
23 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

COSMO: COmpressed Sensing for Models and logging Optimization in MCU Performance Screening / Bellarmino,
Nicolò; Cantoro, Riccardo; Fosson, Sophie M.; Huch, Martin; Kilian, Tobias; Schlichtmann, Ulf; Squillero, Giovanni. - In:
IEEE TRANSACTIONS ON COMPUTERS. - ISSN 0018-9340. - (2024), pp. 1-13. [10.1109/tc.2024.3500378]

Original

COSMO: COmpressed Sensing for Models and logging Optimization in MCU Performance Screening

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/tc.2024.3500378

Terms of use:

Publisher copyright

©2024 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2994931 since: 2024-12-02T14:19:45Z

IEEE Computer Society

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 1

COSMO: COmpressed Sensing for Models and
logging Optimization in MCU Performance

Screening
Nicolò Bellarmino∗, Riccardo Cantoro∗, Sophie M. Fosson∗, Martin Huch†,

Tobias Kilian†‡, Ulf Schlichtmann‡ and Giovanni Squillero∗

Abstract—In safety-critical applications, microcontrollers must
meet stringent quality and performance standards, including the
maximum operating frequency Fmax. Machine learning models
have proven effective in estimating Fmax by utilizing data
from on-chip ring oscillators. Previous research has shown that
increasing the number of ring oscillators on board can enable
the deployment of simple linear regression models to predict
Fmax. However, the scarcity of labeled data that characterize this
context poses a challenge in managing high-dimensional feature
spaces; moreover, a very high number of ring oscillators is not
desirable due to technological reasons. By modeling Fmax as a
linear combination of the ring oscillators’ values, this paper em-
ploys Compressed Sensing theory to build the model and perform
feature selection, enhancing model efficiency and interpretability.
We explore regularized linear methods with convex/non-convex
penalties in microcontroller performance screening, focusing on
selecting informative ring oscillators. This permits reducing
models’ footprint while retaining high prediction accuracy. Our
experiments on two real-world microcontroller products compare
Compressed Sensing with two alternative feature selection ap-
proaches: filter and wrapped methods. In our experiments, regu-
larized linear models effectively identify relevant ring oscillators,
achieving compression rates of up to 32:1, with no substantial
loss in prediction metrics.

Index Terms—Fmax, Speed Monitors, Ring Oscillators, Speed
Binning, Machine Learning, Device Testing, Manufacturing,
System Identification, Linear Models, Feature Selection

I. INTRODUCTION

In safety-critical sectors such as automotive and aerospace,
ensuring the reliability of microcontrollers (MCUs) is crucial.
This involves identifying devices that fulfill specific criteria.
Within this context, the maximum operating frequency (Fmax)
holds particular significance due to its impact on the overall
performance of the MCU. Fmax influences the speed at which
the MCU can process data, which is crucial in applications
where timely processing is essential. If the Fmax is not
reached, this can lead to problems such as timing violations
and system instability, which can endanger the reliability
and safety of the entire system. Traditional approaches to
determine Fmax require extensive testing at varying clock
frequencies (Speed Binning, [1], [2]). This method is time-
intensive, relies on costly test setups, and merely yields binary

∗ Politecnico di Torino (Turin, Italy). † Infineon Technologies AG (Munich,
Germany). ‡ Technical University of Munich (Munich, Germany). Authors are
listed in alphabetical order.

pass/fail outcomes. In response to these challenges, machine
learning (ML) regression models have been proposed to pre-
dict Fmax of MCUs based on alternative easy-to-acquire on-
chip measurements, offering significant time savings compared
to traditional methods [1]–[3]. In particular, previous research
showed that frequency values from ring oscillators (ROs) can
be linked with the device’s speed Fmax and used as features
for ML models [3], [4].

Increasing the number of ROs could enhance the infor-
mation available regarding the eventual speed of the device
[5], potentially improving the accuracy of ML models. How-
ever, this approach involves costs from both predictive and
technological standpoints: possible reductions in accuracy,
increased need for training samples to efficiently fit data
distributions, higher monetary production costs, and increased
current leakage [5].

This paper focuses on exploiting Compressed Sensing (CS)
and regularized linear models for optimizing ML models for
MCU performance screening. By considering ROs as a proxy
for the Fmax, the challenge of constructing an ML model for
Fmax is here approached as a linear system identification (or
linear regression) problem. We propose CS and regularized
linear models as a unifying theory used to both build ML
models and perform Feature Selection. By pruning irrelevant
or uninformative features/SMONs in the context of MCU
performance screening, the goal is to reduce the models’
footprint, specifically in the number of coefficients/features,
while maintaining satisfactory prediction error

Feature selection techniques are categorized into three types:
filtering, wrapper, and embedded approaches [6]. The paper
highlights the use of CS principles as an embedded feature
selection approach to promote sparsity in the coefficients of
the models. Specifically, we concentrate on linear techniques
with regularization, that incorporate penalty terms within the
error metric used for building the linear model.

The primary objectives and contributions of this study are
as follows:

• Propose a novel mathematical approach for modeling
the relationship between ROs and Fmax, facilitating the
use of more straightforward and computationally efficient
methods for solving the regression problem.

• Establish that CS theory, when implemented via reg-

0000–0000/00$00.00 © 2021 IEEE

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

ularized linear models, can be effectively utilized for
predictive performance screening.

• Demonstrate that the use of regularized linear models
contributes to a reduction in model size without signifi-
cantly compromising prediction accuracy.

• Extend the application of this methodological framework
across various MCU products, even in cases where the
relationship between SMONs and Fmax is not strictly
linear.

• Evaluate the effectiveness of employing both convex and
non-convex penalty terms within the context of regular-
ized linear models.

• Conduct a comparative analysis of regularization tech-
niques against filter and wrapper methods for feature
selection.

This innovative approach achieves a reduction in complexity
and computational cost while maintaining or enhancing model
performance.

The rest of the paper is organized as follows: Sections II
and III provide the necessary background information, in-
cluding data collection processes for ML algorithms and an
introduction to CS (Section III-A) and regularization (Sec-
tions III-B to III-E). Section IV presents related works on the
topic. In Section V, the motivations for deploying compressed
sensing are given. In Section VI, we detailed the proposed
approach. Section VII presents the experimental evaluation.
Section IX provides a discussion about the key takeaways and
findings. Finally, Section X draws the conclusions.

II. BACKGROUND: TESTING, SMONS, AND LABELS

Testing is a crucial aspect throughout the integrated circuits
(ICs) life cycle, from design to in-field evaluations [7]. Specif-
ically, MCU Performance Screening evaluates ICs focusing on
their maximum operating frequency Fmax. This process entails
applying test patterns at varying clock frequencies to determine
the operational capabilities of the ICs, screening out those with
frequencies below predetermined thresholds. This process is
called Speed-Binning, and it is carried out in discrete-step [2],
giving binary information about the test outcome (Pass/Fail).

In order to facilitate performance screening, ROs are uti-
lized. ROs consist of in-series cells from standard libraries,
with an overall inverting behavior; thus, these structures os-
cillate. ROs’ oscillation frequency can be linked with the
device’s speed Fmax [1]–[3]. In particular, these can be used as
features for an ML regression model [1], [3], [4], [8], able to
predict continous value for Fmax. ROs used to be linked with
devices’ Fmax speed are called Speed MONitors (SMONs).
The number of SMONs on a chip varies depending on the
product type, ranging from tens to hundreds. Each SMON on
board is slightly different from the others. In the design phase
of MCU, engineers should decide which type of SMONs to
place on board. This choice can be made based on previous
information from legacy products or by data-driven approaches
[5]. While the number remains constant within a technology
family (e.g., family A), it may differ between products of
different families (e.g., family B).

