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Abstract: Unmanned aerial vehicles (UAVs), commonly known as drones, are being seen as the
most promising type of autonomous vehicles in the context of intelligent transportation system
(ITS) technology. A key enabling factor for the current development of ITS technology based on
autonomous vehicles is the task allocation architecture. This approach allows tasks to be efficiently
assigned to robots of a multi-agent system, taking into account both the robots’ capabilities and
service requirements. Consequently, this study provides an overview of the application of drones
in ITSs, focusing on the applications of task allocation algorithms for UAV networks. Currently,
there are different types of algorithms that are employed for task allocation in drone-based intelli-
gent transportation systems, including market-based approaches, game-theory-based algorithms,
optimization-based algorithms, machine learning techniques, and other hybrid methodologies. This
paper offers a comprehensive literature review of how such approaches are being utilized to optimize
the allocation of tasks in UAV-based ITSs. The main characteristics, constraints, and limitations are
detailed to highlight their advantages, current achievements, and applicability to different types
of UAV-based ITSs. Current research trends in this field as well as gaps in the literature are also
thoughtfully discussed.

Keywords: UAS; task allocation; aerial robotics; multi-agent system; UAV network; intelligent
transportation system; MRTA; optimization; task scheduling; autonomous vehicles; auction; heuristics;
dynamic task; multi-UAV; metaheuristics; software architecture; automation; drones

1. Introduction

With the advancement of the Industry 5.0 paradigm, intelligent transportation system
(ITS) technology is poised to enter the next stage: Transportation 5.0 will be dedicated to
solving urban transportation challenges through intelligent technology and a multitude
of autonomous robots, thereby enhancing the efficiency and safety of transportation sys-
tems [1]. Currently, unmanned ground vehicles (UGVs) and unmanned aerial vehicles
(UAVs), i.e., drones, are being extensively utilized in ITSs as the two most promising types
of autonomous vehicles [2]. Consequently, this study provides an overview of the appli-
cation of drones in ITSs, with a particular focus on reviewing task allocation algorithms
for UAVs.

UAVs are enhancing the level of automation in the context of intelligent transportation
systems because they can either operate as an “eye in the sky” to support road transporta-
tion vehicles or carry out tasks in complete autonomy, thereby fully revolutionizing the
concept of transportation service itself. For instance, in a smart city context, a multi-UAV
network equipped with cameras can cooperate to report accidents to a mobility service
center, thus reducing the accident response time [3]. Another example is the usage of UAVs
to carry out parcel delivery tasks in traffic congested areas or difficult-to-reach areas, which
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results in the reduction in delivery times and traffic congestion due to delivery vans. A
scalable and efficient task allocation architecture represents a crucial enabling factor for
optimally coordinating the fleet of drones of the ITS, allowing the fleet to be strategically
assigned to the tasks, improving the overall efficiency of the system and reducing costs.
The scalability of the allocation architecture with respect to the number of agents and tasks
is also a crucial factor for the deployment of large-scale UAV networks.

Generally, task allocation aims to minimize the execution time of tasks, maximize the
number of completed tasks, and increase the reliability of the task allocation procedure.
Presently, the applications of UAVs in ITSs primarily include delivery [4], communica-
tion [5], search and rescue, traffic monitoring, and data collection [6], to name a few.

The UAV task allocation problem in the context of intelligent transportation systems
can be divided into four main categories. First, based on whether UAVs can perform
multiple different tasks simultaneously, they are classified as either Single-Task-UAVs (S-T-
UAVs) or Multi-Task-UAVs (M-T-UAVs). Second, depending on whether a task requires
multi-UAVs to work together, it is categorized as either a Single-UAV-Task (S-UAV-T) or
a Multi-UAV-Task (M-UAV-T). Third, depending on whether the drone task allocation
is completed in real time, it can be categorized into Online-Task-Allocation (O-T-A) and
Offline-Task-Allocation (OF-T-A). Fourth, based on the presence of dependencies between
tasks, tasks can be divided into two types: Independent-Tasks (I-T) and Dependent-Tasks
(D-T).

The two most used drones in the six task allocation models (S-UAV-T, M-UAV-T,
O-T-A, OF-T-A, I-T, and D-T) mentioned above are S-T-UAV and M-T-UAV, and all six
task allocation models involve several common objectives, including maximizing the
total revenue of the task set, minimizing the flight distance, and minimizing the total
cost of the fleet [7]. Some UAV task allocation issues in ITS technology are the same as
those previously defined. For example, in distribution systems, due to the large-scale
characteristics of some distribution problems, a fleet composed of multiple UAVs needs to
cooperate to complete the set of tasks. This M-UAV-T allocation problem is defined as the
Vehicle Routing Problem (VRP) [8]. In small-scale delivery systems using a single UAV, the
S-UAV-T allocation problem is defined as the Traveling Salesman Problem (TSP). The task
allocation problem of a UAV-based ITS is a Non-deterministic Polynomial time (NP-hard)
problem. In synthesis, the UAV task allocation problem is the determination of the task
sequences for a single UAV or a UAV fleet based on the scope and objectives of the entire
task set, thereby ensuring its smooth and efficient completion [9]. At the same time, for the
UAV to successfully complete its mission, various constraints of both the task and the UAV
need to be considered, including the payload capacity, operational speed, task due date,
and the maximum flight distance of the UAV.

With the rise of robotic systems technology, the concept of multi-robot task allocation
has been established as a dynamic research area in the broad context of operations research
applications, and some literature reviews have been recently proposed that also consider
UAV-based systems [7,10–12]. But, to the best of our knowledge, the literature lacks a critical
survey of the application of multi-agent system (MAS)-based task allocation paradigms
to a fleet of UAVs conceptualized as an intelligent transportation network. This paper
presents a survey of MAS task allocation techniques and their application to drone-based
networks for intelligent transportation applications. The main contributions of this work
are threefold:

• The development of a critical review about MAS task allocation methodologies fo-
cusing on multi-UAV networks. This review paper is for engineers, researchers, and
scholars who need a critical overview of these emerging topics;

• The discussion of state-of-the-art allocation strategies for UAV-based ITSs, focusing on
their suitability to the most established applications;

• The discussion of the challenges of task allocation algorithms for UAV-based ITSs as
well as the gaps in the literature for informing future trends.
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This paper is organized as follows. Game-theory-based approaches are presented in
Section 2. Learning-based algorithms, auction-based algorithms, and optimization-based
allocation algorithms are presented in Section 3, Section 4, and Section 5, respectively.
Other hybrid approaches are discussed in Section 6. Finally, a comprehensive discussion of
UAV state-of-the-art allocation techniques as well as their pros and cons, their applicability
to multi-UAV ITSs, and the current gaps in this field are presented in Section 7. Our
conclusions are drawn in Section 8.

Challenges of Task Allocation Algorithms

According to the works of [13,14], UAV task allocation for ITSs can mainly be divided
into two categories: OF-T-A (also known as static task allocation) and O-T-A (also known
as dynamic task allocation). Unlike static task allocation, dynamic task allocation typically
requires the use of fewer computing resources to generate real-time solutions. Centralized
algorithms and distributed algorithms are the mainstream algorithms applied to static task
allocation and dynamic task allocation, respectively. Currently, algorithms used for static
task allocation mainly rely on biologically inspired operators, such as genetic algorithms
(GAS) [15], particle swarm optimization (PSO) approaches [16], and differential evolution
(DE) algorithms [17], aiming to find approximate optimal solutions in a short period of
time. After more than two decades of development, although centralized algorithms have
become mature, the aspects of computational time and convergence accuracy still remain
significant challenges.

