Fermi-arc surface-state phase shift
�α (ε) [see Eqs. (46) and (48), respectively]. The phase �α (ε) is shown as a function of the parameter λB = k0�B and gives the phase
accumulated along the closed trajectories in surface-momentum space illustrated in Fig. 4. Symbols show the numerical solution of the
quantum problem, and curves show the corresponding semiclassical predictions. Integer multiples of 2π have been added to obtain smooth
curves. (a) Zero-energy case (ε = 0) for different α. (a) Case α/π = 0.1 for different energies ε.

real-space trajectory is closed, we recall that the transfor-
mation α → α + π inverts the sign of the group velocity
component vy, and thus of k̇x [see Eq. (44)]. In effect, this
allows for a closed motion in the surface momentum plane,
where the straight reference arc is chosen to have α = π .

The above procedure is straightforwardly implemented at
zero energy (ε = 0), where the arc termination points are at
(kx, ky) = (±k0, 0) for all values of α [see Fig. 4(a)]. On the
quantum level, we then consider the phase-shift difference
�α (ε = 0) = θα (0) − θπ (0), where θπ (0) = π [see Eq. (37)].

The situation becomes more intricate for ε �= 0
since now the curved arc termination points, (kx, ky) =
(±kεα, qα (ε, kεα )), differ from the corresponding Weyl
node projections at (±k0, 0). [We recall that kεα follows
by solving Eq. (10); see also the estimate in Eq. (12).
Moreover, the function qα (ε, kx ) parametrizing the Fermi-arc
contour at energy ε has been defined in Eq. (9).] For
the straight reference arc, we therefore consider a system
with rescaled Weyl node separation, k0 → kεα , at energy
ε → ε̄ = qα (ε, kεα ). The arc termination points for the
straight reference arc are then located at (±kεα, ε̄) and match
the termination points of the curved arc [see Figs. 4(b) and
4(c)]. We note that the energy of the reference arc differs from
the energy of the curved Fermi arc. We can ensure only in this
manner that both arc contours connect at their termination
points and enclose a finite area in momentum space. No
need for such a construction would arise for Weyl orbits in
a slab geometry, where tunneling processes via bulk states
take care of the corresponding momentum shifts between arc
termination points on opposite surfaces. The advantage of our
approach is that bulk states do not appear explicitly in the
semiclassical calculation.

On the quantum level, we then define the gauge invariant
phase-shift difference as

�α (ε) = θα (ε) − θ̄π [−qα (ε, kεα )] − �DSM
α (ε), (46)

where θ̄π follows by solving the linear system (35) with the
rescaled parameter λB → λ̄B = �2

Bkεα . For a comparison to

semiclassical results, in Eq. (46), we also subtract the phase-
shift difference �DSM

α (ε) [see Eq. (43)] for the corresponding
DSM case as shown in Fig. 3.

On the semiclassical level, the above gauge invariant phase
shift takes the form

�α (ε) =
∮

dr ·
(

k − e

c
A

)

= −�2
B

∫ kεα

−kεα

dkx[qα (ε, kx ) − qα (ε, kεα )]. (47)

As illustrated in Fig. 4, the phase �α (ε) in Eq. (47) corre-
sponds to the momentum-space area enclosed by the curved
Fermi arc and the straight reference arc. Assuming |ε| � k0,
we find

�α (ε)  �2
Bk2

0
2α cot (2α) − 1

sin α

+ 2�2
Bεk0

(
1 + α tan α − 2 cos2 α

3 − cos (2α)

)
. (48)

In Fig. 5, for small energies ε, we compare quantum-
mechanical results for �α (ε) obtained numerically from
Eq. (46) to the corresponding semiclassical predictions in
Eq. (48). We find quantitative agreement both for different
arc curvatures [see Fig. 5(a)] and for different energies [see
Fig. 5(b)]. It is worth noting that the semiclassical description
remains accurate even for large magnetic fields with λB < 1.

