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Graphics Processing Units (GPUs) are becoming widespread, even in safety-critical applications. In that case, 

it is imperative to guarantee that the probability of producing critical failures due to hardware faults is lower 

than a given threshold. To detect possible permanent hardware faults as soon as they appear during the op- 

erational phase (e.g., due to aging), Software Test Libraries (STLs) have gained significant traction as a widely 

adopted test solution due to their effectiveness in terms of fault detection capabilities, test application time, 

and flexibility. However, a major drawback of this solution is the lack of automation in the STL generation 

phase. As a result, high manual labor is required for their generation. This becomes even more arduous in com- 

plex architectures that require in-depth knowledge to cover hard-to-test faults. In this article, we introduce 

a methodology based on Bounded Model Checking to support the generation and improvement of stuck-at- 

oriented STLs for hard-to-test units in GPUs, showing that we can enhance the test coverage achieved by 

pre-existing STLs while also identifying a set of functionally untestable faults. To experimentally validate the 

proposed method’s effectiveness, we use the FlexGripPlus GPU model to target two hard-to-test units, one 

medium to low complexity sub-unit and one high complexity sub-unit, as study cases. For both units, we had 

pre-existing STLs written for the stuck-at model. Resorting to the proposed method, the STLs’ test coverage 

was increased by 9.57% and 2.19%, respectively. In addition, the method also identified a significant number 

of functionally untestable faults. 
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 Introduction 

n the last years, Graphics Processing Units ( GPUs ) have been adopted in a wide variety of
pplications. This is due to the remarkable parallelization capabilities and computational power
PUs provide. Among the application areas where GPUs are used, some fall in the safety-critical
omain [ 27 ]. For example, in the automotive industry, GPUs have found widespread utilization
n various applications such as autonomous guided vehicles [ 2 , 3 ] and advanced driver assistance
ystems [ 26 ]. GPUs are particularly important for computationally intensive tasks involving ma-

hine learning ( ML ) applications and computer vision algorithms. In the avionics and space in-
ustry, GPUs are utilized as underlying engines to support vision-based navigation and mid-air
bject detection [ 5 ]. Additionally, GPUs aid in computationally intensive tasks, including flight
anagement and data processing, playing a vital role in the industry [ 1 , 22 ]. Furthermore, there

re plans to employ GPUs in railway systems as a powerhouse to enable trains’ safe and dynamic
anagement based on environmental and geometrical parameters [ 4 ]. Lastly, GPUs are utilized

n various industrial applications, including industrial control robots and predictive equipment
aintenance [ 25 ]. It is worth noting that GPUs are not the exclusive hardware options for data ac-

umulation and processing tasks (e.g., silicon health and operational metrics [ 34 ]). In many cases,
ensor Processing Units ( TPUs ), ASICs, and FPGAs are used alongside GPUs for these purposes.
In such safety-critical scenarios, manufacturers must provide additional assurances that failures

ill not occur during the device’s mission cycle. Furthermore, in the rare event that a fault activates
n error, it must not propagate to a system failure that risks human life or endangers the environ-
ent. The functional safety standards (e.g., DO-254 for avionics, EN-50129 for railways, IEC-62061

or industrial machinery, and ISO-26262 for automotive) mandate high test coverage thresholds to
e reached for an electronic device mounted on a safety-critical system to be considered safe. As
n example, in automotive ISO-26262 requires 98% functional fault coverage for every highly crit-
cal environment in the car (e.g., airbags). This challenging target is normally achieved using a

ix of different solutions, including redundancy, Design for Testability ( DfT ), and functional
elf test. When it comes to the latter, which involves conducting tests by manipulating functional
nputs and observing corresponding outputs without relying on DfT, test engineers frequently
urn to Software-Based Self-Testing ( SBST ) [ 28 ]. This approach helps them generate Software

est Libraries ( STLs ) tailored to specific fault models and widely used to detect permanent hard-
are faults (e.g., stuck-at and transition delay faults) occurring during the operational phase

 in-field test ). 
The SBST strategy is a flexible and non-intrusive method that relies on carefully crafted Test

rograms ( TPs ) and utilizes the Instruction Set Architecture ( ISA ) to apply test patterns. These
atterns are designed to activate potential faults within a targeted device unit and propagate their
ffects to some visible location(s). TPs are primarily developed at the assembly level, and in prac-
ice, an STL is a collection of TPs. These TPs effectively allow the detection of hardware faults
n a device. Their development is up to the manufacturing company, which then passes them to
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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he system company, which integrates them into the application software. STLs can be activated
uring the operational phase, e.g., during the application idle times. The dominant fault models
urrently supported by the safety standards are the stuck-at and the transition delay models. STLs
ave been used extensively in the past for end-of-manufacturing [ 28 ] and in-field test in the case
here the circuit-under-test ( CUT ) is a processor or controller [ 17 , 36 ] and are now used for

n-field test of GPUs as well [ 30 ]. 

.1 Previous Works 

n the literature, several works addressed the development and adaptation of SBST strategies for
PUs [ 15 , 20 , 30 ]. Some authors demonstrated the feasibility of adopting pseudo-random test

trategies (used initially in CPUs) for functional units in GPUs [ 15 ]. Other strategies targeted inter-
al registers, some simple controllers, and functional units by exploiting Automatic Test Pattern

eneration ( ATPG ) algorithms to provide reasonable test patterns later translated into equiva-
ent machine instructions and assembled as TPs [ 19 , 20 ]. Nevertheless, both (pseudo-random and
TPG-based strategies) are mostly effective on combinational units. 
Other more elaborated structures, such as schedulers and in-chip accelerators, require costly

ustom testing strategies and involve considerable engineering effort, commonly combining ar-
hitectural analyses and ad-hoc algorithms to develop acceptable test routines [ 16 ]. 

Authors in [ 9 ] proposed custom fault primitives to develop TPs addressing memories inside
ontrollers. In [ 11 ], the authors proposed sets of custom TPs, sequentially executed, addressing the
unctional test of registers in the GPU’s core pipeline. Similarly, in [ 12 ], custom testing strategies
re introduced to test some embedded memories in the GPU architecture functionally. In [ 21 ], the
uthors face the testing of Tensor Core Units ( TCUs ) by resorting to Universal Test Patterns

 UTPs ), which are derived from the unit’s functionality and their primitive computations. While
ustom test routines might be effective locally, these strategies can hardly be applied to more
omplex structures in GPUs, such as large controllers. In fact, the results in [ 30 ] indicate that
he combination of several testing strategies is mostly effective in functional units and memories
ithin GPUs. Unfortunately, those results also show limitations in test effectiveness and quality on

omplex units, such as controllers, so indicating that clever algorithms and strategies are required
o test those complex units effectively. 

