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Abstract

A review on the classical Plateau problem is presented. Then, the state of the art about the Kirchhoff-Plateau problem
is illustrated as well as some possible future directions of research.
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1. Introduction

Soap films arise as equilibrium interfaces between two fluids. Young and Laplace, at the beginning
of the 19th century, gave an expression for the pressure difference pc (the capillary pressure) over an
interface between two fluids. Precisely, the relation, which is now called Young-Laplace equation, is given
by

pc = σ

(
1

r1
+

1

r2

)
,

where σ > 0 is a constant called surface tension and r1, r2 are the principal radii of curvature of the
interface S (see, for instance, [1] for a derivation of the Young-Laplace equation). The surface tension
measures the amount of energy one needs to extend the surface S by one unit area. Taking into account
the definition of mean curvature of S, denoted by H, we can rewrite the Young-Laplace equation as
pc = σH. As a consequence, the interface is in equilibrium if and only if H is constant. From the physical
point of view, two different kind of configurations are essentially possible. In one case, the interface S
forms a closed surface, that is a compact surface without boundary; then, S must be a sphere, and this
explains why soap bubbles are round. In the other case, the interface S is a surface with boundary. In
this case, the Young-Laplace equation becomes H = 0. The best physical model for these kind of surfaces
is represented by soap films: putting a rigid wire in a soap solution and extracting it, a thin soap film will
remains attached to the wire. In the middle of the 19th century, the Belgian physicist Plateau devised
many experiments putting rigid wires in a soap solution in order to understand the possible singular
configurations of soap films. For this reason, still today we use the terminology Plateau problem to deal
with the problem of finding the shape of soap films with some prescribed boundaries.

From a mathematical point of view, soap films turn out to be stable minimal surfaces. The connection
between soap films and minimal surfaces dates back to Gauss who worked, in the 19th century, on
capillarity problems. Actually, in the middle of the 18th century, Lagrange was the first who investigated
minimal surfaces as critical points of the area functional. Indeed, at least in the smooth case, the minimal
surface equation H = 0 is the Euler-Lagrange equation of the area functional. This suggests an interesting
change of point of view: instead of solving directly the partial differential equation H = 0, one might
look at minimizers of the area functional. This variational strategy permits to obtain directly a stable
minimal surface, which should produce a corresponding soap film.
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However, using some special solutions of the equation H = 0, one can construct many examples of
minimal surfaces. The catenoid, discovered by Euler in 1744 and obtained as a revolution surface, is the
first example of non planar minimal surface. The helicoid is another classical example as well as the
Enneper surface and the Scherk surface [2]. Some of these examples of minimal surfaces can be seen as
soap films: the catenoid appears also as a solution of the soap film bounded by two sufficiently close
coaxial rings, while the helicoid spans a circular helix (see Figure 1).

Figure 1. The catenoid (on the left) and the helicoid (on the right) as soap films.

The general formulation of the Plateau problem might be the following one: given a closed curve Γ
in the space find a surface with minimal area spanning Γ. Since it seems that every closed wire spans
some soap film, Plateau was convinced that every closed curve with no double points spans a surface
which minimizes the area. Moreover, as far as experiments suggest, there are only two kind of singular
configurations: the Y-configuration, three plane sheets crossing on a line and forming a 120◦ angle, and
the T-configuration, four lines crossing in a point (called tetrahedrical point) and forming an angle of
approximately 109, 47◦. Pictures in Figure 2 show that these singularities may occur. The Y and the

Figure 2. The soap film obtained by the edges of a tetrahedron (on the left) and the soap film realized by the edges of a
cube (on the right).

T singularities are the only conjectured by Plateau. For this reason, the fact that a soap film can only
produces Y and/or T singularities are known as Plateau laws.

In this paper, we will first of all review the main techniques for solving the Plateau problem. From
the mathematical point of view, the problem is very difficult and a lot of possible formulations are
available. Precisely, in Section 2 we will briefly mention how the classical solution by Douglas and Radó
works, then we will pass to review more recent formulations of the problem in the context of Geometric
Measure Theory: sets of finite perimeter, currents, and minimal sets. An important generalization of the
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Plateau problem is presented in Section 3 where the so-called Kirchhoff-Plateau problem is introduced:
the boundary is elastic and can sustain bending and twisting. We will present some recent results for the
Kirchhoff-Plateau problem and some of its generalizations. Finally, we conclude in Section 4 with other
results and some future directions of investigations.

