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Abstract: Italian Sign Language (LIS) is the primary form of communication for many members of the
Italian deaf community. Despite being recognized as a fully fledged language with its own grammar
and syntax, LIS still faces challenges in gaining widespread recognition and integration into public
services, education, and media. In recent years, advancements in technology, including artificial
intelligence and machine learning, have opened up new opportunities to bridge communication
gaps between the deaf and hearing communities. This paper presents a novel educational tool
designed to teach LIS through SIGNIFY, a Machine Learning-based interactive serious game. The
game incorporates a tutorial section, guiding users to learn the sign alphabet, and a classic hangman
game that reinforces learning through practice. The developed system employs advanced hand
gesture recognition techniques for learning and perfecting sign language gestures. The proposed
solution detects and overlays 21 hand landmarks and a bounding box on live camera feeds, making
use of an open-source framework to provide real-time visual feedback. Moreover, the study compares
the effectiveness of two camera systems: the Azure Kinect, which provides RGB-D information, and
a standard RGB laptop camera. Results highlight both systems’ feasibility and educational potential,
showcasing their respective advantages and limitations. Evaluations with primary school children
demonstrate the tool’s ability to make sign language education more accessible and engaging. This
article emphasizes the work’s contribution to inclusive education, highlighting the integration of
technology to enhance learning experiences for deaf and hard-of-hearing individuals.

Keywords: hand sign alphabet; social inclusion; machine learning; gesture recognition; gamification;
serious game

1. Introduction

Sign language is a vital means of communication for the deaf and hard-of-hearing
communities. Sign language (and sign alphabet) is considered a non-verbal language
developed for deaf people community to communicate with each other and with normal
people [1]. Early exposure to and learning of sign language and the sign alphabet are
crucial for cognitive development, social interaction, and academic achievement in children
who are deaf or hard of hearing. The main reasons for hearing loss include aging, genetics,
high volume noise exposure, a variety of infections and, in some cases, certain toxins or
medications [2]. For deaf children with hearing parents, or those who become deaf due to
illnesses, the opportunity to learn and study sign language at a young age is particularly
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pivotal. In such contexts, the people surrounding these children may not be experts in sign
language, potentially slowing the learning rate for both the children and their families if
not supported with adequate learning processes.

Deaf children face significant communication barriers in school, impacting their aca-
demic and social development. Limited teacher training and awareness further hinder their
educational experience and social isolation and bullying due to communication difficulties
can even lead to emotional illness [3]. Learning sign language provides many benefits not
just for deaf and hard-of-hearing individuals, but even for hearing persons. Indeed, hearing
individuals can greatly benefit by learning sign language, like, first of all, being able to
communicate with one’s deaf friends, relatives, and coworkers for better inclusion and
understanding. Another critical benefit of learning sign language includes better cognitive
performance. In fact, some studies show that learning a second language, particularly sign
language, improves memory, creativity, and problem-solving skills. This is partly because
sign languages stimulate other brain centers than spoken languages, which optimizes the
flexibility of the mind [4]. As a consequence, sign language can be a way to improve general
communication skills. Through sign language education, one may enhance awareness
and sensitivity for facial expressions and gestures since it is pretty essential in the pro-
cess of a non-verbal form of communication. The use of signs can improve interpersonal
communication in everyday contexts, making an individual more sensitive and receptive
to non-verbal clues. From this perspective, also teaching LIS to hearing children plays
a vital role in promoting inclusivity and fostering a more accessible society. By learning
LIS, children develop an early understanding of diversity, empathy, and communication
beyond spoken language. It empowers them to interact with peers who are deaf or hard of
hearing, breaking down social barriers and encouraging mutual respect. Moreover, expo-
sure to sign language enhances cognitive abilities, including improved spatial awareness,
problem-solving skills, and non-verbal communication. This approach not only benefits
those who rely on sign language, but also nurtures a generation that values diversity
and inclusiveness. The slogan for the new educational pathway is “learning for all” [5],
emphasizing the need for inclusive education. Introducing sign language as an innovative
tool in primary schools or kindergartens could be a key factor in fostering inclusivity and
awareness already from a young age.

In recent years, the integration of technology into educational environments has
revolutionized traditional teaching methods, providing innovative and engaging ways to
improve learning experiences. One such innovation is the development of educational
video games, which combine entertainment with learning goals to create an interactive and
stimulating environment for students [6]. Currently, students can be considered digital
natives, and their interest is usually aligned with immersive and interactive environments.
In this sense, using serious games to teach sign language can facilitate that process by
making the learning much more engaging and interactive [7].