Furthermore, robust formal analyses and algorithms, such as Bounded Model Checking

 BMC ) [ 29 ] have been proposed and adapted to evaluate the reliability of digital systems through
uilding and solving weighted maximum-satisfiability problem models. Unfortunately, the main
arget of the evaluations has been mostly focused on processors, neglecting the parallelism and
he complex structures in GPUs. A preliminary work [ 14 ] performed a first attempt to employ
ormal methods to identify functional stimuli and enable the control/sensitization of permanent
aults in one GPU unit. However, the functional stimuli were mostly evaluated for fault activation
i.e., controllability) purposes without complete testability verdicts. Thus, developing effective and
uality TPs and STLs through formal methods remains unexplored for most GPU structures. 
In particular, two main factors limit the development of effective TPs for complex units in GPUs:

i) the deep knowledge required to understand the structural features of any target unit, and (ii) the
arallelism constraints when addressing a given unit. In all the aforementioned approaches, huge
anual efforts and long development times are required when developing specific TPs on partic-

lar units of a GPU (e.g., control units). Moreover, in terms of fault coverage and program size,
he TP quality could be negatively affected by operational constraints and structural restrictions,
eading to insufficient fault coverage of functional ATPG-based TPs, so exacerbating the need for
omplementary methods or alternative mechanisms to improve the quality of TPs for GPUs. 
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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.2 This Work 

n this article, we present a novel approach leveraging formal methods to improve the quality of
re-existing STLs targeting stuck-at faults in complex units within GPUs. 
Our approach cleverly combines the structural constraints of a GPU unit and their parallel pro-

ramming constraints (i.e., parallel thread branching, divergences, convergences, and scheduling
perations) to generate effective test patterns that can then be translated into equivalent parallel
nstructions and TPs for GPUs. In detail, we propose a BMC -based method to identify candidate test
atterns while considering functional constraints applied to a targeted GPU sub-unit (e.g., a con-
roller) and address hard-to-test faults. The generated patterns are then analyzed, translated into
Ps, and validated via focused fault simulation campaigns to provide a complete testability verdict.
In particular, given the gate-level description of a GPU unit and a list of its functional constraints,

ur approach generates functional stimuli that enable the control/sensitization of stuck-at faults.
f this is not possible for a certain fault, then this fault is marked as functionally untestable. Oth-
rwise, we generate a functional test pattern, which is further used to (and possibly optimized to)
ropagate the fault up to the unit observation/test points (i.e., the unit’s primary outputs). This goal
s pursued without resorting to any DfT infrastructure, as it is common for other in-field test solu-
ions. Finally, the generated functional test patterns are grouped and transformed into TPs. More-
ver, given an STL for a specific unit, we can identify the untested faults and, thus, systematically
arget them, i.e., generate patterns for them (if possible) and then convert them to TPs to enhance
he STL’s overall fault coverage. Basically, we achieve this by first reducing the pattern generation
roblem to a BMC problem and then by effectively solving it using an appropriate solver [ 23 ]. 
When applied to an existing STL, our method offers two enhancements. Firstly, performing

MC-based pattern generation on a standalone sub-unit of a GPU enables the exploration of fo-
used test patterns that resort to functional constraints, which increase the fault coverage of a
re-existing STL by specifically targeting hard-to-test faults, which is unfeasible in other SBST
pproaches. This enables a more thorough assessment of the system’s robustness. Secondly, the
valuation of functional constraints in our approach supports the identification of some function-
lly untestable faults within a targeted unit. By identifying and addressing these faults, we can
nhance the overall effectiveness and reliability of the STL by marking them as safe and by remov-
ng them from the computation of the STL’s fault coverage. Lastly, we demonstrate our method
tarting from the basic GPU behavior without making assumptions about the application environ-
ent. That is, no mission profile was enforced in the form of functional constraints during our
MC pattern generation. Since adding new constraints will make the task of the BMC easier, the
ffectiveness of the proposed method is expected to increase if a mission profile is considered. 

To the best of our knowledge, this is the first work proposing an approach to enhance TPs’
uality (in terms of fault coverage) by employing formal methods on STLs for GPUs. 
In particular, our approach employs a new elaborated, powerful, scalable, and dynamic mecha-

ism for constraint specification (functional constraint formulation mechanism) to face the highly
omplex nature of the structures in GPU designs (i.e., constraints of architectural and functional
arallelism, including correctly modeling warps, parallel thread branching, convergences, sched-
ling operations, control signals and protocols) and allow the effective generation of test patterns.
oreover, the fault propagation evaluation is embedded as part of the BMC problem. Furthermore,

o extra computational effort is spent on generating an extraction sequence. 
We use the ( FlexGripPlus ) [ 31 ] GPU model as the instrument to validate the effectiveness of the

roposed approach on the STLs. In particular, the ( FlexGripPlus ) model is the only available low-
evel micro-architecture open-source GPU model supporting the CUDA programming model and
ith several available reference STLs. We targeted, through application-independent functional
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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onstraints, two key units for the GPU operation (the decoding unit and the divergence management

nit ) for which it is hard to develop effective TPs and STLs due to their operation and functional
onstraints [ 30 ]. Both units are strategically targeted since they are functionally different or do not
ven exist in CPUs, emphasizing the peculiarities of GPUs. Furthermore, these units differ in ar-
hitectural complexity and size (i.e., total number of gates). Namely, the decoding unit is a medium
o low-complexity circuit; instead, the divergence management unit is a high-complexity circuit. 

To summarize, the main contributions of this work are 

—The development of a novel approach leveraging BMC to improve the fault detection ca-
pabilities of pre-existing STLs for GPUs, specifically targeting stuck-at faults. 

—The introduction of an elaborate constraint specification mechanism to address hard-to-test
units in GPU. This mechanism combines a GPU’s unit structure and the parallel program-
ming features as valid constraints for effectively generating candidate test patterns, which
are translatable into parallel assembly instructions. 

—The definition of a constraint specification mechanism that embeds and combines fault
propagation within the BMC problem, eliminating extra computational effort for generat-
ing extraction sequences and feasible candidate test patterns. 

—The extensive evaluation and validation of the proposed formal approach for enhancing
STLs in GPUs by resorting to the open-source GPU model FlexGripPlus , targeting the
decoding and divergence management units. The quantitative results indicate an increase
in the amount of identified new test patterns for both units (1,172 and 2,421, respectively)
and a significant improvement in the fault coverage for both units (around 9.57% and 2.19%,
respectively). 

It is important to note that for the purpose of the experiments reported in this article, we did
ot apply any system or application-specific functional constraints, which could significantly in-
rease the achieved fault coverage by increasing the number of safe (i.e., functionally untestable)
aults [ 8 ]. 

It is also worth noting that our approach is intended to support the development and enhance-
ents of effective STLs when the micro-architecture of a targeted device is available. Although
e refer to the architecture and the technical vocabulary of NVIDIA in the text, the proposed

TL enhancement methodology is flexible (non-architecture-specific), and it can be used to target
ther GPU units and other architectures. Adapting further units requires a clear definition of the
unctional constraints for a targeted unit for their later assembly in the pattern generation flow. 

The rest of the article is organized as follows. In Section 2 , we provide extensive background
nformation on the architecture of the GPUs and on the functional units that we will be targeting
s CUTs. In Section 3 , we present in detail our method and further explain the differences and
ovelties with respect to the method presented in [ 14 ]; and in Section 4 , we explain the flow of
ur experiments. In Section 5 , we present our experimental results on the two functional units (de-
oder and divergence management unit) while elaborating on the differences in terms of constraint
ormulation and runtime of the method. Lastly, in Section 6 , we draw some conclusions. 

 Background 

.1 Organization of GPUs 

PUs are special-purpose hardware accelerators exploiting a mix of Multiple-Instructions

ultiple-Data ( MIMD ) and Single-Instruction Multiple-Data ( SIMD ) paradigms to efficiently
rocess large amounts of data in a parallel fashion [ 10 ]. In particular, modern GPUs comprise clus-
er arrays of parallel hardware processors (also known as Streaming Multiprocessors or SMs), see
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Fig. 1. A general scheme of the GPU’s organization. 
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igure 1 . Each SM includes a set of functional hardware units (e.g., Floating-Point units “FPs ” and
pecial co-processors “SPs ”) to operate many threads (e.g., 1,024 threads) per task. These threads
re organized in sets of warps (e.g., 32 threads per warp) for their submission and execution inside
he SM’s units [ 24 ]. 