B. Fermi-arc lifetime and semiclassical traversal time

As discussed in Sec. I, one expects that Fermi-arc surface
states acquire a finite lifetime τα (ε) in a finite magnetic field
B �= 0. The lifetime describes the time scale for escaping into
the bulk via the chiral LLs and follows from the general
relation [62,63]

τα (ε) = dθα (ε)

dε
. (49)
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FIG. 6. Quantum-mechanical results for the Fermi-arc lifetime τα (ε) (symbols) and for the semiclassical arc traversal time tα (ε) (curves)
[see Eqs. (49) and (51), respectively], for several values of α and given in units of k−1

0 . (a) Dependence of τα and tα on λB for ε = 0. (b) τα − τ0

vs ε in the ultraquantum regime (delimited by vertical dotted lines) for λB = 3. Different symbols are for different α as in panel (a). We also
show the corresponding semiclassical traversal time differences tα − t0. The inset shows the straight-arc lifetime τα=0 vs ε, again for λB = 3.

Indeed, as first shown in a seminal work by Wigner [62], the
energy derivative of the phase shift θα (ε) encodes the time
delay of a scattered particle which in turn is directly linked
to its lifetime. We note that the phase shift (49) includes
DSM contributions. Being a physical observable, Eq. (49) is
gauge invariant. We compute Eq. (49) numerically using the
quantum-mechanical approach detailed in Sec. III.

On the semiclassical level, we define another time scale,
namely the traversal time tα (ε). This is the time required to
traverse the Fermi arc from one termination point to the other.
Since the lifetime is due to the escape of Fermi-arc electrons
into the bulk at the arc termination points, one expects that
tα (ε) is of the same order as τα (ε). Even though these two
time scales are not related to each other in a strict mathemat-
ical sense, one expects on physical grounds that they should
exhibit similar behavior. We therefore compare them in some
detail below. The semiclassical traversal time follows with
Eq. (9) in the gauge invariant form

tα (ε) = �2
B

∫ kεα

−kεα

dkx

√
1 +

(
∂qα (ε, kx )

∂kx

)2

| vk|−1. (50)

Simple analytical expressions [see Eqs. (9) and (12)] follow
for |α| � 1 by expanding in α up to second order. We then
obtain the semiclassical estimate:

tα (ε)  2�2
B

[
k0

(
1 + α2

3

)
− 2εα

]
. (51)

We note that for a straight arc (α = 0), the energy-independent
traversal time t0 = 2�2

Bk0 results.
In Fig. 6, we compare the semiclassical traversal time

tα (ε) to the quantum-mechanical lifetime τα (ε). As shown in
Fig. 6(a), the zero-energy lifetime diverges with increasing λB

(i.e., with decreasing magnetic field), where the stable B = 0
Fermi arcs are approached. The semiclassical traversal time
qualitatively captures this behavior, but no quantitative agree-
ment between tα (ε) and τα (ε) is found. As shown in the inset
of Fig. 6(b), the lifetime of the straight arc (α = 0) increases
with |ε| and diverges upon reaching the n = 1 bulk LL. (We

recall that our construction in Sec. III B is limited to the
ultraquantum regime. For energies above the bulk gap of the
n = 1 LL, the n = 1 LL contributes in terms of propagating
states.) Since the semiclassical estimate for t0 is independent
of energy, the energy dependence of τα (ε) shown in the inset
of Fig. 6(b) hints at quantum effects beyond semiclassics.

To compare the two time scales τα (ε) and tα (ε) for curved
arcs, we have subtracted the respective α = 0 contributions,
and consider τα − τ0 and tα − t0 in the main panel of Fig. 6(b).
We find that both quantities are approximately linear functions
of energy (at low energies). The lifetime differences τα (ε) −
τ0(ε) are again qualitatively captured by the corresponding
traversal-time differences tα (ε) − t0 (up to a constant offset).

We conclude that while the Fermi-arc lifetime τα (ε) in-
cludes quantum contributions beyond semiclassics, essential
low-energy features are captured by the semiclassical traversal
time, at least in a qualitative fashion.

V. DISCUSSION

In this paper, we have studied the eigenstates of a four-band
continuum model for a WSM in a half-space geometry, with
a magnetic field perpendicular to the surface. At low energies
in the ultraquantum regime dominated by the zeroth LL in
the bulk, eigenstates are superpositions of in- and out-going
chiral n = 0 LL states coupled by evanescent surface states
originating from n �= 0 LL states. The latter states replace the
B = 0 Fermi-arc surface state, which acquires a finite lifetime
for B �= 0 and hence is not a stable solution.