In comparison to OF-T-A algorithms, the development of O-T-A algorithm faces other
significant challenges. Firstly, real-time task allocation increases the computational demand
of solution algorithms, requiring them to solve NP-hard problems with fewer computa-
tional resources. It is well known that real-time algorithms often sacrifice decision quality
to ensure their real-time performance; thus, balancing decision quality and algorithmic
real-time performance is also a significant challenge. In addition, the generalization capa-
bility of the task allocation algorithms poses significant challenges in the task scheduling
context of UAV-based ITSs. Determining how algorithms that perform satisfactorily in
small-scale networks can adapt to large-scale drone networks has also become an emerging
issue for researchers. Finally, the algorithms’ robustness presents further challenges. In
unexpected situations, such as the loss of control of a drone or inadequate communication
network coverage, real-time algorithms should be able to make immediate decisions to
ensure that the completion of the task set is not compromised. Therefore, task reallocation
is also being addressed in the literature. There are different types of algorithms that are
employed in state-of-the-art drone-based intelligent transportation systems, including
auction (market)-based approaches, game-theory-based algorithms, optimization-based
algorithms, and machine learning (ML) techniques. These approaches and their application
to UAV-based ITSs are thoughtfully presented and discussed in the next sections.

2. Game-Theory-Based Algorithms

In the work of [18], the autonomous control problem based on game theory is defined
and illustrated with several UAV task planning examples. Task allocation problems based
on game theory are defined as decision problems either in unstructured environments (ran-
dom environments) or deterministic environments with hostile agents. Afterwards, game
theory algorithms have been widely studied as decentralized distributed M-UAV-T alloca-
tion algorithms [19]. In the game-theory-based UAV task allocation problem for an intelli-
gent transportation system, each UAV is defined as a “player” who is able to make decisions
and execute tasks. In real missions, due to communication limitations, players can have
complete, partial, or no knowledge of the other UAVs of the network. In the M-UAV-T allo-
cation problem based on game theory, a set of UAVs is defined as A = {1, 2, 3, . . . , aMAX}.
For any UAV a, the corresponding policy set is Da = {da,1, da,2, da,3, . . . , da,n}. At the end
of the algorithm, the benefit of a set of drones corresponding to the strategy selected by
each UAV is Z = {z1, z2, z3, . . . , zaMAX}. The participants, the strategy set, and the revenue
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set constitute the three components of the game for multi-drone task allocation in ITSs. In
addition, game theory can be divided into two types of models: cooperative games and
non-cooperative games.

2.1. Non-Cooperative-Game-Based Task Allocation

In non-cooperative game models, each UAV will choose the strategy that is most ad-
vantageous (the strategy with the highest return) to itself while ignoring the adverse effects
of this strategy on the global objective function [20]. In non-cooperative games, the system’s
utility function is defined as f = ∑i(wi∑a∈A fi,a), where fi,a is a certain utility function of a
UAV, and wi is the weight of the utility function with ∑i wi = 1. In [21], the utility function
set is defined as { f1, f2, f3} ={Time Cost, Energy Cost, Communication Cost}. Based on
this set of utility functions and a strategy set composed of three policies, a non-cooperative
game model is developed, and the existence of a Nash equilibrium (NE) is proven. The
authors of [22] established a global benefit function consisting of an attack benefit function,
a threat benefit function, an interference benefit function, a resistance interference benefit
function, and a distance benefit function. At the same time, a reinforcement learning algo-
rithm is inserted into a multi-UAV non-cooperative game model to expand the algorithm’s
generalization capability. In this study, the existence of an NE is also proven. Therefore, in
order to improve the generalization potential of the algorithm, gradient descent methods
can be combined with deep reinforcement learning algorithms, and this strategy can be
applied to non-cooperative game models.

NEs exist in multi-drone task allocation schemes based on non-cooperative game
models, and these schemes may contain more than one pure strategy Nash equilibrium
(PSNE). The work of [23] discusses how to select the best solution from the set of PSNE
solutions. The computational complexity of the algorithm is also discussed; the results
indicate that using game theory algorithms in multi-drone task allocation problems can
increase computational costs. A reinforcement learning algorithm is also inserted into non-
cooperative game models for real-time task allocation in [24], and the results showed that
non-cooperative game models based on reinforcement learning can improve the real-time
performance of task allocation. Consequently, non-cooperative game models based on
reinforcement learning not only have a strong generalization capability, but also have a
good real-time performance which can be adopted for task allocation schemes in real time.

Table 1 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.

2.2. Cooperative Game-Based Task Allocation

Differently from non-cooperative games, cooperative game models focus more on
the global optimum. The NE solution of cooperative games places more emphasis on
global optimality and fairness among individuals. In other words, non-cooperative games
emphasize the excellence of the allocation of a single UAV, while cooperative games
emphasize the efficiency of the entire UAV fleet’s allocation. The work of [25] studied
the multi-drone task allocation problem based on cooperative games, emphasizing that
the purpose of cooperative games is to generate a set of strategies for each UAV in a
set of UAVs, punishing the drones assigned to incorrect strategies to ensure that the
optimal task allocation scheme is found while ensuring fairness. In addition, a strategy
called the coalition formation game (CFG) is also widely used in unmanned aerial vehicle
task allocation models, as the CFG performs well when solving the M-UAV-T allocation
problem. In [26], a CFG algorithm is developed to simultaneously optimize reconnaissance
task allocation and bandwidth selection problems. The results show that the joint task
allocation model based on the CFG has a superior convergence speed compared to non-joint
optimization models.

Table 2 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.
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Table 1. Characteristics of non-cooperative-game-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[21]
Non-cooperative game

with N players and
3 pure strategies

Achieved balance between
energy consumption, time

delay, and
computational cost.

Execution delay and
energy overhead

Limited generalization due
to unaddressed dynamic
selection of the weighting

parameters

[22]
Multi-Agent Soft

Actor-Critic
(MASAC)

The generalization
capability of the algorithm
in different task allocation

problems has
been improved.

Dynamic model of
the UAVs

Two-dimensional
environment and

homogeneous swarm
of UAVs

[23]
Single-stage

non-cooperative
multiplayer game

Applying non-cooperative
game models to disaster
management scenarios
while placing greater
emphasis on fairness.

Demand vector and
available resources

Negligible temporal
characteristics of

resource allocation

[24]

Non-cooperative and
real-time approach based

on deep
reinforcement

learning

Improved non-cooperative
game models using deep
reinforcement learning.

Energy power allocation
and network performance -

Table 2. Characteristics of cooperative-game-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[25]
Joint Bandwidth Allocation

and Coalition Formation
(JBACF) algorithm

Improved the algorithm’s
generalization ability in
task allocation problems

and maximized the
benefits of the task.

Bandwidth
Does not include trajectory

optimization or
information fusion

[26] Coalition Formation Game
Achieved balance between
task completion time and

energy consumption.