2. Plateau problem: classical and non-classical tools

In order to rigorously state the Plateau problem, we need to clarify three things: what surface means,
what area of a surface means, and the concept of spanning a prescribed boundary curve.

2.1. Plateau problem for graphs

The first attempt is to deal with graphs of functions. In this setting, the most elementary problem is
to find a global minimal graph, namely a function u : R2 → R whose graph solves the equation H = 0.
Any affine function is obviously a solution. Is it the unique solution? This is the celebrated Bernstein
problem, that can be generalized to any dimension: if the graph of a smooth function Rn → R is a
minimal surface in Rn+1, does this imply that it is an affine function? Bernstein formulated the problem
in 1914 and solved it, in the same year, only for n = 2. After that, many mathematicians tried to attack
the problem in higher dimensions: we mention Simons who answered positively in n = 6 and gave an
example of locally stable cones in R8 but without proving that these cones are minimal surfaces on the
whole space R8. Finally, Bombieri, De Giorgi and Giusti showed that Simons cones are indeed minimal
surfaces in Rn for n ≥ 8. An example is the cone {(x, y) ∈ R4 × R4 : |x| = |y|}.

If u : Ω ⊂ Rn → R is a smooth graph, then the Plateau problem reads

(1)

−div
∇u√

1 + |∇u|2
= 0 on Ω,

u = u0 on ∂Ω,

where Ω is open and bounded in Rn. Concerning the solution, we mention Jenkin and Serrin [3]: if ∂Ω
is of class C2,α for some α ∈ (0, 1), and u0 ∈ C2,α(Ω) then (1) has a solution if and only if the mean
curvature of ∂Ω is everywhere non-negative. On the other hand, if ∂Ω is of class C2,α for some α ∈ (0, 1),
then there exists ε > 0 such that for every u0 ∈ C2,α(Ω) with ∥u0∥2,α ≤ ε the problem (1) has a unique
solution u ∈ C2,α(Ω) [4,5]. Moreover, (1) can be stated in a variational way [6]: it is the Euler-Lagrange
equation of the area functional written for graphs like

(2) u 7→
∫
Ω

√
1 + |∇u|2dx.

In [6], the authors show that if Ω is convex and u0 : ∂Ω → R satisfies the bounded slope condition (that
is u0 satisfies a Lipschitz inequality), then the functional (2) has a unique minimizer among all Lipschitz
functions with u = u0 on ∂Ω.

2.2. Disc-type solutions

The first rigorous solution to the Plateau problem is due to Douglas [7] and Radó [8], who indepen-
dently developed an argument which works only for 2-dimensional surfaces in R3 and in codimension 1.
We also mention simplifications in the proof of Courant, Tonelli and Dierkes [9]. The basic idea is to
look at smooth parametrizations X : D → R3 where D = {(u, v) ∈ R2 : u2 + v2 < 1} is the disc and the
trace of X on ∂D is a smooth parametrization of a prescribed Jordan curve Γ in R3. Thus, the Plateau
problem reads

A(X) =

∫
D
|∂uX× ∂vX| dudv.

In order to apply the Direct Method of the Calculus of Variations, one immediately notices that A
is weakly lower semicontinuous since the map (u, v) 7→ |∂uX(u, v) × ∂vX(u, v)| is a convex function
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of the determinants of the 2 × 2 minors of ∇X (what is called polyconvex function [10]). Concerning
compactness, the set {X : A(X) ≤ c} is not bounded in any reasonable Sobolev norm since the area
functional is invariant under reparametrization. However, considering conformal coordinates, it is easy
to see that

A(X) ≤ 1

2

∫
D
|∇X|2 dudv = D(X),

and the equality holds true if and only ifX is conformal, that is |Xu| = |Xv| andXu·Xv = 0. This suggests
to minimize directly the Dirichlet functional D, which is not invariant under reparametrization, among
all X ∈ W 1,2(D;R3) such that X|∂D is a reparametrization of Γ. Precisely, there exists a minimizer

X0 ∈ C0(D;R3) which is harmonic on D and X0 is conformal, hence D(X0) = A(X0). It is left to
show that every minimizer X0 of D satisfying D(X0) = A(X0) is a minimizer for the area functional.
Obvioulsly, since for any admissible X it holds A(X) ≤ D(X), then

inf
X

A ≤ inf
X

D.

