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Interfaces of nodal-line semimetals: drum states, transport and refraction

Mattia Rudi,1, ∗ Alessandro De Martino,2, † Kristof Moors,3, 4, ‡ Domenico Giuliano,1, § and Francesco Buccheri5, 6, ¶

1Università della Calabria, Via Pietro Bucci, 87036 Rende CS
2Department of Mathematics, City, University of London,

Northampton Square, EC1V OHB London, United Kingdom
3Peter Grünberg Institute (PGI-9), Forschungszentrum Jülich, 52425 Jülich, Germany

4JARA-Fundamentals of Future Information Technology, Jülich-Aachen Research Alliance,
Forschungszentrum Jülich and RWTH Aachen University, Germany
5Dipartimento Scienza Applicata e Tecnologia, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy
6Institut für Theoretische Physik, Heinrich-Heine-Universität,

Universitätsstr. 1, D-40225 Düsseldorf, Germany

We study transport through interfaces in topological nodal-line semimetals, focusing on two
geometries: a single interface between two large samples, one nodal-line semimetal and one metal,
and an infinite nodal-line semimetal slab in between two metallic regions. We investigate the depen-
dence of the spectra on the boundary conditions, showing how they affect the surface states and the
band dispersion. We find a set of drum states, arising from the hybridization of the drumhead states
on opposite surfaces at finite slab width, and describe their signatures in the transport properties of
a clean sample. Finally, we compute the electronic trajectories in the ballistic regime and show that
there is a series of resonant angles that ensure perfect transmission. We also show how the current
density profile acquires an inhomogeneous distribution in the radial direction.

I. INTRODUCTION

The introduction of topology in condensed matter
physics famously dates back several decades, yet, topo-
logical materials continue to attract renewed attention,
also due to the intense experimental activity in recent
years [1, 2]. In fact, topology is nowadays an established
and widely applied paradigm, promising impactful tech-
nological applications in various fields [3, 4]. The research
on topological semimetals, in particular, is fueled by their
predicted and measured sizeable magnetoresistance and
extremely high carrier mobility [5–10], attractive features
for, e.g., ultra-sensitive detectors and fast-operating elec-
tronic devices. Nodal-line semimetals (NLSs) are a class
of topological semimetals in which a pair of bands crosses
on a one-dimensional manifold in the Brillouin zone (BZ),
namely, a nodal line or nodal ring [11]. Such crossing is
protected by a discrete symmetry, which quantizes the
possible values of a topological invariant [12–15].

The band structure of NLSs is associated to charac-
teristic signatures in a number of phenomena [16–18],
including quantum oscillations from the toroidal shape
of the Fermi surface [19–21], the anomalous Hall effect in
magnetic materials [22], ultra-flat bands in magnetic field
and related magnetotransport [23]. There are, to date,
numerous proposed materials to host a NLSs phase and
mounting experimental confirmation [24–39]. Moreover,
it has been shown that phononic and photonic crystals
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can be engineered to form synthetic analogues of nodal-
line materials [40, 41], and can be useful to probe all
those characteristics that only depend on the eigenen-
ergies. It was observed, in particular, that the carrier
mobility can reach sizeable values in clean samples, or-
ders of magnitude higher than typical metals at room
temperature and comparable to that of graphene [42].
Interestingly, the relative flatness of the band along the
nodal ring makes NLSs also a good platform for high-
lighting correlation effects [43–45] and superconductivity
[46–48]. Strongly-correlated nodal-line semimetals have
recently been synthesized in the laboratory [49].

Topological surface states are generally expected when
two materials with a different value of a bulk topolog-
ical invariant are in contact [50]. In NLSs, they have
support on the disk delimited by the projection of the
nodal line onto the interface BZ: for this reason they
are dubbed "drumhead" states in the literature [11, 51].
Such states are present even at non-ideal interfaces, and
are associated with van Hove singularities in the den-
sity of states [51, 52], robust signatures in spectroscopy
[34, 35, 37, 53], quasiparticle interference [54, 55] and
spin-polarized transport [56]. A small dispersion of sur-
face bands can arise from the particle-hole symmetry
breaking, manifest in the dispersion of the nodal line it-
self [11, 17, 57, 58].

In this work, we consider interfaces between a NLS and
the vacuum or another material, which are always paral-
lel to the plane of the nodal line. We describe the most
general parametric family of boundary conditions pre-
serving self-adjointness and mirror symmetry, in which
the parameter is related to the surface composition. We
show that the boundary parameter determines the pene-
tration length and the dispersion of the surface band: as
our model does not break particle-hole symmetry in the
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bulk, we conclude that the surface states can acquire a
dispersion even in the absence of a tilt of the nodal line.

We also show that, in a slab geometry, the drumhead
states on opposite surfaces can hybridize, forming a pair
of "drum" states. Despite their exponential localization,
such states can produce a sizeable contribution in trans-
port measurements across the slab, because their pene-
tration length becomes comparable to the sample size in
the region around the nodal line.

Finally, we also explore the consequences of the elec-
tron refraction, originated by the change of dispersion
at the interface. The possibility of electron focusing in
a crystalline solid was experimentally demonstrated in
ballistic two-dimensional electron gases at semiconductor
interfaces [59, 60], paving the way for all subsequent elec-
tron optics studies. Most famously, the Veselago lensing
in graphene has been observed [61–64], taking advantage
of the very long mean free path in the material. In a suf-
ficiently clean topological semimetal sample, measured
mean free paths can be of the order of tens of µm [65]. For
this reason, they offer very good candidates for observing
focusing effects in three dimensions [66] and the possibil-
ity was indeed already demonstrated in a photonic lattice
Weyl semimetal [67]. In nodal-line semimetals, specifi-
cally, electronic correlations play a comparatively larger
role than in other topological semimetals [43], reducing
the characteristic scattering time and renormalizing the
electron velocity. While at low carrier density and tem-
perature the Coulomb interaction has a power law behav-
ior at short distances, at larger distances or at sufficiently
high temperature or chemical potential, the interaction is
exponentially suppressed [68] and an analysis based on a
single-particle Hamiltonian is approximately justified. In
this work, we adopt such a viewpoint and show that, in a
ballistic junction, the band dispersion associated with a
nodal line refracts part of an incident wavepacket toward
the main axis. We also propose an experiment that ex-
ploits the electron optical properties of the NLS to image
the nodal line in real space.

The paper is structured as follows. In Sec. II, we in-
troduce our model and its eigenstates, then proceed to
imposing the most general boundary conditions and de-
scribe the dispersion and penetration length of the sur-
face states, as well as their impact on the transport prop-
erties of the surface. In Sec. III, we study the electronic
tunneling through a single interface between a metallic
material and a NLS and we proceed to study the trans-
port through a NLS slab in Sec. IV, with particular focus
on the resonances. We also tackle the current distribution
and demonstrate the possibility of focusing the transmit-
ted electrons on a ring, as well as of increasing an electron
beam collimation over a certain region by using a NLS
slab. We conclude by summing up our considerations in
Sec. V. A few complementary technical details are pro-
vided in Appendices.

II. MODEL OF A NODAL-LINE SEMIMETAL:
BULK AND INTERFACES

We start by considering an effective Hamiltonian de-
scribing the vicinity of the nodal line of the form [11, 51]

H = −iℏv∂zτy +M (kp) τz + V, (1)

where τj , j = x, y, z denote the Pauli matrices, acting on
an effective degree of freedom that can be represented on
a spinor. In the example of Ca3P2 [24], the two bands ap-
pearing in Eq. (1) are formed out of the p and d orbitals
of P and Ca, respectively. The scalar term V describes
a global shift of the bands. In Section III we will use
a space-dependent V(z) to model an interface between
a NLS and a metal. The Hamiltonian is fully invariant
under SU(2), hence, the spin degree of freedom does not
appear explicitly. The momentum components parallel
and perpendicular to the plane identified by the nodal-
line are denoted as kp ≡ (kx, ky) and kz, respectively.
The function

M (kp) ≡ D
(
k2p − a

)
(2)

of kp ≡ |kp| has a zero at kNL ≡
√
a, provided a > 0.