Task completion degree,
UAV energy loss -

3. Learning-Based Algorithms

For real-time task allocation (O-T-A), the learning-based algorithm is another good
approach. Compared to traditional artificial neural networks and deep neural networks,
reinforcement learning can handle complex tasks and continuously optimize strategies
from the optimization process, making it widely used by researchers in real-time task
allocation problems for multi-UAVs. In order to solve the M-UAV-T allocation problem, a
deep reinforcement learning algorithm is proposed in [27] with the aim of improving the
computational efficiency and the convergence accuracy of the task allocation algorithm.
Unlike game-theory-based methods, reinforcement-learning-based algorithms typically
establish a nonlinear model based on the task allocation problem, as shown in Equation (1).

min f = ∑
i
(wi· fi), subject to : b ≤ Bmax (1)

The objective function aims to minimize the cost of the problem, which is the same
as the reward function in game-based models. b ≤ Bmax denotes a set of constraints
considering the boundary conditions.

In addition, the work of [28] also aims at improving the convergence accuracy of the
algorithm, thus developing an improved reinforcement learning algorithm. The reinforce-
ment learning algorithm introduces the transfer learning theory. After finding a similar
UAV task allocation model in the policy library, the algorithm transfers the training param-
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eter results of the previous source task to the new model through transfer learning. The
simulation results show that the algorithm not only effectively improves the performance
of UAV task allocation schemes, but also has a strong generalization capability. The authors
of [29] developed a multi-agent reinforcement learning method aimed at generating task
allocation schemes for heterogeneous UAV fleets. This algorithm can run in locally known
environments and has strong robustness.

Table 3 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.

Table 3. Characteristics of learning-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[27] Deep Q-learning
approach

UAVs learn the network
state and adapt their

locations

Considered all constraints
of UAV-based networking

tasks.
-

[28]
Deep migration

reinforcement learning
algorithm based on QMIX

Compared with heuristic
algorithms, this method

can improve solving
efficiency without

increasing solving time.

UAV range constraint
Does not consider time

constraints for
practical scenarios

[29] Multi-agent
reinforcement learning

It can be used in dynamic
task scenarios and can
achieve real-time task

allocation.

Considers the uncertainty
of dynamic tasks -

[30]
Gradient descent method

based on deep
reinforcement learning

UAVs can automatically
and dynamically adjust

task allocation strategies in
real time.

Time delay of UAV
data transmission

Verified only for a specific
application scenario

4. Market-Based Algorithms

Auction-based algorithms are widely used for task allocation in drone applications.
These algorithms are based on economic principles, as they are alternatively called market-
based algorithms, with agents using a negotiation protocol to bid in an auction for task
allocation, informed by their local perception of the environment. The agents aim to com-
plete the task assigned with the highest utility or lowest cost by bidding based on the cost or
utility they calculate. According to the agents’ utility functions, a global objective function
is optimized. According to [31], auction-based algorithms present several advantages, in-
cluding a high solution efficiency and moderate computational costs, in addition to having
a dynamic protocol, as they can include or remove new tasks from the allocation procedure.

The literature presents several works related to auction methodology. A time-sensitive
sequential auction (TSSA) algorithm considering time window constraints is proposed
in [32] for task allocation in a multi-agent system. An auction-based algorithm for multi-
agent task allocation is also proposed in [33]. In this way, auction-based task allocation
has received increasing attention since there are different factors that may be considered,
including UAVs’ capability, battery consumption, execution time, and path routes, among
others. The work of [34] proposes an auction-based algorithm for multiple UAVs. A multi-
layer cost computation strategy is developed to handle multiple constraints and determine
the bid’s value.

Most of the proposed auction algorithms yield a poor performance for multi-dynamic
tasks for multiples drones. To address this issue, a hybrid auction algorithm, based on a
decision mechanism and an enhanced objective function, is proposed in [35]. The work
of [36] exploits a dynamic decentralized auction-based algorithm for multi-agent systems,
such as UAVs. A dynamic task allocation protocol is used, since the agent utilities may
change throughout their path towards their targets. This strategy aims to assign a maximum
of one task to each member of the fleet, while the same task can be allocated to multiple
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agents. Thus, the task utilities are calculated according to the agent’s states; i.e., they
depend on both the rewards from the accomplishment of the assigned tasks and the costs
associated with their execution. Differently from game-based algorithms that may not
always achieve high levels of global utility, the auction-based algorithm is able to greedily
achieve global utility, due to its simplicity and fast convergence.

The use of different auction-based algorithms to solve a heterogenous task allocation
problem for multiple UAVs in a drone delivery context is investigated in [37]. The strategy
is used to minimize the battery consumption of a UAS-based parcel transportation service
by allocating delivery tasks with due date constraints to multiple drones that demand
a lower consumption of energy. The allocation of charge tasks is also addressed. These
auction-based algorithms were implemented by means of both single-item and multiple-
item strategies. Scalar constrained optimization problems are solved by each agent to
calculate the UAV’s bid for each task. For delivery tasks, the protocol’s bid is related to the
consumption of energy, while the flight time is chosen for charge task bids. Path planning
is also included in the framework to compute the risk-aware path for each task-UAV bid by
means of a 2D risk map of the operational area.

The work of [38] investigates the use of a second price auction algorithm for drone
intelligent transportation. A deep learning methodology is also included to enhance the
auction algorithm’s robustness by revenue optimality. In addition, an improved imple-
mentation of an auction algorithm for drone delivery is addressed in [39]. Lightweight
distributed task allocation is proposed for this application, simplifying the management
of delivery and charge tasks with minimal energy consumption. Each agent runs a de-
centralized protocol, running path planning and optimization algorithms. In contrast to
conventional auction-based methods for task scheduling, each agent is designed to function
as both the network’s auctioneer and bidder, depending on the task type. Recent works
combine the auction-based algorithm with other methodologies, as seen in [40–42].

Table 4 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.

Table 4. Characteristics of auction-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[32] Time-Sensitive Sequential
Auction

Improved allocation of
tasks that have
time constraints

Time window deadlines -

[33] Auction
Increases robustness and

non-exclusive
task assignment

Battery consumption,
execution time, and path

Poor performance when
tasks could saddle agents

with leaden tasks

[34] Auction-based Multiple
Constraints

Solves multiple constraints
and provides a way of
calculating the price of

a bid

Sensor, time window, and
fuel cost

Most of the parameters are
variable, but the area is

fixed. The effectiveness is
not investigated.

[35] Hybrid Auction Algorithm

Promotes its performance
and robustness in dynamic

task assignment and
avoids obstacles

Mission cost,
coverage factor

Each UAV can only
perform limited tasks and
must return to the base to

replenish resources

[36]
Greedy

Coalition
Auction

Allows for dynamic task
allocation for spatially
distributed multi-agent
systems with a positive

time efficiency

Path and targets

In the presence of large
fleet of autonomous

systems, scalability issues
may arise due to the high

computation cost
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Table 4. Cont.

