POLITECNICO DI TORINO
Repository ISTITUZIONALE

Introducing DUST: A Dataset of Real-Time UDP Sound Packet Traces

Original

Introducing DUST: A Dataset of Real-Time UDP Sound Packet Traces / Severi, Leonardo; Sacchetto, Matteo; Bianco,
Andrea; Rottondi, Cristina. - (2024), pp. 1-4. (Intervento presentato al convegno 5th IEEE International Symposium on
the Internet of Sounds, 1S2 2024 tenutosi a Erlangen (DE) nel 30 September - 2 October 2024)
[10.1109/is262782.2024.10704190].

Availability:
This version is available at: 11583/2994947 since: 2024-12-10T08:47:01Z

Publisher:
Institute of Electrical and Electronics Engineers Inc.

Published
DOI:10.1109/is262782.2024.10704190

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright
IEEE postprint/Author's Accepted Manuscript

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

31 December 2024

Introducing DUST: a Dataset of real-time UDP
Sound packet Traces

Leonardo Severi, Matteo Sacchetto, Andrea Bianco, Cristina Rottondi
Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
{name.surname } @polito.it

Abstract—This paper introduces DUST, a dataset composed of
UDP audio packet traces generated by a real-time Networked
Music Performance system. The dataset includes a variety of
files collected under different network and device configurations.
Each file combines traces of incoming audio packets with local
playback status information. The dataset aims to support of-
fline simulations of real-time audio streaming systems, aiding
the development of algorithms to address challenges such as
packet loss concealment, network jitter resilience, and clock drift
compensation.

Index Terms—Network Traffic Traces, Real-Time Audio
Streaming, Network Jitter, Clock Drift, Sound Cards.

I. INTRODUCTION

Real-time audio streaming over the internet is employed by
a wide range of applications, such as videoconferencing and
Networked Music Performance (NMP) tools. While deferred
audio streaming, as adopted in music on-demand services, pri-
marily focuses on preserving the quality of the received data,
real-time audio streaming imposes the additional constraint
of maintaining a low latency. This constraint arises from the
necessity to ensure a seamless and responsive user experience.
The reference metric for this purpose is the Mouth-To-Ear
(M2E) latency, defined as the time intervening from the audio
acquisition by a recording device to its reproduction by a
remote playout device. The recommended M2E latency for tra-
ditional videoconferencing applications is around 150 ms [2].
In the case of NMP it should instead be kept below 30 ms [6]]
to ensure realistic interaction among musicians and to avoid
potential timing issues, such as tempo deceleration, during the
performance. Therefore, designing a real-time audio streaming
system poses additional challenges compared to implementing
a deferred streaming system.

The basic setup of a real-time audio streaming application
involves an audio source device at one location and an audio
destination device at another (remote) location, interconnected
via a telecommunication network such as the Internet. The
best-effort design of the Internet Protocol (IP) does not permit
to concurrently achieve timely and error-free data delivery,
thus introducing a trade-off between these two objectives.

More in detail, factors such as network configuration, link-
layer connection type (e.g., Ethernet, Wi-Fi), network con-
gestion, and routing changes influence packet delivery timing,
creating observable network jitter. Network jitter, defined as
the variation in packet inter-arrival times, can significantly

impact the performance of real-time applications. To mitigate
such impact, the receiver end of a real-time audio streaming
system usually features a playout buffer, an in-memory buffer
designed primarily to smooth out the jitter effect.

Moreover, real-time audio streaming applications typically
rely on the User Datagram Protocol (UDP) as a transport
layer protocol, as it avoids retransmission and reordering de-
lays introduced by the Transmission Control Protocol (TCP).
Therefore, no guarantees are provided regarding the actual
packet delivery, leading to potential late or lost packets, whose
audio content cannot be reproduced in due time. Such packet
losses deteriorate the quality of the audio playback by intro-
ducing audible artifacts. Therefore, Packet Loss Concealment
(PLC) techniques aimed at mitigating the perceptual impact
of missing data portions in a multimedia stream, due to either
delayed or lost packets, need to be adopted.

Finally, since communication occurs between two distinct
machines, two separate sound cards are involved for audio
capture and playback. Despite operating at the same nominal
frequency, the clocks of the two sound cards are never ex-
actly identical. Since time synchronization strategies typically
cannot be applied, this leads to the necessity of tackling the
problem of clock drift [3]].