More general shapes of the nodal ring can be modeled by
introducing an angular dependence of a, which is tackled
via a reparametrization of the coordinates and momenta
in the xy plane. The eigenvalues of the Hamiltonian (1)
for constant V are

E± (k) = ±
√
ℏ2v2k2z +M2 (kp) + V . (3)

and are shown in Fig. 1 for sample values of the parame-
ters. When V = 0 and a > 0, this Hamiltonian describes
a NLS with a nodal line at kz = 0, kp = kNL, where the
two bands cross at zero energy. The energy 2E0 ≡ 2D|a|
corresponds to the maximal separation between the band
in the inverted gap region if a > 0 and it is typically a
fraction [69] of eV [31, 33, 62]. This is a natural ultravi-
olet cut-off energy scale for our effective model and is a
material-dependent parameter.

The Hamiltonian in Eq. (1) can also model an insula-
tor with band gap ∆ = 2E0 whenever a < 0. Moreover,
it has two metallic regimes (N), which can be reached
by shifting the bands with the term V. At zero chemical
potential, for V ≪ −E0, it features electron-like carriers
and a spherical Fermi surface, while for V ≫ E0, one has
a metal with hole-like carriers. As seen in Sec. III, the
geometry of the Fermi surface is of importance in describ-
ing the transmission properties of a N-NLS junction.

The eigenstates corresponding to Eq. (3) can be writ-
ten in the form

ψk = Nk

(
−iℏvkz

E − V −M (kp)

)
(4)

with N−1
k ≡

√
2 (E − V) (E − V −M (kp)) the normal-

ization factor. The Hamiltonian (1) is not a good de-
scription for the whole BZ, but only in the vicinity of the
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Figure 1. Schematic representation of the energy bands (3)
(in arbitrary units) in the NLS semimetal regime: a ring-
shaped crossing with radius kNL (here with unit value) is
present at zero energy.

nodal line. As it will not affect our conclusions, we will
assume throughout this work that the description holds,
at least qualitatively, also for k → 0, while this is not the
case close to the edge of the BZ. We will comment on the
specific limitations as they arise.

Importantly, the Hamiltonian (1) possesses, together
with particle-hole H (k) = −τxH (−k)

∗
τx (for V = 0)

and time-reversal H (−k) = H (k)
∗ symmetries, a mirror

symmetry with respect to the plane z = 0, implemented
as

H (kz) = τzH (−kz) τz . (5)

The presence of this discrete symmetry squaring to the
identity protects the nodal line and the corresponding
surface states [15, 17, 51].

Without loss of generality, we will measure energies
with respect to the energy of the band crossing in the
NLS and, in order to lighten the notation, we shall work
with dimensionless quantities in the following. In our
convention, we express all energies (ε) in units of ℏvkNL

and momenta (q) in units of kNL, i.e., qp = 1 will identify
the nodal line. Analogously, we define the dimensionless
"mass" function m (qp) ≡ M (kp) /ℏvkNL = D

(
q2p − 1

)
,

where D ≡ kNLD/ℏv. For later use, we introduce the
notation V ≡ V/ℏvkNL, as well as the sample width L
and its dimensionless version L ≡ kNLL.

To conclude this discussion we note that, while for
simplicity we use a particle-hole symmetric Hamiltonian,
a term which breaks this symmetry can in general be
present. In the case of a scalar function of the momenta
[51], it can be readily taken into account by means of a
suitable transformation and a rescaling of the eigenen-
ergies [52]. Therefore, we do not expect a qualitative
changes to our results.

A. Interface with the vacuum

In order to gain insight on the role of boundaries in
topological semimetals, we now consider a surface at

z = 0. The results of this section will form the ba-
sis for the conductance calculations in Sec. III. For an
infinitely-extended system in the z direction, we expect
two-dimensional drumhead surface bands, with flat dis-
persion at zero energy. These states have support within
a circle in momentum space, delimited by the projection
of the nodal line onto the surface BZ, and penetration
length that diverges as 1/ (1− qp) when the in-plane mo-
mentum approaches the nodal ring [11, 70]. Because of
this, it is reasonable to expect that finite-size effects will
play an important role. Similarly to Weyl semimetals,
the most general boundary conditions for a Dirac Hamil-
tonian that can be imposed on the surface z = 0 are of
the form

B (α)ψα (0) = ψα (0) , (6)

where B (α) = τz cosα+ τx sinα is a one-parameter (the
angle α) family of Hermitian matrices, that ensures the
self-adjointness of the Hamiltonian (1) [71]. Using the
fact that B (α) anticommutes with the current jz = evτy,
it can be shown that the expectation value of jz vanishes
on the surface at z = 0: for this reason, these condi-
tions are sometimes referred to as zero-current boundary
conditions. As underlined in Ref. [51], the Dirac Hamil-
tonian with the linear term kz only establishes that the
gapped regions inside and outside the nodal line are topo-
logically distinct. The nodal line separates two regions of
the BZ with a different value of the bulk topological in-
variant, defined by the Zak’s phase along qz for fixed qp.
In order to resolve which of these regions supports bound-
ary states, higher-order terms are, in general, necessary
[72]. Nevertheless, as we show in this work, the boundary
conditions determine where the topological surface states
are present and, therefore, define the topologically non-
trivial region. With physical systems in mind, through-
out this work, we will describe the surface states inside
the nodal line, with the understanding that the alterna-
tive range of the boundary parameter leads to the other
configuration of the surface states.

The angle α in Eq. (6) has been introduced as a way
of guaranteeing the formal consistency of the low-energy
Hamiltonian. It models aspects of the surface that are
not explicitly taken into account in the low-energy Hamil-
tonian. In the context of Weyl semimetals, for instance,
it accounts for the curvature of the Fermi arcs [73]. Pro-
vided the surface can be considered homogeneous on a
macroscopic scale and invariant under translations, as-
pects like, e.g., the chemical composition of the termina-
tion and the electrostatic fields on the surface [74–76] can
be captured by the single phenomenological parameter
α. In the fully SU(2)-invariant model of Ca3P2 [24, 51],
the interpretation of the two bands in Eq. (1) is that
of the p− and d− orbitals of the two components of the
binary compound. Then α = 0 corresponds to a "po-
larization" in orbital space along the Ca d-type orbitals,
i.e., a surface termination by that element. Analogously,
the termination with P on the surface (p-type orbitals)
is modeled by α = π, while a generic value of α denotes
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Figure 2. Schematic of the proposed surface measurement,
with two infinitely-extended contacts acting as source and
drain on the surface of a NLS, parallel to the plane that hosts
the nodal line. The current in linear response depends on the
boundary parameter α as discussed in the main text.

a termination that contains both elements. One way of
connecting this phenomenological parameter to experi-
ments that can determine it in a material-independent
way is proposed in Sec. II B.

We now derive the dispersion of the surface states in
the presence of general boundary conditions. The eigen-
states (4), indeed, can be shown to describe localized
states as well, under analytic continuation kz = iκz: the
constraint (6) fixes the spinor orientation on the surface
as ψ ∝ ξα+, having denoted with ξα,± the eigenstate of
B (α) with eigenvalue ±1 (see also App. B). For V = 0
and 0 < α < π, one finds a two-dimensional band corre-
sponding to localized states of the form

ψqp (r) =

√
κ

2π2

(
cos (α/2)
sin (α/2)

)
e−κz+iqxx+iqyy (7)

with support in the interval 0 ≤ q2p < 1, i.e., a disk in the
surface BZ. Here the inverse penetration depth is given
by

κ = κ (qp) = −m (qp) sinα (8)

and the corresponding dispersion relation reads

ε (qp) = m (qp) cosα , (9)

and is not flat for generic values of α. These states de-
scribe drumhead states, filling the projection of the nodal
line onto the surface BZ. For the choice α = π/2, they
reproduce the known states in the flat surface band [11].