Labeling MCUs based to obtain a continuous (not dis-
crete) Fmax measurement is not integrated into the standard

Fig. 1. Data collection steps through the manufacturing

production test flow (Fig. 1). This necessitates individual
measurements, by mounting MCUs on specific evaluation
boards and running functional test patterns. This process is
resource-intensive and conducted on only a limited subset of
manufactured devices. Consequently, labeled data is scarce [4],
[9], posing a challenge for ML applications.

III. DIMENSIONALITY REDUCTION, FEATURE SELECTION
AND COMPRESSED SENSING

Dimensionality reduction is crucial in ML. It involves reduc-
ing the number of features an ML model has to analyze. The
goals are: improving model performance, reducing computa-
tional complexity, and mitigating the risk of overfitting. Two
primary methods for dimensionality reduction exist: Feature
Extraction (FE) [10] and Feature Selection (FS) [10]. FE aims
to produce a new set of features, combining the original ones.
Principal Component Analysis (PCA) is a popular technique
for FE [10]. FS, instead, involves selecting the most relevant
subset of features from the pool of input variables and discard-
ing redundant ones. Methods for FS can be categorized into
three main groups: Filter, Wrapper, and Embedded methods
[6]. Filter methods assess the features’ relevance ranking them
based on certain statistical measures. For example, correlation-
based FS techniques measure the statistical relationship be-
tween each feature and the target variable. Common metrics
include the Pearson correlation coefficient and Spearman Rank
[11]. Features with the highest correlation with the target are
selected [10], in a univariate supervised fashion. Alternatively,
it is possible to filter out highly correlated features, in an
unsupervised fashion. Wrapper methods utilize an underlying
ML model to evaluate the performance of different feature
subsets, selecting the best based on error metrics [12]. These
methods are computationally heavier than filter methods, but
often yield better results. Recursive Feature Elimination (RFE)
is a widely-used wrapper method [10]. Embedded methods
incorporate feature selection in the model training process,
eliminating the need for a separate feature selection step (as in
Decision Trees and Random Forests, [13]). Other types of ML
models with embedded feature selection are the Linear Models
that introduce some regularization in the training procedure.
These methods are deeply explained in Sections III-B to III-E.

A. Compressed Sensing

Signal processing has traditionally involved acquiring, an-
alyzing, and reconstructing signals through methods such as
Fourier analysis and sampling theory. Traditional techniques
assume that signals are uniformly and densely sampled, lead-
ing to Nyquist-Shannon sampling requirements. However, in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

many applications, acquiring and storing large amounts of data
can be impractical and costly [14]. To address this point, CS
[15] emerged as a theory that proves that signals admitting
sparse representations can be accurately reconstructed from a
reduced set of linear measurements. Large-dimensional sys-
tems often exhibit essential behavior describable by sparse
models, with a number of parameters significantly lower than
the number of state variables [16].

More in detail, CS provides conditions for recovering a
sparse vector x ∈ Rn, with k < n non-zero components,
from linear regression y = Ax+ η ∈ Rm, with m < n, and η
a measurement-related noise factor [17]. The development of
efficient algorithms for recovering sparse signals, such as Basis
Pursuit and Orthogonal Matching Pursuit [18], has contributed
to the practical implementation of CS. Also, regularized linear
models (deeply discussed in the next section) are suitable for
promoting sparsity, particularly the LASSO (Least Absolute
Shrinkage and Selection Operator) [19]. Over the years, CS
has found applications in diverse fields, including medical
imaging, radar, communications, and more [14], [20].

B. Regularized Linear Models

Regularized linear models are a class of linear regression
models that incorporate regularization techniques to improve
accuracy and prevent overfitting. These techniques add a
penalty term to the ordinary least-square (OLS) linear regres-
sion objective function, influencing the optimization process
to reduce the number of active parameters. The optimization
problem is

min
w

1

2n
∥Xw − y∥22 + α

m∑
j=1

pen(|wj |) (1)

where the first component is the OLS objective and the second
is a penalty term on the coefficient of the model. Here, X
∈ Rn,m is the observations’ matrix, y ∈ Rn is the regression
target, w ∈ Rm is the coefficients vector, and α is the
regularization strength hyper-parameter. The penalty is usually
an ℓp norm of the coefficient vector w, defined as

∥w∥p =

(
m∑
i=1

|wi|p
) 1

p

. (2)

The convex ℓ1 and ℓ2 norms are popular regularizations, and
they give rise to ridge regression [21] and LASSO [19],
respectively. While ℓ2 regularization has mainly a smoothing
effect, ℓ1 regularization has a sparsity promoting effect, that
yields an effective variable selection in linear regression. More
recently, non-convex regularization penalties [22] have been
introduced, which improve the variable selection performance
with respect to classic ℓ1 regularization. Examples of effective
non-convex regularization penalties are Log Sum Penalty
(LGP, [23]), Minimax Concave Penalty (MCP, [24]), Smoothly
Clipped Absolute Deviation (SCAD, [25]) and the ℓp norm
with 0 < p < 1 [22].

C. Convex Regularization

The LASSO problem is (1) with ℓ1 regularization, i.e.,
pen (|wj |) = |wj |. The ℓ1 regularization encourages sparsity in
the model, leading several coefficients to become exactly zero.
LASSO is a convex problem, therefore it is mathematically
affordable. It represents an effective recovery strategy for CS,
i.e., for linear regression problems with w ∈ Rm, y ∈ Rn and
n < m.

In ridge regression [21], the optimization problem is (1)
with pen (|wj |) = w2

j . The ℓ2 regularization helps in reducing
the impact of multicollinearity in the data, penalizing large
coefficients and shrinking them towards zero, but it does not
lead to sparsity in the model.

ElasticNet [26] is a linear regression model trained with
both ℓ1 and ℓ2 norm regularization of the coefficients. This
combination allows for both learning a sparse model (like in
LASSO) and maintaining the regularization properties of ridge
regression. The corresponding optimization problem is

min
w

1

2n
∥Xw − y∥22 + αρ ∥w∥1 +

α(1− ρ)

2
∥w∥22.

The convex combination of ℓ1 and ℓ2 is controlled using α
and ρ parameters.

D. Orthogonal Matching Pursuit

Beyond convex regularization, greedy algorithms are tradi-
tionally used for CS. In particular, OMP [27] approximates the
fit of a linear model with constraints imposed on the number
of non-zero coefficients (i.e., the ℓ0 pseudo-norm), finding a
coefficients vector with a fixed number of non-zero elements:

argmin
w

∥y −Xw∥22 subject to ∥w∥0 ≤ nnonzero coefs. (3)

OMP is based on a greedy algorithm that includes at each step
the features most highly correlated with the current residual,
i.e. the difference between an observed value yi and its
corresponding predicted value ŷ. Once the feature is selected,
the signal is orthogonally projected to the span of the selected
feature, the residual is recomputed, and the process repeats.
OMP can be considered as a convex approach because each
step in the algorithm involves solving a convex least squares
problem. However, the overall optimization problem solved by
OMP is non-convex.

E. Non-Convex Regularization

In the last years, continuous non-convex sparsity-promoting
regularization has been attracting substantial attention [22].
While solving LASSO is affordable thanks to its convexity,
the global minimum suffers from bias with respect to the
true solution, due to the penalty term. In contrast, non-convex
regularization, with shape closer to the ℓ0 norm, may reduce
the bias [24]. Due to the non-convex nature of the objective
function, no theoretical assurances are provided regarding the
attainment of the global minimum [22]. However, research has
demonstrated that non-convex linear models exhibit superior
performance within a fixed time frame, achieving higher
accuracy levels in less time compared to convex optimization

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

methods [22], [28]. Moreover, it can produce sparser models,
which is desirable for interpretability and feature selection,
and it may accelerate the rate of convergence of the solution
algorithms [29]. The use of non-convex regularization has
become popular in CS, in the framework of ℓ1 reweighting
techniques [30], while recently it has been also analyzed for
pruning purposes in deep neural networks [31].