In this work, the serious game SIGNIFY is introduced. SIGNIFY is an application
specifically designed to teach Italian Sign Language (LIS) to primary school children. To
deal with young learners, the necessary aim is to offer a tailored, engaging, and interactive
learning environment. For this purpose, Machine Learning-based hand gesture recognition
techniques were applied to assist in learning and easily mastering sign language gestures.
By detecting and overlaying 21 hand landmarks and a bounding box on live camera
feeds, the solution leverages an open-source framework to offer real-time visual feedback.
Furthermore, different data sources were compared to evaluate the effectiveness of RGB
versus RGB-D (depth) data for sign language recognition for the specific purpose of a
children-friendly application. A new RGB-D database that records LIS gestures was needed
to develop a tailored solution for the characteristic application, which serves as an essential
resource for training and testing AI models. Finally, a usability analysis based on feedback
collected from the children was performed, offering insights into their learning experience
and interaction with the game. This analysis demonstrated to be remarkably beneficial for
highlighting margins of improvement and ensuring the platform is engaging and accessible
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for young users. These contributions advance the technological and educational aspects of
sign language learning through AI.

The paper is structured as follows: Firstly, in the following section, related works are
presented to better frame the project. Subsequently, in Section 3, all the technical aspects of
the project are analyzed, ranging from the creation of the dataset to the machine learning
method used to perform the classification. Furthermore, a brief overview of the developed
serious game structure and functionalities is provided. The final two sections are dedicated,
on the one hand, to the presentation of the results, in terms of the classifier’s performances
and ease of use of the game assessed in a case study with a group of children, and the
future developments and perspectives on the project on the other hand.

2. Related Works

In the context of gesture recognition, there are two main sign language recognition
approaches: image- and sensor-based. In particular, sensor-based approaches are built
to obtain joints orientation, hands position, and hand velocity [8], and they include tech-
nologies such as microcontrollers and specific sensors, such as data gloves [9,10], power
gloves [11], digital cameras [12], accelerometers [13,14], and leap motion controllers [15].
However, research is advancing primarily in the image-based field due to its advantage of
not requiring users to wear devices on them [16].

Since LIS requires facing from multiple perspectives, being at the intersection of
different disciplines, this section has been divided into three parts to better frame the
previous works. The first subsection focuses on the impact of serious games in learning; the
second and the third aim to better contextualize the work from a technological perspective,
showing which gesture acquisition and classification methodologies have been explored in
recent years, respectively.

2.1. Effectiveness of Serious Games in Learning

Serious games are intelligent tools of learning that combine game-like features and
pedagogical content in an integrative manner to enhance motivation and involvement on
the part of the user [17]. Implementation of serious games in education provides noticeable
learning outcomes, and makes the process much more interactive and engaging. One
of the main advantages of serious games is their ability to stimulate students. Playful
elements such as challenges, rewards, and visible progress stimulates student’s interest and
commitment; thus, learning becomes an enjoyable and rewarding process. For example,
the study by Kye et al. [18] mentioned that the learning game “Magic Touch Math” helped
children master the basic operations in math. Besides that, serious games offer adaptability
to varying learning styles and present personal experiences that can meet every student’s
particular needs. This approach is primarily practical with deep and durable learning.
Serious games further enhance the students’ transversal skills, such as critical thinking,
problem-solving, and collaboration. Games tend to propose complex situations where
students need to use these skills to move forward. Significantly, integrating this into the
simulation of educational games will lead to an improvement in the abilities of students
in real-life contexts [19]. Unavoidably, serious games can also be found to be particularly
effective in the teaching of sign language. The visual and interactive elements of the serious
game allow students to memorize and practice signs more effectively than traditional
methods. For example, Lang et al. [20] created an edutainment game for teaching sign
language using Kinect technology. They explained how the naturalness and real-time
interaction of such applications could enhance learning by signs. Practical applicability
was also shown through the serious games’ effectiveness in learning gesture recognition
in Portuguese sign language in an application developed by Soares et al. [21]. In further
support, Pontes et al. [7] described a platform for learning numbers in Brazilian Sign
Language through a serious game, MatLIBRAS Racing. Many students, including those
waiting for their turn, attempted to replicate the hand configurations shown on the screen.
A follow-up quiz conducted one week after the experiment assessed the retention of learned
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signs. The results showed a positive distribution of correct answers, indicating that the
majority of participants could identify the signs accurately. In recent years, several other
languages have been included in serious games, such as American [22] and Pakistani [23],
showing promising results in terms of learning, but also some drawbacks linked to the
complexity of the proposed solutions, thus limited accessibility and language-specific
issues. Nonetheless, serious games propose a different and exciting learning approach,
combining amusement with education for improved educational outcomes. Their capability
to motivate learners, adapt to the diversity of their learning styles, and enhance their
transversal skills renders them valuable tools in modern education [20].

2.2. Image Acquisition Technologies

Image acquisition is the most critical part of any gesture recognition system, because
it requires to find a trade-off between high data quality and overall system performance.
In recent years, the ever evolving 3D acquisition technologies made it possible to obtain
RGB and Depth information at the same time, in light of providing more robust and
consistent solutions [24]. In 2D technologies, a single RGB camera is used for capturing
two-dimensional images of the hands or body. This approach is widely adopted due to its
cost-effectiveness and availability, since these kind of cameras are the most common ones
to the general users. However, it presents some drawbacks, such as sensitivity to lighting
conditions and difficulties in distinguishing between similar movements on different planes.
Despite these limitations, 2D technologies can be quite effective when supported by robust
image processing algorithms. For instance, Bora et al. [25] demonstrated the effectiveness
of using MediaPipe and deep learning in real-time sign language recognition, showing that
the 2D approach can effectively manage complex gestures.