B. Boundary conditions and surface transport

We now examine the effects of the boundary param-
eter. In order to do this, consider the setup in Fig.
2, in which a pair of contacts probes the current on
the surface of the sample hosting the topological state.
We consider a NLS slab, with area S in the xy plane
and with size L along z, which is for the the mo-
ment used as a regulator and considered to be large.
For simplicity, we will limit our analysis to the regime
0 < α ≤ π/2. The bulk density of states for the Hamil-
tonian (1) n(b) = 1

LS
∑

k,± δ (E − E± (k)) = |E|
2πℏvD van-

ishes linearly at the nodal line, hence, in the ideal case

in which the chemical potential is aligned with the band
crossing, the only contributions must come from the sur-
face. Presently available samples of nodal-line semimet-
als have non-vanishing bulk carrier densities, hugely vary-
ing between 1016 − 1020cm−3 [16, 28, 42, 77–79], still or-
ders of magnitude lower than metals. It is still useful
to consider the situation in which n(b) ≈ 0, while the
surface component of the density of states is

n(s)(E) =
1

4πLD cosα
Θ(aD cosα+ E)Θ (−E) . (10)

where Θ denotes the Heaviside step function. For large
widths and generic values of α, the bulk states give the
dominant contribution to the density of states. On the
other hand, the two contributions become comparable
as soon as |E| L cosα ≲ 2πℏv, and the surface density of
states eventually becomes dominant when the inequality
is strictly satisfied. In the flat-band limit, one obtains
a divergent DOS in the limit E → 0 [11], which has
been argued to generate an enhanced Josephson current
through a NLS sample [80].

The boundary angle α determines the degree of pen-
etration of the drumhead states in the sample, as seen
from the decay length in Eq. (8) and the local density of
states (per unit surface)

As (z;E) =
|E| sinαe2zE tanα/ℏv

2πℏvkNLD cos2 α
(11)

×Θ(−E)Θ (Da cosα+ E) .

We now show that the angle α has observable conse-
quences in transport experiments, and start by noting
that the semiclassical velocity of the surface electrons
is v = v (qp) = 2Dqp cosα, thus, contains explicitly the
boundary parameter.

Let us assume that the carriers in the electrodes are in
equilibrium at the same temperature T , as well as a slight
imbalance in chemical potential, manipulated through a
voltage bias, that we can treat in linear response. We
apply a standard Boltzmann formalism in the relaxation-
time approximation, under the hypothesis of a weak re-
laxation rate due to the residual interactions and scatter-
ing with impurities or phonons. With the electric field
polarization û, the surface conductivity in linear response
is

σs = e2
ˆ

d2kp

(2π)
2 τ (v · û)2

(
− ∂f

∂E

)
=
e2

h

Dτ0k2NL

ℏ
cosα .

(12)
In this expression, we have approximated the relaxation
time with its value at the Fermi energy τ0, treated here as
a phenomenological parameter, obtaining a temperature-
independent result for kBT ≪ ℏvkNL. The latter can be
estimated as a fraction of eV (in the example of Ca3P2,
ℏvkNL = 0.515 eV [24]). The scattering time τ0 is deter-
mined by a complex interplay of electron-electron inter-
actions, electron-phonon interactions, and impurity scat-
tering, involving both surface as well as bulk states. Here,
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Figure 3. Schematic representation of a N-NLS junction, with
the interface parallel to the plane of the nodal line.

we treat it as a phenomenological parameter, indepen-
dent of temperature and surface termination.

While this is a crude estimate, which can be affected
by fluctuations of the bulk chemical potential and by
surface-bulk coupling [73], we can nonetheless draw some
interesting conclusions from our analysis. First of all, we
note that the same system, even in the presence of a
certain degree of protection of the surface states due to
the bulk symmetries, can show very different responses
in the surface conductivity, depending on the details of
the surface itself. In systems for which the bands in Eq.
(1) represent orbital types [51], the expression above links
the chemical composition of the surface to its charge con-
ductivity. Specifically, if the Hamiltonian (1) is written
in the basis of the elements of a binary compound, the
relative concentration on the surface is tan (α/2). Then,
the surface conductivity is proportional to cosα, which,
in turn, implies that surfaces with one element type only
are relatively bad conductors. The (electronic contribu-
tion to the) low-temperature thermal conductivity ks is
related to the electric conductivity by the Wiedemann-
Franz law [81], hence, ks =

k2
BT
e2 σs +O

(
T 3

)
exhibits the

same dependence from the boundary angle.

III. N-NLS INTERFACE

A. Model of the interface

We begin by considering a sharp interface between a
normal metal and a nodal-line semimetal, as represented
in Fig. 3. It can be modelled as a special case of parame-
ter discontinuity in the Hamiltonian in Eq. (1). We can,
in practice, consider this interface by choosing a(z) =
a0Θ(−z) + aΘ(z), with a0 < 0 < a. A more general
choice of function is also possible [52], but is not expected
to affect the main features of the transmission function in
this context. In addition, we choose a position-dependent
band shift in the form V (z) = V0Θ(−z) and we will fo-
cus on the instance V0 < 0, in which case the carriers in
the metallic regions are electrons. Figure 4 schematically
shows the two different quasiparticle spectra on the two
sides of the junction. We also define for convenience the

-2 -1 1 2
qx ,y

-8

-6

-4

-2

2

ε

2D 0 r 0V 0

-2 -1 1 2
qx ,y

-8

-6

-4

-2

2

ε

2D

Figure 4. Schematic representation of the band structure in
the metallic region z < 0 (left) and in the semimetallic region
z > 0 (right).

quantity ε0 ≡ ε − V0. Using this quantity, the energy of
the bulk excitations on the N side also has the form of
the dispersion (3)

ε0,± (q) = ±
√
q2z +m2

0 (qp) , (13)

here written in terms of dimensionless variables and using
the function

m0 = m0 (qp) = D0

(
q2p + r0

)
, (14)

where r0 = a0/a. As translation invariance in the z di-
rection is broken, the corresponding momentum is not
conserved anymore. Instead, we will use as quantum
numbers the energy of the state and the particle/hole
branch, which we denote as ν and ν0 in the NLS and
in the metallic regions, respectively. The absolute value
of the momentum in the z direction as a function of the
quantum numbers is

qz =
√
ε2 −m2 (qp) , (15)

q0 =
√
ε20 −m2

0 (qp) ,

which we write here for later use, see Secs. III B, III C
and IV B.

We study the problem of transmission through the N-
NLS interface in two limiting regimes: first the perturba-
tive regime in the tunneling between the surfaces, then
the transparent limit. It is important to remark, at this
point, that the Fermi surfaces of the two samples have
distinct topologies: while in N region it is an ellipsoid,
in the NLS region the Fermi surface is a torus, which
implies that there are distinct regions in the parameter
space. In order to see this, we note that the states that
can propagate in the bulk of the NLS are contained in an
annulus when projected onto the interface BZ, namely,
the two-dimensional projection of the bulk toroidal Fermi
surface. This is identified by the condition that the mo-
mentum in the z direction (15) is real, reading

1− |ε|
D

< q2p < 1 +
|ε|
D
, (16)
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for −D < ε < D. At the same time, the projection of
the propagating states in the N region onto the interface
BZ is the full disk q2p <

|ε0|
D0

− r0. We can therefore iden-
tify three regimes: (i) The diameter in the qxqy plane of
the Fermi surface in N is small compared to the inner
diameter of the Fermi surface of the NLS. Focusing for
definiteness on an electronic Fermi surface, this is possi-
ble if

−D0(1 + r0) < V0 < 0 , (17)

for energies in the range

0 < ε < Dmin

{
D0(1 + r0) + V0

D +D0
, 1

}
. (18)

In this regime, the absence of matching states implies
that the transmission always vanishes exactly. (ii) The
transverse size of the Fermi surface of the metal is inter-
mediate between the inner and the outer diameters, in
which case the transmission probability is different from
zero, but never reaches unit value, as seen in the right
panel of Fig. 5). (iii) The projection of the N Fermi sur-
face completely covers the projection of the NLS Fermi
surface onto the interface BZ. As seen in the left panel
of Fig. 5, the transmission probability reaches unit value
for some values of the momenta and the expected con-
ductance per unit surface is maximal. In the specific case
D = D0, this is ensured when the inequality

V0 < −D0(1 + r0) (19)

is satisfied. We refer the reader to the more general de-
scription in App. C 1, where the other parameter regimes
are discussed.