Ref. Algorithm Characteristics Main Constraints Limitations

[37] Greedy Auction

Able to effectively handle
the complexity and

heterogeneity of
the problem

Energy efficiency, task due
dates, safe path planning

Distributed
implementation is

not addressed

[38] Learning-Based Second
Price Auction

Enables the algorithm to be
truthful, distributed, and

scalable
Energy consumption

The data performance is
limited to investigate the

proposed conditions

[39]
Multi-

Auctioneer
Market-Based

Enables one to tackle tasks
with temporal constraints,

minimizing the
heterogeneous fleet of

UAVs’ energy
consumption

Comprehensive
optimization of energy
consumption, hard task

due dates

Robustness to lossy
communication network is

not addressed

[40] Neural Myerson Auction

Designed for UAV
charging scheduling. It can

provide
collision avoidance to build

secure and
privacy-preserving systems

Energy consumption and
cluster selection

The external forces, such as
wind and other physical

factors, are not considered

[41]
Improved

Multi-Objective
Auction

Improves the setting of the
quotation threshold

parameters by the distance
factor and designs an

adaptive operator strategy

Distance and target -

[42] Combinatorial Double
Auction

Yields a set of feasible
solutions for undertaking

complex winner
determination

problem models

Costs and market
satisfaction

Unavoidable limitation
regarding the data

simulation procedures

5. Optimization-Based Algorithms

The optimization methodology is widely used in applied mathematics to find the
optimal solution to a specific problem. The goal of the optimization is to reduce costs or
maximize profit through an objective function, aiming to find the best solution from a
set of possible solutions. Various constraints can be applied to optimize the cost function
and achieve an improved solution. A variety of optimization techniques are evaluated,
including three main groups: deterministic, metaheuristic (or stochastic), and heuristic.
Methods based on deterministic optimization do not consider randomness; i.e., the output
is equal when the same initial condition is adopted. Graphical methods, sequential and
linear programming, and mixed integer linear programming (MILP) are some examples of
deterministic techniques. Stochastic methods, on the other hand, include randomness in
the algorithm, leading to different outcomes even in the presence of the same initial condi-
tions. Evolutionary algorithms, swarm intelligence, Monte Carlo methods, and simulated
annealing are some of the current examples for this group of algorithms. Furthermore,
heuristic algorithms are an interesting alternative to deterministic methods (that yield a
high computational cost), providing fast solutions in good computational time. Heuristic al-
gorithms use practical approaches and shortcuts to obtain solutions that are not necessarily
optimal, but sufficient for finding good local solutions.

5.1. Deterministic

A cooperative task allocation technique is investigated for multiple drones in [43].
Three constraints are implemented to successfully carry out the cooperation, including a
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special time window, variant equipment, and a specified execution sequence. Then, a multi-
layer objective function formed by four optimization functions, such as the completion time,
target reward, UAV damage, and total range, is designed to investigate heterogenous alloca-
tion plans. The dynamic model of the UAV is represented by UDM = (XU

j , ϕj, vj, Rlimit
j , SU

j ),
where the terms correspond to the position, heading angle, speed, minimum turning radius,
and maximum range, respectively, while the allocation variable is defined to establish the
relation between UAVs and tasks as follows:

xjk =

{
1 : allocate task Mk to drone Uj

0 : otherwise
(2)

The use of two MILP models, where the first is used for the clustering problem and the
second for the delivery route problem, is investigated in [44]. The clustering stage, designed
by means of a MILP model, determines the specific locations of a group of data. The second
MILP is then employed to find optimal routes from the drone delivery. The objective
function minimizes the total distance, which is defined by minz = ∑ ∑ distanceij·Xij,
subject to ∑ Xij = 1 and many other constraints.

A mixed-integer nonlinear programming (MINP) problem is employed to reduce the
energy consumption of multiple drones in [45]. A movement model of a drone cluster is
designed based on a two-dimensional random walk model, while the sequence-dependent
computing task assignment (CTA), based on multiple UAVs, is employed to enforce the
task assignment decision of heterogenous UAV clusters. Energy consumption, transmission
power, and sequence-dependent start time are some of the items included in the CTA. The
random model describes the behavior of the nodes to determine the next movement. The
position density function can be expressed by fX(X) = fS(X) + fp(X) + fM(X), which is
formed by three states, i.e., stationary, suspended, and moving. Similarly to the previous
work, the task allocation model assumes Xij = 1 if task i is handled by the drone j, and
Xij = 0 otherwise.

There is an abundancy of works in the literature that employ the Hungarian algorithm
for the task assignment of multiple aerial vehicles. The Hungarian algorithm for task assign-
ment is studied in [46]. In this case, all drones cooperatively compute a global assignment
to optimize a common criterion (distance), considering a finite set of local computations
and communications. Likewise, the work in [47] proposes a decentralized Hungarian algo-
rithm to find the optimal assignments, with an improvement in computational time. The
Hungarian algorithm shows superiority in scalability when multiple drones are assumed to
participate in the assignment of tasks. A Hungarian algorithm with the aim to find optimal
drones’ charge stations in a smart city context is also proposed in [48]. Drones usually
return to their preassigned stations when using conventional strategies, regardless of the
distance of the drones from the station. In this case, the Hungarian algorithm based on
energy and distance enables the drones to find an optimal charge station before performing
their missions. However, a scarce number of works in the literature consider additional
strategies for collision avoidance and the minimization of the idle time between tasks. For
instance, in a multiple-drone transportation problem, to be assigned the next task, the
drones must wait until the last drone completes the corresponding mission. The work
in [49] proposes a fast and energy-efficient strategy, based on the Hungarian algorithm,
to minimize the unnecessary idle time between stages. Before the implementation of the
Hungarian algorithm, an assignment algorithm is designed to optimize the maximum
movement distance among UAVs in a swarming scenario. The algorithm aims to improve
the operating time by reducing the maximum movement distance, while a multilayer
methodology (a swarming flight system) is used to avoid collisions.

Table 5 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.
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Table 5. Characteristics of deterministic-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[43] Multi-Objective
Optimization

Enables the use of adaptive
parameter control and

multiple tasks and agents
to speed up the

convergence of the
algorithm

Completion time, target
reward, UAV damage, and

total range

Dynamic location,
unexpected tasks, and
additional UAVs are

not investigated

[44] Mixed-Integer Linear
Programming

Improves the efficiency of
cluster selection and
product distribution

Distance of pharmacies,
cluster location, distance

between clusters
-

[45] Sequence-Dependent
Task Assignment

Reduces the consumption
of heterogeneous UAV
clusters by mapping

relationship between UAVs
and sequence-dependent

tasks

Task assignment,
bandwidth, and energy

The computing speed
varies differently for a

different number of tasks

[46] Hungarian
Algorithm

Optimizes a given global
criterion within a
finite set of local

computations and
communications over a
peer-to-peer network

-

The interface does not
allow a user to modify the

score unless the
modification occurs after a
prespecified time duration

[47] Hungarian
Algorithm

Improves the performance,
converging speed, and

optimality of
the assignments

Number of agents -

[48] Hungarian
Algorithm

Enables the drones to find
an optimal charge station

before performing
their missions

Energy consumption
and distance

Preassigned matching
might demand more

energy and have a higher
computational cost

[49] Hungarian
Algorithm

Improves operating time
and considers collision

avoidance

Costs and energy
consumption

The energy consumption is
not fairly distributed
among all the drones

5.2. Heuristic

Besides the use of single and multiple drones for intelligent transportation, they can
also be combined with other vehicles, such as trucks, to improve transportation efficiency.
The combined truck–drone system guarantees that the trucks are responsible for the largest
part of the path, while the drones are employed to facilitate last-mile transportation to
the customer. The work of [50] investigates the use of simultaneous objective functions to
minimize the energy spent by the trucks, the drone consumption, and the number of trucks.
An improved artificial bee colony algorithm is designed to tackle multiple constraints of the
proposed problem. The proposed methodology is based on decision variables as follows:

xijk =

{
1, i f truck k travel f rom vertex i to j

0, otherwise

jik =
{

1, i f vertex i is served by vehicle k
0, otherwise

The objective function is defined as follows :
min α∑ ∑ ∑xijkwtk tij + β ∑ ∑ x0jk2tpi

(
1

ydk

)
wdk + γ ∑ x0jk

(3)

where wtk and wdk denote the energy consumption coefficient for each truck k and each
drone dk, respectively. The term tpi corresponds to the vertical trip distance for each
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customer i; the serving duration is expressed by si. The term ydk denotes the flight speed,
while tij denotes the travel distance. Finally, α, β and γ denote the weight coefficients of
the total energy consumption. The objective function is then subject to different constraints
such as the minimization of the truck’s energy consumption, the maximum capacity of the
trucks, the delivery of each parcel to each customer, the serving duration, etc.