Conversely, 3D technologies rely on depth sensors to capture three-dimensional infor-
mation about the movement and position of hands and body. In contrast to 2D systems,
these provide higher accurateness and robustness in the capturing process, since they can
detect the change in depth and movement in space independently from lighting conditions.
For example, Lang et al. [20] proposed a methodology using Kinect that may substantially
increase the preciseness of gesture recognition, thereby making it especially effective for
complex applications in the process of sign language teaching. One of the most important
advantages of 3D technologies is their ability to capture complex and detailed movements,
such as rotations and translations of the hands, demanding tracing using 2D technologies.
This hardware is, as a rule, more expensive and less convenient for everyday use than 2D.
In addition, Soares et al. [21] developed Kinect technology for the recognition of the whole
body, expanding the functionality of sign language teaching with the help of recognizing
gestures that would activate other parts of the body in communication, not just hand move-
ments. Nowadays, 3D information is not only used to increase hand gesture algorithms
recognition rate, but also to distinguish sign language linguistic from gestural expressions
and increase the overall robustness, as proved by Stamp et al. [26].

Bora et al. [25] further compared the two technologies and noted several key differ-
ences. They found that while 2D systems are accessible and practical for many applications
due to their lower cost and ease of use, they suffer from limitations in accuracy under
varying lighting conditions and can struggle with depth perception. On the other hand, 3D
systems, such as those utilizing Kinect, offer superior accuracy in detecting complex ges-
tures and depth information, but at a higher cost and with greater hardware requirements.
The authors concluded that the choice between 2D and 3D technologies should be based
on the specific needs and resources of the application and in some cases, a combination of
both may provide the optimal solution for accurate and reliable gesture recognition. Finally,
both the technologies, 2D and 3D, come with their set of advantages and disadvantages.
Their application would depend on the need and available resources.
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2.3. Image Processing and Gesture Classification Methods

Image processing and gesture classification are crucial components of sign language
recognition systems. These tasks can be divided into two primary parts: hand recogni-
tion and gesture classification. Various machine-learning techniques have been applied
to each part, offering specific advantages in terms of accuracy, processing speed, and
computational complexity.

Hand recognition involves detecting and tracking the hand in an image or video
stream. Convolutional Neural Networks (CNNs) are widely used for this purpose due to
their ability to extract meaningful features from images and videos. CNNs are particularly
robust against variations in hand position, scale, and rotation as shown in various works,
such as Nimisha et al. [27] and Uboweja et al. [28]. More recently, with the already
mentioned widespread of hand sign recognition techniques to embrace different languages,
Amirgaliyev et al. [29] developed a CNN-based methodology for the Kazakh sign language,
obtaining 95.7% of recognition rate.

A recent application of this technology can be found in Google’s MediaPipe library,
used also in the work of Bora et al. [25] for gesture recognition. MediaPipe is Google’s real-
time hand landmark detection in which a hybrid of six models was combined in tracking
and predicting a sequence of 21 3D points used in detecting/inferring hand gestures. This
further facilitates sensitive and accurate tracking in this approach without the need for
costly add-on hardware and, hence, it is practical for general use [30].

Once the hand is recognized, the next step is gesture classification, where the detected
hand movements are interpreted as specific gestures. Several machine learning models have
been used for gesture classification, including Random Forests, Support Vector Machines
(SVMs), and Artificial Neural Networks (ANNs).

ANNs are powerful tools for gesture classification due to their ability to learn through
data training. They can model complex non-linear decision boundaries, improving clas-
sification accuracy in real-time scenarios. Nimisha et al. proposed using ANN for the
classification of sign language, demonstrating its effectiveness in capturing the intricacies
of sign gestures [27]. Bajaj et al. also reported the great results of an ANN for gesture
classification [31]. Although these are remarkable results, ANNs can sometimes be prone
to overfitting, which can affect their performance.

Support Vector Machines (SVMs) are another popular machine learning tool for super-
vised learning, capable of handling both classification and regression tasks. This methodol-
ogy classifies data based on probabilities, making them suitable for binary and multi-class
classification problems. SVMs can perform both linear and non-linear classification by us-
ing different kernel functions. Nimisha et al. [27] used an SVM classifier to categorize signs
into seven classes of the Pakistan Urdu language, showcasing its utility in sign language
recognition. Kavana and Suma [30] used SVM for classification, reporting that this system
outperformed other machine learning algorithms.

Random Forest models are robust for gesture classification due to their ability to
handle non-linear data and aggregate multiple decision trees to improve overall accu-
racy. These models are effective in educational and gaming contexts, identifying complex
gestures in variable environments. For instance, in the study of Ren Ewe et al. [32], a
hybrid model combining VGG16 for hand recognition and Random Forest for gesture clas-
sification showed significant improvement in gesture classification accuracy, because the
ensemble nature of Random Forest reduces variance and overfitting, enhancing robustness
and generalization.