Current GPU generations improve the application’s performance and provide extensive flexi-
ility (for their adoption in several domains) by including hardware units devoted to controlling
nd handling the operation of the threads configurable per application. This control involves the
anagement and tracing of the control flow per thread, as well as the management of the flow

er task. Those hardware units include schedulers, dispatcher controllers, and control-flow man-
gement sub-units [ 13 ]. In particular, the schedulers and control-flow management units play a
rucial role in the execution of the parallel tasks of an application. The schedulers distribute the
ask workloads among the available SMs. At the fine-grain level (i.e., thread), the control-flow
anagement units handle the running thread execution paths that allow coherency and correct

ask completion. 
Other critical units in GPUs, such as decoder controllers, efficiently process the different micro-

nstructions per SM according to the submitted tasks. These decoders resort to the GPU’s ISA
e.g., SASS [ 33 ]) to effectively process and collect the required operands for the execution of each

achine instruction. Interestingly, both control units (control-flow management units and decoder
ontrollers) are so critical that faults inside them might corrupt an application. Thus, efficiently
dentifying faults in such units is vital to correctly operating a GPU system. 

.2 Control-flow Management in GPUs 

ommonly, parallel programs comprise several fragments of parallel execution combined with se-
uential and conditional operations. GPUs resort to infrastructure composed of crucial hardware
nits inside the SMs, to control the execution of parallel tasks involving conditional branches, con-
itional breaks, calls or jumps to subroutines, return from subroutines, and especially managing
ivergence and convergence features among the threads [ 13 ]. In parallel tasks, thread divergence
ppears when one or a subset of threads executes one or more alternative paths (operating dif-
erent instructions). Thus, sophisticated mechanisms are involved in controlling and storing the
tarting and ending points for each path, as well as in the correct execution of each path. Thread
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Fig. 2. Thread divergence handling of a task using a stack and explicit synchronization points in GPUs. 
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ivergence in a task is directly associated with conditional branches or conditional breaks inside
ne or more loops in a program [ 35 ]. 
Figure 2 shows a representative example of how a task (with four threads) is handled when

hread divergence appears. First, a post-divergence state ( convergence point ) is explicitly saved
y a hardware controller by pushing it onto the divergence stack to be restored later. Then, a
ivergence occurs, resulting in some threads executing operations ( active ) while others are set as
nactive and pushed onto the stack for a later run. Once a synchronization ( convergence ) point is
eached, those idle threads are now active for operation, while the previously active threads are
isabled. Once all threads reach the convergence point, the topmost thread state is restored from
he stack to continue executing the task in parallel. 

To utilize the full performance of the parallelism in GPU architectures, control-flow hardware

nits (i.e., schedulers and dispatchers) are specially co-designed (combining software and hard-
are) to effectively manage the hardware parallelism and optimize the software implementation

s a set of the different programming control-paths. Each control path is represented as a sequence
f instructions triggered by control-flow instructions according to the programming flow. 
The instruction decoding unit is used on each SM to configure the hardware structures for the ex-

cution of parallel instructions. Similarly, the Divergence Management Unit or DMU (also known as
ranch unit or Convergence Management Unit ) is a fundamental structure handling and managing
he control-flow operation of each thread executed on the SM. 

In both cases, the complexity of the structures in the units is proportional to their intended
unctionality in the system. In the first case, the decoding process mainly uses direct mapping be-
ween the input mnemonic and the machine language. Thus, this unit is mainly composed of highly
ense combinational circuits. In contrast, DMUs comprise several sub-units (e.g., optimized state
achines, stacks, and glue logic) to manage and interleave the execution of different threads on
ultiple programming flows for a given task in the SM. The internal sub-units and their elaborate

nteraction inside each unit increase the complexity of effectively developing functional testing
olutions (e.g., resorting to testing instructions) since the implicit operational features of a unit
ight restrict the fault controllability, observability, or both. 
For the decoding unit, effective functional testing solutions require the evaluation of most in-

truction formats, as well as their operand variations, which directly depend on the GPU’s ISA.
imilarly, functional testing for the DMU imposes several constraints since this unit handles the
arallel execution of threads and warps, and its operation directly depends on the structure of
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Fig. 3. A general scheme of the proposed method using BMC for test pattern generation followed by SASS 

transformation and fault simulation. 
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he task’s program (e.g., the presence of divergence and convergence cases, as well as the type of
nstructions involved). 

 Proposed Approach 

n our method, the problem of generating TPs for a given GPU unit is solved via ATPG using
MC [ 7 ]. The BMC technique [ 17 , 29 ] is well known for STL generation targeting processor cir-
uits. However, in complex designs, such as GPUs, special steps and additional parameters are
equired (in greater detail) to face the GPU hardware’s structural parallelism and configuration
eatures (e.g., the complex starting state of a GPU hardware circuit). 

In the aforementioned articles, a synchronization sequence is typically generated that drives the
ircuit in a well-defined initial state where there are no Don’t Care values in the flip-flops of the
UT. Whereas, if an initial state is a priori known and extracted (e.g., via logic simulation of the
TL), in our method, it can be directly applied on every memory cell, saving valuable computation
ime considering the size of the GPU. Furthermore, certain GPU units depend on architecture-
pecific memory models (e.g., the DMU interacts with an auxiliary stack). We anticipate that our
ethod is scalable to represent and analyze abstraction from memory models with the so-called

ree literals, thus making the method suitable for tackling such cases, see Section 4.2 . 
Our method is illustrated in Figure 3 . First, we identify the target unit inside the GPU as our

UT and synthesize it into a gate-level representation by using a user-given technology library
o target relevant stuck-at faults accurately. We assume that a pre-existing STL is available as
 baseline (i.e., achieving a certain percentage of coverage on the CUT under the stuck-at-fault
odel). A preliminary evaluation of the original STL determines the faults left untested, which

re the main focus of our method. Then, the expertise of GPU researchers and users allows the
dentification of the textual functional constraints of the CUT, which are employed to manually
enerate a Validity Checker Module ( VCM ), dictating the functional constraints to accurately
ircumscribe the search space of our BMC-based test pattern generation ( BMC TPG ). Then,
he CUT’s gate-level netlists and the VCM are passed to the BMC engine to generate 0/1 test
atterns, which are then transformed to GPU assembly instructions which are then used to form
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Fig. 4. VCM interaction with the miter circuit. 
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Ps. The generated test patterns are then transformed into GPU assembly instructions (i.e., SASS in
he glossary of NVIDIA), grouped with complementary instructions (when required) as STLs, and
alidated with the assistance of a commercial fault simulator. In this process, we check whether the
reviously untested faults (from the original STL) have been detected with the newly generated
nstructions. 

It is worth noting that the only step in the proposed method that requires manual input from
he test engineer’s perspective is the generation of the VCM circuit. All other steps, are fully
utomated. 

The following subsections describe in detail the steps of the approach. 