A hybrid genetic algorithm (HGA) for a vehicle–drone cooperative system is in-
vestigated in [51]. The hybrid algorithm is used to minimize both the total operational
cost and the total delivery time. The HGA is formed by the genetic algorithm and lo-
cal search technique, modeled with a set of 16 local operators, a penalization mecha-
nism, and a restoration method, to balance the exploration of the search space consider-
ing feasible and infeasible solutions. The minimum cost is represented by the function
cost(TD, DD) = cost (TD) + cost (DD) + costw(DD), where cost (TD), cost (DD), and
costw(DD) correspond to the costs of truck, the drone, and the waiting time, respectively.
The minimum time is denoted by time(s) = max

(
tn+1, t′n+1 ). Similarly, an HGA is pro-

posed in [52] to improve the cooperation between ground vehicles and multiple drones.
The HGA aims to optimize the final delivery time by selecting the appropriate paths for
the truck–drone system. The method is divided into three stages: population initialization,
crossover, and education. Initially, anchor points are chosen to obtain optimized solutions.
The remaining stages involve both reducing the computation time and avoiding stopping
at local optimal solutions. A low visit cost crossover (LVCC) algorithm is employed to
appoint genetic fragments based on nodes’ anchor points.

A variant of the genetic algorithm, also known as the 2D quantum genetic algorithm
(2D-QGA), is developed in [53] to solve a multi-task allocation problem in a 2D space.
The objective function is designed to reduce the distance between drones and tasks by
assigning tasks to corresponding drones according to their mutual distance. Compared
to a conventional GA, the 2D-QGA algorithm achieves a higher convergence rate, lower
computational cost, and smaller population size. Considering the set of tasks, expressed
by T, the allocation problem can be defined as J = ∑ ∑ xijdij, such that ∑ xij ≥ 1 and
xij ∈ {0, 1}. As observed, xij is a binary variable that denotes the allocation, while dij

corresponds to the distance between the ith drone and the jth task. Since the evaluation of
different paths’ lengths can directly influence the efficiency of the multi-drone task alloca-
tion problem, an improved genetic algorithm is designed in [15]. The objective function is
designed to improve the drone’s reward and consequently reduce the fuel consumption.
Compared to conventional GAs, the proposed strategy reduces the allocation time due to a
novel acceptance criterion, increases the diversity of the population (thanks to the double-
chromosome encoding logic), and improves the efficiency with a reduced convergence
time. The adaptive genetic algorithm (AGA) can also be used for cooperative multiple-task
assignment, as in the work in [54]. The multi-type gene strategy is designed for establishing
a deadlock-free encoding strategy, while the AGA is developed to dynamically adjust the
number of crossover and mutation operators.

A fast heuristic approach, based on multi-armed bandit selection (MABL), is designed
in [55] for deliveries using a truck and drones. The MABL algorithm is used to select the
customer and the corresponding delivery alternative (the truck or drones). By selecting
the truck’s trip, a residual scheduling problem may be solved, i.e., the time between each
stage of the mission. Greedy approximation is also used to optimize the time associated to
the solution, by dividing all events into four priority classes, including urgent landings,
starts, normal landings, and servicing the truck. The classes are ordered from those with
a lower contribution to those with a more significant contribution to the total delivery
time, and then those with the greatest contribution are prioritized. A mathematical pro-
gramming formulation of a multiple-flying-sidekick travelling salesman problem (mFSTSP)
is also proposed in [56]. The formulation includes some service-based constraints, like
drone launching and retrieval, the total delivery time, the battery discharge, the integra-
tion between the truck and the drones, and the use of multiple drones. Some heuristic
approaches are employed to solve the scheduling problem: a local search method, two
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evolutionary-based methods, and a greedy solution. The algorithms are designed to opti-
mize the total completion time, i.e., the latest arrival time of either the drone or the truck.
Similarly, two heuristic algorithms based on Compatible Delivery-Max Battery (CD-MaxB)
and Compatible Delivery-Min Battery (CD-MinB) are employed to optimize the delivery
time of the drone [57]. The constraints are related to the drone capacity, battery re-charging,
and available flight time.

The work of [58] proposes an adapted greedy algorithm for different delivery scenarios
to investigate the unit cost. In this work, a constant number of drones is assumed. However,
in real situations, there are several other constraints that must be investigated. A hybrid
multi-objective optimization algorithm is developed in [59] to minimize the total cost of
distribution and optimize the satisfaction of a customer in a collaborative routing problem.
The hybrid strategy is formed by a population-based algorithm and a Pareto local search
(PLS) algorithm. Collaborative routes are selected according to the minimum transportation
cost and the maximum customer satisfaction, which can be expressed as follows:

f1 = ∑ ∑ ctδijxij + ∑ ∑ ∑ ∑ c′d
(

δ′ij + δ′djk

)
ydijk,

f2 = ∑ ∑ xij. µj
(
tj
)
+ ∑ ∑ ∑ ∑ ydijk.µj

(
t′dj

) (4)

where the terms ct and c′d correspond to the transportation cost of the truck and the
drones per unit of distance. The customer satisfaction assumes a value of one if a vehicle
arrives within the time window [ai, bi] and zero otherwise. The work of [60] investigates
a multiple-drone delivery scheduling problem (MDSP) for a last-mile package delivery
scenario. The heuristic algorithms are employed in two different scenarios using single and
multiple drones. The objective function minimizes the reward of a fleet of drones’ routes
as max∑ ∑ pjxij. The constraints are related to the energy budget ∑ wjxij ≤ B, the use of
at most one drone ∑ xij < 1, and exclusivity of assignment of the same task to each drone
xij + xik ≤ 1 and xij ∈ {0, 1}.

Likewise, a sequential greedy algorithm is employed in [61] for multiple drones in a
parcel delivery context. The algorithm determines the estimated arrival time for each agent
and task to determine both the next task to be allocated and the coalition leader, while
minimizing the time of arrival. Due to the battery limitation, some constraints are included
in the objective function to account for both time and battery constraints. Moreover, the
assignment allocation, based on a greedy algorithm, is evaluated in [62] under different
constraints for a cooperative flight of multiple drones. The strategy combines task allocation
with the breadth-first travel method and the greedy algorithm. The objective function
determines the shortest plan or flight time and ensures a cooperative flight between them.

Table 6 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.