B. Transport through a single interface

We start by exploiting the results of Sec. II A and
consider the two samples as disconnected, but weakly
hybridized by the electronic tunneling between the in-
terfaces at z = 0. Here we assume that the transverse
momentum qp is conserved by the tunneling process as a
consequence of the translational invariance in the plane
of the interface. This may be violated in the presence of
inhomogeneities, such as charged impurities or vacancies,
or if there is a certain degree of roughness at the inter-
face. It is nevertheless a reasonable approximation if the
interface is sufficiently clean.

We start from two disconnected materials with the
band structure represented in Fig. 4: open boundary
conditions on each of them are imposed as in Eq. (6),
but with two generically different parameters α and α0.
The equilibrium chemical potential of the whole system
is set at µ. In order to study the current in linear re-
sponses, we impose a small imbalance δµ = eδV between
the two samples. The (elastic) tunneling is described by

the term

HT = λ
∑
kp

ψ†
0 (kp, z = 0)ψ (kp, z = 0) +H.c. (20)

where the subscript "0" denotes the metallic lead, in-
finitely extended in the negative z direction, see Fig. 3.
In the expression above there appears a tunneling ampli-
tude λ and we assume, for simplicity, that it is approxi-
mately constant in a region around the Fermi energy of
order ∼ kBT . Note that the operators ψ have two compo-
nents, but the tunneling is diagonal in the internal degree
of freedom.

We first consider the regime |λ|n0 ≪ 1, where n0 de-
notes the density of states at the Fermi energy. The cur-
rent through the interface is the derivative of the number
of carriers in the lead j (t) =

〈
Ṅ0

〉
, in the presence of the

weak perturbation in Eq. (20). The standard problem of
perturbative tunneling (see, e.g. [82]), together with the
condition of conservation of the transverse momentum,
brings the linear-response current per unit surface in the
form

j =δV
e2 |λ|2

πℏ3v2
Tr {ĝαĝα0

}

×
ˆ
dε

ˆ
dqp
2π

qpn0 (qp, ε)n (qp, ε)
β

4 cosh2 β(ε−µ)
2

(21)

where the integration range of qp is in Eq. (16) and
δV is a weak potential imbalance between the two sub-
systems. The momentum-resolved densities of states in
the lead n0 = dq0/dε and in the sample n = dqz/dε
are directly obtained from Eq. (15), while the matrices
ĝ and ĝ0 encode the spinor structure of the surface of
the two materials and, together with additional details
about the derivation, are provided in Appendix C 1. It
is worth mentioning that the equation above only sums
the states which are transmitted into propagating states,
which are detected asymptotically far from the interface.
The tunneling into surface states is also possible and pro-
duces, after a transient, a surface charge accumulation.
While we do not explicitly model this electrostatic barrier
here, the net effect is a suppression of the effective tun-
neling coefficient in Eq. (20). Assuming this is already
taken into account in the tunneling parameter, one ar-
rives at the low-temperature linear-response conductance
per unit surface

σ =
2e2 |λ|2

ℏ3πβv2D
ln

(
2 cosh

βµ

2

)
cos2

α− α0

2
. (22)

As seen from the expansion of the argument of the loga-
rithm 2 cosh βµ

2 ≈ 2+O
(
β2µ2

)
, the conductance vanishes

linearly in the temperature in the limit βµ ≪ 1. More-
over, we observe that the surface parameters appear in
a remarkably simple combination, which showcases the
dramatic effect of the boundary angle mismatch on the
weak-tunneling conductance.
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Figure 5. Transmission through a single interface as a function
of the momenta in the xy plane. In purple, the edges of
the Fermi surface of the NLS, in green, those of the metallic
region. The parameters chosen here are ε = 0.3, D = D0 = 1,
r0 = 0.1, V0 = −3.5 (left) and V0 = −0.7 (right).

Conversely, the details of the boundary do not mat-
ter in the strong tunneling regime |λ|n0 ≫ 1. Within
our assumption of ballistic transport, this regime can be
tackled as a quantum-mechanical scattering problem by
matching the single-particle wavefunctions at the inter-
face. Details are presented in App. C 1, while here we
just state the result for the transmission probability as a
function of the energy and the transverse momentum of
the incoming electron or hole

T1 (ε, qp) =
4q0qz |ε−m| |ε0 −m0|

(q0 |ε−m|+ qz |ε0 −m0|)2
. (23)

We note that this function describes both the scenarios
in which an incoming electron is transmitted as an elec-
tron (normal tunneling) if ε > 0 and that in which it is
transmitted as a hole (Klein tunneling) if ε < 0. In Fig-
ure 5, we illustrate the transmission probability (23) at
given energy as function of the transverse momenta. In
the left panel, the chosen parameters fall in the regime
(iii) of Sec. III A and we observe that that the perfect
transmission (T1 = 1) is reached when

qp =

√
Dε0 − r0D0ε

Dε0 −D0ε
. (24)

This is in contrast to the right panel of Fig. (5), in which
the parameters fall in the regime (ii) and the transmission
function in Eq. (23) never reaches unit value.

We will continue the analysis of transport in the trans-
parent interface limit in section IV and consider now the
refraction of the electron trajectories originated by the
change in the dispersion through the single interface.

C. Refraction and electronic optics

As already discussed in Sec. I, topological semimetals
are good candidates for observing phenomena connected
to the geometric electron optics, such as focusing. We
show now that this is achievable because of the bulk band
dispersion alone, and in particular because of the pres-
ence of a nodal line around the Γ point, without the need
of an applied electrostatic potential or electric field.

Consider an electron incident on the interface at z = 0
from the N side, with energy ε and angle θn with respect
to the normal. The electron is transmitted to the NLS
side with probability given by Eq. (23) and with exit
angle θs. The components of the semiclassical velocity u
in the NLS sample can be parametrized by its modulus
u and the angle θs with the normal to the surface

up ≡ u sin θs , uz ≡ u cos θs , (25)

while the angle in the plane of the interface is irrelevant,
due to the cylindrical symmetry of our problem. Anal-
ogously, the velocity w in the metallic sample can be
parametrized by its module w and the incoming angle θn

wp ≡ w sin θn , wz ≡ w cos θn . (26)

Following the procedure detailed in App. D, we arrive at
the generalized Snell’s law

tan θs = χ (ε) (tan θn − tan θ∗n) , (27)

with χ a function of the energy and of the material pa-
rameters

χ (ε) =
D2

D2
0ε

2q30(1)

2ε20 + (1 + r0) q20(1)
, (28)

having used q0(1) =
√
ε20 −D2

0 (1 + r0)
2, the latter being

the momentum defined in Eq. (15) with qp = 1. Note
that the above expression has a different sign when the
energy is above or below the nodal line. The angle θ∗n,
such that

tan θ∗n = 2
D2

0 (1 + r0)

q0(1)
, (29)

identifies an incoming electron which is transmitted ex-
actly on the nodal line, i.e., with an incidence angle such
that the electron exits normally to the interface on the
NLS side, which takes place when the transverse mo-
mentum matches the nodal line. Interestingly, Eq. (27)
shows that the exit angle θs changes sign when the inci-
dence angle moves across the value θn = θ∗n.