To have the equality one can apply the ε-conformal mappings Lemma due to Morrey [11]: if X ∈
C0(D;R3) ∩ W 1,2(D;R3) then for any ε > 0 there exists a homeomorphism τε : D → D of class W 1,2

such that D(X ◦ τε) ≤ A(X) + ε. Finally, X0 produces a regular surface, namely ∂uX × ∂vX ̸= 0 ev-
erywhere, indeed if Γ is an analytical Jordan curve and if its total curvature does not exceed 4π then
any disc-type solution of Plateau problem is a regular minimal surface [12]. Moreover, disc-type minimal

Figure 3. The area minimizing soap film spanning a disc wants to be embedded.

surfaces cannot produce singularities in the interior [13]: they are immersed surfaces and not embedded,
without self-intersections (see for instance the embedded soap film solution in Figure 3), not providing a
good model for soap films.

2.3. Distributional approaches

Concerning distributional approaches to solve the Plateau problem, we describe two approaches: sets
of finite perimeter and currents.

We refer to the book by Ambrosio-Fusco-Pallara [14] or to the monograph by Maggi [15] for details
on the theory of finite perimeter sets. Let E ⊂ Rn be a Borel set with finite Lebesgue measure and let
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Ω ⊆ Rn be open. We say that E is a finite perimeter set in Ω if

P(E; Ω) = sup

{∫
E∩Ω

div ϕdx : ϕ ∈ C∞
c (Rn;Rn), ∥ϕ∥∞ ≤ 1

}
< +∞.

The quantity P(E; Ω) is the perimeter of E in Ω. If E is a bounded and open with smooth boundary,
then E has finite perimeter in Ω and P(E; Ω) = H n−1(∂E ∩ Ω). By duality, we immediately can say
that the map E 7→ P(E; Ω) is lower semicontinuous with respect to the L1-convergence of characteristic
function f sets. Moreover, if P(Eh) is bounded and Eh are contained in a given ball, then, up to a

subsequence, Eh
L1

→ E and E has finite perimeter.
Thus, the Plateau problem in this setting reads as follows:

(3) inf {P(E) : E has finite perimeter in Ω satisfying L n((E \ Ω) △ E0) = 0} ,

where E0 ⊂ Rn \ Ω be such that ∂E0 ∩ ∂Ω = Σ0 ⊂ ∂Ω assigned. In particular, the Direct Method of the
Calculus of Variations can be successfully applied and the problem (3) has a minimal solution.

Another distributional approach to the Plateau problem is the use of the theory of currents. The
notion of current dates back to De Rham, while the variational and geometrical approach used today is
mainly due to Federer and Fleming [16,17].

Let Dd(Rn) be the set of d-forms on Rn with compact support. The space of d-currents on Rn, denoted
by Dd(Rn), is the topological dual space of Dd(Rn). Then, any d-dimensional smooth oriented surface S
in Rn is an example of a current: TS ∈ Dd(Rn) is defined as follows

⟨TS , ω⟩ =
∫
S
ω, ∀ω ∈ Dd(Rn).

Also the boundary of a current can be defined via the Stokes’ formula: if T ∈ Dd(Rn), then ∂T ∈ Dd−1(Rn)
is the boundary of T and it is given by

⟨∂T, ω⟩ = ⟨T, dω⟩.

Moreover, by Stokes’ formula and for smooth oriented surfaces, ∂TS = T∂S .
To state the Plateau problem, the concept of the mass of a current T ∈ Dd(Rn) is defined as

M(T ) = sup
||ω(x)||≤1

⟨T, ω⟩,

where ∥ω(x)∥ is a suitable notion of norm for d-forms. It turns out that M is lower semicontinuous with
respect to the weak convergence of currents. For smooth oriented surfaces, it holds M(TS) = H d(S).