.1 Validity Checking and Functional Constraints 

he next critical step in ensuring the method’s success lies in formulating and applying constraints
o the CUT. A functional constraint set has to be devised to replicate the operating conditions
f the CUT. This constraint set ensures that the behavior of the CUT can later be mapped to a
unctional STL. This constraint set generally includes enforcing valid states and control inputs
limiting the behavior of component interfaces to adhere to the present bus protocols, limiting
emory address ranges, etc.). This crucial task is carried out by the VCM adapted to the special
eeds in the context of GPUs [ 18 ]. These constraints are derived from various sources, including
i) the complex architectural characteristics and the valid architecture states of the CUT, (ii) the
nteractions between the CUT and the entire GPU; for example, certain CUT input signals may
ave unique values enforced by neighboring functional blocks, (iii) the dependencies of the CUT
n specific configurations; for instance, if a particular input is influenced by the program counter,
t must not exceed a certain value. The functional constraint formulation is a vital step for the
uccess and accuracy of the BMC TPG that follows. If wrong or incorrect constraints are applied,
he resulting patterns may not be functionally valid, as the underlying SAT engine would make
ncorrect assumptions when trying to identify a model for the CNF. 

The VCM is a small circuit, with respect to the CUT, manually written in a Hardware Descrip-

ion Language ( HDL ) like SystemVerilog and later synthesized into a gate-level representation
sing the same technology library as the CUT. The CUT and VCM are encoded into a single miter

ircuit . The VCM’s circuit inputs are connected to the miter circuit (faulty and fault-free CUT) as
epicted in Figure 4 . Also, the VCM has full access to every internal part of the CUT (indicated
y the dashed lines in Figure 4 ), making the application of functional constraints not limited to
he CUT’s primary inputs and outputs feasible. VCM’s logic computes if the state and behavior
f the CUT match the constraints that have been encoded inside the VCM. The VCM’s validation
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Fig. 5. Constraint application through the VCM. 
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esult is indicated via its outputs. A Boolean value of 1 indicates that the constraint is held, while
 0 indicates that the constraint is not held and the miter circuit shows an invalid behavior. Since
he VCM is generated according to the CUT specifications, we can say that it is CUT-specific. For
xample, if the CUT is a unit that performs mathematical operations, which are a subset of the
upported instructions, we would need to include a logic block that accepts the appropriate in-
ut for the unit and enforces only the supported opcodes, i.e., the instructions utilizing the CUT,
ithin the corresponding bit segments. 
For each functional unit used as a CUT, the corresponding VCM must be developed to model

ts functional constraints. If adequate specification information is available for the CUT, the de-
elopment of the VCM is straightforward. However, if the specification information is insufficient,
he task can become more time-consuming, as the test engineer may need to infer the functional
onstraints of the CUT, for example, by examining its RTL. 

By performing a symbolic simulation on the CUT and the VCM gate-level descriptions, we gen-
rate the Boolean formula of the combined circuit in a Conjunctive Normal Form ( CNF ). In this
ay, we embed the constraints in the CNF, hence making the underlying BMC engine aware of

he desired functional scenario. Thus, we can formulate complex functional constraints via circuit
ogic inside the VCM and apply those constraints to the CUT. 

A very simplified example of this interaction is shown in Figure 5 . As the concept of the VCM
pplies to constraining any generic circuit, for brevity, we replace the miter circuit with a single
ND gate (called CUT in the following) in this example. We wish to constrain the AND gate’s
utput always to be 0. Note, however, that the constraints encoded in the VCM are typically of
omplex nature instead. The final CNF of the circuit is the conjunction of the two sub-CNFs, for
he CUT and the VCM, respectively, i.e., CNF = CNF cut ∧ CNF vcm 

. The two independent CNFs
NF cut and CNF vcm 

are constructed using the Tseitin transformation of the logic AND and XOR
ates, respectively. For the VCM, we add a unit clause for each VCM output, i.e., C, to enforce the
onstraint always to hold. 

CNF cut : = (¬ I 1 ∨ ¬ I 2 ∨ O ) ∧ (I 1 ∨ ¬ O ) ∧ (I 2 ∨ ¬ O )

CNF vcm 

: = (¬ I 3 ∨ ¬ I 4 ∨ C ) ∧ ( I 3 ∨ I 4 ∨ C ) ∧ 

( I 3 ∨ ¬ I 4 ∨ ¬ C ) ∧ (¬ I 3 ∨ I 4 ∨ ¬ C ) ∧ 

(¬ I 4 ) ∧ (C)

Additionally, a unit clause that forces the VCM’s output to 1 is created as a constraint. Since
his unit clause must be evaluated as true, it simplifies the CNF vcm 

to the unit clause (¬ I 3 ) (step i.)
hich is equal to the unit clause (¬ O ) since the XNOR gate’s input is driven by the AND gate’s
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Fig. 6. BMC-based pattern generation flow for stuck-at faults. 
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utput (step ii.). Given that the unit clause must be positively assigned in order for the CNF to be
atisfied too, two extra clauses are eliminated (step iii). This sequence of events is shown below: 

CNF = CNF cut ∧ CNF vcm 

≡ (¬ I 1 ∨ ¬ I 2 ∨ O ) ∧ (I 1 ∨ ¬ O ) ∧ (I 2 ∨ ¬ O ) ∧ (¬ I 3 ) (i). 

≡ (¬ I 1 ∨ ¬ I 2 ∨ O ) ∧ (I 1 ∨ ¬ O ) ∧ (I 2 ∨ ¬ O ) ∧ (¬ O ) (ii). 

≡ (¬ I 1 ∨ ¬ I 2 ∨ O ) ∧ (¬ O ) (iii). 

≡ (¬ I 1 ∨ ¬ I 2 ) ∧ (¬ O ) (iv). 

.2 Automated Test Pattern Generation (ATPG) via BMC 

he next step in our method is the BMC-based ATPG. We start with a well-defined initial state
or the CUT. That is, there are no Don’t Care values in the circuit and all signal assignments
bide by the functional constraints. The search or transition space is circumscribed implicitly by
he constraints imposed through the VCM. Remember that, during BMC, the VCM’s validation
utputs are constrained via an invariant to always have a value of 1. This enforces the VCM’s
onstraints as they are propagated through the VCM’s circuit logic to the VCM’s inputs and with
hat to the miter circuit itself. 

For each stuck-at fault of the CUT, an invariant is generated and added as a target state of the
MC problem, responsible for activating and propagating the fault to an observable point. For
xample, for a generic stuck-at fault X , a textual definition of this invariant is “Can the fault site X
e set to the opposite logic value and propagate the fault-effect to a primary output of the CUT?”.
hen this iterative process finishes, we obtain solutions (models) for each BMC problem solved

or every stuck-at fault. 
This process is depicted in Figure 6 . Starting from the initial state I for our miter circuit, we try

rst to reach the state A , corresponding to activating the considered stuck-at fault. After reaching
tate A , a difference is generated within the miter circuit, and the goal now is to reach the final state
 corresponding to the propagation of the difference to an observation point , i.e., a designated part
f the circuit from which we can observe a signal’s value and compare it with a known fault-free
alue to determine whether a fault is detected or not. 
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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If the target state P is reached for a fault, then this fault is marked as potentially testable, and
ecoding of the CUT’s input signals’ literals to 0/1 logic represents a potential test pattern for the
ault. Note that the verdict is potentially testable due to the fact that the propagation points are
he primary outputs of the GPU unit and not the GPU itself. Hence, although it may be the case
hat a fault is identified as testable in the context of the GPU unit, it is not propagatable to a GPU
utput or observation point. 
However, in the case that the target state cannot be reached, then the fault is marked as

ntestable under the functional constraints imposed during the BMC process. It is safe to deduce
hat a fault classified as functionally untestable within the boundaries of the GPU’s sub-unit will
e also functionally untestable for the whole GPU since if the fault cannot be controlled within
he sub-unit then it will also not be controllable when considering the whole circuit as well. Fur-
hermore, considering that the observation points of the unit are the primary and pseudo-primary
utputs of the sub-module, if the fault is controlled but not observed then it will be also not prop-
gatable to the rest of the GPU as well. Lastly, if for a given fault during the BMC process, the
olver exceeds a specific limit such as maximum unrolling depth or maximum solve time, then the
ault is marked as aborted and no verdict about its testability is generated. 