Among the most popular non-convex regularizers, MCP
approximates the ℓ1 penalty when α is arbitrarily large. In
particular, MCP maintains the shape of the ℓ1 norm around
the origin while approximating the scaled ℓ0 norm away from
the origin [24]. The MCP penalty is

pen(w) =

{
αw − w2

2γ if w ≤ αγ

γ α2

2 if w > αγ
(4)

in which α > 0 is the regularization strength and γ > 0 is an
hyper-parameter.

SCAD [25] penalizes large coefficients less severely than
LASSO, leading to more stable and accurate model estimation,
especially when dealing with correlated predictors. The SCAD
penalty is

pen(w) =

αw if w ≤ α

2αγw − w2 − α2

2 (γ − 1) if α < w ≤ αγ

α2 γ+1
2 if αγ < w

(5)
where α > 0, γ > 0.

LGP is often adopted as a replacement for the ℓ0 pseudo-
norm in CS and low-rank optimization. [23] The LGP penalty
is

pen(w) =
m∑
j=1

log

(
1 +

|wj |
ϵ

)
(6)

where α > 0, γ > 0.
Among the ℓp regularizers, with 0 < p < 1, the case p = 1

2
is often used [17], [22].

IV. RELATED WORK

In recent years, the utilization of ML in both design and
testing has garnered considerable attention, with a multitude
of data analytic methods based on ML being extensively
investigated [32].

Also, the interest in predicting the maximum operating
frequency Fmax of MCUs in safety-critical applications has
grown. The early utilization of ML models to establish a
relationship between structural and functional Fmax, first in-
troduced in [1], was studied extensively by several researchers.
While previous studies have explored the possibility of map-
ping indirect measurements and Fmax using small sample sizes
or simulated data [1], [2], [33], this approach has now been
validated using real-world data from MCU characterization
[3], [4], [34]. Additionally, various ML models, including both
linear [3] and non-linear [4], [34], have been presented in the
literature. Active Learning was employed in [9] to reduce the
training set size by selecting informative samples for model
derivation, and outlier detection techniques were evaluated
to identify noisy data and outliers [35]. In analog circuits,
several studies have been done on feature selection [36], [37],

while the importance of feature selection in MCU performance
screening was firstly addressed in [5]: however, these methods
often rely on filter or wrapper approaches. Filtering approaches
are usually univariate, considering only one feature at once.
Wrapper methods, instead, have a high computational cost and
depend on the model and data on which they are trained, with
the risk of overfitting [38].

V. REASONING BEHIND COMPRESSED SENSING AND
REGULARIZED MODELS

In recent years, significant research efforts have focused on
developing predictive models for MCU performance screening
[3]–[5], [9], [35]. In this field, the number of SMONs on
board is positively correlated with the amount of information
related on the devices’ Fmax [5]. However, a higher number
of SMONs presents challenges from both technological and
data-analysis perspectives.

From a technological standpoint, having a large number of
SMONs is undesirable, as they are solely used for testing
purposes and contribute to increased current leakage, occupy
more physical space on the die, and raise production costs [4].
Moreover, implementing ML-based performance screening at
scale leads to significant storage challenges. Storing thousands
of features for data logging across millions of devices could
result in excessive storage requirements.

From a predictive modeling perspective, a large number of
features can lead to the ”Curse of Dimensionality” (CoD) [10],
which necessitates a larger training set for effective model de-
velopment. However, obtaining a large labeled dataset can be
prohibitively expensive and time-consuming, often limiting the
number of samples to just hundreds or thousands (Section II).
Additionally, this may not always be feasible since critical
decisions must be made during the MCU design phase when
data availability is limited. Consequently, techniques such as
Data Augmentation [35], Transfer Learning [8], and Active
Learning [9], which rely on diverse and abundant training
samples to improve model robustness, may not be viable.

Having a large number of features or SMONs allows ap-
proximating their relationship with Fmax using linear models
[5]. These are favored for their simplicity, interpretability, and
lightweight nature, and can potentially be deployed directly
on the MCU for in-field evaluation. A linear regression model
requires storing only n+1 coefficients, where n is the number
of features and the additional coefficient is the intercept term.
This results in a limited memory footprint, making linear
regression models efficient in terms of storage requirements
for embedded systems.

However, this creates a trade-off: although more SMONs
provide greater insight into device speed, they also introduce
higher costs. Some SMONs sets have SMONs very similar
to each other, and thus highly linear correlated (Fig. 2). For
this reason, not all the features may be important for the ML
models, or not all of these ROs may be of interest for the
downstream tasks. Therefore, the number of SMONs should
be minimized while maintaining predictive accuracy.

Dimensionality reduction techniques like PCA can be used,
but they do not directly reduce the number of SMONs required

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 5

Fig. 2. Spearman Rank Correlation matrices for two products: A, with 27
SMONs (left) and B, with 579 SMONs (right). In B, SMONs are highly
correlated. In A, clusters of features can be identified.

on board. Therefore, FS is necessary. Given the preference
for linear models due to their simplicity and interpretability,
CS emerges as an appealing solution. CS offers an efficient
approach to feature selection within the framework of linear
models. By leveraging the sparsity assumption inherent in
real-world datasets, CS identifies and retains only the most
informative features, discarding redundant or less relevant
ones, making feature selection an intrinsic part of the model
training process. This approach simplifies the overall workflow
while ensuring that the resulting model remains interpretable
and lightweight, which aligns with the domain’s preference
for linear models.

The CS framework (and the use of regularized linear
models) relies on the assumption of a linear relationship
between SMONs and Fmax (or between features and the
target). While this assumption may not hold strictly for all
MCU products, preprocessing the SMONs values—such as
applying a polynomial transformation—can project the values
into an alternate space where linear models can still be effec-
tively applied. This enables the modeling of the relationship
between the transformed SMONs values and Fmax as linear,
enhancing the general applicability of the CS framework for
MCU performance screening.

VI. COMPARATIVE ANALYSIS

It is worth noticing that, as described in Section III, two
other alternatives exist to embedded FS (and thus CS): filtering
and wrapped methods. But these have some limitations: the
first relies only on univariate metrics [6] i.e., taking into
account one feature at once and without considering feature
interaction. Also, this approach is often unsupervised. The
second is often a more accurate method, but it is very time-
consuming since it requires training several ML models for
different feature sets and choosing the best by cross-validation
[39]. Also, it may come with the risk of overfitting, and it is
weak in the case of high correlation among features [38]. For
the embedded FS, since the feature pruning step is included in
the training procedure of models, it requires no additional time.
We conducted a comparative analysis, juxtaposing the efficacy
of regularized Linear Models (embedded FS and CS) against
filtering and wrapper methods. In particular, we considered a
filtering procedure grounded in scrutinizing multicollinearity
among features. Also, as wrapper methods, we used RFE with
a Random Forest as a baseline estimator [40] These methods
will be compared analyzing how much they can reduce multi-
collinearity in the dataset, and secondly, how well they perform

in the downstream regression task (i.e., measuring several
prediction metrics on a proper test set).

About the ML models, we compared several regularized
linear models and their ability to extract relevant features for
the regression task. Other types of models have been consid-
ered in previous studies [4], [8], [34], as will be discussed in
Section VII.

A. Filter Methods

To remove multicollinearity in the dataset, we used a filter
method that employed hierarchical clustering based on Ward’s
linkage [41] of the features’ Spearman rank-order correlations
[11]. In hierarchical clustering, the goal is to group similar
items into clusters defined by some hierarchy, based on some
measure of dissimilarity or distance. It begins with each data
point as its own cluster and iteratively merges clusters based
on a specified distance metric until all data points belong
to a single cluster. Ward’s method is a linkage criterion
that determines how to merge clusters at each step of the
hierarchical clustering process [41], based on minimizing the
sum of squared differences within all clusters.