Since the space of currents is too large, a subspace must be introduced: T ∈ Dd(Rn) is a d-rectifiable
current with integer multiplicity if there exist:

(a) a d-rectifiable set E in Rn,
(b) an orientation τ on E, namely a Borel map that to H d-a.e.x ∈ E assigns a unit simple d-vector

τ(x) which spans TxE,
(c) a multiplicity function, that is a H d-summable function m : E → N,

such that T can be defined as follows

⟨T, ω⟩ =
∫
E
⟨ω(x), τ(x)⟩m(x) dH d(x), ∀ω ∈ Dd(Rn).

A current of this type is denoted by [E, τ,m]. If S is a smooth d-dimensional surface oriented by τ then
TS = [S, τ, 1].

Finally, a current T ∈ Dd(Rn) is said to be a d-integral current if both T and ∂T are rectifiable
currents with integer multiplicity. In this final class, a compactness theorem holds true (Federer-Fleming
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Compactness Theorem): if (Th) is a sequence of integral d-currents with M(Th)+M(∂Th) bounded then,
up to a subsequence, Th → T in Dd(Rn), ∂Th → ∂T where T is an integral current. Moreover,

M(T ) ≤ lim inf
h

M(Th), M(∂T ) ≤ lim inf
h

M(∂Th).

The Plateau problem in terms of integral currents can be stated as follows: let T0 be a given integral
d-current on Rn; find a minimizer of M(T ) among all currents d integral currents T with ∂T = ∂T0.

Notice that this approach has some limitations:

1. the current solution to the Plateau problem can have multiplicity different from 1. Indeed, the right
object to minimize should be the size of a current defined as

S ([E, τ,m]) = H d ({x ∈ E : m(x) ̸= 0}) .

However, for S a compactness theorem does not hold true.
2. any discontinuity on the orientation produces an nonphysical boundary. A possibility to overcome this

issue is to produce non-orientable soap films (see Figure 4) and mathematically to deal with rectifiable
currents modulo ν, where ν ≥ 2 is an integer or using the theory of varifold, for definitions and details
see [18,19].

Figure 4. A Möbius strip-like soap film.

Finally, we would like to say that in both cases a minimizer produces actually a soap film. Thus, a
regularity theory has been developed. For the set of finite perimeter the regularity is obtained for a set
E in Rn which minimizes the perimeter with respect to all possible compactly supported perturbations.
In this case it is possible to prove that ∂E \ S is smooth, where S is the closed set of singularities and

(a) if 2 ≤ n ≤ 7 then S is empty and ∂E is analytical;
(b) if n = 8 then S has no accumulation points in E;
(c) if n ≥ 9 then H d(S) = 0 for every d > n− 8.

A similar regularity result holds for mass-minimizing currents: if T is a mass-minimizing 1-integral current
in R2 then the “interior part” of T (the part of T which is not in the boundary of T ) is made of disjoint
line segments. Moreover, similar to the set of finite perimeter case, if 2 ≤ n ≤ 7 then the interior part of
any mass-minimizing (n− 1)-integral current in Rn is a smooth embedded hypersurface: in Figure 3 the
soap film solution corresponds to an embedded solution, which actually should be the mass-minimizing
integral current. When n > 7, the Simons cone C = {(x, y) ∈ R4 × R4 : |x| = |y|} is an area-minimizer
current developing a singularity in the origin [20]. Unfortunately, since in lower dimension, especially
the physical one n = 3, both the set of finite perimeter approach and the current one do not develop
singularities, they do not provide a good model to study soap films.
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2.4. Almgren minimal sets approach and Taylor regularity

Minimal sets, introduced by Almgren in [21], represent the best model for soap films.
Let us recall the definition of minimal set. Let S ⊂ Rn be a closed set and A ⊂ Rn be an open set. We

say that S is a d-dimensional minimal set in A, briefly minimal set, if for any closed ball B ⊂ A and for
every Lipschitz function φ : Rn → Rn with φ|Rn\C = id and with φ(C) ⊂ C we have H d(S) ≤ H d(φ(S)).