.3 Conversion to Assembly and Fault Simulation 

nce the candidate patterns are generated, an automatic process of conversion and mapping trans-
ates the patterns into valid assembly instructions, considering the supported ISA for the target
evice (e.g., SASS ISA in NVIDIA GPUs). 
A preliminary step identifies the device’s supported ISA and analyzes two main features:

i) the instruction’s opcode and (ii) the data operand formats, which are directly involved in the test
attern mapping (e.g., one or a set of instructions). We also analyze the GPU microarchitecture and
he execution of assembly instructions to observe the interaction between each instruction and the
nput ports for the module under test, thus allowing the identification of possible patterns to be
sed for a given unit. In detail, the ISA identification serves as a source database employed during
apping each candidate test pattern by comparing a pattern with the database in search of pos-

ible matches. First, we identify valid opcodes, considering that an instruction opcode determines
ts operation type (e.g., data movement or arithmetic operation). When a mapping match is found,
he candidate test pattern can be translated into an assembly instruction, and different parts of the
nstruction code can be created starting from the generated pattern. 

The complexity of the mapping operation (from pattern to instruction) varies according to the
ocation of the targeted unit in the GPU’s structure and the unit’s correlation with the assembly
nstructions. The mapping complexity is low when the targeted unit is part of the data path or
irectly interacts with the assembly’s instruction execution. In contrast, the complexity is high
hen the mapping involves other units interacting with the instructions before the values provided

y the pattern reach the targeted unit. 
As an example, let us consider the case of an ALU’s adder unit. In this scenario, the pattern map-

ing is relatively simple since a pattern might indicate an appropriate opcode for ALU operation
nd its operands. Another example of medium mapping complexity can be considered the decoding
nit since we must identify valid instruction opcodes and operands (simultaneously) from the can-
idate test pattern to create the equivalent assembly instruction. Lastly, high-complexity pattern
apping scenarios, such as a DMU, require indirect or complementary steps to achieve specific

nit states. For example, a test pattern may indicate that certain divergencies/convergences must
rst precede the targeted assembly instruction, requiring additional code to recreate the initial
onditions and build a valid STL. 
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Regarding STL development, low mapping complexity cases do not introduce additional costs
nd allow a simplified TP development since simple complementary test mechanisms can be in-
luded for fault detection (e.g., memory mismatches/comparisons and signatures). In contrast, a
igh mapping complexity requires the identification of those units involved in the execution of
n assembly test instruction. In this case, we determine those possible complementary operations
instructions) to provide initialization conditions to correctly apply instructions on a targeted unit
e.g., when a test instruction requires parallel data-movement operations from memory, we must
nitialize the involved registers with valid memory addresses or values for each thread). At this
oint, the candidate test patterns with any match as valid instruction’s opcode are mapped. How-
ver, we discard those patterns without any mapping match. 

Finally, we resort to focused fault simulations (through commercial-grade frameworks) to vali-
ate and confirm the effectiveness of the new TPs and STLs to detect a targeted fault inside a unit.
e combine RTL and Gate-level descriptions of the device to evaluate the stimuli effects from the

ssembly test instructions on a targeted unit and only observe any possible corruption effect on
he GPU memory as the main observation points for fault propagation. 

To reduce the validation time, we only execute the candidate TPs on their targeted fault. When
he candidate TP correctly activates and propagates the effects into an observable point, we classify
he TP as effective and include them as part of an STL. Instead, when the TP validation fails, the
ault propagation does not reach an observable point, so we discard it and classify the associated
ault as potentially untestable. 

 Experimental Setup 

o experimentally assess the effectiveness of the proposed method, this work targets the decod-
ng unit and the DMU of the FlexGripPlus GPU model [ 31 ]. Both units, which are of sequen-
ial nature, have been synthesized using the Nangate 45nm technology library [ 32 ] via Synopsys
esign Compiler . Then, we identified each unit’s operational, structural, and functional con-
traints through a careful overview of their operation in the GPU. those constraints are summa-
ized in Tables 1 and 2 and explained in the following sub-section. 

.1 Functional Constraints 

onstraints for the decoding unit are applied to the control inputs (instruction opcodes), the pro-
ram flow (program counter), as well as selected warp and thread states (warp IDs, lane IDs).
hese constraints are mostly of a combinational nature and only include restrictions that limit the
pcodes to the ISA and operands to valid ranges. Regarding the decoding unit, no further assump-
ions need to be taken into account since the constraints enlisted in Table 1 emulate accurately an
perational scenario of the unit by forcing it to execute supported assembly instructions. 
For the DMU the derived constraints have a greater complexity (with respect to the decoding

nit) and include constraints with sequential behavior on the control inputs (reset, instruction
pcodes), the program flow (program counter, jump addresses), and warp and thread states (warp
Ds, lane IDs, thread execution masks). Constraints on address ranges, masks, and program flow
re necessary to enable mapping the TPG results into STLs. Thus, we further enforce via the VCM
he following functional constraints: 

—Disable thread divergences ( thread_mask = FFFFFFFFh ). 
—Only short jumps ( pc 

n+1 ≤ pc 
n 
+ 100h ). 

—Warp ID is constant ( warp_id 

n+1 = warp_id 

n 
). 

—Warp lane ID is constant ( lane_id 

n+1 = lane_id 

n 
). 
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Table 1. Operational Constraints of the Decoding Unit 

Operational feature Context and Operational constraint 

Instruction set All valid and supported instructions from the SM 1.0 of the 
G80 architecture 

Warp processing Dispatched and executed in increasing order (from 0 to 31) 
Warp lanes Dispatched according to scheduler; increasing sequence 

(from 0 to 3) 
cooperative thread 

array (CTA) id 

Dispatched according to scheduler; Round-robin approach 

(from 0 to 15) 
Thread register size Value from 0 to 64 
Thread active state Active threads in a warp during execution of an 

instruction; active (1) or inactive (0); at least one active 
field must be active to execute an instruction 

Warp instruction 

program counter 
Within the limits of the GPU’s system memory (e.g., 
0.32–1.53 GB) 

Pipeline stall Status and control line in the SM; when active, the unit 
stops its execution until this line is released 

Pipeline done Completion acknowledge status of a previous operation 

from all pipeline’s stages in the SM; when active, the unit 
is ready for the next operation 
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On one side, a strict constraint set helps make the transformation from TPG results into an STL
asier. On the other side, it leads to some faults being classified as untestable by the TPG even
hough with a less restrictive constraint set those faults may be testable and can still be trans-
ormed into an STL perhaps with extended effort. The reported constraints are mainly intended to
epresent an example used to show the feasibility of the method, to be further refined based on the
nowledge of the specific scenario and application constraints. Thus, the VCM is extended with
he aforementioned special-purpose configuration inputs. 