Imagining a localized source of electrons as in Fig.
6 and defining an axis as the line passing through the
source and perpendicular to the interface, several scenar-
ios can arise, according to the doping level. For ε > 0,
the change in the sign of the velocity implies that the
electrons with transverse momenta enclosed by the nodal
ring invert the component of their velocity parallel to the
interface. In other words, electrons with qp < 1 start
traveling back toward the axis after crossing the inter-
face, without ever changing the components of their mo-
mentum parallel to the interface: for normal (electron-
electron) transmission, the refraction index is effectively
negative for these states, see Fig. 6. The phenomenon
described here is different from what is observed in doped
graphene [61] in two aspects: first, the change in the sign
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Figure 6. Refraction of monochromatic electrons from a N-
NLS interface on a ring in real space. The trajectories of
the transmitted electrons from a point source are plotted for
various angles at V0 = −2, D = D0 = 1, r0 = 1. Top: normal
transmission ε = 0.1. Bottom: Klein transmission ε = −0.1.
Only the trajectories with nonzero transmission amplitude are
shown.

of the velocity is not originating from the electron be-
ing transmitted as a hole; second, refraction indices of
opposite sign coexist in different parts of the BZ.

For ε < 0, the electron is transmitted as a hole (Klein
tunneling). The exit angle is still given by Eq. (27), but
the function (28) is negative [66]. In this situation, as
shown in Fig. 6, the transmitted rays focus on a ring in
real space. Let us consider a point source of electrons at
distance ds from the interface on the metallic side: elec-
trons arrive with a given energy and various incoming an-
gles on the interface, such that the transverse momentum
qp is within the range in Eq. (16). The latter requirement
implies that the transmission probability is non-vanishing
in the regime (iii) and can be directly translated into a
range of incidence angles for which transmission into the
NLS is possible, see Eq. (D5) and the discussion in Ap-
pendix D. The distance from the axis of the electron/hole
trajectory can be written in terms of the incidence angle
and the z coordinate

r (z) =

{
(ds + z) tan θn z < 0

ds tan θn + z tan θs z > 0
. (30)

From the path above, one sees that for tan θs < 0 there is
a ring of radius R = ds tan θ

∗
n at distance dR from the in-

terface, in the semimetallic region, with dR = ds/|χ (ε) |.
As this is a direct consequence of the presence of a nodal
line, it can be interpreted as a way of observing it in real

space. We will discuss an experimental setup to probe
this effect in Sec. IV.

As mentioned in Sec. II, a more general shape of
the nodal line can be taken into account by an angle-
dependent rescaling of the momenta. The phenomenon
of negative refraction for momenta inside the nodal line
is originated only from the sign change of the velocity
across the interface, which is guaranteed by the existence
of a nodal line, and therefore, it will be present regard-
less of its shape. In other words, both panels of Fig. (6)
will be qualitatively the same. However, we expect the
focusing effect for ε < 0 to take place at a distance dR
which becomes angle-dependent. If the nodal line is rea-
sonably close to a circle, we still expect to detect a focus-
ing pattern that displays the surviving discrete rotational
symmetries, possibly blurred due to the deformation.

IV. N-NLS-N HETEROSTRUCTURE

The problem of a double interface is similar to the
one considered above [83]. We take a slab of NLS and
insert two interfaces with a metallic sample, which we
assume fully transparent for simplicity. As in Sec. III,
the interfaces are parallel to the plane of the nodal line, at
z = −L

2 and z = L
2 . In order to gain insight on the kind

of states that can carry charge and energy through the
system, we first consider an isolated slab and show that
there is a class of states resulting from the hybridization
of the drumhead states on the two opposite surfaces. We
dub them "drum" states. We then study the transport
through the slab in Secs. IVB and IV C and highlight
the effect of electron refraction from the nodal line in Sec.
IV D.

A. Spectrum in a slab

We start our analysis from the spectrum of a NLS slab,
in particular by studying the effect of the boundary pa-
rameter α, by deriving the drum states and the width in
which they exist. We impose the boundary condition in
Eq. (6) at z = −L/2 and we consider the class of bound-
ary conditions that do not spoil the defining mirror sym-
metry in Eq. (5). As the symmetry is implemented by
the operator τz, the boundary condition to be imposed
at the surface z = L/2 is

B (−α)ψ
(
L

2

)
= ψ

(
L

2

)
. (31)

Following, e.g., [66], one arrives at the quantization equa-
tion

tan (qzL) =
qz sinα

ε cosα−m
, (32)

in which qz is given in Eq. (15) and m is the function
(2) of the transverse momentum, as defined in Eq. (2).
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Figure 7. Dispersion of the surface states as a function of the
transverse momentum for L = 10 and various values of the
boundary angle, from the numerical solution of Eq. (32). At
finite size, each doublet splits into a pair of drum states, as
evident on the right part of the graph. The solid black line
ε = m is the threshold of continuum states. The splitting is
larger as one approaches the boundary of the support because
of the diverging penetration length, which determines a larger
overlap between the drumhead states.

The boundary conditions in [11] correspond to the choice
α = π/2, for which the "pseudo-spins" on opposite sur-
faces are orthogonal. Equation (32) is able to capture the
finite-size effects on the spectrum of a NLS slab for gen-
eral mirror-symmetry-preserving boundary conditions.

For generic values of the boundary angle α, we are not
aware of analytic solutions to Eq. (32), which is therefore
tackled numerically. Analytic solutions are only obtained
in specific limits, as discussed in App. B. Interestingly,
Eq. (32) can be directly continued to imaginary values
of the momentum, see Eq. (B11): as a matter of fact,
there exist solutions with qz = iκ, where κ =

√
m2 − ε2

takes the meaning of the inverse of a penetration depth.
Such solutions represent drum states, arising from the
hybridization of the drumhead states on opposite surfaces
and have therefore nonvanishing weight on both surfaces.
They are labeled by the transverse momentum qp and
the parity under the mirror reflection in Eq. (5).

In the large-slab limit, and in particular in the regime
L|m| sinα ≫ 1, one recovers the states (7), with the in-
verse penetration length given in Eq. (8) and the disper-
sion in Eq. (9). In Figures 7 and 8, we show the numer-
ical solution of Eq. (32) for a moderately large size. A
completely flat band exists only for α = π/2 in the limit
L→ ∞, see Eq. (9). For finite size, instead, the hy-
bridization between states on opposite surfaces generates
a pair of dispersive bands with opposite eigenvalues un-
der inversion. Numerical analysis, see Fig. 7, shows that
one band corresponding to surface states curves upward
and is positive around the edge of the support ε = −m.
The bottom band remains instead negative and merges
into bulk states when ε = m.

α=π/2
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α=π/4
α=π/6

0.2 0.4 0.6 0.8 1.0
qp
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0.4
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0.8
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κ

Figure 8. Inverse penetration depth of surface states as a
function of the transverse momentum for L = 10 and various
values of the boundary angle.

NLSN

z-L/2

x

y

L/2

N

Figure 9. Scheme of a N-NLS-N junction, infinitely extended
in the x and y directions. The metallic leads are at z < −L/2
and z > L/2 and the nodal line is in the plane parallel to the
interfaces.