We have compared our quantum-mechanical results with
the corresponding semiclassical estimates by calculating the
phase shift between in- and out-going n = 0 chiral LL states
with the corresponding semiclassical results. These results
depend on the energy ε and on a boundary parameter α

determining the Fermi-arc curvature for B = 0. According
to Refs. [15,16], the coupling between the chiral LLs is es-
tablished by a semiclassical motion of fermions along the
arc due to the Lorentz force. For the phase shifts, we find
quantitative agreement between the quantum description and
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semiclassical estimates. Moreover, from the energy derivative
of the phase shift, one can define the lifetime of the Fermi-
arc state. By comparing the lifetime to the semiclassical arc
traversal time, we have argued that quantum contributions
beyond semiclassics are important for the lifetime. Our results
indicate that quantum corrections remain significant upon
lowering the magnetic field strength or when increasing the
Fermi energy. Understanding the lifetime of Fermi-arc surface
states in an electromagnetic environment is a prerequisite
for surface-sensitive tests such as quasiparticle interference
experiments [38]. In the future, the theoretical modeling of
such experiments could also profit from our explicit numerical
construction of the eigenstates.

Our results are, at least qualitatively, consistent with nu-
merical work on thin WSM films employing lattice models
[16,64], hybrid models [65], and wave packet simulations
[66]. The continuum approach used here employs a boundary
condition which allows one to disentangle bulk and surface
contributions to semiclassical trajectories. Our analysis shows
that a semiclassical phase-space integral along the Fermi arc
provides accurate estimates for phase shifts. When extending
our arguments to a slab geometry or to thin films, one can
describe the phase shift associated with Weyl orbits. This
phase shift is observable in quantum magnetoconductance
oscillation experiments (see Refs. [34–36] for recent reports).
Similar phase shifts are also expected to appear in transport
experiments on WSM junctions with heterochiral Fermi arcs
at the interface [43]. Our results justify semiclassical expla-
nations of these experiments and provide analytical estimates
for a minimal model that incorporates the Fermi-arc curva-
ture. Importantly, the observability of quantum oscillations
from Weyl orbits crucially depends on the comparison be-
tween the time needed to traverse the Fermi surface and the
scattering time [67]. Our estimates improve the evaluation
of the former.

A more direct measurement of the traversal time can be
devised along the lines of Ref. [19]. In the regime considered
in our paper, one can indeed consider a setup with two gates
generating an electric field on one surface and measure the
current on the opposite surface. As a consequence of the
described hybridization of bulk and surface states, a pulsed
electric field generates a current response on the opposite
surface, within a duration given by the traversal time.

We have been able to make substantial progress, and in
some cases even obtained exact analytical solutions, since
the studied four-band WSM model has decoupled Weyl
nodes in the bulk. Omitting bulk Weyl-node coupling terms,
e.g., a mass term mσ 0τ x, is typically justified for materials
with well-separated Weyl nodes. Indeed, assuming a Weyl
node separation 2k0  2 Å−1, Eq. (34) gives λB  2.57 for
B  1 T. The hybridization of LLs corresponding to different
Weyl nodes is then exponentially suppressed by a factor
e−λ2

B  0.0014. We conclude that only for much smaller k0

and/or stronger B, effects of bulk Weyl-node coupling are
expected to become relevant. For such cases, one expects a
bulk gap for the hybridized n = 0 LLs. As a consequence,
the chiral anomaly will eventually break down, and a
nonmonotonic magnetoconductance should appear [58,59].
While such phenomena are not present in our paper, they are
unavoidable in lattice models. In fact, we believe that they

obscure a semiclassical interpretation of previous numerical
studies of WSM thin films [16,64–66]. Studying the effects of
chiral mixing, e.g., by including the mass term mσ 0τ x in our
approach, is an interesting direction for future work. Notably,
numerical works in the Hofstadter regime suggest that
depending on the exact nature of the Weyl node annihilation
associated with the opening of the gap, the resulting insulating
system can be either trivial or topological [64,68]. In the latter
case, localized topological surface states might emerge in
the gap of the hybridized n = 0 LLs. Such states seem to be
outside the reach of the established semiclassical picture.