These constraints were derived through an analysis of the GPU and the programming style
pecifications. For example, one critical constraint pertains to the behavior of the program counter,
hich must consistently adhere to the memory mapping of the device and should not reach ex-

reme values. For instance, a fault scenario could necessitate a condition for activation and propa-
ation that forces the program counter to assume a value beyond the memory region allocated to
he GPU. Consequently, we categorize such faults as safe and actively prevent scenarios in which
he program counter strays beyond its allocated boundaries. 

Additionally, it is noteworthy that the program counter’s increment following a control transfer
nstruction is typically modest. To address this, we consider the effective addresses within the TPs
or the DMU and establish a representative value for the effective address that follows a control
ransfer instruction. 

Regarding the thread mask, we ensure the seamless placement of consecutive test patterns or
nstructions in sequence by ensuring an identical number of threads in execution. Any variance in
his parameter implies the implicit inclusion of additional instructions targeting the DMU, leading
o changes in the number of active threads. This, in turn, may impact the activation and propaga-
ion of specific faults. 

As for the lane warp parameters, they are intimately linked to the configuration of the total
umber of threads per kernel. When these values remain constant, it becomes feasible to execute
onsecutive test patterns and instructions within the same program. However, if the warp id varies
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Table 2. Operational Constraints of the Divergence Management Unit 

Operational feature Context and Operational constraint 

Host reset Disabled 

Unit enable Enabled 

Flow opcode From 0 to 8, All valid opcodes for the unit 
Next program counter All values from 0x00000000 to 0xfffffff in multiples of 

8 (64-bit) 
Target address Target address of a control transfer instruction. 

Constrained to respect the pc bounds and format 
(multiples of 8) 

Warp id Current warp executing an instruction. From 0x00 up to 

0x1F . Monotonically increasing one-hot values in 

round-robin fashion. 
Warp lane id Current lane of a warp dispatched to execute an 

instruction. If all 32 cores are selected its value is 0x0 . 
Otherwise, it increases in a monotonic, round-robin 

fashion from 0x0 to 0x3 
Initial mask Indicates the active status of the GPU. Fixed to 

0xffffffff to indicate the active status of a kernel 
Current mask Status of a warp submitted for execution in the GPU. For 

instance, a value of 0xffffffff indicates a fully parallel 
operation of the warp 

Instruction mask Equivalent to current mask 

Stack-Related Signals 
Stack data Groups of 66-bit entries stemming from the stack that 

track previously occurred divergences. Each 66-bit entry 

has the format {active mask |opcode |pc} and each field is 
constrained to respect the boundaries mentioned earlier 
(i.e., valid opcode and pc within configuration boundaries) 

Stack full 32-bit register that tracks the current state of the stack. 
Constrained to either hold the same value (no divergence) 
or to monotonically increase (divergence occurred) or 
decrease (reconvergence) 

Stack empty Complementary signal of the stack full 
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cross different test patterns, there is no guarantee of executing two or more consecutive patterns.
n such cases, multiple programs with distinct configurations might be necessary. Additionally, it is
mportant to note that controlling each warp may become challenging, as their ids would be subject
o the scheduling policy of the GPU core’s global scheduler, which is not directly manageable. 

.2 Stack Model 

n the analysis of complex CUTs, such as the DMU, the interaction between units is crucial to
etermine and produce feasible and valid TPs. This means that the CUT’s interfaces are constrained
o ensure that communication protocols are correctly handled. In particular, the DMU unit has a
emory stack interface, which is vital for storing its current operative thread states. Therefore,

ur analysis requires correctly handling its memory protocol and active usage. In detail, the DMU
s connected to a stack model for every warp, resulting in 32 stacks in total. 
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Fig. 7. VCM adapted with an integrated stack for the DMU unit. 
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Figure 7 depicts a scheme of the adaptation performed on the VCM to embed and hold a stack
odel during the DMU analysis. To speed up the unit analysis, the stack model is limited to a

easonable size (i.e., depth of two entries), enabling the generation of patterns (and STLs) with up
o two divergence points and describing the five minimum operational behaviors: linear program
ows, divergence from a non-diverged state, divergence from a diverged state, joining from two
ivergences, and joining after a single divergence and all combinations of repeated consecutive
ivergences and joins. 
To interconnect the stack model with the CUT unit, our approach introduces the concept of

Free-literal ” inputs for the VCM, which consist of unconstrained inputs for the BMC engine to
upport the interconnection (e.g., between the stack model’s outputs with the DMU’s inputs) and
peration (i.e., control variables) for a targeted CUT. In addition, a set of Equivalence Constraint

heckers is used to force the DMU’s stack inputs to be equivalent to the stack model’s output. Since
he DMU manages 32 stacks simultaneously (one stack per warp/32 threads), the extended VCM
ncludes the stack model as a generate statement, instantiating it multiple times. The stack’s model
idth is 66 bits, the stack pointer is 2 bits, and the stack output is registered. It must be noted that
 set of complementary constraints prevents stack overflow conditions during CUT analysis. 

.3 Formal Methods Framework and ATPG 

he target unit and the VCM gate-level descriptions are parsed via FreiTest. FreiTest is our ATPG
ramework that is derived from PHAETON [ 29 ]. Even though the core concept of the VCM origi-
ates from PHAETON, the framework has been fully rewritten and redesigned primarily for RISC-
 STL generation. This includes the circuit import, VCM handling, fault simulation, data export,
nd visualization, as well as CNF generation and the whole ATPG process itself. For the needs of
ur work, necessary adaptations for handling GPU STL generation have been added. 
The mapping process employs an in-house developed tool, written in Python , that considers the

PU’s ISA and its analysis to build a database, which serves as a starting point for comparing and
enerating legal instructions and test routines (if possible) from the candidate test patterns. More
n detail, our mapping approach automatically checks each candidate test pattern and identifies
ny match among the pattern, the instruction opcodes, and the unit’s input ports activating any
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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unction in the unit. For instance, when a candidate test pattern indicates a hexadecimal code to
ctivate the inputs of a targeted unit (e.g., 0x20 ), the procedure searches in the database for any
atch between the unit’s inputs and any valid instruction opcode. If the matching procedure is

uccessful, it is possible to map the test pattern into a valid instruction to activate the unit. Then,
he instruction opcode is completed with complementary information from the pattern or refer-
nce information (e.g., a pattern indicating an immediate movement instruction ‘MOV Rx < - IMM’
ithout information regarding its operand requires a reference value ‘IMM’ ). In some cases, it is
ossible to directly map test patterns into instructions (e.g., one valid instruction from a test pat-
ern). However, some test patterns require more instructions to correctly represent the operative
onditions for the correct activation of the unit, (e.g., one test pattern mapped as a memory-stack
ead implies that this memory was previously filled, indicating that complementary instructions
ust first fill the memory with suitable values). According to the targeted unit, a set of custom

ules is included in the description of the automatic mapping process to generate the necessary
nstructions for correctly executing the instruction with the test pattern. In addition, a fault detec-
ion mechanism based on software signatures and conditional statements is included as part of the
apping procedure. These complementary instructions propagate any fault effect to an observable

oint (e.g., the GPU’s main memory) and check for any possible mismatch between a fault-free
peration and the fault-generated effect. 
The evaluation and validation of the new test routines is based on a set of focused fault simula-

ion campaigns resorting to two commercial-grade logic/fault simulation frameworks ( QuestaSim
y Siemens EDA and Z01X by Synopsis). Due to the huge simulation time to perform a complete
ate-level simulation of the complete GPU, we divide the validation into three steps: (i) fault-free
TL simulation, (ii) focused gate-level fault simulation, and (iii) RTL propagation of fault effects.
he first logic simulator reads an RTL description of the GPU, which is employed to execute the

est routines in the complete GPU. The complete routine determines the reference golden output
in GPU’s memory) and the values (waveforms) on the input ports for the targeted unit. Then,
he second simulator is used to execute a gate-level fault simulation of the faults in the unit using
he waveforms as inputs. The propagation of the faults is observed at the unit’s output and then
mployed as input in the RTL simulation to observe the propagation effect from the unit’s output
p to the observation point of the system. It is worth noting that the collected waveforms, during
he fault simulation, only represent the corrupted impact of the test instruction; all other comple-
entary instructions on the new test routine are executed fault-free during the RTL simulation of

he effects since the fault does not affect them directly. In particular, we evaluate each test routine
nd identify when the hardware fault is activated and propagated across the targeted unit. The
TL simulations allow the verification of the fault propagation across the GPU and the evaluation
f the software-based detection mechanism. Obviously, test patterns that cannot be mapped into
alid instructions (no match with the instruction’s opcode database) and those unable to propagate
ny effect on the system’s observation point are discarded. 