Even though these three factors can be modelled indepen-
dently, in a real scenario they influence each other. Indeed, a
high jitter has the potential to cause local buffer underruns.
Additionally, drift must be corrected to prevent unrecoverable
overruns and underruns. Finally, packet loss can only be
handled if promptly detected, i.e., if the buffer is large enough
to permit the application of any recovery strategy in due time.

To the best of our knowledge, currently publicly available
datasets consider multimedia streaming over HTTP of pre-
recorded material (e.g., [4]) or videoconferencing applications
(e.g., [5]), instead of NMP frameworks, and predominantly
focus on the analysis of one of the three above-mentioned
aspects (e.g., [1]), but do not permit to evaluate the intrinsic
interconnection among them. Moreover, packet traces are
typically constructed under the hypothesis that every packet
can be either lost or correctly received, under the common
assumption that a late packet is treated as a lost packet.
However, this assumption does not necessarily hold in a real-
time audio streaming scenario. A packet that arrives too late
w.r.t. the due playout time of the first audio sample in its
payload may still contain a portion of samples whose playout

time has not yet expired. In such a case, the packet content
should not be entirely discarded, as part of the carried audio
signal could still be reproduced in due time.

To address such shortcomings, this paper presents DUST:
a dataset of network packet traces transmitted by a NMP
application (i.e., MEVO [7]]), which leverages UDP as a
transport layer protocol. The traces were collected under
varying network conditions using different audio devices,
and were captured and stored at the receiver side. DUST
has been created with the purpose of enabling simulations
of the behavior of a real-time audio streaming application
in realistic network conditions. The dataset is designed to
integrate information about the playout process with audio
packet arrivals captured in successive snapshots. This enables
the simultaneous simulation of the reception or loss of a
number of samples smaller than the packet size and an accurate
quantification of the clock drift. In turn, such features permit a
more thorough evaluation of the performance of state-of-the-
art PLC techniques.

The remainder of the manuscript is organized as follows:
Sectionprovides details about the dataset, the data collection
method, and a description of its structure and content. Sec-
tion [III| provides some details on how to process the dataset to
quantify drift and sample losses. Finally, Section [[V] concludes
the paper.

II. THE DATASET
A. Data collection method

Data has been collected leveraging a modified version of the
MEVO system. The system features a Raspberry Pi 4B (RPI)
as computing device and an off-the-shelf professional sound
card. The RPI is connected to the Internet by means of a
wired Ethernet connection. The RPI runs the Raspberry Pi OS
with the Linux PREEMPT_RT kernel. The MEVO software
running on it controls the sound card through the in-kernel
ALSA driver and sets the hardware parameters of both the
capture and playback interface to the lowest possible hardware
buffer size, and the sampling rate to 44100 Hz. Since sender
and receiver features can be independently set, in the following
we will describe the behavior of the two processes separately,
from a software perspective.

1) Sender process: As soon as a chunk of audio is ready
to be captured, it is read and stored in a small memory buffer
by the capture thread TC. According to a given policy, after
a sufficient number of samples (usually between 30 and 132)
have been collected, a second thread, sender thread TS, stores
them in a UDP packet, using a simple custom application layer
protocol, and sends it to the remote receiver process.

2) Receiver process: Upon reception of a packet from the
network, network thread TN extracts audio samples from it
and enqueues them in the playout buffer. Playout thread TP
constantly reads audio samples from the playout buffer and
outputs them through the ALSA driver. For the sake of the data
collection, the behavior of TN has been modified to collect a
snapshot of the playout buffer state and of the incoming packet
when enqueueing it. The snapshot collection process has been

designed to be computationally lightweight, to minimize its
impact on the measured quantities. TN writes the snapshot
to memory, and another (logger) thread TL is in charge of
batch writing the snapshots to mass storage as lines of a CSV
file (see Fig. [I). During the data collection process, the audio
has been monitored at regular intervals to guarantee it was
correctly audible at both sides.

Playback thread (TP)

: Event
Receiver thread (TN) Eriggered:
sound card
Erans o
triggered: p
Packet
received Pull samples
Extract samples from sample
from i-th queue and
packet output them

wait for
other
events

snapshot (S)

Logger thread (TL)

S-queue and

‘ Enqueue S in
notlfy TL

1
[Create state J
]

Event
triggered:
S available
[Enqueue samples] ¢

* Pull Ss from
S-queue and

append them to
trace file

wait for

other events ‘

wait for
other
events

Fig. 1. Data collection diagram

B. Dataset Structure and Content

The dataset is a collection of CSV files containing one
record for each received packet. Each line consists of three
columns:

o Read index: the number of samples read (consumed)

from the buffer by TP.

e Send index: the index of the first sample in the packet
being enqueued by TN.

o Timestamp: a local timestamp measured in nanoseconds,
according to the RPI real-time-clock, relative to the first
reception event by TN.