The above-mentioned subtleties are absent if the magnetic
field is oriented parallel to the axis along the Weyl node
separation (êx in our case). This scenario was studied for a
thin-film geometry [65], where a much smaller surface-bulk
hybridization was reported, consistent with the semiclassical
point of view. Magnetic fields oriented in the surface plane
generally result in qualitatively different physics [69,70] than
reported here.

Our paper has also covered the limiting DSM case. The
considered Dirac Hamiltonian is an appropriate effective
model as long as crystal symmetries protect the Dirac node
degeneracy. It would be interesting in a future study to apply
our approach and compare numerical and analytical solutions
at B �= 0 to the semiclassical description of topologically triv-
ial surface states at B = 0.

In view of the recent experimental progress on magnetic
WSMs [37], such as Co2MnGa [71] and Co3Sn2S2 [38,72],
we are optimistic that Weyl orbit physics will soon be clearly
established also beyond DSMs and noncentrosymmetric crys-
tals. The underlying physics of such compounds should be
captured by our results.

The data used for preparing the figures is available at the
zenodo website [73].
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APPENDIX A: SURFACE STATE SOLUTIONS

Here we provide detailed derivations for the B = 0 surface
states given in Sec. II C. We begin with the topologically
trivial surface states for the Dirac semimetal case, k0 = 0,
described by H = k · στ z. After the unitary transformation
Uα = exp ( i

2ασ yτ x ), we obtain

H̃α = UαHU †
α = (

kxσ
x + kyσ

y cos α − i∂zσ
z
)
τ z

+ kyσ
0τ y sin α. (A1)
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This transformation is convenient since it eliminates
the boundary parameter α from the boundary condition,
UαMαU †

α = M0 = σ zτ x [see Eq. (8)]. Note that the unitary
transformation leaves the current operator jz invariant. There-
fore, eigenstates |�̃〉 with H̃ |�̃〉 = ε|�̃〉 must satisfy the
boundary condition M0�̃(z = 0) = �̃(z = 0). We next make
a (normalized) ansatz for a surface state confined to the half-
space region z � 0:

|�〉 =
√

κ

2

(
ψ̃+

ψ̃−

)
τ

, ψ̃χ (z) = e−κz

(
1

χeiδ

)
σ

, (A2)

where δ and κ are a phase and an inverse penetration length,
respectively. These quantities have yet to be determined,
where Eq. (A2) satisfies the boundary condition for arbitrary
δ. To construct energy eigenstates, we first note that the chiral
components satisfy Mσ

δ |ψ̃χ 〉σ = χ |ψ̃χ 〉σ for Mσ
δ in Eq. (6).

Eigenstates of H̃ thus obey

(kxσ
x + kyσ

y cos α)|�〉 = εMσ
δ |�〉. (A3)

For given in-plane momentum k⊥, the phase δ = δ±(k⊥)
then follows from

cos δ±(k⊥) = kx

ε±(k⊥)
, sin δ±(k⊥) = ky cos α

ε±(k⊥)
, (A4)

with ε±(k⊥) in Eq. (13). Inserting the corresponding ansatz
into the eigenproblem of H̃ confirms that ε±(k⊥) is the energy
dispersion of the surface state and yields the inverse decay
length κ in the form

κ = ky sin α. (A5)

The normalization condition κ > 0 implies Eq. (14) for phys-
ical solutions.

Next, we construct the solution for a straight Fermi arc,
corresponding to the choice α = 0. For the purpose of gener-
ality, we here allow for a free parameter in the parametrization
(7). The trivial dependence of our results on this parameter
(see below) helps to develop physical insight. We consider the
boundary condition (4) with the matrix

M ′
γ = M0,0,γ ,0 = σ z(τ x cos γ + τ y sin γ ). (A6)

The following results for γ = 0 describe the α = 0 results in
Sec. II C since M ′

γ=0 = Mα=0 with Mα in Eq. (8). [Note that δ

in Eq. (7) is redundant for α = 0.] We choose the normalized
ansatz

|�〉 =
√

κ+κ−
κ+ + κ−

(
ψ+

eiγ ψ−

)
τ

, (A7)

with the chiral spinor components

ψχ (z) = e−κχ z

(
1

−iχ

)
σ

. (A8)