Table 6. Characteristics of heuristic-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[50]
Improved
Artificial

Bee Colony

Improved global
search abilities

Energy consumption of
drones and trucks, number

of trucks

Only a static scenario
is considered

[51] Hybrid Genetic
Algorithm

Enhances the convergence
as well as the use of an
adaptive penalization

mechanism to dynamically
balance the search between
feasible/infeasible solutions

Truck travel time, drone
travel time

If the drone travel time
constraint is not enforced,
the algorithm could have

infeasible solutions

[52] Hybrid Genetic
Algorithm Improves the efficiency Distance cost, time -
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Table 6. Cont.

Ref. Algorithm Characteristics Main Constraints Limitations

[53] 2D Quantum
Genetic Algorithm

Improves the execution
time, convergence iteration,

minimum cost, and
population size

Distance between drone
and task position

Limited to problems with
2D representation

[15] Improved Fusion Genetic
Algorithm

Improved population
diversity, global search

ability, and overall
effectiveness

Number of tasks, number
of UAVs, reconnaissance

capability

Regarding local optimal
solution, the fitness value

is not efficiently optimized

[54] Adaptive Genetic
Algorithm

Enhances the optimization
and convergence Task coupling

Predefined trajectories
must be used to perform

the assigned tasks; thus, it
is not able to provide

path adjustment

[55] Fast Heuristic
Algorithm

Presents more accurate
solutions with lower

amount of time
Time

The algorithm is limited to
different extensions,

including delivery time
windows and
multiple UAVs

[56]
Heuristics

Algorithms (Local Search,
Evolutionary, Greedy)

Enhances the exploration
of search space, more

flexible, and better
computational efficiency

Service time of
truck–drones delivery

operations

Limited to static
operational conditions

[57]
Compatible

Delivery—Max/Min
Battery

Enables one to improve the
optimal solution

Number of UAVs, battery
capacity, payload

weight, time

Does not consider
scheduling of deliveries for

multiple warehouses,
taking location and

resources as constraints

[58] Greedy Algorithm Positive efficiency Battery, energy cost,
and time

The proposed algorithm
are all bounded

approximations and cannot
be used to get arbitrarily

close to the
optimal solution

[59]
Hybrid

Multi-Objective
Optimization

Improves the performance
and enables one to balance

the convergence and the
diversity of the hybrid

algorithm

Departure time, arrival
time, order of visit, spatial

coordination, and time

Does not assume the effects
of parcel weights on the
flight time and energy

consumption of the drones

[60] Greedy Algorithm
Enables one to find optimal

solution with minimum
overall reward

Energy cost, time interval,
and rendezvous times

Does not investigate a
more realistic scenario,

such as multi-depot
multitrack scenarios,

multiple deliveries at the
same time, or

battery recharging

[61] Sequential Greedy
Algorithm

Enables one to perform
binary optimization

Battery and
recharging station -

[62] Greedy Algorithm

Enables one to find optimal
solution of multiple types
of subtasks and improve

the effectiveness of
the solution

Number of UAVs and
flight time

The algorithm considers
only a few factors in the
distribution of regional

tasks, and the optimization
distribution is not obtained
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5.3. Metaheuristic

The swarm intelligence algorithm is inspired by cooperative activities in nature, such
as the behavior of bees or ants in colonies. The algorithm’s concept is motivated by the
natural distribution and self-organization of the labor in those colonies, including the
relationship between individuals as well as the social behaviors within the colony [63].
This concept is currently being employed to combine multiple drones with a positive
efficiency, by minimizing the flight time (optimal path) and, thus, reducing the cost of the
operations. Conventional particle swarm optimization algorithms are often designed for
multi-UAV task allocation problems. The work of [64] investigates the use of an objective
function to complete all desired missions within a minimum time deadline. Moreover, an
improved algorithm based on multi-objective particle swarm optimization (MOPSO) is
developed in [65] for multi-UAV task allocation. The multi-UAV task allocation is formed
by (V, T, C), where the terms V, T, and C correspond to the set of UAVs, the set of tasks,
and the speed of each UAV, respectively. The objecive function is designed in order to
account for both the flight distance and mission execution time. This function is subjected to
some constraints, such as ∑ t{i,j} = 1 and di = D(Vi, Ti1) +∑ D

(
Tij + Ti(j+1)

)
+ D(Vi, Tik),

to allocate only one task for each UAV and calculate the maximum distance that the UAV
can travel, respectively. Regarding the di constraint equation, Vi is related to each UAV, Tij

is related to the corresponding task, ∑ D
(

Tij + Ti(j+1)

)
is related to the distance between

both points Tij and Ti(j+1), and D(Vi, Tik) is related to the distance between the UAV Vi
and the task Tj. The results show that the proposed algorithm is able to speed up the
convergence rate, expand the search area, and also prevent the algorithm from stopping at
local optimal solutions.

A multiple-ant-colony algorithm is employed for task allocation in a fleet of multiple
UAVs in [66]. The proposed strategy enables the multiple colonies to work together,
meaning the algorithm does not need to perform a collision check, and to decrease the rate
of convergence. The objective function is designed to optimize the time that the UAVs need
to complete the assigned tasks. On the other hand, conventional ant colony algorithms may
present several challenges, including difficulty in finding the optimal path and the large
number of iterations for the initial convergence; i.e., they are characterized, in general, by a
low rate of convergence. In this sense, an obstacle avoidance factor is included in the state
transition probability of ants, which enables the reduction in the deadlock number and
speeds up the process of searching for new paths for multiple UAVs [67]. An improved
pheromone factor is also calculated, based on a Gaussian distribution, to make this factor
dynamically change over time in an adaptive way. These improvements allow the algorithm
to obtain the corresponding path in an easier way as well as to speed up the convergence
rate of the ant colony optimization (ACO) algorithm. Moreover, a min-max ACO is also
employed in [68] to solve a cooperative task allocation problem for multiple UAVs. The goal
of this strategy is to minimize the maximum cost of each individual salesman to balance the
overall workload in the fleet. Then, the algorithm aims to determine the ordered sequence
of tasks performed by each UAV of the network, U = (U1, U2, . . . , Un), and the task list
T = (T1, T2, . . . , Tn) to minimize the global cost (according to the flight distance). The
optimization can be expressed by min(P) = max

(
∑ ∑ xijk DjkPi

)
, where xijk equals one in

case of a UAV performing task Tj; otherwise, xijk equals zero. Finally, DjkPi corresponds to
the cost of the UAV from Tj to Tk along its task path Pi. Several constraints are also included
as boundary conditions for the solution, including that each task must be performed by at
most one UAV, the UAVs should depart from the depot before performing tasks, and the
UAVs should return to the depot after accomplishing all their tasks.

A variant of ACO, called the grouping ant colony optimization (GACO) algorithm,
is investigated in [69] for heterogeneous targets with multiple drones. Likewise, a multi-
objective function is developed in [70] to solve a cooperative task allocation problem for
multiple drones. Multiple objectives are employed to guide decision makers through a set
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of solutions that balance multiple objectives. Therefore, the proposed strategy improves
the efficiency and diversity of the solutions.