3. Materials and Methods

This section describes the methodologies employed to perform the automatic hand
gesture recognition, from the databases creation to the hand detection and hand gesture
recognition. Moreover, the design and development of the serious game presented to
primary school children is detailed.
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3.1. Database Acquisition

Since the aim was to compare different data acquisition systems (RGB and RGB-D),
the first step of the work involved the creation of two datasets tailored for the Italian Sign
Language (LIS) recognition. The premise is that the signs for letters g, j, s, and z were not
considered, since they use a dynamic gesture that cannot be captured and identified in a
single frame, as required by our real-time application.

Regarding the RGB database, a freely accessible online database was used [33]. This
dataset is composed of around 250 pictures from 11 different people for each of the 22 letters
considered. The images are in JPG format with dimensions 622 × 415 pixels, and granted a
sufficient diversity in terms of hand shapes and possible orientations, as they were taken
from 3 different angles (Figure 1).

Figure 1. Three examples of images taken from the LIS-dataset for the letter A in three different
orientations.

The dataset for RGB-D images was created from scratch. The existing RGB-D datasets
concerning LIS, such as A3LIS-147 [34] and Montalbano [35], contain the subject’s hands
and body, offering a comprehensive picture of the motions necessary to represent LIS
signs. Both include hand movement, body posture, and gestures. In contrast, the current
application concentrates on hand movement to make learning as simple as possible for
children. As a result, the information offered by these databases has insufficient resolution
because the hand is not completely visible in the foreground. To solve this issue, a tailored
database acquired using a state-of-the-art consumer-grade camera, the Kinect Azure, was
created. The choice of a depth camera with time-of-flight (ToF) technology for depth
acquisition has been performed to deal with the current depth camera market evolution.
In fact, the most recent smartphones are equipped with ToF sensors because of their
remarkable performance and small size. Moreover, the 4K camera allows for excellent
RGB images to be associated with the corresponding depth map (Figure 2). Azure Kinect
is a highly efficient device also used in other studies to obtain excellent quality 3D video
tracking of different anatomical segments [36]. A 10 s video was recorded by seven people
for each sign. The recorded videos from the Azure Kinect are in .mkv format, so a script to
extract from the different channels the single frames and depth maps to create the dataset
was developed. Since the videos were recorded at 30 fps, a total of 1500 images in PNG
format for each hand sign were obtained. During the recording slight rotation and flexion
of the wrist were performed to make the classifier more adaptable to different camera
orientations and guarantee data generalization. Specifically, to train the algorithm for
gesture recognition with the cleanest possible data, especially from the z-coordinate point
of view, the videos were acquired by placing a green canvas behind each subject, so the
hand had a uniform background. Nonetheless, as will be shown in Section 4, since the
classifier is based solely on the landmarks coordinates, the algorithm performance is not
negatively affected by a change in the background nor different values of distances between
the subject and the camera (in accordance with the Kinect operating range). The acquisition
device uses two different sensors to capture the RGB image and the Depth image, as shown
in Figure 2a,b. Therefore, the dimension of each RGB image in this dataset is 1080 × 1920,
while the dimension of the depth maps is 576 × 640. Consequently, depth map processing
was needed to superimpose the two images and properly associate each x and y coordinate
with the RGB color and depth value. To better visualize the 3D nature of the depth map,
Figure 2c illustrates a cropped version that considers only the volume of interest, namely
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the hand. This cropped version was obtained by thresholding the image on the z-axis and
excluding everything behind the threshold. During the acquisition process, the camera was
rotated 90 degrees to take advantage of an easier-to-read vertical image and return to the
field-of-view conditions of a smartphone, which is the device that would be most suitable
for exploiting the proposed application.

(a) RGB image (b) Depth map (c) Depth map processing (Matlab)

Figure 2. “A” hand sign captured by Azure Kinect.

3.2. Hand Landmarks Identification

The choice of adopting a landmark-based instead of an image-based approach has
been made for several reasons. Landmarks allows to focus on key points, such as finger
joints and tips, which are crucial for accurately capturing the specific gestures used in
sign language. In contrast, whole images include unnecessary background data and
surrounding objects, introducing noise that can distract the AI model from focusing on the
hand movements that matter most. Moreover, hand landmarks also reduce data complexity,
allowing the model to process a small set of key points instead of every pixel in an image.
This makes the AI system more efficient and faster, especially in real-time applications. By
concentrating on the hand’s structure and movement, landmark-based approaches can
more precisely capture subtle differences between similar gestures. Full-image approaches,
on the other hand, may obscure these details due to distractions or occlusions. Furthermore,
focusing on hand landmarks helps the model generalize better across different users by
identifying patterns based on the essential hand structure rather than relying on the entire
visual scene. This approach improves recognition accuracy and consistency allowing also
for the employment of a smaller dataset.