The Spearman correlation matrix is first converted to a dis-
tance matrix. This was done by computing its complementary
to 1 (i.e. the lower the distance, the higher the correlation
among features).

A dendrogram can be used to visualize the clustering
outcome. Each leaf of the tree represents an individual data
point, and branches represent clusters of data points that are
more similar to each other. The dendrogram proves particularly
beneficial in comprehending the relationships among clusters
and determining the appropriate level at which to sever the
tree to achieve the desired number of clusters.

By inspecting the corresponding dendrogram, we set a
threshold t, to retain at least a SMON/feature from each
cluster. The selected subset is then used to train ML models.
We will call this technique CorrT.

B. Wrapper Methods

We used an RFE with an internal 5-fold cross-validation to
determine the optimal number of features. As a baseline esti-
mator, we used a Random Forest [13]. This particular choice
has been successfully applied repeatedly in the literature [39],
[40], and was used as the baseline in many previous research
[1]–[4] about Fmax screening. The benefits of using Random
Forest are several: this model can deal with the non-linear
relation between feature and target, removing the necessity
of applying a prior non-linear transformation. Second, this
model naturally provides feature importance scores, which
can be used for ranking and selection in the RFE process.
However, we will avoid using it as the final estimator for
several reasons. The first is lack of interpretability: being an
ensemble model composed of multiple decision trees, can be
challenging to interpret compared to simpler models like linear
regression. Secondly, the computational complexity: deploying
a large number of decision trees in a Random Forest can
be computationally expensive. It may be slower than simpler
linear models for real-time applications. Third is memory

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 6

usage: Random Forests can consume a significant amount of
memory, especially when dealing with many or deep trees.
This can be a limitation in memory-constrained environments.
Finally, this model tends to overfit data, and may not be
suitable in the presence of a limited amount of labeled data
(as in dataset B). The second and third points make this
model unsuitable for eventual deployment on an MCU with
limited computation capabilities, eventually enabling on-chip
screening. Thus, in the presence of similar prediction accuracy,
we prefer using Linear Models because of their superior
simplicity.

VII. EXPERIMENTAL SETUP

The proposed methodology has been validated on two differ-
ent datasets coming from two MCUs with different characteris-
tics in terms of ROs, maximum achievable frequency, number
of cores, and memory equipment. Dataset A is composed of
3588 labeled devices while dataset B is composed of 439
labeled samples.

In product A, each MCU is equipped with 27 SMONs.
Devices from product B, instead, presents a significantly larger
number of SMONs: 579.

Ten labels are available for both datasets, measuring the
Fmax for different functional test patterns. The final perfor-
mance of the devices and thus the target label of our model (the
maximum operating frequency) is the artificial label Pmin (the
minimum among the available labels, for each MCU sample).

For model evaluation, we used 5 train-test splits with a
proportion 80%-20%, generated by different random states.
Thus, each statistical prediction metric is the mean of 5
values computed on 5 different training/test splits of the
dataset, avoiding biased prediction error estimation. Results
are presented in terms of normalized Root Mean Square
Error (nRMSE), the coefficient of determination score (R2),
Learning Curves, the Area Under the nRMSE Learning Curve
(AUC-nRMSE), Guardband (G), and Compression Rate (C).
RMSE is popular regression performance index [4], but here
normalized by the mean value of Fmax in the test set, i.e.
nRMSE = RMSE(ytrue, ypred) / average(ytrue), to obtain
a percentage of the error. R2 quantifies the proportion of
variance in the dependent variable (the target, y) that is
explained by the independent variables (the features, x) in the
model. An R2 value of 1 (or 100%) indicates a perfect fit. A
constant model that always predicts the mean of the dependent
variable would yield an R2 score of 0. The learning curve
plots correlate the training set size with the generalization
capabilities of a model. They log on the x-axis the number of
samples used to train the model and on the y-axis a measure
of prediction performance of the model on the test set (in
our case, the nRMSE). The learning curves were created
by extracting (for each point x-y) a random sample of the
training set of increasing size. Overall, the AUC-nRMSE value
indicates the generalization capability of a model: the lower
this value, the better the ability of the model to generalize with
less labeled samples. We computed AUC-nRMSE values for
the first 20 points of the learning curves, focusing on how the
models are good at generalizing when only a low number of

samples is available (so, about 600 labeled samples for A and
about 100 for B).

To account for potential errors and uncertainties in statistical
predictions, a risk-based guardband (G) is required. In practice,
G effectively raises the pass/fail threshold from the screening
frequency fscreen to fscreen + G to provide an additional
margin of safety. By applying this error guardband, manu-
facturers can ensure that minor variations or uncertainties in
the prediction do not affect the product’s quality or reliability
[4].To minimize the impact on production yield, G should be
kept as small as possible. It can be calculated using a test set
with true frequencies y, predicted frequencies ŷ, and errors
e = y − ŷ, defined as:

G = µe + kσe (7)

where µe and σe represent the mean and standard deviation
of the error distribution, respectively, and k is a parameter
that determines the defect level in parts per million (ppm). For
instance, k = 5.2 approximates 0.1 ppm, but a stricter value
of k = 6 is used in this study. G is expressed as a percentage
of the actual Fmax specification outlined in the datasheet.

The Compression Rate (C) quantifies the reduction in data
size achieved by a compression algorithm. It is defined as the
ratio of the uncompressed size to the compressed size. In this
study, C is calculated by dividing the total number of ROs
(or the number of coefficients after Polynomial expansion, if
applicable) by the number of non-zero coefficients in the linear
model: C = totInput

Coeff̸=0 .

A higher value of C indicates a smaller number of co-
efficients, which reduces the model size and the volume of
information that needs to be stored for logging purposes.

In previous studies [3], [4], [8], [35], extensive research
on dataset A has already been conducted, demonstrating
that advanced models such as Neural Networks, including
transformer models pre-trained on large-scale unlabeled data,
offer only marginal improvements in prediction error over
simpler models like the Polynomial Ridge Regressor, with
a difference of approximately 0.05% in normalized RMSE
(nRMSE). Furthermore, the existing body of work primarily
employs models based on Linear Regression or Tree-based
methods, with the Polynomial Ridge Regressor consistently
identified as providing the best fit for the available data.
This evidence supports its selection as a strong baseline
for the current study’s comparative analysis. Thus, for each
model train on A, we first transformed the SMONs value by
computing a degree-2 polynomial combination of the features.

For dataset B, the larger number of available SMONs allows
the relationship between the target and the features to be
effectively approximated by a linear fit, eliminating the need
for feature transformation without any significant advantage.

We can resume the preprocessing and modeling steps used
to enhance the predictive accuracy and robustness of the
regression models:

• Feature Standardization: All features are initially stan-
dardized using a standard scaler to ensure they are on a
consistent scale. This step is crucial for the performance

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

of regularized linear models, as it ensures that all fea-
tures are comparable, preventing any single feature from
disproportionately influencing the model due to differing
units or magnitudes [21].

• Feature Selection (Optional): For methods involving
RFE or CorrT, an optional feature selection step is
performed before model training. This step is used to
compare the effectiveness of different feature selection
techniques.

• Feature Transformation (only for Dataset A): For
Dataset A, a polynomial feature transformation is applied
to address non-linear relationships between SMONs fre-
quency values and Fmax, enabling the use of linear models
even when the relationships between the features and the
target variable are not inherently linear.

• Regression Modeling: The final step involves applying
the predictive regression model, which is constructed
using regularized linear models, to predict Fmax.