In 1976, Taylor [22] proved that 2-dimensional minimal sets in R3 may have singularities and these are
exactly the ones produced by soap films and observed by Plateau in his experiments. More precisely,
there are two kind of singularities (see Figure 2):

(a) the so-called Y-configuration: three sheets crossing on a line and forming a 120◦ angle;
(b) the so-called T-configuration: four lines crossing in a point forming a 109, 47◦ angle.

In order to state a Plateau problem in this framework the main difficulty stems from the notion of
boundary. Recently, a suitable theory has been developed and some existence results have been proved.
The main idea has been introduced by Harrison [23,24]. The approach by Harrison and Pugh is based
on differential chains and it permits to represent all types of observed soap films as well as immersed
surfaces of various genus types, both orientable and nonorientable, see Figure 5.

Figure 5. Three different solutions for the same wire (courtesy of J.Harrison [19]).

Later on, De Lellis, Ghiraldin, and Maggi reformulated the concept of spanning in a more Geometric
Measure Theory setting [25]: let n ≥ 3 and let H be a closed subset of Rn. Let

CH = {γ : S1 → Rn \H smooth embedding of S1 into Rn}.

Fix C ⊂ CH be a closed subset by homotopy and let K be a relatively closed set in Rn \H. The set K
is said to be a C -spanning set of H if

(4) K ∩ γ(S1) ̸= ∅, ∀γ ∈ C .

Let us denote by F (H,C ) the class of all relatively closed sets in Rn \H which are C -spanning sets of
H. If there exists K ∈ F (H,C ) such that H n−1(K) < +∞, then the problem

min
K∈F (H,C )

H n−1(K)

has a solution which is a (n− 1)-dimensional minimal set in Rn \H.
This approach furnishes a good answer to the Plateau problem: when H is a Jordan curve in R3 the

spanning condition corresponds to the fact that the soap film K wets entirely the curve H. There exists
a minimal set K in R3 \H that spans H. Therefore, “the boundary of K is H” and, by Taylor’s result,
K can develop Plateau’s type singularities.
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3. The Kirchhoff-Plateau problem

A recent generalization of the Plateau problem consists in the situation in which the boundary is not
rigid but it is given by a flexible manifold. The first results were given by Bernatzky [26] and Bernatzky
and Ye [27] who proved existence in the framework of currents. The first formulation of the Kirchhoff-
Plateau problem was given by Giusteri, Franceschini and Fried [28], where the boundary of the soap film
lies on a 3-dimensional elastic rod; more precisely, stability of equilibrium configurations is analyzed.
We also mention [29–32]. The first rigorous existence result for the Kirchhoff-Plateau problem has been
provided by Fried, Giusteri and Lussardi [33] where the energy functional to be minimized is composed
by the elastic energy of the rod, the weight of the rod and the area of the soap film spanned by the rod.
Further details and relative bibliography can be found therein; we refer also to [34–38].

3.1. The bounding loop

To model the boundary manifold, in [33] the theory of Kirchhoff rods has been implemented (see for
instance the book of Antman [39]). A 3D-rod is completely described by its midline curve and a family
of two-dimensional material cross-section attached to each point of the midline. Moreover, in order to
encode how the cross-sections are “appended” to the midline, a family of material frames completes the
framework. Here, it is also assumed that the material cross-section lies in the plane orthogonal to the
midline at any point of the midline, namely that the rod is unshearable, and that its midline is inextensible,
denoting wit L > 0 its length. Under these assumptions, the final shape of the rod is uniquely determined

d
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Figure 6. The shape of the rod constructed by a moving frame.

by assigning the cross-sections and three scalar fields: the flexural densities κ1 and κ2 and a twist density
ω as we illustrate. Fix the clamping point x0 ∈ R3 and fix t0,d0 ∈ R3 unit orthogonal vectors. Let p > 1
and V = Lp(0, L)× R3 × R3 × R3, then w ∈ V and it is given by

w = ((κ1, κ2, ω),x0, t0,d0).

Starting from w, we can reconstruct the midline x and a director field d as the unique solutions of the
following system of ordinary differential equations (for a graphical representation see Figure 6)

(5)


x′ = t,

t′ = κ1d+ κ2t× d,

d′ = ωt× d− κ1t,
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supplemented by the initial conditions

(6)


x(0) = x0,

t(0) = t0,

d(0) = d0.