The Hand Landmarker of the Google package Mediapipe [37] has been used to au-
tomatically obtain the x and y coordinates of 21 landmarks in each hand picture in our
datasets using the RGB image. Mediapipe Hands uses a two-stage tracking pipeline, includ-
ing (1) a palm detector, which provides a bounding box of a hand inside the frame, and (2) a
hand landmark model, which predicts the hand landmarks (Figure 3a). Specifically, the
model can predict 21 hand landmarks triplets comprising x, y, and relative depth. However,
since Mediapipe estimated the depth from the RGB image, a different approach was chosen
in the current investigation to obtain a more precise value for the third coordinate. Indeed,
the z coordinate was computed considering the depth map provided by the Kinect camera.
Specifically, the z coordinate for each landmark was obtained using the normalized x and y
coordinates multiplied by the Kinect depth map shape.
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All of the coordinates obtained for each landmark from each frame were then normal-
ized to make the classifier less dependent on the position of the hand or the distance from
the camera. Figure 3b shows an example of hand landmark acquisition through Mediapipe
during execution in real-time of the application.

This framework was chosen as it demonstrated real-time inference speed on mobile
GPUs with high prediction quality. In particular, the Mediapipe Hand model was tested on
a custom database composed of in-the-wild, in-house, and synthetic images and reached
an average precision of 94% in the best configuration of the palm detector and an MSE of
about 10 for the hand landmark model, with a latency on the full pipeline of about 17 ms
on a CPU and 12 ms on a GPU.

(a) MediaPipe set of landmarks (b) Acquired landmarks

Figure 3. Hand landmarks.

3.3. Hand Gesture Classification

The data collected using Mediapipe was split randomly between a training set, used
to train the machine learning algorithm, and a test set, for performance evaluation, with
a standard 80:20 division of the images between the two sets. In particular, a Random
Forest classifier was used to identify the corresponding hand sign from the coordinates
of the Mediapipe landmarks. A Random Forest is a machine learning algorithm used for
classification and regression tasks. It operates by creating multiple decision trees during
training and then combines their outputs to make a final prediction. Each tree is built using
a random subset of the data and features, which helps to reduce overfitting and increase the
model’s accuracy. By averaging the predictions (in regression) or taking a majority vote (in
classification), the Random Forest provides more robust and accurate predictions compared
to individual decision trees. Specifically, a Random Forest with 100 trees and default
parameters was involved for the current investigation. The Random Forest technique
was chosen above other machine learning algorithms for its excellent performance in
multi-class classification tasks [38], and its distinct advantages in terms of interpretability,
training efficiency, and robustness [39]. According to their structure, Random Forest
classifiers enable us to clearly distinguish which hand positions most influence specific
gestures, allowing us to fine-tune and increase detection accuracy [32,40]. Other algorithms,
such as Artificial Neural Networks (ANNs), particularly those with multiple layers, are
more difficult to interpret due to their black-box nature [41]. Random Forests are also
more computationally efficient than deep learning models, which, while powerful, need
significant computational resources and specific hardware to train and deploy [42]. This
efficiency enables Random Forests to conduct real-time gesture recognition on limited
hardware, which is critical for accessible responsive applications. Compared to alternative
tree-based models, such as XGBoost [43], Random Forests have the advantage of easier
hyperparameter adjustment and lower computing overhead, making them a more practical
choice [31,44]. Furthermore, Random Forests’ ensemble structure provides robustness
against overfitting, a common problem with short gesture datasets, can handle large
datasets, and naturally manages the noise that is frequently present in gesture data [42]. As
a result, Random Forests provide a balanced approach that ensures accuracy, speed, and
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interpretability, making them ideal for recognizing sign language gestures, particularly on
mobile devices [45].

Depending on whether the input data were an RGB or RGB-D image, the database
structure to be provided as input to the classifier is slightly different. In particular, a set
of 21 coordinates is provided in both the cases. When using a 2D image, each coordinate
consists of a doublet referring to the value of x and y. In the case of an RGB-D image, the z
coordinate referring to depth is also added. Therefore, each coordinate will be characterized
by a triplet of x, y, and z. Consequently, 21 × 3 coordinates and 21 × 2 were, respectively,
obtained for each 3D or 2D frame. As a result, two different classifier models were trained
to operate with the corresponding data sources.

3.4. SIGNIFY Design and Development

The serious game has been conceived to accomplish a “learning by doing” approach,
and has a twofold goal: on the one hand, it is an educational tool allowing for learning LIS,
even from scratch; on the other hand, it allows for perfecting the LIS knowledge through
a game. In this perspective, the game has two main scenes: the tutorial and the game
itself, both accessible from an initial menu. In other words, the objective of the developed
application is to teach LIS and, subsequently, apply the acquired knowledge by reproducing
the learned gestures to guess the hidden word in a game of Hangman [46].

To provide users with an immersive and more dynamic experience that includes
3D information, Unity 3D has been chosen as the development platform. Unity 3D is a
comprehensive cross-platform game engine developed by Unity Technologies, widely used
for creating three-dimensional (3D) games and interactive experiences [22]. One of its
features is the Mechanism Animation System, which facilitates the integration of complex
animations to enhance visualization and effectiveness. Additionally, Unity 3D benefits from
a large and active community of developers, offering tutorials, forums, and documentation.
Unity 3D was chosen to incorporate animations into objects, allowing the use of animations
created in Blender to demonstrate how to perform gestures from Italian Sign Language
to users.