Regularized linear models used are described in Sections III-B
to III-E. The regularization strength for each model (the α
parameter) is chosen using a 5-fold CV, among a grid of
100 values of alphas logarithmically distributed in the range
(0.01, 100), finding the hyperparams that maximize the R2

score.
The experiments were conducted on a server configured

with an Intel® Core™ i9-9900K processor, featuring 16 cores
running at a base frequency of 3.60 GHz. The server was
also equipped with 32 GiB of RAM, allowing for the effec-
tive execution of the proposed framework’s methods while
managing the associated computational loads. A complexity
and time analysis was performed in Section VIII-D. Models
were trained in Python using popular ML libraries; scikit-learn
[42] was employed for plain linear regression and with convex
regularization (LASSO, Elastic Net, Ridge, OMP). For non-
convex penalty models, we utilized scikit-glm [28] package,
an extension of scikit-learn for generalized linear models with
a custom penalty term.

For the CorrT approach, the corresponding dendrograms for
the two MCU products under evaluation can be seen in Fig. 3.
To select at least one feature per cluster (see Section VI-A),
we choose t = 0.04 for product A and t = 0.3 for product
B. These choices lead to 5 features (over 27) for product A
and 10 (over 579) for product B. The low number of features
selected in B is due to the high degree of multicollinearity in
the dataset (Fig. 2). We recall that this analysis is unsupervised
because it relies only on the Spearman Correlation among
features. The successive ML models (especially the ones based
on L1 penalty like LASSO) can further stream the features set,
selecting the ones the most related to the supervised task. RFE
procedure leads to 23 features for A and 359 for B.

VIII. EXPERIMENTAL RESULTS

In the following section, we present the results of the
aforementioned regularization linear models and the a-priori
feature selection techniques. We first analyze the different
feature sets extracted by the three feature selection strategies
under analysis, considering how much these can deal with

TABLE I
R2 SCORE (%) ON DATASETS A AND B WITH RANDOMFOREST AND

DIFFERENT FEATURE SETS (5-SPLITS)

Method Dataset A:
#Features

Dataset A:
R2 Score

Dataset B:
#Features

Dataset B:
R2 Score

All 27 97.94± 0.10 579 93.53± 1.02
RFE 23 97.92± 0.11 359 93.48± 1.00
CorrT 5 97.32± 0.08 10 93.57± 0.85
OMP 11 97.87± 0.10 12 93.48± 1.19
LASSO 11 97.90± 0.12 50 93.98± 0.94
ElasticNet 12 97.87± 0.13 83 93.70± 0.89
MCP 9 97.62± 0.08 16 92.86± 0.75
LGP 10 97.81± 0.13 24 93.27± 0.72

the multicollinearity in the dataset (Section VIII-A). We then
present the empirical analysis in terms of tackling the under-
lying regression task for both datasets A (Section VIII-B) and
B (Section VIII-C).

A. Multicollinearity analysis

Features sets extracted by CorrT filtering, RFE procedure,
and by the main regularized linear models (LASSO, Elastic-
Net, OMP and LGP and MCP as non-convex regularization),
are compared with the whole feature set, considering to what
extent each method can deal with multicollinearity if used as a
feature selection method. We used a Random forest as a base-
line estimator for this task. The model is trained on 5 random
train-test splits (80-20%).The performances in terms of R2

score for the feature sets are presented in Table I. Random
Forest performs well on both datasets. The different feature
selection methods selected a different number of features, but
overall there is no significant difference in performance among
the various methods. The scores of all the feature sets taken
into account are similar. For both datasets, pruning SMONs
does not impact dramatically the model accuracy. However,
some methods may be more efficient in reducing the number
of features while maintaining comparable performance. For
example, the CorrT method selects only 5 features for Dataset
A with a relatively high R2 score. For dataset B, having a
reduced feature set permits slightly decreasing the overfitting
of the model, with a little increase in prediction power (see
LASSO, ElasticNet).

Due to correlation in the dataset, not all the features are
important. This can be highlighted by computing the permu-
tation importance score: this metric serves as a valuable model
inspection technique. It involves assessing how shuffling a
single feature’s values impacts the model accuracy [43]. The
permutation importance for the features of the two datasets is
presented in Figs. 4 and 5.

These were computed by considering 10 different permuta-
tions, for each feature. Only features that produce a drop in
the R2 score greater than 0.1% are shown).

For dataset A, apart from couples of SMON with higher
impact, all the other SMONs have importance near to zero.
Permutation importance analysis indicates that not all the
features are deemed important, a result conflicting with the
observed high test accuracy. For dataset B, both the high
number of features and the high correlation among each other

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 8

Fig. 3. The Dendograms, results for the hierarchical clustering procedure, for
dataset A (upper) and B (lower). By visually inspecting the dendograms, it
is possible to set a threshold, to cut it at a certain level, extracting a certain
number of cluster. On the y-axis, the distances between clusters. On the x-
axis, the SMONs form each (colored) cluster

amplify the effect of low importance for each feature, with an
importance of a maximum of 1.5%. Permutation importance
values in the negative range suggest that the model performs
better on randomly shuffled (or noisy) data compared to the
original dataset. This implies that the corresponding feature
has minimal influence on predictions. The observed accuracy
improvement on shuffled data is likely a result of random
chance. This phenomenon is particularly prevalent in smaller
datasets (as in B-dataset, where the RandomForest has been
trained on about 400 samples).

CorrT technique is the most able to deal with multicollinear-
ity in the dataset since we are forcing removing highly corre-
lated features. The increase in the importance of each feature
is evident. For RFE, most of the features have importance
near zero: this technique seems not to be able to deal with
multicollinearity, with feature importance practically identical
to the ones in the original feature set.

Regularized linear models can, to a certain degree, identify
variables with greater predictive power. The selected features
exhibit slightly elevated permutation importance, indicating
their enhanced contribution to predictive accuracy. As an
example, in dataset A, the second SMON for importance
(SMON 10) goes from 5-6% in the whole and RFE feature set
to 10-11% with the regularized linear models. Its importance
is practically doubled.

Also for dataset B the importance of each SMON is more
than doubled. A particular case is the OMP, which tends to
select very few variables, and almost all of them are important.

This analysis shows that

• Prior feature selection steps is not extremely important in
increasing prediction accuracy nor in identifying crucial
features. With regularized linear models, we can both
achieve practically the same prediction accuracies while
identifying important features.

• CorrT technique permits a drastic decrease in the number
of features, at the cost of a slight decrease in prediction
accuracy. But this is achieved also by OMP technique
(that selects the feature the most correlated with the
residuals) and can be in principle achievable also by other
regularized linear models with a higher value for the α
parameter.

• RFE technique fails both in both pruning a relevant
number of coefficients or increasing accuracy concerning
the baseline.

Fig. 4. Permutation Importance Index for dataset A

B. Model metrics: Dataset A

Degree-2 Polynomial transformation applied to each feature
sets leads to

• 405 features, from 27 SMONs in the case of no prior FS.
• 299 features from 23 SMONs in the case of RFE.
• 20 features from 5 SMONs in the case of CorrT.

For dataset A, almost all the algorithms converge to the same
prediction error (Fig. 6, Table II). What is changing is the
number of coefficients of the models.

The regularization permits reducing the overfitting. As a
claim of this, the upper plot in Fig. 6 shows the behavior of
the Polynomial Linear Regression: as the number of training
samples approaches the number of features (about 400), the
model perfectly fits them, but is not able to generalize to new
unseen samples, with nRMSE on the test sets of about 15%.
As the number of samples increases, this behavior is reduced.
This behavior does not happen with the regularized model.

OMP usually achieves the highest compression rate: starting
from the whole feature set, we can compact information up
to about 10:1. with a minimal loss in accuracy (0.01 of R2

loss). Overall, it is a great save in memory needed to store the
datasets and in computations. Among convex regularization,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 9

Fig. 5. Permutation Importance Index for dataset B

LASSO is the model with the highest balance in features
retained and prediction accuracy.

Regarding non-convex regularization, LGP offers superior
performance: the nRMSE is aligned with using all the features
(1.66% nRMSE), but with a higher compression rate of about
13:1.