Furthermore, trucks and drones can collaborate for intelligent transportation. The
work of [71] assesses different metaheuristic algorithms to solve the formulated variant of
the traveling salesman problem (TSP) in case of drone-based delivery. Firstly, the algorithm
generates the truck delivery path as a classical TSP. Secondly, the calculated path is divided
into the delivery paths of the truck and the drone, leading to an initial solution. Additional
techniques, based on self-adaptive neighborhoods, are then employed to optimize the total
delivery time. Also, a hybrid metaheuristic algorithm to optimize both truck and drone
paths is proposed in [72]. The adapted SimWWO metaheuristic algorithm aims to optimize
the drone’s path and uses a further method to calculate the truck–drone intersections by
exploiting a convex relaxation technique. Compared to the conventional WWO algorithm,
a population reduction policy is employed (instead of the refraction operation) to reduce
the population size from a higher limit to a lower limit by eliminating the inferior solution,
as noted by Np = Nmax

p − (t/tmax)
(

Nmax
p − Nmin

p

)
.

A multi-task method, based on the Monte Carlo tree search algorithm (MCTS), is
developed in [73] to investigate the performance of a logistic system based on multiple
drones. The proposed task allocation method allocates charge stations to the drones in
order to perform a longer-range mission constrained by a limited payload capacity and
battery life. The proposed objective function aims to accomplish the task while reducing the
consumption of energy. Two stages are employed to design an efficient method, including
the creation of sub-task groups to minimize the search range, and the use of MCTS to
minimize the energy consumption. The objective function is defined as follows:

C = ∑ ∑ cijxij (5)

which is subject to the following constraints:

∑ xij ≤ Pmax

∑ xij ≤ 1
xij ∈ {0, 1}

E
(

xi(j−1)

)
− cij > 0

(6)

where xij = 1 indicates the assignment of a task, and xij = 0 indicates the non-assignment
of a task. The constraint equations are used to assign one drone to each task and to ensure
that the drone has enough energy in its battery to reach the task location.

Table 7 provides an overview of the reviewed approaches, including the main charac-
teristics, constraints, and limitations.

Table 7. Characteristics of metaheuristic-based allocation strategies.

Ref. Algorithm Characteristics Main Constraints Limitations

[64] Particle Swarm
Optimization Improves the convergence Time High computational time

[65] Multi Objective Particle
Swarm Optimization

Improves the convergence
and prevents the algorithm
from falling into the local

optimal solution

Task coordination, flight
distance, and time

The objective functions
cannot reach the maximum
or minimum value at the

same time

[66] Multiple Ant Colonies Improves the
overall efficiency Path length

In contrast to real
situations, the edges of the
obstacles are assumed to

be regular
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Table 7. Cont.

Ref. Algorithm Characteristics Main Constraints Limitations

[67] Ant Colony
Optimization

Enables one to easily find
the corresponding path

and speeds up the
convergence rate

Number of tasks The energy consumption
is neglected

[68] min-max Ant Colony
Optimization

Improves the overall
performance

Task path and cost of each
UAV

The task allocation is only
assumed for

homogenous UAVs

[69] Grouping Ant Colony
Optimization

Improves the optimality
and convergence

efficiency

Fuel consumption, path
length, and flight speed -

[70]
Multi-Objective Ant

Colony
Optimization

Improves the convergence
speed, solution quality, and

solution diversity

Task benefit, UAV damage,
and total range

The payload is limited by
small size and low weight

[71]
Population-based and

Solution-based
Algorithm

Improves efficiency and
enables the self-adaptive

selection of the
search neighborhood

Time
A limited number of

parameters for the SA
variant are investigated

[72]
Adapted

SimWWO
Metaheuristic

Improves efficiency Delivery time
The study is limited to one
single drone to be sent and

received by the truck

[73] Monte Carlo Tree Search
Improves selection and

records historical
simulation informational

Flight distance, speed,
and time

A controlled scenario is
chosen to investigate the

proposed algorithm

6. Hybrid Allocation Algorithms

Hybrid allocation strategies are also designed to improve the transportation efficiency
for UAV-based ITSs by merging different types of allocation algorithms.

The work of [74] combines mixed-integer linear programming (MILP) and a simulated
annealing (SA)-based heuristic algorithm to find optimal routes for a drone delivery ap-
plication. Both battery consumption and payload weight are considered to calculate the
drone’s energy consumption. MILP is employed to minimize costs and the delivery time
up to a budget constraint, while the SA is used to find suboptimal solutions of practical
scenarios, i.e., the relation between the delivery time and budget. As a drawback, the SA
algorithm fails to utilize geographical information to attenuate the choice of impractical
routes. Hybrid algorithms can also be used to investigate the optimization of the service
itself, as in [75]. Particle swarm optimization (PSO) and the grey wolf optimizer (GWO)
are combined to minimize the number of deployed drones, cost, and flight time. The pro-
posed algorithm incorporates different strategies, such as interval transformation, dynamic
weighting rules, and a nonlinear convergence factor, to enhance the performance accuracy
and to lower the cost.

The work of [76] combines the Hungarian algorithm (HA) and machine learning
(ML) to optimize the task assignment problem in a drone delivery application. Different
mathematical models, such as linear and polynomial regressions, are used to generate
distinct cost functions, based on distance and time metrics. Once the cost function is
estimated, the Hungarian algorithm is employed for solving the drone intelligent delivery
problem. The Hungarian algorithm is defined by a matrix of costs, which represents the
cost of each agent or task.

Similarly, the combination of a multi-agent RL algorithm and a conflict-free method
is investigated in [77] to optimize task allocation and path planning for multiple drones.
The strategy guarantees that the shortest path is chosen for the drones, while multi-agent
proximal policy optimization (MAPPO) enables collision avoidance between the drones.
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The work of [78] investigates the design of a rapid allocation algorithm, based on the combi-
nation of a greedy auction algorithm and a reassignment strategy. The combination of both
strategies enables swift and effective responses, which result in a rapid and efficient com-
pletion of tasks while preventing the occurrence of deadlocks. In addition, neural networks
are widely employed for task allocation [79]. An assisted learning invasive encroachment
neutralization (ALIEN) technique is designed for a secure drone transportation system. The
objective function of the ALIEN algorithm aims to maximize the security of the drone trans-
portation system, and it is represented by Imax = tiDi + tiDd

rλi
+ tiDNi, where the decision

variables represent drone detection, object recognition, and neutralization, respectively.
Moreover, the maximum task allocation algorithm is proposed in [80]. The maximum

task allocation algorithm for multiple UAVs under time constraints has been significant
in meeting requirements for quality of service. The TRMaxAlloc algorithm is designed
based on two phases: assignment and reassignment. The PI algorithm is used, in the first
stage, to allocate the tasks to the drones, while, in the next stage, the proposed TRMaxAlloc
algorithm enables the creation of feasible time slots for the unassigned tasks. As a result,
the assignment enables each task to be completed before its corresponding deadline with
a lower time cost. Each UAV is assigned to several tasks, as described by the task list
{s1, s2, . . . , sN}. Then, the cost function, expressed as J = max |si|, aims to optimize the
task allocation problem.

A real-time market-based task allocation mechanism is proposed in [81] for a dynamic
coalition formation (DCF) problem. Autonomous agents can collaborate independently,
creating an optimal global coalition structure to efficiently execute the emerging tasks.
The auction algorithm is used for real-time assignment, and a mutual-selection method
is employed for obtaining an improved performance in terms of the agent utilization rate
and task completion rate. In addition, the work of [82] investigated the combination of a
distributed evolutionary algorithm and a greedy algorithm to simultaneously optimize
multiple objective functions. This combined methodology aims to improve the model’s
local optimizing ability with different constraints, such as spatial constraints, time costs,
and energy consumption. The proposed strategy aims to efficiently solve large-scale task
allocation problems with enhanced and more diverse non-dominated solutions.