Unity 3D (front end) has been integrated integrated with a Python script (back end),
where the developed Machine Learning-based algorithm classifies the recognized hand
gestures through a .txt file, according to Figure 4. The executable created by Unity 3D
opens and reads the file where the prediction has been written to use the information
for the game, both for the tutorial and the hangman game, as will be detailed in the
following subsections.

Figure 4. Communication diagram between Python script and Unity 3D.

3.4.1. The Tutorial Scene

The tutorial scene has been conceived to learn LIS [47]. The associated diagram is
reported in Figure 5.

As represented, the Tutorial scene allows for selecting the menu button in order to
switch to the Hangman Game scene once the user has enough confidence with the LIS.
When the Tutorial starts, a message with all the needed information is provided; moreover,
the camera is activated, and constantly updates the frames to feed the Machine Learning-
based algorithm for the hand sign classification. If the performed sign is wrong, the user is
suggested to retry, otherwise a tailored animation is displayed and a new letter is shown
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for further training. It must be noticed that the same letter will not be displayed anymore
in the current session. To motivate the user to learn and correctly reproduce the signs,
a trophy system has been implemented, which can be earned only after a correct series
of signs.

Figure 5. Diagram of the Tutorial scene.

The User Interface (UI) consists of an upper left section, where the Python window is
positioned. This window shows the camera image, i.e., the webcam or the Kinect Azure
RGB-D video streams, with the overlaid prediction of the reproduced sign. Furthermore,
UI is composed of a text box explaining to the user what needs to be performed to proceed,
a button to close the application, and a button to proceed and check if the displayed sign is
correct (Figure 6a). In the lower-left section, there is a simplified hand model that cyclically
reproduces the required sign so that the user can understand, learn, and replicate the
movement at her/his own speed. After understanding and reproducing the sign, the
user can save it and, using the control button, and can verify through the updated text
box if the reproduced gesture is correct (Figure 6b). Upon obtaining all of the trophies, a
congratulatory message will be displayed, inviting the user to test the acquired skills in the
Hangman game (Figure 6c).

(a) Starting image (b) Correct hand sign (c) Coin reward

Figure 6. Tutorial scene screenshots.
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3.4.2. The Hangman Game Scene

The game scene is designed to test the user’s knowledge of sign language by presenting
a word to guess within a limited number of attempts, represented by the parts of the
hangman’s body. The diagram reporting the logic behind the adaptation of the Hangman
Game is shown in Figure 7.

onUpdateApplication scene

False

True

Letter into

the word?

onClick

quit

button

close

application

read

.txt file

onClick

start

button

load

new word

show

empty letters

reset

hangman

read

letter

show

letter(s) into the word

True

False

Word

completed?
game over

won

True

False

Hangman

completed?

game over

lost

show

hangman new part

show

hangman' animation

Figure 7. Diagram of the Hangman Game scene.

The Hangman Game scene allows to start the game or quit the application to roll
back to the tutorial scene. Even in this scene, once it is deployed, the camera remains
active to track the hand gestures and feed the Machine Learning-based algorithm with
the acquired frames. The application automatically detects if the acquisition device is
RGB-only or allows for the Depth stream. As will be shown in the next section, both of the
options are suitable since gesture recognition rate is remarkable and real-time is granted
even with RGB-D approach. If the performed gesture represents a letter within the word
to be guessed, then the letter is displayed in the correct location and the list of the letters
already inserted is updated. If the word is completed, then the game is won and another
game can be started. Otherwise, if the word is not completed, then the user is allowed for
performing another gesture. On the other hand, if the performed gesture is wrong, a check
on the hangman status must be performed. If the hangman is not completed, another part
of the body is shown; if the hangman is completed, the game is lost.

The UI includes an upper left section where the video stream is displayed, showing
the image with the overlaid prediction of the reproduced sign to the user (Figure 8a). Next
to it, there is a structure where the parts of the hangman will appear with the corresponding
animation, enhancing the immersive experience and showing the user his/her hangman
status. In the lower part of the screen, the letters already used are displayed, and in the
lower left section, the animation of the last shown sign will be reproduced. This is a sort
of double-check that the user can exploit for self-assessment. Once a sign is reproduced,
the sign is be saved for providing the possibility of retracing the gaming experience. The
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corresponding letter will be automatically inserted into the word or added to the list of
incorrect characters, resulting in the appearance of a new part of the hangman (Figure 8b).
Upon correctly completing the word, a caption will appear, prompting the user to start a
new game (Figure 8c). In case of defeat, a different message with the same intent will be
displayed (Figure 8d).

(a) Home screen (b) Wrong input

(c) Game won (d) Game lost

Figure 8. Hangman Game screenshots.