Features from CorrT technique are the ones with the highest
prediction errors: removing multicollinearity, we probably
removed also informative SMONs. If this accuracy drop would
be acceptable, this would make CorrT a good alternative with
the highest compression rate (up to about 29:1 for OMP).

For this dataset, RFE procedures can produce very slightly
better performances concerning no prior pruning (Ridge with
RFE have R2 score of 97.85%, while LASSO without RFE
have an R2 score of 97.84%). But even in this case, having
a further step of FS is beneficial (ElasticNet/LASSO in con-
junction with RFE have R2 of 97.86%, while Ridge 97.85%).
However, this comes at the cost of a high computational cost
to obtain the starting reduced features set (23 SMONs).

L0.5 penalty does not perform well: the behavior heavily
depends on the training set, meaning that it is probably
overfitting (see the shark-tooth pattern in the learning curve,
Fig. 6).

To correlate the degree of generalization capabilities with

TABLE II
ERROR METRICS ON A, 5-FOLDS AVERAGE, DIVIDED BY FEATURE SET (IN

BOLD)

Model
(per SMONs set)

Selected Coef
(over Total)

Selected SMONs
(over Total) C nRMSE% R2% G% AUC

All SMONs

Lin. R. 405/405 27/27 1:1 1.75% 97.58% 11.16% 28.62
Ridge 405/405 27/27 1:1 1.66% 97.84% 10.53% 10.14
LASSO 55/405 26/27 7.36:1 1.66% 97.83% 10.55% 9.98
ElasticNet 76/405 26/27 5.32:1 1.66% 97.84% 10.54% 10.15
OMP 41/405 23/27 9.87:1 1.67% 97.81% 10.61% 10.45

All SMONs
(Non convex)
ℓ 1
2

68/405 26/27 5.95:1 1.68% 97.76% 10.72% 16.88
LGP 31/405 21/27 13.06:1 1.66% 97.83% 10.57% 10.26
MCP 31/405 22/27 13.06:1 1.71% 97.69% 10.90% 10.50
SCAD 29/405 20/27 13.96:1 1.71% 97.67% 10.92% 10.57

CorrT
Lin. R. 20/405 5/27 20.25:1 1.88% 97.22% 11.96% 11.53
Ridge 20/405 5/27 20.25:1 1.88% 97.22% 11.98% 11.31
LASSO 17/405 5/27 23.82:1 1.88% 97.22% 11.98% 11.32
ElasticNet 19/405 5/27 21.32:1 1.88% 97.22% 12.35% 11.29
OMP 14/405 5/27 28.93:1 1.88% 97.22% 12.33% 11.41

RFE.
Lin. R. 299/405 23/27 1.35:1 1.71% 97.69% 10.90% 25.60
Ridge 299/405 23/27 1.35:1 1.65% 97.85% 10.50% 10.09
LASSO 67/405 23/27 6.04:1 1.65% 97.86% 10.49% 10.03
ElasticNet 78/405 23/27 5.19:1 1.65% 97.86% 10.49% 10.01
OMP 42/405 22/27 9.64:1 1.66% 97.83% 10.56% 10.44

the training samples, we compute the nRMSE-AUC (Table II).
Regularized models are the ones with the lowest AUC, mean-
ing that they require fewer samples to be efficiently trained. In
general, simpler models, in terms of parameters or complexity,
can often generalize better with fewer samples compared to
more complex models. This is a fundamental principle in
machine learning known as the bias-variance tradeoff [44].
LASSO is the one with the lowest AUC-nRMSE, making it
the best in terms of compromise between number of training
samples and nRMSE.

In any case, results show that having a prior step of FS does
not increase the prediction performance dramatically: letting
the models choose is enough to reach satisfactory accuracy
with less effort.

About SMONs selection: since linear models are highly
interpretable, by manually inspecting the coefficients of the
models it is possible to identify which SMONs contribute to
the selected polynomial coefficient. In other words, we can
discard any of the original SMONs if they do not appear
among the selected polynomial terms. Coefficients chosen by
non-convex regularized linear models permit pruning a certain
number of SMONs, without losing in accuracy (LGP, as an
example, can prune 6 SMONs from the feature set).

C. Model metrics: Dataset B

For this dataset, no polynomial transformation is used.
Thus, the number of coefficients reflects the actual number
of SMONs selected. The best overall accuracy is obtained
by Ridge Regression without pruning any features (the more
SMONs the higher the information about the device’s speed).
However, we aim to find a tradeoff between prediction ac-
curacy and the number of SMONs selected. Starting from the
whole feature set, it is worth noting how LASSO, again, is able
to retain informative SMONs from the dataset, and with only a
little decrease in the prediction accuracy (nRMSE from 0.86%
to 0.89%) can achieve a compression rate of 9.65:1. About
non-convex regularization, it is evident how L0.5 presents

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

Fig. 6. Learning curves for different models on A dataset. The x-axes is
the number of training samples (log scale) while the y-axes is the nRMSE
computed on the test set. The upper plot shows the overfitting of Linear
Regression and the Shark-tooth behavior of ℓ 1

2
. We disabled that traces in

the lower plot. CorrT techniques collapse to 1.94% nRMSE. All the other
models are aligned in terms of final error metrics, with slightly better results
in terms of error/coefficient for the non-convex LGP model.

again a shark-tooth pattern: also in this case, this model did
not behave well. LGP, instead, can further stream the feature
set, at the cost of an increase in the prediction accuracy. For
CorrT feature set, all the models collapse to about the same
performance. R2 is in the range 94.31% (the best) for OMP,
to 94.22% for the non-regularized Linear Regression. Manu-
ally removing highly correlated features permits reaching the
lowest number of coefficients (only 8 with corrT + OMP), but
at the cost of the worst prediction accuracies (that, however,
are still under the 1% of nRMSE). RFE method could not
prune a relevant amount of features but maintained decent
prediction accuracy. In terms of the tradeoff between accuracy
and compression rate, LASSO seems overall the best model
(about 60 ROs selected, 0.89% nRMSE, both in the case of
no and RFE prior feature selection, see Table III). Also, this
model permits achieving a good AUC value. Employing a prior
feature selection is not beneficial regarding a gain in prediction
accuracy. CorrT technique permits finding the lowest possible
feature set while maintaining decent prediction. However, this
can also be achieved with OMP and no prior feature selec-
tion, which also comes with superior prediction performance
concerning CorrT. Non-convex regularization performed worse
than convex one in terms of prediction accuracy but permitted
achieving a higher compression rate.

D. Time Analysis

Generally, Filtering Methods are computationally efficient
with a time complexity linear or close to linear concerning
the number of features, since they evaluate each feature

TABLE III
ERROR METRICS ON B, 5-FOLDS AVERAGE, DIVIDED BY FEATURE SET (IN

BOLD)

Model Coef No.
(over Input) C nRMSE% R2% G% AUC

All SMONs
Lin. R. 579/579 1:1 1.15% 92.26% 9.29% 0.76
Ridge 579/579 1:1 0.86% 95.64% 6.94% 0.74
LASSO 60/579 9.65:1 0.89% 95.31% 7.17% 0.76
E.Net 82/579 7.06:1 0.92% 94.97% 7.42% 0.75
OMP 18/579 32.16:1 0.93% 94.78% 7.59% 0.89

All SMONs
(Non-Convex)
ℓ 1
2

37/579 15.65:1 1.13% 92.52% 9.14% 1.17
LGP 25/579 23.16:1 0.93% 94.91% 7.51% 0.89
MCP 19/579 30.47:1 0.96% 94.57% 7.69% 0.86
SCAD 14/579 41.36:1 0.97% 94.39% 7.81% 0.87