A classical result of Carathéodory [40] ensures that (5)–(6) has a unique solution:

Figure 7. The trefoil knot on the left and the unknot structure on the right are distinct objects when the cross-sections
have a non-vanishing thickness, even in the presence of self-contact. The distinction between a knot and an unknot is lost
in the vanishing-thickness limit.

x ∈ W 2,p((0, L);R3) and d ∈ W 1,p((0, L);R3).

Moreover, since t0,d0 are unit orthogonal vectors, we can reconstruct the moving material frame given
by {(t(s),d(s), t(s) × d(s)) : s ∈ [0, L]}. In particular, the midline x is parametrized by the arc-length.
In addition, the problem is equipped with some constraints. First of all, in order to have a closed and
smooth midline we require that

(7) x(L) = x(0), and t(L) = t(0).

We want also to encode the knot type of midline. To do that we simply fix a continuous map ℓ : [0, L] → R3

with ℓ(L) = ℓ(0) and we ask that

(8) x ≃ ℓ,

where ≃ is the isotopy equivalence relation in the sense of the theory of knots. We point out that a non-
vanishing cross-sectional thickness is crucial for distinguishing knot types in the presence of self-contact,
see Figure 7. Next, we discuss how to reconstruct the shape of the rod. The material cross-section at
each s ∈ [0, L] is given by a compact and simply connected set A(s) ⊂ R2 which contains the origin. The
corresponding rod can then be described as the set p[w](Ω), where

Ω =
{
(s, ζ1, ζ2) : s ∈ [0, L] and (ζ1, ζ2) ∈ A(s)

}
and p[w] is given by

p[w](s, ζ1, ζ2) = x(s) + ζ1d(s) + ζ2t(s)× d(s).

In what follows, Λ[w] will stand for the set p[w](Ω). We define the elastic energy of the rod as

Esh(w) =

∫ L

0
f(w1(s), s) ds

where f : R3 × [0, L] → R ∪ {+∞} satisfies the following conditions:
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(a) f(·, s) is continuous and convex for any s in [0, L];
(b) f(a, s) is bounded from below;
(c) f(a, ·) is measurable for any a ∈ R3.
(d) f(a, s) ≥ c1|a|p + c2 for some c1, c2 ∈ R with c1 > 0.

Under these assumptions the functional Esh is coercive and lower semicontinuous with respect to the
weak topology of V . We now discuss other necessary physical constraints. First of all, we have to specify
how we glue the last cross-section to the first one when we close the rod. More precisely, we have to
prescribe how many times the ends of the rod are twisted before being glued together. Thus, for a small
parameter ε > 0, the curve x + εd remains inside the rod Λ[w]. Up to add a straigth line-segment we
can assume that the curve x+ εd is closed. We ask that the linking number between the midline x and
the curve x+ εd is a prescribed integer number z, i.e.

(9) Link(x,x+ εd) = z.

To complete the global gluing condition, see Figure 8, we also fix the angle between d0 and d(L) as

(10) angle (d0,d(L)) is fixed.

Figure 8. The gluing of the rod: the curve in blue is close to the midline in red.

We finally have to discuss the non-interpenetration of matter, see Figure 9. In order to guarantee that

Figure 9. Lost of global and local injectivity.

the map p is globally injective on the interior part of Ω we have to assume two conditions. The first one
is the local non-interpenetration constraint, which we employ adding to the energy of the loop the term

Eni(w) =

{
0 if w ∈ N ,

+∞ if w ∈ V \N

where

N =

{
w ∈ V : max

(ζ1,ζ2)∈A(s)

(
ζ1κ2(s)− ζ2κ1(s)

)
≤ 1, a.e. s ∈ (0, L)

}
.
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The penalization of Eni can be seen as a sort of relaxation of the orientation-preservation of p[w]. Besides,
the global injectivity follows from the Ciarlet-Nečas condition

(11)

∫
Ω
detDp[w](s, ζ1, ζ2) dsdζ1dζ2 ≤ L 3(Λ[w]).

It remains to add the effects of the weight of the rod: we consider the potential energy

Eg(w) = −
∫
Ω
ρ(s, ζ1, ζ2) g · p(s, ζ1, ζ2) dsdζ1dζ2,

where ρ > 0 is the mass density and g is the constant acceleration of gravity.
The final form of the loop energy reads as

Eloop = Esh + Eni + Eg.