This ansatz satisfies the boundary condition. From H |�〉 =
ε|�〉, we find

ε(ky) = −ky, κχ (kx ) = k0 + χkx. (A9)

The normalization conditions κ+ > 0 and κ− > 0 for surface-
state solutions restrict the in-plane momentum kx to the open
interval −k0 < kx < k0. We thus obtain a physical Fermi arc

for a model with two decoupled Weyl nodes in the bulk.
Here it turns out that the energy dispersion ε(ky) and the
inverse penetration length scales κχ are independent of γ .
This is expected since the parametric freedom in the bound-
ary condition increases with the number of higher-energy
bands. However, in this instance, we can extend the relation
between the arc curvature and the corresponding boundary
matrix parametrization further. To this end, we note that a
straight arc is characterized by a chiral dispersion along êy,
and consequently a maximal current flows along this direc-
tion. Accordingly, the found solutions are eigenstates of the
in-plane current jy = σ yτ z, which is only possible since M ′

γ

commutes with jy. We can therefore infer the necessary con-
dition that a straight arc corresponds to a parametrization of
M with [M, jy] = 0. Note that for the parametrization Mα in
Eq. (8), this condition is only met for α = 0 mod π .

In fact, we find curved Fermi arcs for all other values of α.
For solving the surface-state problem, we here use a different
approach which applies to a large family of parametrizations.
We first consider the eigenproblem Hχ |ψχ 〉σ = ε|ψχ 〉σ for a
single Weyl node with chirality χ = ±1, described by Hχ =
χk · σ + k0σ

x. The most general evanescent and normalized
solution at given energy ε and in-plane momentum k⊥ is

ψ
χ

εk⊥ (z) =
√

κχ

ε2 + κ2
χ

e−κχ z

(
χε + iκχ

kx + χk0 + iky

)
σ

, (A10)

where κχ (ε, k⊥) =
√

(kx + χk0)2 + k2
y − ε2 is the inverse

length scale describing the decay of the surface state into the
bulk. The requirement that κ is real restricts the energy of
physical solutions to

ε2 < (|kx| − k0)2 + k2
y . (A11)

The solution with energy ε in this interval is given by

|�εk⊥〉 =
(

c+ψ+
εk⊥

c−ψ−
εk⊥

)
τ

, (A12)

where c± are complex coefficients. We now consider
the boundary condition (4) with a general Hermitian
parametrization:

M =
(

X Y
Y † Z

)
, X = X †, Z = Z†. (A13)

Here, we assume that Y is invertible, which implies the con-
dition [M, σ 0τ z] �= 0 for a physical Fermi arc (see Sec. II B).
Together with M2 = 1, we obtain the identities Z = −Y −1XY
and Y −1X 2 = Y −1 − Y †. It is then sufficient to consider the
upper two spinor components in the boundary condition (1 −
M )�εk⊥ (z = 0) = 0, since the lower two components are im-
plied. One can express the upper two components as a linear
system of equations, Bc = 0, where

B(ε, k⊥) = [(σ 0 − X )ψ+
εk⊥ (0) − Y ψ−

εk⊥ (0)] (A14)

is a 2 × 2 matrix and c = (c+, c−)T contains the coefficients
in Eq. (A12). For Mα in Eq. (8), we have Xα = σ x sin α and
Yα = σ z cos α. Solutions of the boundary condition thus sat-
isfy det(B) = 0. We then obtain a secular equation that gives
analytical solutions for ky = qα (ε, kx ), where Eq. (9) is the
only solution satisfying Eq. (A11).
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FIG. 7. In-plane spin polarization and particle current corre-
sponding to the Fermi-arc surface state for B = 0, α/π = 0.1, and
ε = 0, shown as color-scale plots in the kx-ky plane (see Appendix B).
Red and blue dots indicate the surface projections of the Weyl nodes;
arrows show the in-plane components of the spin polarization 〈s〉
(a) and of the particle current 〈j〉 (b).