CorrT
Lin. R. 10/10 1:1 0.99% 94.22% 7.96% 1.24
Ridge 10/10 1:1 0.98% 94.25% 7.94% 0.80
LASSO 8/10 1.25:1 0.98% 94.29% 7.91% 0.78
Elastic 9/10 1.11:1 0.98% 94.27% 7.92% 0.77
OMP 8/10 1.25:1 0.98% 94.31% 7.90% 0.80

RFE.
Lin. R. 358/358 1:1 3.72% 17.15% 30.90% 0.76
Ridge 358/358 1:1 0.87% 95.47% 7.05% 0.73
LASSO 75/358 4.77:1 0.89% 95.28% 7.20% 0.77
E.Net 71/358 5.04:1 0.92% 94.97% 7.43% 0.74
OMP 16/358 22.37:1 0.93% 94.83% 7.51% 0.88

Fig. 7. Learning curves for different models on dataset B. The x-axes is
the number of training samples (log scale) while the y-axes is the nRMSE
computed on the test set. The upper plot shows, even for this dataset, the
overfitting of Linear Regression and the Shark-tooth behavior of ℓ 1

2
. We

disabled the traces in the lower plot. LASSO model is the most able to reach
good balance between number of feature chosen (60) and prediction accuracy
(0.89% nRMSE). Non-convex techniques tend to prefer sparser solutions, at
the cost of an increase in the prediction error.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

independently. In our framework, it took a few seconds to
extract the CorrT feature sets.

The time complexity of RFE depends on the choice of
the underlying model. At each iteration, it recursively fits
the model and evaluates feature importance, resulting in a
linear time complexity concerning the feature, that should be
multiplied by the training complexity of the underlying model.
In our frameworks, it required a few hours to extract RFE
feature sets.

CS and regularized linear models integrated the feature
selection into the model training process, and their time
complexity is determined by the training complexity of the
underlying model. These methods do not add additional time
to the training procedure. However, training the LASSO or
the ElasticNet models is computationally heavier than Ridge
or Linear Regression (a few minutes vs a few seconds).

Non-convex models, instead, are slightly faster to train con-
cerning convex ones because of a better underlying optimizer
(a few seconds).

For each method, there is a tradeoff between the quality
of the feature sets extracted and the time needed to mine it.
However, experiments showed how regularized linear models
were always able to find a good compromise between pre-
diction accuracy and compression rate. These, in conjunction
with the limited time needed to train it, make these models
the preferred choice. Reducing the time required for feature
selection and SMONs analysis accelerates the time to market
by streamlining both development and deployment processes.
This increased efficiency enables manufacturers to swiftly
implement and capitalize on the framework, leading to faster
product launches.

IX. DISCUSSION

While all the regularized linear models presented achieve
satisfactory predictive performance in terms of nRMSE, cer-
tain models may be more suitable for specific tasks. OMP
generally provides the highest sparsification and compression
capabilities, albeit with a slight reduction in predictive accu-
racy. Ridge regression, on the other hand, achieves the best
predictive performance without any feature sparsification.

LASSO and LGP offer a balanced compromise between
accuracy and feature retention. LASSO tends to retain more
features while delivering performance comparable to Ridge
regression. In contrast, LGP excels in feature pruning, albeit
with a slight reduction in performance.

If the objective is to maximize feature pruning while pre-
serving performance, LGP emerges as a compelling choice.
Conversely, if the aim is to maintain predictive performance
as close as possible to the Ridge baseline (without pruning),
LASSO would be the preferred method.

X. CONCLUSIONS

This paper introduced the use of Compressed Sensing and
regularized linear models as a novel unifying framework for
MCU performance screening. The proposed framework is
tailored for direct application during in real-world production,
utilizing data derived from the characterization of real MCU

products. By presenting a new mathematical approach to the
ROs/Fmax relationship, a simplified methodology for per-
formance screening is proposed. This perspective, combined
with a comparative analysis of three primary methods for
feature selection, demonstrates that prior feature selection is
unnecessary in this context. Instead, the optimal SMONs for
predicting Fmax can be directly identified through regularized
linear models. This insight is crucial for determining which
SMONs should be incorporated into the final product. The
framework aims to enhance the efficiency and accuracy of
MCU performance testing, particularly in the early production
stages with limited labeled samples. The approach facilitates
faster and more reliable quality control, reducing production
costs and time-to-market. Implementation challenges include
ensuring data quality and availability, as the main limitation
of MCU performance screening is the limited availability of
data in the models’ design and training phases. Also, the
framework assumes a linear relationship between SMONs
frequency values and Fmax. This assumption holds for dataset
B, while for dataset A, it is achieved through a polynomial
transformation of the SMON values. Although this broadens
the applicability to cases where the feature-target relationship
is not strictly linear, extending the approach to other types
of non-linear relationships may prove challenging and may
require a preliminary feature analysis combined with domain
expertise.

The papers shown that wrapper methods are associated with
high computational costs, and they not significantly enhance
prediction accuracy or reduce the number of features. Filter
methods, including the proposed dendrogram technique, can
eliminate a substantial number of features; however, due to
their reliance solely on feature information, they may also dis-
card relevant features necessary for the subsequent supervised
regression, resulting in lower prediction accuracy compared to
embedded feature selection methods.

Regularized linear models emerge as an effective balance
between prediction accuracy and the retention of SMONs,
making them the preferred choice for both datasets A and
B (specifically, Lasso and LGP), regardless of whether the
SMONs-Fmax relationship is linear or polynomial. OMP
achieves the highest compression rate while maintaining ac-
ceptable accuracy. Non-convex regularization techniques (par-
ticularly LGP) are positioned between LASSO and OMP in
terms of feature retention and prediction accuracy.

Future Research Directions may include more diverse
datasets representing various real-world scenarios, different
types of MCUs, and varying production conditions. This
would help validate the robustness and generalizability of the
proposed framework. Research could also focus on optimizing
the framework for real-time deployment in production envi-
ronments. This could involve developing more efficient algo-
rithms, reducing model complexity, or leveraging hardware-
specific optimizations and edge computing capabilities to
improve speed and performance. Also, research could explore
the use of other types of non-linear models or more adaptive
feature transformation techniques to handle a wider range of
features relationships.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 12

REFERENCES

[1] J. Chen et al., “Data learning techniques and methodology for fmax
prediction,” in IEEE International Test Conference (ITC), 2009.

[2] S.-P. Mu et al., “Statistical framework and built-in self-speed- bin-
ning system for speed binning using on-chip ring oscillators,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 2016.

[3] R. Cantoro et al., “Machine Learning based Performance Prediction
of Microcontrollers using Speed Monitors,” in IEEE International Test
Conference (ITC), 2020.

[4] N. Bellarmino et al., “A Multi-Label Active Learning Framework
for Microcontroller Performance Screening,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2023.

[5] N. Bellarmino et al., “Feature Selection for Cost Reduction In MCU
Performance Screening,” in IEEE 24th Latin American Test Symposium
(LATS), 2023.

[6] I. Guyon et al., “An Introduction to Variable and Feature Selection,”
The Journal of Machine Learning Research, Mar. 2003.

[7] G. D. Natale et al., Cross-Layer Reliability of Computing Systems. Jan.
2020.

[8] N. Bellarmino et al., “Deep learning strategies for labeling and ac-
curacy optimization in microcontroller performance screening,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2024.

[9] N. Bellarmino et al., “Exploiting active learning for microcontroller
performance prediction,” in IEEE European Test Symposium (ETS),
2021.

[10] W. Jia et al., “Feature dimensionality reduction: A review,” Complex
& Intelligent Systems, Jun. 2022.

[11] P. Schober et al., “Correlation coefficients: Appropriate use and inter-
pretation,” Anesthesia I& Analgesia, 2018.

[12] P. Barbiero et al., “Predictable features elimination: An unsupervised
approach to feature selection,” in Machine Learning, Optimization, and
Data Science, G. Nicosia et al., Eds., Cham: Springer International
Publishing, 2022.