7. Discussion

For the sake of completeness, before delving into a discussion of the reviewed method-
ologies along with the applicability of the task allocation methods to the most established
applications of UAVs in the context of ITS technology, the main applications of UAVs in the
context of ITS technology are listed as follows:

• Search and rescue (SR) [83–86];
• Delivery (D) [87–89];
• Traffic monitoring (TM) [90];
• Inspection (I) [91–93];
• Disaster response (DR) [94–96];
• Surveillance (S) [97,98];
• Coverage (C) [99,100];
• Data collection (DC) [101];
• Smart mobility (SM) [102];
• Agriculture (A) [103–105].

For each application listed above, refer to the cited works for additional examples con-
cerning applications of task allocation methodologies. Also, refer to the works in [106–110]
for comprehensive surveys regarding UAV civilian applications.

The primary objective of this paper is to serve as a state-of-the-art reference for
researchers and engineers about the science of task allocation applied to various UAV-
based ITSs. Such technology is foreseen to become popular in the next decades in different
contexts: smart cities, urban air mobility, smart logistics, connected vehicles, etc.

The main conclusions drawn from this survey are summarized as follows:
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• Market-based allocation algorithms are, in general, less computationally demanding
than other methods, but the bidding procedure has to be designed carefully to avoid
unfair allocations. Market-based allocation architectures should be developed for
applications with a high level of autonomy and inherent dynamicity (e.g., parcel
delivery, traffic monitoring, search and rescue, and passenger transportation), with
the drones being able to adjust their bids based on their current status as well as both
the service demand and the environmental conditions;

• Optimization-based approaches produce more efficient allocation but should be used
to allocate tasks to UAVs in static scenarios with well-defined constraints (e.g., inspec-
tion and data collection). The main drawback is the scalability of these approaches
with larger fleets due to their computational complexity. Also, complex application
scenarios may be difficult to model, and discrepancies between a real application and
a simulation model may severely affect the quality of the obtained solution;

• Learning-based task allocation algorithms are suitable for highly dynamic scenarios
in which the UAVs can exploit large datasets of past experiences to adapt to variable
environmental conditions. A preferable application can be identified as the UAV traffic
monitoring service. On the other hand, a learning-based task allocation architecture is
not suitable for every type of scenario involving environmental variability; for instance,
considering a critical emergency scenario such as disaster response, the trustworthiness
of UAV task allocations plays a crucial role, thereby limiting the deployment of such
an allocation architecture. Also, the questionable level of generalizability to unseen
conditions may be a limiting factor;

• Game-theory-based approaches are well suited for applications in which the UAVs
can compete against one another or cooperate in the completion of a task with well-
defined utilities. Coverage and traffic monitoring tasks represent a valid example
since the UAVs of the ITS can compete for the best coverage/monitoring location. The
limitations of a game-theory-based task allocation strategy in UAV-based ITS contexts
are both the computational burden with large fleets and the capability of the utility
function to adequately represent the real-world reward related to the allocation;

• The design of a hybrid allocation architecture incorporating multiple approaches is
the most promising strategy for leveraging the characteristics of each method, thus
enhancing the capability of the allocation algorithm to meet the requirements of (i)
the environment, (ii) the service, and (iii) the UAV-based ITS. Also, hybrid allocation
algorithms feature a higher generalization capability with respect to both the service
and the robot type.

Finally, Table 8 summarizes the characteristics of the allocation methods in terms
of computational cost, efficiency in finding optimal solutions, scalability to large fleets,
capability of handling dynamic tasks, robots, and environments, and the most suitable
application domains in the context of UAV-based ITSs.

Table 8. Characteristics of the allocation methods in terms of computational cost, efficiency, scal-
ability, effectiveness in handling dynamic tasks and dynamic robots, and application domains.
The evaluation of the algorithms’ characteristics is expressed as follows: very low (+), low (+ +),
intermediate (+ + +), high (+ + + +), and very high (+ + + + +).

Algorithm Cost Efficiency Scalability Dynamic Tasks
and Robots

Dynamic
Environment Application

Auction + + + + + + + + + + + + + + + D, TM, SR

Learning + + + + + + + + + + + + + + + + + + + + TM, DR, A

Game Theory + + + + + + + + + + + + + + + + C, TM, DC

Deterministic + + + + + + + + + + + + + I, DC

Heuristic + + + + + + + + + + + + + + D, C

Metaheuristic + + + + + + + + + + + + + + + + D, C
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8. Conclusions

The use of unmanned aerial vehicles has gained significant attention in the context of
intelligent transportation. The use of different sensors and high-resolution cameras enables
the drones to support road transportation vehicles and to be used for a variety of parcel
delivery tasks, among other applications. However, a scalable and efficient task allocation
architecture must be designed for optimizing the coordination of the fleet of drones of
an intelligent transportation system. Generally, task allocation is used to minimize the
execution time of the tasks with a reliable and well-defined procedure. A categorization can
be defined depending on the number and type of vehicles and tasks employed, including
single-task UAVs or multi-task UAVs, single-UAV tasks or multi-UAV tasks, online or
offline task allocation, and independent or dependent tasks. In addition, a combination of
multiple UAVs and trucks as well as the inclusion of several constraints can significantly
improve the overall efficiency. Therefore, the constant development of task allocation
enables us to create more efficient methodologies that cover a large variety of scenarios.

In this sense, this paper provides a comprehensive literature review of how such
approaches are being utilized to optimize the allocation of tasks in UAV-based ITSs. Market-
based algorithms, game-theory-based algorithms, optimization-based algorithms, machine
learning techniques, and other hybrid methodologies are reviewed and discussed. Fur-
thermore, the main applications of unmanned aerial vehicles in ITSs are presented as
well as the suitability of the task allocation algorithms presented throughout the paper
with respect to the different applications. The main characteristics of, limitations of, and
differences between the algorithms are highlighted, showing their main uses over the last
few years. Understanding the main characteristics and the applicability of each type of
allocation enables engineers and researchers to properly choose the most appropriate type
of task scheduling logic. Moreover, the emerging trends and gaps in the literature are
also discussed.

In conclusion, we stress the importance of considering the requirements of the service
as well as the environmental conditions and the operational capability of the UAV-based
intelligent transportation system when designing a task allocation strategy.

As a further consideration, it is worth noticing that the design of communication chan-
nels and their security are fundamental for both implementing (if the allocation architecture
is fully decentralized) and validating (if the allocation architecture is centralized or dis-
tributed) the allocation of tasks in a fleet of UAVs. Also, the security of the communication
channels is a significant challenge for achieving a safe, regulatory-compliant, and resilient
real-world deployment of a UAV-based ITS. The efficiency of the task allocation process
can be heavily influenced by aspects such as the security of the communication channels as
well as their fallibility.

Future survey-based research will focus on investigating how the UAV communication
protocol can influence the efficiency of the task allocation architecture in terms of both
security and robustness to fallible communication networks. Also, conceptual modelling
frameworks used to implement task allocation algorithms in UAV-based ITSs may also
be discussed.
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