We note that surface-state solutions for the opposite
half space (z � 0) with the same boundary condition (4)
follow from the transformation α → π − α. This is be-
cause the transformation κχ → −κχ < 0, necessary for
constructing physical states in this geometry, amounts to
ψ

χ

ε,kx,ky
(0) → [ψχ

ε,kx,−ky
(0)]∗. The corresponding secular equa-

tion det[B∗(ε, kx,−ky )] = 0 then yields ky = −qα = qπ−α .

APPENDIX B: SURFACE SPIN
POLARIZATION AND CURRENT

In this Appendix, we discuss the spin texture related to
sμ = σμτ 0 (with μ = x, y, z) along a Fermi arc for the B = 0
case. Getting access to this type of quantity is an advantage
of the four-band model with respect to two-band models
[49,55,56]. Furthermore, we compute the in-plane current
jμ = σμτ z generated by the Fermi arc. Given a normalized
Fermi-arc solution |�〉, we need to evaluate expectation val-
ues of the form 〈σ ντμ〉 = ∫ ∞

0 dz �†(z)σ ντμ�(z).
For a straight arc (α = 0), the corresponding solutions

in Eq. (A8) satisfy σ y|ψχ 〉σ = −χ |ψχ 〉σ , implying 〈s〉 =
kx êy/k0 and 〈j〉 = −êy.

For curved arcs with α > 0, we use the general solution
(A10) and perform the integration. The spin polarization fol-
lows from

〈sμ〉 =
∑
χ=±

|cχ |2
2κχ

ψχ †(0)σμψχ (0), (B1)

where the expression for the in-plane current only differs by a
relative sign in the sum:

〈 jμ〉 =
∑
χ=±

χ
|cχ |2
2κχ

ψχ †(0)σμψχ (0). (B2)

Above, we have suppressed the momentum dependence of cχ

and of |ψχ 〉σ .
Results obtained from the above expressions are shown

in Fig. 7. Our model correctly reproduces the main features

FIG. 8. Absolute value of the coefficients cχ
nε appearing in the

superposition (26) vs order n. Note the logarithmic scale for the
coefficients. The shown results were obtained by numerically solving
Eq. (35) for ε/k0 = 0.1, α/π = 0.1, λB = 1, with a cutoff value of
N = 70.

of Fermi arcs as experimentally detected. First and foremost,
the chiral transport is shown by the current in Fig. 7(b). In
addition, the spin polarization rotates along the arc as dictated
by the fact that the spin orientation at the two termination
points corresponds to the chirality of the Weyl nodes. This
behavior is manifest in Fig. 7(a) and in accordance with the
spin texture observed experimentally by spin-filtered angle-
resolved photoemission spectroscopy [74,75].

APPENDIX C: NUMERICAL IMPLEMENTATION
OF BOUNDARY CONDITIONS

In this Appendix, we discuss the numerical approach intro-
duced in Sec. III. Figure 8 shows representative results for
the coefficients cε in Eq. (26), which are obtained by nu-
merically solving Eq. (35) for a Landau level cutoff N = 70.
These results already indicate that the numerical scheme is
well controlled and convergent. A nontrivial benchmark that
is passed accurately by our numerical scheme is provided by
the analytical solutions (39) and (42) for a DSM with α = 0
or ε = 0, respectively.

Let us next give additional details about our numerical
approach. To avoid numerical overflow (or underflow) when
computing the matrix elements (27) for a large cutoff N , it is
convenient to compute the overlaps (33) using the recursion
relation (n � m > 1)

〈ϕ−
n |ϕ+

m 〉 = 1√
nm

(
n + m − 1 − 2λ2

B

)〈ϕ−
n−1|ϕ+

m−1〉

−
√

(n − 1)(m − 1)

nm
〈ϕ−

n−2|ϕ+
m−2〉, (C1)

with

〈ϕ−
n−m+1|ϕ+

1 〉 = n − m + 1 − 2λ2
B√

n − m + 1
〈ϕ−

n−m|ϕ+
0 〉 (C2)
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FIG. 9. Spectrum of V̂α as obtained from Eq. (28) for α/π = 0.1, with the cutoff value N = 100. Note the semilogarithmic scales. Blue
(red) dots correspond to positive (negative) eigenvalues. Since Vα is positive semidefinite, negative eigenvalues indicate numerical errors.
(a) Spectrum vs energy ε (in units of k0) in the ultraquantum regime |ε| <

√
2/�B delimited by the vertical gray line, for λB = 1. (b) Spectrum

vs λB for ε/k0 = 0.1.

and

〈ϕ−
n−m|ϕ+

0 〉 =
√

2n−m

(n − m)!
λn−m

B e−λ2
B . (C3)

With these relations, we can easily employ a LL number cutoff
of order N = 250 or even larger. For all results shown in this
paper, we have carefully checked that results do not change
when further increasing the cutoff.