B. Transport through a NLS slab

In this section, we return to the transport analysis from
where we left it in Sec. III B and connect the NLS slab to
two infinite metallic leads, in the configuration of Fig. 9.
Let us focus, for definiteness, on regime (iii) and energies
−D < ε < D. By considering the problem of scattering
through the double interface, we derive the transmission
probability

T (ε, qp) =
q20q

2
z

q20q
2
z cos

2 φε

2 + (ε0ε−m0m)
2
sin2 φε

2

, (33)

where qz, q0 are defined in Eq. (15) and

φε ≡ 2qzL (34)

is the phase acquired by an excitation with energy ε while
completing a back-and-forth path between the two inter-
faces. The details of the calculation are presented in App.
C 2. We note that there is a series of resonances when
this phase is an integer multiple j of 2π, for which perfect
transmission is achieved. The corresponding energies are

εj (qp) =

√
π2j2

L2
+m2 (qp) (35)
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Figure 10. Transmission probability (33) (real qz) and (37)
(imaginary qz) in the transparent interface limit. The green
line denotes the boundary of the projection of the bulk Fermi
surface of N onto the interface BZ, while the dashed pur-
ple lines denote the boundaries of the projection of the bulk
toroidal Fermi surface of the NLS. The states inside the in-
ner circle cannot propagate in the bulk: instead, the non-zero
value of T is originated from the drum states, see Eq. (37).
The parameter chosen in this figure are L = 3, ε = −0.3,
V0 = −5.5, V = 0, D = D0 = 1, r0 = 0.1.

for integer values of j. Following the geometric consid-
erations in Sec. III C, we conclude that, at given energy,
there are a series of resonant angles θjn, which correspond
to perfect transmission via each of these quantized res-
onant states. Exploiting the relation between the inci-
dence angle and the transverse momentum, see Eq. (D4),
we conclude that

tan θjn (ε) = tan θ∗n +
2D

√
ε2 − π2j2

L2

εχ (ε)
, (36)

with θ∗n defined in Eq. (29). This expression holds for en-
ergies above the first resonance threshold π/L and angles
within the range specified in (D5).

Another important feature of this function is that it
can be analytically continued to imaginary values of the
momenta qz = iκ, obtaining the result

T (ε, qp) =
q20κ

2

q20κ
2 cosh2 (κL) + (ε0ε−m0m)

2
sinh2 (κL)

.

(37)
As the product κL appears in the hyperbolic functions in
the denominator, the expression for transmission through
bound states is significantly different from zero only for
states close to the nodal line, where the penetration
length is comparable to L. However, as shown in Fig.
10, localized states can contribute in the momentum re-
gion where no propagating states are allowed, thus, en-
hancing the conductance at low temperatures. A sizeable
contribution from the localized states is obtained when
the hyperbolic functions in the denominator of Eq. (37)
are at most O(1). Since κ is at most O(D), as seen in Fig.
8 and from Eq. (8), this occurs provided DL ≪ 1. We
note that in this model [11, 51], the regions inside and
outside the nodal line can both host surface states. While

for the open boundary condition in Sec. II A the bound-
ary parameter selects the support of the surface states,
for a transparent interface, the energy ε will determine in
which momentum region evanescent states are present in
the junction. The addition of higher-order terms in the
low-energy Hamiltonian cures the ambiguity [72], but,
while turning the analytical calculations more cumber-
some, does not add qualitatively new features.

C. Electric transport

We now address the conductance of the slab, focusing
in particular on the role of the drum states. We assume
that the equilibrium distribution of the carriers in the
leads is

f0 =
1

eβ(ε0−µ) + 1
, (38)

and is controlled by contacting the sample with voltage-
biased reservoirs. Consistently with the choice to mea-
sure temperatures in the energy units of Sec. III, we have
introduced the notation β ≡ ℏvkNL/kBT for a dimension-
less inverse temperature and µ, the chemical potential, is
also in units of ℏvkNL. We bias the two leads with a small
chemical potential difference, and assuming a low im-
purity concentration and small enough electron-phonon
coupling, we study the regime of coherent transport in
linear response.

With the leads in a metallic regime, the magnitude
of |V0 + µ| is fixed by the Fermi energy of the metal,
which is generally larger than the cutoff ∼ D discussed
in Sec. II [84]. Since our low energy Hamiltonian is a
good description of the system for βD ≫ 1, then in turn
β|V0 + µ| ≫ 1. We conclude that, within the regime of
validity of our effective description, the system is in the
low-temperature regime and the distribution (38) is step-
like up to exponential corrections. Therefore, we focus
on the low-temperature regime and apply the Landauer
formula, which yields

σ =
e2vk3NL

2π
T (ε) +O

(
T 2

)
, (39)

in which

T (ε) =

ˆ
d2qp

(2π)
2 T (ε, qp) (40)

is the total transmission probability at given energy ε.
Our first observation is that this quantity contains the
nodal line radius kNL, i.e., it can be useful to predict a
trend when comparing the conductance of different ma-
terials. The transmission function itself is plotted in Fig.
11. At ε = 0, we note that the bulk contribution to
conductance vanishes because of the vanishing density of
states. In the limit L ≫ 1, the conductance vanishes
linearly for ε → 0. However, at finite size, the zero-
temperature conductance shows signatures of the local-
ized drum states: indeed, they turn this quantity finite



11

-0.4 -0.2 0.2 0.4
ϵ

0.1

0.2

0.3

σ

L=100

L=25

L=10

L=5

L=1

L=0.5

L=0.1

Figure 11. Slab thickness dependence of the charge conduc-
tance per unit surface in the low-temperature limit according
to Eq. (39) (in units of e2vk3

NL/2π) as a function of the en-
ergy (in units of ℏvkNL). The parameters are D = D0 = 1,
r0 = 0.1, V0 = −5.

even for a vanishing bulk density of states. Numerical
evaluation shows that the zero-temperature conductance
dies out as σ ∝ 1/L for large width, despite the expo-
nential localization discussed in Sec. II and IVA above.
The mechanism behind this result is the divergence of the
penetration length of the surface states when approach-
ing the nodal line. The argument is that, while at fixed
momentum qp, the overlap between localized states is ex-
ponentially suppressed ∼ emL, the function m (qp) given
at the end of Sec. II tends to zero at the nodal line
∼ q2p − 1. When computing the contribution from the
whole drumhead state, the resulting integral over qp goes
to zero indeed as 1/L. We note in passing that the low-
temperature electronic thermal conductance is related to
the charge conductance (39) by the Wiedemann-Franz
law and shows similar features.

D. Current profile

It is interesting now to look at the junction from an
electron optics perspective. Based on the considerations
of Sec. III, we propose here that the change in the band
dispersion at the interface between a metal and a nodal-
line semimetal creates naturally a negative refraction in-
dex, which can be used to redirect part of the electronic
beam. For a sufficiently extended slab, see discussion
above, we can for simplicity neglect the contribution of
the surface states and study the geometric paths of the
propagating electrons only. We consider a point source
at a distance ds from the left interface of a slab of width
L and study the path of an electron incident on the slab
with angle θn. We are interested in the dependence of
the radial distance r on the distance d measured from
the right interface. With the considerations of Sec. III,
we write

r (d, θn) = ds tan θn + L tan θs + d tan θn . (41)

In Fig. 12, we show an interesting effect taking place
for a p-doped NLS. As discussed in the previous sec-
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Figure 12. Example of electron focusing on a ring of radius
R, at distance d: N-pNLS-N junction with a slab of thick-
ness L = 0.8, delimited by the vertical lines, and a source of
monochromatic electrons in N on the left. The parameters
used are ε = −0.1, D0 = D = 1, V0 = −2, r0 = 0.1, ds = 0.8.

tion, a focusing effect takes place in the pNLS, which
is also present when the electrons exit the interface on
the metallic side. Following similar geometric considera-
tions, the condition that two paths with incidence angles
θn and θ′n meet at distance dR identifies the focal ring
and can be cast into the form

0 ≡ r (dR, θn)− r (dR, θ
′
n) (42)

= (ds + Lχ (ε) + dR) (tan θn − tan θ′n) .

It follows that all the transmitted rays, independently of
the incidence angle, cross at distance

dR = L |χ (ε)| − ds (43)

from the second interface. Thus, they focus on a ring of
radius

R = r (dR) = L |χ (ε)| tan θ∗n , (44)

which is a direct consequence of the inversion of the semi-
classical velocity originated by the nodal line. Therefore,
the result in Eq.(44) provides a way of imaging the nodal
line in real space. The fact that the trajectories exactly
meet on a ring is a consequence of the linearization of
the momentum around the nodal line, while inclusion of
higher-order terms would spread the focus onto a larger
area [61]. Nevertheless, when the chemical potential is
reasonably close to the nodal line, the range of trans-
verse momenta for which transmission is nonvanishing is
narrow and the linearization is a relatively good approx-
imation.