No data cleaning has been performed. All initial values are
set to 0. For each experiment, three files are generated: a pair
of CSV files, adhering the aforementioned format, produced
by the two communicating devices, where each device acts
both as sender and receiver, plus a third file that offers a high-
level description of the experiment by providing the following
details:

e The models of the sound cards used

o The locations of the experiment

o The duration of the experiment, expressed in hours (rang-
ing from 1 to 9)

o The type of the last mile Internet connection

o Further comments

At the time of writing, three different sound cards were
used:

o Behringer UMC404HD
o Scarlett 2i2 (1st generation)
e Audient ID14 MKII

Experiments have been performed through non-exhaustive
combinations of network conditions. We combined a Fiber-
To-The-Home (FTTH), Fiber-To-The-Cabinet (FTTC) and an
enterprise network. Additionally, we collected data on a direct
Gigabit-Ethernet connection between the two RPIs, using the
same model of sound card at both sides to provide a baseline
of the expected behavior. Some traces present behaviors which
are strongly influenced by a third agent (e.g., another device
concurrently sharing the same network access link).

III. INFORMATION EXTRACTION AND UTILIZATION
A. Clock Drift and Jitter Characterization

Each file enables the extraction of the drift between the
devices’ clocks and the characterization of jitter. The drift d
is generally expressed in parts-per-million (ppm). For audio
devices, drift can be measured using the number of samples
as a time indicator. Given a file of length N with remote device
Dpg, and local device Dy, a possible simple definition of the
average drift of the clock of Dpr w.r.t. the clock of Dy can
be given by the following formula:

d=10° (}i]]i_ll_l) (1)

with S and R being respectively the send index and the
read index, and their subscripts indicating the packet number
(starting from 0). Assuming a certain behavior of d (e.g.,
supposing that it remains constant during the experiment), it is
possible to define a function f such that S; = f(R;) with S;
being the estimated value of S; considering the drift. If d and
f are representative of the behavior of the two devices, then
it is possible to use the value ¢; = S; — S; to characterize the
jitter observed by the receiver.

B. Sample Loss Simulation

Identifying lost samples in the audio playout is pivotal for
the assessment of PLC methods. When referring to audio
streams, sample losses can be generated by three possible
causes:

e Hardware/Software (machine) faults at sender side, for
instance caused by a buffer overrun/underrun due to
processor overload;

e Packet drops introduced by intermediate routers in the
telecommunication infrastructure, when using a non-
reliable transport protocol, i.e., UDP;

e Latency spikes, meaning that a chunk of audio samples,
encapsulated in one or more consecutive packets, arrives
at the destination significantly later than expected.

Publicly-available datasets used for packet loss simulation
typically identify packet loss by assigning a boolean value
to each packet to indicate whether it was correctly received.
Differently, the information collected in DUST makes it pos-
sible to simulate more refined scenarios, e.g., where a portion
of the data carried by a late packet can still be used for audio
playout. For instance, suppose a packet carrying 128 samples
being 1 ms late w.r.t. its expected playout time. In this scenario,
supposing that the sampling rate is 44.1 kHz, the application
could still be able to reproduce 128—[1-44.1] = 128—45 = 83
samples contained in such packet. This may have a non-
negligible impact on the performance of a PLC technique.

With parameters
B:=buffer size
C:=frames per

packet

[Precompute drift (d)]

File finished?

No

(Read next line)

(Gap — si - olds)

(olds - si)
Gap > C?
No
Yes

Write (Gap-C)
zeros

Compute Wi according to
parameter B, then Li

v

Write Li
zeros, then
(C-L1i) ones

]

Fig. 2. Example flow-chart for a sample loss simulator, given a file of DUST
and parameters B (buffer size) and C (samples per packet). An output value
of zero marks a lost sample.

—100 A

—200 A

—300 A

—400

=500 A

Write offset - Read index (samples)

—600 A

3000 4000 5000 6000 7000

Timestamp (s)

0 1000 2000

Fig. 3. Example of the evolution of W; — R, over time, assuming B = 128.
Negative values indicate the presence of lost samples.