[13] L. Breiman, “Random forests,” en, Machine Learning, Oct. 2001.
[14] M. Lustig et al., “Sparse mri: The application of compressed sensing

for rapid mr imaging,” Magnetic Resonance in Medicine, 2007.
[15] E. J. Candès et al., “Near-optimal signal recovery from random

projections: Universal encoding strategies?” IEEE Transactions on
Information Theory, 2006.

[16] S. M. Fosson et al., “Sparse linear regression from perturbed data,”
Automatica, 2020.

[17] S. Foucart et al., A Mathematical Introduction to Compressive Sensing.
New York: Springer, 2013.

[18] J. A. Tropp et al., “Signal recovery from random measurements
via orthogonal matching pursuit,” IEEE Transactions on Information
Theory, 2007.

[19] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
Journal of the Royal Statistical Society. Series B (Methodological),
1996.

[20] J. Yang et al., “Compressive sensing-enhanced feature selection and its
application in travel mode choice prediction,” Applied Soft Computing,
2019.

[21] T. Hastie et al., “The elements of statistical learning: Data mining,
inference, and prediction,” Springer Science and Business Media, 2009.

[22] G. Gasso et al., “Recovering sparse signals with a certain family
of nonconvex penalties and dc programming,” IEEE Transactions on
Signal Processing, 2009.

[23] A. Prater-Bennette et al., The proximity operator of the log-sum
penalty, 2021.

[24] B. Li et al., Minimax concave penalty regularized adaptive system
identification, 2023.

[25] H. Xie et al., “SCAD-penalized regression in high-dimensional par-
tially linear models,” The Annals of Statistics, 2009.

[26] H. Zou et al., “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society. Series B (Statistical
Methodology), 2005.

[27] R. Rubinstein et al., “Efficient implementation of the k-svd algorithm
using batch orthogonal matching pursuit,” 2008.

[28] Q. Bertrand et al., “Beyond l1: Faster and better sparse models with
skglm,” in NeurIPS, 2022.

[29] V. Cerone et al., “Fast sparse optimization via adaptive shrinkage,”
IFAC-PapersOnLine, 2023.

[30] S. M. Fosson, “A biconvex analysis for lasso ℓ1 reweighting,” IEEE
Signal Process. Lett., 2018.

[31] G. Fracastoro et al., “Playing the lottery with concave regularizers for
sparse trainable neural networks,” IEEE Trans. Neural Netw. Learn.
Syst., 2024.

[32] L.-C. Wang, “Experience of data analytics in eda and test—principles,
promises, and challenges,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2017.

[33] M. Sadi et al., “SoC Speed Binning Using Machine Learning and On-
Chip Slack Sensors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 2017.

[34] N. Bellarmino et al., “Semi-Supervised Deep Learning for Microcon-
troller Performance Screening,” in IEEE European Test Symposium
(ETS), 2023.

[35] N. Bellarmino et al., “Microcontroller Performance Screening: Opti-
mizing the Characterization in the Presence of Anomalous and Noisy
Data,” in IEEE International Symposium on On-Line Testing and
Robust System (IOLTS), 2022.

[36] S. Larguech et al., “Efficiency evaluation of analog/rf alternate test:
Comparative study of indirect measurement selection strategies,” Mi-
croelectronics Journal, 2015.

[37] M. J. Barragan et al., “A procedure for alternate test feature design
and selection,” IEEE Design and Test, 2015.

[38] U. M. Khaire et al., “Stability of feature selection algorithm: A review,”
Journal of King Saud University - Computer and Information Sciences,
2022.

[39] I. Guyon et al., “Gene Selection for Cancer Classification Using
Support Vector Machines,” Machine Learning, Jan. 2002.

[40] L. Demarchi et al., “Recursive feature elimination and random forest
classification of natura 2000 grasslands in lowland river valleys of
poland based on airborne hyperspectral and lidar data fusion,” Remote
Sensing, 2020.

[41] J. H. Ward, “Hierarchical grouping to optimize an objective function,”
Journal of the American Statistical Association, 1963.

[42] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal
of machine learning research, 2011.

[43] A. Altmann et al., “Permutation importance: a corrected feature
importance measure,” Bioinformatics, Apr. 2010.

[44] S. Geman et al., “Neural Networks and the Bias/Variance Dilemma,”
Neural Computation, 1992.

Nicolò Bellarmino is a PhD Student in Computer
and Control Engineering at Politecnico di Torino. He
received his MS degree in Computer Engineering
from Politecnico di Torino in 2021. His main re-
search interest are Machine Learning, Data Analysis,
and AI systems and their application to real-world
cases. He worked in Machine Learning applied to
device testing and reliability since 2020. He is part
of IEEE-HKN.

Riccardo Cantoro received the MS degree and the
PhD in computer engineering from Politecnico di
Torino, Italy, in 2013 and 2017, respectively. He
is currently a researcher with the Department of
Computer Engineering of the same university. His
research interests include software-based functional
testing of SoCs and memories, and machine learning
applied to test and diagnosis. He is a member of the
IEEE.

Sophie M. Fosson (Member, IEEE) received the
M.Sc. degree in applied mathematics from the Po-
litecnico di Torino, Italy, in 2005 and the Ph.D.
degree in mathematics for the industrial technologies
from Scuola Normale Superiore di Pisa, Italy, in
2011. From 2012 to 2016, she was a Postdoctoral
Associate with the Department of Electronics and
Telecommunications, Politecnico di Torino. She vis-
ited the Centre Tecnològic de Telecomunicacions de
Catalunya, Spain, in 2013, 2014 and 2016. She was
researcher at Istituto Superiore Mario Boella, Turin,

Italy, in 2017. She is currently an Assistant Professor with the Department of
Control and Computer Engineering, Politecnico di Torino. She is Associate
Editor for the IEEE Control Systems Letters. Her main research interests
include sparse optimization, machine learning, system identification, control
and cyber-physical systems.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

Martin Huch received the Dipl.Ing. and Dr.Ing.
degrees in electrical engineering from the Technical
University of Darmstadt (TUD), Germany, in 1986
and 1991. He joined the TriCore design team of
Siemens Corporation, Munich in 1997. This was
later carved out to become part of Infineon. After
some years of SOC design he transitioned to product
engineering, where he “baby-sitted” all of Infineon’s
TriCore products from the first samples until volume
production. Focus topics: general analysis method-
ology, power integrity, and performance validation.

Tobias Kilian received the B.Sc. and M.Sc. degree
in electrical engineering and information technology
from the Technical University of Munich (TUM),
Munich, Germany, in 2017 and 2019, respectively.
He is currently pursuing the Ph.D. degree as part of a
collaborative project between Infineon Technologies
A.G. and the Technical University of Munich. His
research focus lies on performance monitors for
automotive microcontrollers.

Ulf Schlichtmann (Senior Member, IEEE) received
the Dipl-Ing and Dr-Ing degrees in electrical engi-
neering and information technology from the Techni-
cal University of Munich (TUM), Munich, Germany,
in 1990 and 1995, respectively. He is a professor
and the head of the Chair of Electronic Design
Automation, TUM. He joined TUM in 2003, fol-
lowing 10 years in industry. His current research
interests include computer-aided design of electronic
circuits and systems, with an emphasis on designing
reliable and robust systems. Increasingly, he focuses

on emerging technologies, such as lab-on-chip, and photonics.

Giovanni Squillero (Senior Member, IEEE) re-
ceived a Ph.D. in Computer Engineering from Po-
litecnico di Torino in 2002; his research mixed
computational intelligence and machine learning,
with industrial applications that range from elec-
tronic CAD to bio-informatics. Currently, Squillero
is a professor of Computer Science at Politecnico
di Torino, Department of Control and Computer
Engineering; he is serving in the technical commit-
tee of the IEEE Computational Intelligence Society
Games, and in the editorial board of Genetic Pro-

gramming and Evolvable Machines.