3.2. The Kirchhoff–Plateau problem

As in the classical Plateau problem, we model the liquid film by a two-dimensional object K, but we
want to keep track of the fact that it is reminiscent of two adhering surfactant leaflets. Then, we define
the energy of the liquid film as

Efilm(K) = 2σH 2(K)

where σ > 0 is the surface tension.

Figure 10. For this loop, if we look for a spanning set relative to the homotopy class of the loops a or b, spanning surfaces
covering only the hole on the left or on the right one will be allowed, respectively. If, instead, we consider the homotopy
class of the loop c, both holes must be covered by the spanning set.

Using the framework and the notation presented in Section 2.4, we impose the spanning condition
choosing a suitable class of loops closed by homotopy. Indeed, an appropriate choice of homotopy classes
determines which holes of a bounding loop with points of self-contact are covered, see Figure 10. Precisely,
we use the subset DΛ[w] ⊂ CΛ[w] containing all γ that have linking number 1 or −1 with the midline x.
Then, we seek a surface K ∈ F (Λ[w],DΛ[w]) that is a DΛ[w]-spanning set of the bounding loop Λ[w] in
the sense of (4) where C = DΛ[w], see Figure 11.

S

°

Figure 11. The surface S must intersect the loop γ.
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The Kirchhoff-Plateau problem concerns the minimization of the energy functional

EKP(w) = Eloop(w) + inf
{
Efilm(K) : K ∈ F (Λ[w],DΛ[w])

}
under the constraints (7)–(11). The main Theorem proved in [33] is the following one.

Theorem 3.1. Assume that there exists w̃ ∈ V satisfying (7)–(11) with EKP(w̃) < +∞. Then there
exists a minimizer of EKP satisfying (7)–(11). Moreover, there is a relatively closed subset K[w] of
R3 \ Λ[w] such that

Efilm(K[w]) = inf
{
Efilm(K) : K ∈ F (Λ[w],DΛ[w])

}
.

Finally, K[w] is a minimal set in R3 \ Λ[w].

Proof. We just give the main ideas. Consider a minimizing sequence (wh) for EKP such that EKP(wh) ≤
M for some M ≥ 0. It is possible to extract a weakly converging subsequence, not relabeled, wh ⇀ w
where w satisfies the constraints (7)–(11). The key point is to prove that if Kh ∈ F (Λ[wh],DΛ[wh]) and
a loop γ in DΛ[w] then for any ε > 0 such that the tubular neighborhood U2ε(γ) of radius 2ε around γ is
contained in R3 \ Λ[wh], there exists M = M(ε) > 0 such that, for any h large enough,

(12) H 2(Kh ∩ Uε(γ)) ≥ M.

Indeed, take Kh with

H 2(Kh) = inf
{
Efilm(K) : Kh ∈ F (Λ[wh],DΛ[wh])

}
.

This is always possible essentially thanks to [25, Thm. 2]. The measures µh := H 2 Kh constitute a

bounded sequence, µh
∗
⇀ µ up to the extraction of a subsequence, and the limit measure satisfies

µ ≥ H 2 K∞

where K∞ := spt(µ) \ Λ[w] is a countably H 2-rectifiable set. Assume by contradiction that there exists
γ ∈ DΛ[w] with γ ∩K∞ = ∅ and take ε as before. We therefore find that µ(U2ε(γ)) = 0 and then

lim
h→+∞

H 2(Kh ∩ Uε(γ)) = 0

which contradicts (12). This means that K∞ ∈ F (Λ[w],DΛ[w]).
We also get

lim inf
h→+∞

inf{H 2(K) : Kh ∈ F (Λ[wh],DΛ[wh])}

≥ lim inf
h→+∞

H 2(Kh)

= lim inf
h→+∞

µh(R3)

≥ µ(R3)

≥ H 2(K∞)

≥ inf{H 2(K) : K ∈ F (Λ[w],DΛ[w])}

which establishes the lower semicontinuity of the functional EKP (the lower semicontinuity of the loop
energy is a standard).