 Results 

ur experiments were performed on a machine equipped with two Intel(R) Xeon(R) E5-2680 CPUs
nd 256 GB of RAM. In detail, the generation of each candidate test pattern required approximately
.1 and 14.7 seconds for the decoding unit and the DMU, respectively. The difference between the
wo times can be explained by considering the notable size difference of the two units, which
n turn means a difference in the size of the two search spaces. Also, the post-processing of the
esults and the generation of the TPs requires an effort proportional to the number of functional
onstraints and (most importantly) their architectural complexity. 
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Table 3. Main Features of the Reference STLs Regarding Fault Coverage, Memory Footprint, and 

Execution Performance 

GPU unit 
Total 

faults 
FC(%) 

Memory 

footprint (bytes) 

Execution 

(cc) 

Number of 

instructions 

SMP controller 15,200 57.8 262,378 6,125,561 65,653 
Warp Scheduler 109,409 58.5 262,378 6,125,561 65,653 
Fetching unit 4,605 88.8 262,378 6,125,561 65,653 
Decoding unit 13,218 70.4 262,378 6,125,561 65,653 
Execution unit 799.657 84.5 133,348 3,729,005 36,702 
DMU 110,148 56.8 50,096 1,030,473 12,524 
DMU memory 4,224 98.4 50,096 1,030,473 12,524 
Address Register File 131,072 100.0 0 338,240 122 
Predicate Register File 32,768 100.0 16,384 1,890,106 434 
Vector Register File 131,072 100.0 32,768 108,958 82 
Overall GPU’s SM core 1,351,373 83.1 494,974 13,222,343 115,517 

Table 4. Generated Patterns Classification 

Unit Patterns type Generated patterns Target faults 

Single 535 535 
Decoding unit Multiple 1,274 637

Total 1,809 1,172 
Single 7,364 7,364 

DMU Multiple 285,395 61,329 
Total 292,759 68,693 
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.1 Enhancing the Fault Coverage of STLs 

s pre-existing STLs, we use those proposed in [ 12 , 20 , 30 ], which have been developed manually
y experienced test engineers and address the functional testing of the decoding unit and the
nternal stack memory of the DMU. Table 3 reports the main features of the reference STLs in
erms of fault coverage, memory footprint, and execution performance for the different units of a
PU. It is worth noting that the STLs address some of the control units in the GPU, such as the
ecoding unit, in a combined manner. 
From the experimental results, we classify the patterns generated by our method by distinguish-

ng between single and multiple patterns. The single category corresponds to cases with one test
attern (i.e., one SASS instruction) per stuck-at fault. This means a candidate TP activates and
ropagates a fault to an observable point in one instruction cycle for later comparison and de-
ection. The multiple category corresponds to cases with more than one test pattern per stuck-at
ault (i.e., > 1 SASS instructions), meaning that the TP requires multiple cycles to propagate and
ctivate a fault. In both cases (decoding unit and DMU), we focused on the faults left undetected
y the original STLs and aimed at generating test patterns detecting them. It is worth noting that
omplementary instructions are used by the TPs to allow fault detection (i.e., comparison and
etection). 
The classification of the generated patterns is presented in Table 4 . For the decoding unit, 535

ingle and 1,274 multiple patterns were generated, targeting 1,172 stuck-at faults, untested by
he original STL. Thus, we evaluated 1,172 TPs by mapping the patterns into instructions while
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onsidering the parallel configuration constraints determined during the formal analysis of the
nit (number of active warps, thread ID, block number, etc.). 
Our results show that out of the newly identified test patterns, about 25% can be directly trans-

ated into valid instructions in the GPU’s ISA and executed with minimal restrictions in terms of
arallel configuration, so directly enhancing the test coverage without any significant effort in the
P generation. Thus, these new instructions can be fruitfully and easily added to the existing STL.

n addition, 25.34% of the new patterns required specific parallel configurations after translation
nto instructions, e.g., specific memory locations (storing variables) or access to particular memory
esources, such as the shared memory. This means that these instructions cannot be included in
reviously developed test routines, and complementary ad-hoc TPs must be created. For instance,
 test pattern for a fault that requires a precise data value to be written in a specific memory ad-
ress indicates that if this memory slot is already allocated for the current TP program, then a
ew TP must be generated with a specific configuration just for this particular fault. Finally, about
9.6% of the generated test patterns could not be mapped to any valid GPU instruction and were
iscarded from further evaluation. 
For the DMU, 292,759 patterns were generated, out of which 7,364 were single and 285,395 were
ultiple, targeting 68,693 stuck-at faults. 
The complex functionality performed by the DMU prevents the straightforward validation of

he candidate TPs, as for the decoding unit. In fact, effective test patterns require preliminary ini-
ialization phases on the DMU unit, so involving the execution of additional instructions to create
he required conditions for the instructions in charge of exciting the target fault (e.g., address-
ng a fault in a port handling the eighth level of the stack might require addressing first the first
even levels). In particular, some initialization strategies involve explicit control-flow management
nstructions to force the state of the DMU (e.g., initialization of the stack states) that are manda-
ory before the execution of the targeted test routines. For each instruction, we devised specific
trategies. In the case of control-flow management instructions, such as conditional branches and
alls to subroutines ( BRA , BREAK , CAL , and RET ), we use instructions forcing the execution of
onditional cases or forcing pre-calls to subroutines. In some cases, pre-branches or pre-calls are
equired to reach more specific initialization states in the DMU and its stack. Moreover, we in-
lude instructions to validate the destination of each branch or subroutine. Similarly, for BREAK

nstructions, initialization instructions force the execution of iterative scenarios. For pre-control
ow instructions (e.g., setting of convergence points SSY and loop ending points PREBREAK ), ad-
itional instructions are used to force the execution of each scenario (convergence or loop) and to
each each point. 