To use DUST for sample loss simulation, a dedicated
simulator must be created. The simulator would produce a
bit-stream (a stream of boolean values) associated to a given
file of DUST. Each value of the bit-stream would mark the
correct/wrong reception of the corresponding sample. Fig. 2]
provides an illustrative example of how the simulator could
produce the bit-stream. We highlight that the simulation output
is not unique, as it is strongly dependent on the buffering
and drift-correction policies implemented in the simulator. We
can safely assume that there exists a controller that applies
a correction to the packet’s send index S;, incorporating the
buffering policy and the drift correction. A simple approach
to implement such controller may assume a fixed user-defined
target value for the buffer size (in number of samples) and the
presence of an oracle that provides a bias B to be applied to
S; based on the elapsed time and the prior knowledge of the
clock drift d between the two sound cards. In Eq. [2| we show
how to obtain a value W;, defined as the write index of the
incoming i-th packet, from S; with the parameters B and d
(expressed in ppm).

Si
Wi=B+ —" 2)
(1+ 155)
W; is directly comparable to R; such that
0 if W; > R;
5= 10 i >R 3)

min(R; — W;,C), otherwise

with C' being the number of samples per packet and L; the
number of initial lost samples of i-th packet. Fig. [3] shows an
example of the behavior of W; — R; assuming B = 128. We
also assume that there are no out-of-order packets; otherwise,
the file must be sorted in ascending order by the send index
column before being fed into the simulator.

It is worth mentioning that the above described approach
does not take into consideration potential machine faults,

therefore, even though applicable to the files included in
DUST, it does not have general validity.

IV. CONCLUSIONS

This paper presented DUST, a dataset containing UDP audio
traces collected from the communication between two devices
running a NMP system over an IP network. The dataset
encompasses different scenarios, considering various network
configurations and audio devices. DUST aims to be a support
tool for research on packet loss concealment, drift estimation
and jitter characterization. Even though the dataset has been
created with NMP as reference application, we acknowledge
its potential for broader utilization, even under less restrictive
latency requirements (as, e.g., in the case of videoconferencing
systems). Therefore, in the future we aim to further expand
DUST by incorporating new traces collected in wireless
network scenarios, including 5G networks. The dataset is
available at |https://doi.org/10.5281/zenodo.12726670.

ACKNOWLEDGMENT

This work has been partially supported by the Italian
Ministry for University and Research under the PRIN program
(grant n. 2022CZWWKP). Leonardo Severi’s PhD Programme
is funded by the European Union in the framework of the
Resiliency and Recovery Plan (RRP), within the NextGener-
ationEU initiative.

REFERENCES

[1] Lorenz Diener, Solomiya Branets, Ando Saabas, and Ross Cutler. The
icassp 2024 audio deep packet loss concealment grand challenge. In
ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech
and Signal Processing, April 2024.

[2] ITU-T Rec. G.114. One-way transmission time. ITU, May 2003.

[3] Christoffer Lauri and Johan Malmgren. Synchronization of streamed
audio between multiple playback devices over an unmanaged ip network.
Department of Electrical and Information Technology, Faculty of Engi-
neering, LTH, Lund University, Sweden, 2015.

[4] Stefan Lederer, Christopher Miiller, and Christian Timmerer. Dynamic
adaptive streaming over http dataset. In Proceedings of the 3rd multimedia
systems conference, pages 89-94, 2012.

[S] Babak Naderi, Ross Cutler, Nabakumar Singh Khongbantabam, Yasaman
Hosseinkashi, Henrik Turbell, Albert Sadovnikov, and Quan Zou. Vcd:
A video conferencing dataset for video compression. In ICASSP 2024-
2024 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3970-3974. IEEE, 2024.

[6] Cristina Rottondi, Chris Chafe, Claudio Allocchio, and Augusto Sarti. An
overview on networked music performance technologies. IEEE Access,
4:8823-8843, 2016.

[71 Leonardo Severi, Matteo Sacchetto, Andrea Bianco, Cristina Rottondi,
Aleksandra Knapinska, and Piotr Lechowicz. Demonstration of a net-
worked music performance experience with mevo, 2024.

https://doi.org/10.5281/zenodo.12726670

	Introduction
	The Dataset
	Data collection method
	Sender process
	Receiver process

	Dataset Structure and Content

	Information extraction and utilization
	Clock Drift and Jitter Characterization
	Sample Loss Simulation

	Conclusions
	References