4. Results and Discussion

This Section is split into three Subsections to highlight the results obtained by the
Machine Learning-based algorithm, the results obtained through the case-study making
use of SIGNIFY in terms of usability and effectiveness, and the limitations that could inspire
future improvements.

4.1. Automatic Hand Gesture Recognition

The results obtained from our analysis are truly remarkable, as illustrated by the
confusion matrices in Figure 9, for both RGB-only and RGB-D acquisition processes.

The algorithm was tested on Windows 11 on an Intel(R) Core(TM) i5-9300H CPU
@ 2.40 GHz and an NVIDIA GeForce GTX 1660 Ti. Both the RGB and RGB-D devices
have demonstrated exceptional performance, showcasing their effectiveness in accurately
classifying the data. The matrix highlights the high levels of precision and recall achieved,
indicating a strong capability in distinguishing between classes. The capability of both the
models to classify different hand signs with great accuracy is also proved by computing
significant metrics, such as balanced accuracy and f1 m score [48]. Balanced accuracy
takes into account both sensitivity (true positive rate) and specificity (true negative rate),
providing a more comprehensive view of a model’s performance across different classes.
It mitigates the bias that can arise when one class dominates the dataset, ensuring that
the model is assessed fairly, regardless of class distribution. The F1 m score, which is a
variant of the F1 score that can accommodate multiple classes, offers a harmonic mean of
precision and recall. This balance is crucial when dealing with imbalanced datasets, as it
emphasizes both the ability to correctly identify positive instances and the minimization of
false positives. According to the achieved results, the algorithm working with RGB images
achieved 99.83% of balanced accuracy and 99.84% regarding F1 m score. On the other hand,
RGB-D images allow for 99.98% and 99.98% concerning balanced accuracy and F1 m score,
respectively. This achievement underscores the robustness of our approach, that further
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overcome the already remarkable results obtained in the same field [20], and the potential
for both the categories of devices.

(a) RGB-D model (b) RGB model

Figure 9. Confusion matrices.

The excellent performance achieved on the dataset has been similarly observed in the
real-time case study described in the following paragraph. While some minor delays were
noted during the application execution, it is important to emphasize that these delays are
primarily attributable to the hardware used, such as the reliance on a USB 2.0 port instead of
a USB 3.0 connection for linking the external camera to the PC. Despite these small setbacks,
the overall results reaffirm the effectiveness of our approach, demonstrating that the high
accuracy and reliability seen in the dataset translate well into real-world applications.

Although the application is designed for usage in a moderately controlled setting
favorable for learning, further qualitative tests were performed to check the model’s
generalizability and adaptability under uncontrolled situations. Specifically, the application
was tested indoors and outdoors under boundary circumstances such as fuzzy backdrops,
suboptimal illumination, and varying hand orientation and distance from the camera.
Figure 10 illustrates some of the obtained results, which allowed us to demonstrate the
system’s proper functioning, even under less controlled conditions, and its potential range
of usage in various scenarios.

Figure 10. Qualitative tests in real-world uncontrolled settings. Different colors refer to different
subgroups of hand landmarks.

The application operated in real-time on a qualitative level, but a more accurate
analysis has been carried out to quantitatively assess the latency added for automatic
gesture recognition. A human being has a reaction time that is around 150 ms [49]. We
assumed that latency would be calculated by adding the processing times of the MediaPipe
hand landmark library and the classification algorithm. On a GPU, the former can achieve
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a latency of approximately 12 ms [37]. The latter was tested and was determined to have a
maximum latency of 12 ms on our GPU. Considering the entire latency time is significantly
less than the human reaction time, the algorithm’s latency can be deemed negligible, as it
does not interfere with the application’s correct functioning.

When comparing RGB and RGB-D solutions, it is noteworthy that their performance
levels are strikingly similar, with only subtle distinctions between the two approaches.
However, the RGB-D solution exhibits a slight advantage, particularly in scenarios charac-
terized by light variations. This added robustness allows the RGB-D approach to effectively
address challenges that may cause performance drops in purely RGB systems. Furthermore,
in previous works utilizing RGB-D, we observed that this approach reduces, though does
not completely eliminate, the need to generalize the dataset [50,51]. This characteristic is
crucial for applications requiring adaptability to diverse environmental conditions, rein-
forcing the value of incorporating depth information in enhancing classification accuracy
and reliability.

The RGB-only solution offers the significant advantage of utilizing common devices
like smartphone and tablet cameras, making it accessible and convenient for a wide range
of users. In contrast, the RGB-D approach necessitates a more specialized 3D acquisition
system, which can limit its applicability in everyday scenarios, and has been evidenced by
the present study also by the need of creating an ad hoc database. However, advancements
in technology, particularly with time-of-flight cameras, are rapidly changing this landscape.
These innovations have led to improvements in both camera performance and compactness,
making it increasingly feasible to integrate RGB-D capabilities into personal devices. As a
result, the distinction in accessibility between RGB and RGB-D solutions is becoming less
pronounced, potentially leveling the playing field for both approaches in these applications,
and allowing it to be available to a wider range of users having devices with different
hardware capabilities. This is in line also with previous findings related to the perceived
user experience by learners using 2D and 3D gamified Virtual Reality on American Sign
Language [22].