Table 5 summarizes the number of detected faults in both targeted GPU units. As reported, the
enerated test patterns for the decoding unit in combination with the reference TPs increased the
ffectiveness of the STLs by 9.57%. On the other side, the new TPs for the DMU unit increased
he fault coverage by 2.19%, demonstrating the proposed approach’s feasibility in generating test
atterns even on complex units. 
This increment was achieved despite the intricate structure of the DMU unit, the wide variety

f configuration parameters (exponentially increasing the test pattern search space for any com-
ination of operational constraints), and their structural placement (far from the execution of the
ssembly instructions), which increase the complexity of developing and mapping effective TPs.
n fact, during the evaluation of the candidate TPs, we observed that the obtained fault coverage
ncrement (2.19%) affected other relevant parameters and metrics in the overall STL. In particular,
he associated costs in terms of test duration (around 108.14% more clock cycles), number of ad-
itional instructions (about 1,700%), and memory footprint overhead (up to 36,556%). Even when
easible according to the considered constraints, increasing further the achieved Fault Coverage
ACM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Table 5. Main Features of the Original and Enhanced STLs 

STL 

Decoding unit DMU 

Absolute Ratio Absolute Ratio 

Detected faults 
Original 9,305 1 62,553 1 
Enhanced 10,416 1.12 64,974 1.04 

Execution time (cc) 
Original 6,125,561 1 1,030,473 1 

Enhanced 6,162,959 1.01 2,144,838 2.08 

Instructions 
Original 65,653 1 12,524 1 
Enhanced 71,886 1.09 235,176 18.78 

Memory use (bytes) 
Original 262,378 1 50,096 1 

Enhanced 287,010 1.09 1,831,312 36.56 
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ould require adding even longer (and larger) TPs, violating any reasonable threshold in terms
f test time and footprint. On the other side, the faults remaining undetected after the generated
Ps are highly likely not to be excitable (hence to produce any failure) in any real condition, as
xplained in the following sub-section. 

.2 Safe Faults and Functional Untestability 

uring the TPG process, there is a potential scenario in which a fault, subject to the existing
unctional constraints, remains untested. In the BMC context, this situation arises when the un-
olling depth reaches its maximum value without successfully activating or propagating the fault
r when it is conclusively demonstrated (e.g., through techniques such as Craig interpolation or
-induction) that the target state cannot be reached. In the first case, no verdict can be generated
or the fault, which is then marked as aborted ; in the second case, the fault is marked as function-

lly untestable [ 6 ]. Although these faults can be excited and propagated to an observable point in
he circuit, they are incapable of causing any failure under the considered operational scenario
mposed via the functional constraints through the VCM. 

One of the main challenges in the development of functional test solutions is the identification
f such functionally untestable faults (called safe by the ISO-26262 standard) on a targeted unit. For
his purpose, we analyzed the complete fault list in the decoding unit through our methodology
nd identified 174 functionally untestable faults. Then, we correlate those faults with the state of
he original STL for validation purposes. From the 174 functionally untestable faults, 123 faults
re also considered as untestable by the original STLs. The missing 51 faults were classified as not

etected ( ND ), not controlled ( NC ), or not observable ( NO ) faults, since the TPs did not include
atterns to activate or propagate those faults. Thus, the results from our approach indicate that
o test patterns can be used to activate and propagate effects in the unit for a certain amount of
aults (which are a subset of the total functionally untestable faults), so exposing their untestable
ature. 
It is essential to highlight that conducting equivalent functional untestability analyses for the

MU unit is not straightforward due to the significant influence of the wide variety of operational
arameters on the set of functionally untestable faults (e.g., the memory addressing capacity and
he warp size can be restricted due to the application’s parallel configuration). In addition, other
nternal components in the system (e.g., schedulers handling tasks for the GPU cores) might influ-
nce the DMU’s operational parameters dynamically. 

However, we consider the worst-case operational conditions in the DMU to be the main target
or identifying functionally untestable faults. For example, we may consider a fault that demands
CM Trans. Des. Autom. Electron. Syst., Vol. 30, No. 2, Article 23. Publication date: January 2025. 
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Table 6. Comparison with Commercial ATPG 

Full-Sequential ATPG BMC-based TPG 

# Generated test patterns for Decoding unit 86 1,172 
# New instructions 86 1,809 
% Increase in the STL FC 0.0 9.57 
# Generated test patterns for DMU 419 2,421 
# New instructions 419 292,759 
% Increase in the STL FC 0.0 2.19 
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n exceedingly high number of nested divergence conditions for activation. In this scenario, the
hysical stack indicates the nesting limits, which might be lower than a targeted fault’s needs
possibly producing a system failure). Since the maximum level of nested divergence in the DMU
s much lower, the fault is classified as functionally untestable. 

.3 Comparison with a Commercial ATPG 

s a complementary analysis, we compared the effectiveness of our method in generating new
est patterns against a commercial-grade sequential ATPG. In this case, the sequential ATPG an-
lyzed the DUT (e.g., decoder or DMU unit) without any operational constraint, so allowing the
xploration of any possible missing candidate test pattern. After pattern identification, we employ
he same translation method (from test patterns to instructions) from our proposed approach. 

The results in Table 6 report the number of candidate patterns from both methods mapped into
alid instructions for the GPU units. Interestingly, when using a sequential ATPG on both units,
e observed that only a few new functional candidate patterns were generated, with minimal

ffect on increasing the STL’s FC on the units. When it comes to generating functional patterns by
esorting to traditional ATPG approaches, we can say that independently of the targeted unit, the
esults will be the same due to the nature of the full-sequential ATPG mode, which cannot handle
he sequential depth of such a device effectively. 

In contrast, our methodology faced the complexity of analyzing both sequential units and identi-
ed a substantial number of candidate test patterns per unit, ranging from 1,172 to 2,421. This was
urther reflected in the percentage of effectively mapped instructions and the increase in the STL’s
C, which ranged from 2.19% to 9.57%, so demonstrating that our approach can be employed in the
nalysis of complex operational units. Consequently, the clear identification and formulation of
he operational constraints per unit is crucial to effectively apply the proposed approach and de-
elop/improve TPs and STLs. It is worth noting that we focused our evaluation on units of the GPU
rchitecture. However, similar analyses can be extended to complex units in multi-threading/core
rocessors (e.g., in-chip vector/SIMD co-processors), GPUs, and hardware accelerators. 

 Conclusions 

PUs are widely adopted in multiple domains due to the massive parallelization and computa-
ional capabilities they provide. When GPUs are used in domains that fall into the safety-critical
ector, strict fault coverage targets are imposed by the safety standards. These targets are often
et resorting to a number of combined techniques, including STLs. Given the lack of automation

hat exists in the functional test generation domain, we propose in this article a methodology that
ssists test engineers in enhancing the impact in terms of fault coverage of a given STL targeting
pecific units within a GPU. While previous works already explored the usage of formal techniques
or the generation of STLs for CPUs, we focused in this article on a couple of units that are unique
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o the GPU architecture, showing that the proposed method can be effectively used to enhance
xisting STLs targeting them. 

The proposed method leverages BMC as its underlying engine to systematically target hard-to-
est faults within a generic unit of a GPU, considering its operational constraints. To demonstrate
he efficiency of our approach, we conducted two experiments on two units of the open-source
PU model FlexGripPlus : the decoding unit and the divergence management unit. Given pre-
xisting STLs targeting permanent hardware faults for these units, we managed to increase the
chieved fault coverage by 9.57% and 2.19%, respectively. 

The method is also able to detect functionally untestable faults. Most likely, the achieved fault
overage figures are very close to detecting all possible functionally detectable faults, according to
he considered constraints. We experimentally assessed the effectiveness of our method consider-
ng the basic GPU behavior and without making assumptions about the application environment.
hat is, no mission profile-derived constraints have been applied. In such a scenario, we would
xpect that the total number of proven functionally untestable faults would increase since, as the
earch space gets restricted, more circuit locations would become untestable. 

In future work, we plan to extend our method to other types of circuits, such as tensor processing
nits. We also plan to extend the method to face permanent delay faults. 
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