In Fig. 13, we show instead a typical scenario oc-
curring in a long junction including a n-doped NLS. As
seen in Sec III, the refraction index for electrons with
transverse momentum inside the nodal ring is negative,
which implies that the electrons with tranverse momen-
tum qp < 1 are refracted back toward the axis while they
travel within the NLS slab. After exiting in the metallic
region again, they propagate with their original velocity,
i.e., with the same angle with respect to the interface.
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Figure 13. Observable effect of the negative refraction within
the nodal line in a N-nNLS-N junction with a slab of thickness
L = 0.8 and a source of monochromatic electrons in N. In the
N region on the right, a finite region of higher current density
is present around the axis beyond the slab. The parameters
used here are ε = 0.1, D0 = D = 1, V0 = −2, r0 = 0.1,
ds = 0.6.
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Figure 14. Proposed setup for the detection of the spatial
current profile: an STM tip or a quantum point contact on
one surface of the metallic sample (S) acts as a point source
of electrons. After passing through the NLS slab, the current
acquires an intensity distribution as a function of the distance
from the axis, which can be probed by a mobile STM tip (D)
on the other surface.

However, traveling through the slab has shifted the path
to a parallel one, which is evident in the spreading in
Fig. 13. This suggests that a sequence of NLS slabs is
an effective mean to keep electronic wavepackets close to
the axis.

In order to probe these predictions, we propose the
setup illustrated in Fig. 14, in which the electric cur-
rent through the N-NLS-N heterostructure is probed by
means of two STM tips. In particular, one tip on one sur-
face of the metallic sample acts as the localized source of
electrons, while a mobile tip on the opposite surface can
be used to scan for the local current density. In the exam-
ple of Ca3P2, with the parameters quoted in Sec.IV A we
obtain a reference energy scale ℏvkNL ≈ 0.51eV and tak-
ing E ≈ 0.095 eV [24], E0 ≈ 1 eV, we obtain θ∗n ≈ 14.3
degrees and χ ≈ 5.1. For a qualitative estimate, using
instead E = −0.1 eV, ds = L = 0.1 µm we obtain a
focus on a ring of radius R/kNL ≈ 0.13 µm at distance
dR/kNL ≈ 0.41 µm.

V. CONCLUSIONS

We have studied in detail the effect of interfaces of
nodal line semimetals in electronic transport, both for a
metal-nodal line semimetal junction and for a nodal line
semimetal slab embedded between two metallic samples.
While the bulk topological invariant, quantized by a mir-
ror symmetry, implies the existence of drumhead states
on the surfaces parallel to the plane of the nodal line,
their support and penetration depth are also determined
by the details of the termination. Such details deter-
mine the surface band dispersion, shifting it away from
zero energy, and are of relevance in ARPES experiments
targeting the drumhead states and for transport experi-
ments, both along and across the surface. As transport
in specific geometries of Weyl semimetals is strongly sen-
sitive to boundary conditions [85], it will be interesting
to check if the same holds true for nodal-line semimetals.

In the transparent limit, the interface becomes feature-
less, but the contribution of the surface states is still
present in the slab geometry. In fact, we have shown
that drumhead states hybridize into "drum" states and
contribute to transport across the sample with a factor
that scales like the inverse of the slab width. This ex-
tends the support of the transmission function, enhanc-
ing the conductivity across the slab and turning it finite
even when the chemical potential is exactly at the band
crossing. Interestingly, we have identified a series of res-
onances and connected them to the incidence angles of
the electrons on the interface.

We have shown that two kinds of refractions take
place at the interfaces between a metal and a nodal-line
semimetal, depending on the level of doping of the lat-
ter. In one regime, part of the electrons are refracted
back toward the axis of the system; in the other, the
electron paths cross on a ring of given radius, which can
be exploited to image the nodal line in real space. Hole
pockets in a NLS were detected, e.g., in HfSiS [86], but
a more elaborate model is needed to describe the com-
plicated Fermi surface of this material. We are presently
not aware of experiments reporting a hole Fermi surface
around the nodal line, but a material with such charac-
teristic would open the possibility of exploring part of
the physics described in this work.

As a final remark, we only considered throughout this
paper interfaces parallel to the plane of the nodal line.
As nodal lines are protected by a crystal mirror symme-
try, it is often the case that a material can be cleaved in
such configuration [24, 25, 32]. For a generic orientation,
what matters is the projection of the nodal line onto the
surface Brillouin zone, which delimits the surface states.
The refraction effects only depend on the sign change of
the group velocity across the nodal line projection and
therefore are expected to be qualitatively unaffected by
the orientation. We do expect some changes in the for-
mulas for the focus distance and radius, respectively Eqs.
(43) and (44).
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Appendix A: Boundary Green’s function

In the presence of a surface at z = 0, the eigenstates
in the region z > 0 in the regime m2 < ε2 have the form
of reflected waves, with an incoming component ∼ e−iqzz

and a reflected component ∼ eiqzz. The reflection coeffi-
cient has unit modulus and is completely determined by
the boundary condition in Eq. (6) as

r = eiξα(ε) = −
(ε−m) cos α

2 + iqz sin
α
2

(ε−m) cos α
2 − iqz sin

α
2

(A1)

(the label qp is omitted for compactness of notation).
The Green’s functions assume the generic form

Gε (z, z
′; t) =

∑
r,r′=±

Gε,r,r′ (t) e
iqz(rz−r′z′)ei(r−r′)ξα(ε) ,

(A2)
with the various components directly written from the
bulk eigenstates (4). We are interested in computing this
function on the boundary z = z′ = 0. In order to do this,
we exploit the fixed spinor structure from the boundary
condition (6) and write

GR
ε (qp;ω) =

1

ℏvkNLL

ĝα
ω + iη − ε

, (A3)

in which η denotes the small imaginary part of the fre-
quency and the matrix ĝ is

ĝ =

(
1 + cosα sinα
sinα 1− cosα

)
. (A4)

We have normalized the wavefunctions by a length L,
which can be sent to infinity at the end. Similarly,
one writes the boundary Green’s function for the surface
states as

GR
s (qp, z, z

′;ω) =
−1

ℏvkNL

ĝαmα (qp) sinαe
mα(qp)(z+z′) sinα

ω + iη −mα (qp) cosα
(A5)

having taken advantage of the inverse penetration length
(8) and of Eq. (9) for the energy of the drumhead states.
The associated local density of states per unit surface is
then computed as

A (z, ω) = −k
2
NL

π
Im

{ˆ
d2qp

(2π)
2Tr

[
GR

s (qp, z, z; t)
]}
(A6)

Substituting Eqs. (A4) and (A5), one obtains the expres-
sion (11) in the main text.

Appendix B: Quantization in a slab

We provide here some detail about the quantization in
a slab of Sec. IVA. We apply the NLS Hamiltonian (1)
to the Ansatz

ψqp (z) = g+ (z) ξα+ + g− (z) ξα−, (B1)

where ξα± denote the eigenvectors of B (α) with eigen-
value ±1 and g± are two unknown functions of the coor-
dinate across the slab. One obtains the decoupled equa-
tions [

m2 (qp)− ε2
]
g± − ∂2zg± = 0 (B2)

for the unknown functions g±, which have two families of
solutions. If ε2 > m2 (qp), we have plane-wave solutions
in the form g± = a±e

iqzz + b±e
−iqzz and momentum

qz =
√
ε2 −m2. Further application of Eq. (1) fixes the

ratios between the coefficients as

a+
a−

=
m sinα+ iqz
m cosα− ε

, (B3)

b+
b−

=
m sinα− iqz
m cosα− ε

. (B4)

The following step is imposing the boundary conditions.
The application of Eq. (6) at z = −L/2 implies g

(
−L

2

)
=

0, while the boundary condition at L/2 is equivalently
written as

0 = ξ†−α,− · ψ
(
L

2

)
. (B5)

Using

ξ−α,+ = cosαξα,+ + sinαξα,−; ,

ξ−α,+ = − sinαξα,+ + cosαξα,− , (B6)

after some manipulation, one arrives at the quantization
condition (32).