Numerical solutions are then found from the kernel of
Vα (ε), i.e., from the matrix representation of Vα in the sub-
space with fixed ε and kx. Note that we physically expect a
single solution in this subspace in the ultraquantum regime.
Consequently, the spectrum of Vα (ε) should have a single zero
eigenvalue which is well separated from all other eigenvalues.
Figure 9 shows representative results for the spectrum of the
rescaled matrix V̂α obtained from Eq. (28). We find a non-
degenerate, well-separated, and vanishing eigenvalue for all
ε in the ultraquantum regime. However, for λB � 1.5 (weak
magnetic fields), numerical errors become slightly larger.
Nonetheless, our numerical solutions still satisfy the boundary
condition as demonstrated for λB = 3 in Fig. 10, where we
show the four components of the real and imaginary parts of
�(y, z = 0) and Mα�(y, z = 0), respectively. The boundary

condition �(y, z = 0) = Mα�(y, z = 0) is indeed satisfied to
high precision for all values of y.

APPENDIX D: SHIFT OF THE REFLECTED ELECTRON

The electronic Goos-Hänchen effect is a quantum phe-
nomenon, best described as a lateral shift of a wave packet
after reflection from a surface [76]. We can see an analog
of this effect in the system at hand at the level of the ex-
pectation value of the position operator. In particular, we can
read Eq. (26) in the ultraquantum regime 0 < ε <

√
2/�B as

the superposition of an incoming wave in the chiral LL with
χ = +1, an outgoing wave in the chiral LL with χ = −1,
and a series of bound states [see Eq. (21)]. Considering first
a single momentum component kx, the expectation value of
the y coordinate for an incoming electron arriving on the
surface (z = 0) is computed from the fundamental eigenmode
of the harmonic oscillator in Eq. (19) as 〈y〉in = �2

B(kx + k0).
The momentum kx is conserved in the reflection process, and
one readily sees that the electron leaving the surface has the
expectation value 〈y〉out = �2

B(kx − k0). We note that the shift
〈y〉out − 〈y〉in is gauge invariant.

Following Ref. [76], we now generalize this argument and
write an electronic wave packet formed by a superposition
of plane waves with various momenta kx and, for simplicity,

FIG. 10. Spinor components � j=1,2,3,4 of the eigenstate solution at the surface, �(y, z = 0) = (�1(y), �2(y), �3(y), �4(y))T , compared
with the corresponding components of Mα�(y, z = 0). Parameters are given by ε/k0 = 0.1, α/π = 0.1, and λB = 3. We separately show the
real and imaginary parts, which verify that the boundary condition Mα�(y, z = 0) = �(y, z = 0) is numerically satisfied to high accuracy.
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a Gaussian envelope function centered around momentum p
with spread �k. Such a wave packet, in the χ = +1 block,
has the form

�ε,in(r) = 1√
2π

∫
dkx F (kx − p)eikxxψ+

0,ε(y, z), (D1)

with F (kx ) = (
√

π�k)−
1
2 e− 1

2 (kx/�k)2
. The expectation value of

the y coordinate for the wave packet arriving on the surface
then follows as

〈y〉in = �2
B(p + k0). (D2)

Repeating the calculation for the outgoing wave packet in the
χ = −1 block,

�ε,out (r) = 1√
2π

∫
dkx F (kx − p)eikxxψ−

0,ε(y, z), (D3)

one finds 〈y〉out = �2
B(p − k0). We conclude that the electronic

Goos-Hänchen shift is given by Eq. (38). As this result is
separately valid for each kx, we expect it to hold for every
choice of the envelope function.
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