4.2. SIGNIFY Qualitative Assessment

As previously stated, the main objective of this work is the development of a serious
game that can facilitate LIS learning for young children. To have a more robust evaluation
of the application and to verify its usability and simplicity, a comprehensive assessment
was required. In the previous section, the performance assessment of the automatic hand
gesture recognition algorithm has been reported. In this section, the application has been
evaluated in terms of usability, with a focus on its effectiveness, visual immediacy, and
practical use in an educational context [52]. For this reason, the application was tested by a
heterogeneous group of 11 children aged between 10 and 12 to evaluate the effectiveness
of the game and its potential as a learning tool, under the supervision of three teachers.
The most widely used evaluation methodologies for usability and engagement, System
Usability Scale (SUS) [53] and User Engagement Scale (UES) [54], have been reworked to
make them suitable for primary school children.

As shown in Figure 11, all users appreciated the tutorial section, since none of them
were familiar with sign language, and only one of them expressed the need to revise
gestures several times due to unfamiliarity with technology. Given the engagement and
the rapid learning curve shown by the children, the teachers reported the gamification
technique very useful, expressing the desire to use it for other purposes as well.

The graphical user interface was considered adequate by the majority of subjects, with
73% appreciating the UI and finding it effective, 18% finding it fairly effective, and the
remaining 9% thinking it needs improvements. Eventually, 36% of the subjects considered
the application easy to use, 28% encountered slight difficulties in use, and the remaining
36% found the application fairly easy to use (Figure 11).
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Figure 11. Questionnaire results. Allowed answers were: no, not too much, little, quite a lot, yes.

Therefore, unlike existing serious games in the literature, such as Magic Touch
Math [18], the system for Portuguese sign language learning, and MatLIBRAS Racing [7],
the proposed application has the great advantage of having been already validated from
the actual end-users, children, and teachers. Indeed, the results have proven to be crucial in
assessing the effectiveness of the proposed system, testing it directly on what would be the
main target to highlight the feasibility of this approach. This difference is substantial in a
context where automatic recognition has already proven to be particularly effective over the
years [20] and, consequently, requires more attention from the perspective of integrating
artificial intelligence with extended reality. In particular, it is this latter element that has
already proven to be decisive in other contexts for facilitating the learning process through
more engaging and immersive activities [55,56].

4.3. Limitations and Future Work

Although SIGNIFY resulted to be an effective tool both in terms of automatic hand
gesture performance and application usability, there is still room for improvements. The
hand sign dataset should be expanded by including images with different lighting con-
ditions, varied and non-uniform backgrounds, and hand signs performed at different
distances from the camera. This should be particularly significant, especially for the RGB-
only database, since the RGB-D frames contains the 3D depth information useful to make
the recognition more robust. Furthermore, the models are trained solely with signs made
using the right hand. So, training the models with signs made using both hands will
improve accessibility by ensuring the efficacy of recognition regardless of which hand is
used. Another significant development will be the inclusion of dynamic letters [57] in
the sign alphabet, such as g, j, s, and z, and also other signs that can be recognized only
considering the dynamic nature of these gestures. This will likely require the inference to
be performed on a brief video sequence instead of single frames.

Regarding the communication between Python and Unity 3D [58], the current applica-
tion uses a text file to read and utilizes the information derived from the prediction of the
model used in Python. However, this method of communication between the two channels
is not optimal from a security point of view, and is the cause of minor delays if the available
hardware is underperforming. A client–server architecture could mitigate this issue.

In addition, based on the results obtained from the questionnaires administered
to potential users of the application, some criticalities emerged regarding the graphical
component of the animations of the signs to be reproduced, which were deemed unrealistic.
A possible development would be to use a more realistic hand model based on the 3D
capture to make the hand movements more easily understandable to the end user in the
tutorial section.

Finally, to reach a broader audience, developing a mobile version of the application
will be a key goal. As already mentioned, both RGB and RGB-D methodologies could be
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adopted, thanks to the integration of 3D depth acquisition cameras in the cutting-edge
personal devices.

5. Conclusions

This study demonstrated the potential usefulness of serious games in educational
contexts when combined with advanced machine learning technologies. Specifically, the
applicability of cutting-edge gesture recognition technologies in children’s Italian Sign
Language (LIS) learning experience was explored. The comparison between the Azure
Kinect and a standard RGB laptop camera reveals that both systems are capable of support-
ing gesture recognition for educational purposes, each with its own set of strengths and
limitations. The inclusion of a tutorial section and a classic hangman game within the tool
allows users to learn and practice the LIS alphabet interactively, making the learning pro-
cess both educational and enjoyable. The positive feedback and engagement from primary
school children during evaluations highlight the tool’s effectiveness and potential impact in
making sign language more accessible and engaging. In conclusion, this work underscores
the significant contributions that technology can make in the field of inclusive education.
By integrating gesture recognition with interactive gaming, this tool will not only support
learning LIS, but also will promote a more inclusive and engaging learning environment.
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