In order to solve the quantization equation numerically,
it is useful to have a good starting guess for the root-
finding routine. With the parametrization

qz = |m| sinχ , ε = |m| cosχ , 0 ≤ χ < π (B7)
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one notices that the quantization equation can be cast in
the form

tan (|m|L sinχ) =
sinχ sinα

cosχ cosα− sign (m)
. (B8)

In the limit |m|L≫ 1 the solution is readily written as

qz ≈ πn

L
, n = 0, 1, . . . , (B9)

which holds for the lowest bands |n| ≪ L/π and
0 < α < π. This can be denoted a "bulk" limit, as the
details of the boundaries do not matter. In the opposite

limit |m|L≪ 1, instead, one finds

qz ≈ π

L

(
n− 1

2

)
, n = 1, 2, . . . . (B10)

If m2 (qp) > ε2, the differential equation (B2) admits
evanescent solutions in the form g± = a±e

κz + b±e
−κz.

The energy is quantized by the condition

tanh (κL) =
κ sinα

ε cosα−m
, (B11)

with κ =
√
m2 − ε2, which is just the analytic continu-

ation of Eq. (32). The explicit form of the drum states
is

ψqp (z) = N

{(
κ cosh

[
κ

(
z +

L

2

)]
+m sinα sinh

[
κ

(
z +

L

2

)])
ξα+ cosα

+ (κ coth (κL) +m sinα) sinh

[
κ

(
z +

L

2

)]
ξα− sinα

}
, (B12)

up to a normalization N , in which κ is determined from
the quantization condition (B11) and the spinors ξα,±
have been defined in Sec. II A. Using the relations (B6),
it is straightforward to check that Eq. (B12) satisfies the
boundary conditions (6) and (31) and has equal weight
around both surfaces.

Appendix C: Single and double interface,
transparent limit

1. Single interface

We solve the quantum-mechanical problem of trans-
mission through an interface, with the injection and de-
tection of charge carriers taking place asymptotically far
from the interface. To this end, we write the incoming,
reflected and transmitted waves as{

ψν0q0,qp
eν0iq0z + rψ−ν0q0,qp

e−ν0iq0z

tψνqz,qpe
νiqzz

, (C1)

where the bulk solutions are written in Eq. (4), qz and
q0 are the absolute values of the longitudinal momenta,
defined as function of the energy in Eq. (15) and ν, ν0
are the particle/hole indexes in defined in Sec. III. In the
described setting, the states which need to be taken into
account are only the ones that can carry current along z,
i.e., the localized states are not included. The currents in
the z direction as derived from the Hamiltonian (1) have
the form

jz = evτy (C2)

and expectation values

jNLS =
νevqz
ε

, j0 =
ν0evq0
ε0

(C3)

in the two regions. Matching the wavefunctions at the
interface, one obtains two equations for the two compo-
nents and can solve in the unknown reflection and trans-
mission coefficients:

r =
νν0q0 (ε−m)− qz (ε0 −m0)

νν0q0 (ε−m) + qz (ε0 −m0)
, (C4)

t =ν

√
ε (ε−m)

ε0 (ε0 −m0)

2q0 (ε0 −m0)

q0 |ε−m|+ qz (ε0 −m0)
. (C5)

We note in passing that, within our normalization of the
states, reflection and transmission satisfy the current con-
servation relation

|r|2 +
∣∣∣∣jNLS

j0

∣∣∣∣ |t|2 = 1 . (C6)

The transmission probability T =
∣∣∣ jNLS

j0

∣∣∣ |t|2 is provided
in Eq. (23).

Finally, we provide the inequalities corresponding to
the transmission regimes discussed in Sec III A. For ε > 0,
the boundaries of regime (i), in which no transmission is
possible, are

0 < ε < Dmin

{
D0(1 + r0) + V0

D +D0
, 1

}
, (C7)
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reported as Eq. (18) in the main text. The regime (iii),
in which the highest transmission is found, is instead de-
limited by

Dmax
{
0, D0(1+r0)+V0

D0−D

}
< ε < D , D > D0

0 ≤ ε < Dmin
{
−D0(1+r0)+V0

D0−D , 1
}
, D < D0 .

(C8)

Eq. (19) must hold if D ≤ D0, while the stricter condi-
tion V0 < −(D +D0r0) is found for D > D0.

2. Transport through a NLS slab

The scattering problem through a double interface is a
standard scenario in quantum mechanics. We write the
wavefunction as


ψν0q0,qpe

ν0iq0z + rψ−ν0q0,qpe
−ν0iq0z z < −L

2

a+ψqz,qpe
iqzz + a−ψ−qz,qpe

−iqzz −L
2 < z < L

2

tψν0q0,qpe
ν0iqzz z > L

2

.

(C9)
Imposing the continuity at both interfaces, we determine
the complex coefficients r, t, a± and arrive at the end
result in Eq. (33) for T = |t|2. We note in passing that
it can be cast into the form

T =
T 2
1

1− 2R1 cos (φε) +R2
1

, (C10)

where T1 is the transmission probability (23) through
each interface and R1 = 1 − T1 is the corresponding re-
flection probability, while the phases φε has been defined
in Eq. (34). This is expected from our assumption of
coherent transport through the slab [87].

All thermoelectric coefficents are obtained from inver-
sion of the response matrix (see, e.g., [81, 88, 89]). We
focus in this work on the electric conductance per unit
surface

σ = e2K0 , (C11)

where

K0 =
1

2πℏ

ˆ
dεT (ε)

(
−df0
dε

)
. (C12)

In the expression above, T is the transmission func-
tion at given energy defined in Eq. 40 and f0 the free
electronic distribution from Eq. (38).

Appendix D: Angles

In this appendix, we provide some details of the cal-
culation leading to Eq. (27). Assuming a small Fermi
surface around the nodal line, see Sec. II, we can con-
sider momenta close to the nodal line qp ≈ 1 and retain
only the linear term in the deviation δqp, i.e., qp = 1+δqp.
Throughout this section, we will therefore write the ve-
locities (in units of v) and all the expressions up to terms
∼ O

(
δq2p

)
. We begin by writing the semiclassical velocity

components (25) in the NLS to this order

up ≈ 4D2

ε
δqp |uz| ≈ 1 . (D1)

Using the expressions above, we relate the exit angle in
Eq. (25) to the distance from the nodal line

tan θs =
up
uz

≈ 4D2

ε
δqp . (D2)

The strategy is now to express δqp, conserved across the
interface, in terms of the energy and angle of the incom-
ing particle. From the definition (26) we obtain

wp

v
≈ 2D2

0

ε0
(1 + r0)

(
1 +

3 + r0
1 + r0

δqp

)
, (D3)

wz

v
≈ q0(1)

ε0

(
1− 2D2

0 (1 + r0)

q20(1)
δqp

)
.

Note that the last line never changes sign, as long as
|δqp| ≪ 1. Combining these relations, we obtain

δqp =
q30(1)

2D2
0

(tan θn − tan θ∗n)

2ε20 + (1 + r0) q20(1)
, (D4)

where θ∗n is defined in Eq. (29). We can now substitute
this expression into Eq. (D2) and obtain the "generalized
Snell’s law" (27) in the main text.

Interestingly, the condition that the electron has a real
momentum qz in the NLS identifies a range of transverse
momenta (16), which can be promptly translated into
a range of allowed incidence angles from the N side for
which transmission into the NLS is possible. Substitution
of Eq. (D4) into Eq. (16) implies that

tan θmin < tan θn < tan θmax, (D5)

with
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tan θmin =
2D2

0

q30(1)

[
(1 + r0) q

2
0(1)−

|ε|
2D

(
2ε20 + (1 + r0)q

2
0(1)

)]
, (D6)

tan θmax =
2D2

0

q30(1)

[
(1 + r0) q

2
0(1) +

|ε|
2D

(
2ε20 + (1 + r0)q

2
0(1)

)]
. (D7)
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