Finally, the fact that there exists a minimal set K[w] in R3 \ Λ[w] with

Efilm(K[w]) = inf
{
Efilm(K) : K ∈ F (Λ[w],DΛ[w])

}
follows from [25] and this yields the conclusion.
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Figure 12. A possible geometry of two linked rods.

3.3. Linked rods

The first generalization of the Kirchhoff-Plateau problem has been investigated in [35] where a more
complex configuration of the bounding loop is considered. Precisely, the loop consists in a finite number
of rods linked in an arbitrary way, as for instance in Figure 12. Following the same notation as before,
and limiting to the case of two rods, two vectors w1,w2 are introduced to describe the two midlines:

w(1) = ((κ
(1)
1 , κ

(1)
2 , ω(1)),x

(1)
0 , t

(1)
0 ,d

(1)
0 ), w(2) = ((κ

(2)
1 , κ

(2)
2 , ω(2)),x

(2)
0 , t

(2)
0 ,d

(2)
0 ).

In particular, it is assumed that only the midline generated by w(1) is clamped, that means that

(x
(1)
0 , t

(1)
0 ,d

(1)
0 ) is prescribed. Concerning the second rod, we do not assume a priori its position in space,

namely the vector (x
(2)
0 , t

(2)
0 ,d

(2)
0 ) is an unknown of the problem. For each rod we assume the correspond-

Figure 13. Above: two fixed linked rigid metallic wires in a soap solution. Below: one rod is more flexible than the other
one.

ing analogous constraints (7)–(11). Moreover, we have also to ask that the linking number between the
two midlines is prescribed:

(13) Link(x(1),x(2)) = η
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for some η ∈ Z. Finally, since we need to have a non-interpenetration between the two rods we are going
to assume that

(14) L 3(Λ[w(1)] ∩ Λ[w(2)]) = 0.

Concerning the spanning conditions, in this case we choose the loops which are not homotopic to a
constant and such that the sum of the linking numbers between the loop and the two rods is always one:
this means that a loop cannot link at the same time both rods. Thus, the Kirchhoff-Plateau problem
concerns the minimization of the following energy functional

(w(1),w(2)) 7→ Eloop(w
(1)) + Eloop(w

(2)) + inf
{
Efilm(K) : K spans Λ[w(1)] ∪ Λ[w(2)])

}
,

under all of the constraints described above. In [35], we provide the existence of a minimizer and we
perform some experiments, see Figure 13.

3.4. Soap films spanning repulsive links

As a second generalization, in [34] the case of knotted proteins is treated. To consider processes like
the adsorption of a protein by a biomembrane, in [34] we introduce an additional repulsional energy
between the two linked rods; see Figure 14.

Figure 14. Knotted protein linked to another one.

The general setting is the same as in the case previously considered of two linked rods: w(1) and w(2)

generate two midlines x(1) and x(1) respectively. We assume all the usual constraints (7)–(11) on x(i),
as well as (13). We substitute (14) with electrical potential energy term which, physically, encodes the
repulsion between the two rods. Precisely, the repulsion is modeled by

(15)

∫ L1

0

∫ L2

0

1

h(∥x(1)(s1)− x(2)(s2)∥)
ds1ds2,

where h is a suitable increasing, nonnegative and continuous function. With this choice, we are introducing
a positively unbounded energy, that may be infinite if the midlines are sufficiently close. A possible choice
for h is represented in Figure 15: a function which is 0 until some positive and small parameter ε and
then grows linearly. Therefore, the energy functional becomes

(w(1),w(2)) 7→ Eloop(w
(1)) + Eloop(w

(2)) +

∫ L1

0

∫ L2

0

1

h(∥x(1)(s1)− x(2)(s2)∥)
ds1ds2

+ inf
{
Efilm(K) : K spans Λ[w(1)] ∪ Λ[w(2)])

}
which is minimized under all of the described constraints.
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r1 - r2

2

4

6

8

h

Figure 15. Example of the “repulsive” function h.

3.5. Dimensional reduction

The paper [36] deals with a sort of dimensional reduction of the Kirchhoff-Plateau problem. The aim
of that work is then to perform a formal dimensional reduction of the classical Kirchhoff-Plateau problem
where the limiting curve is the midline of the rod. We require that w satisfies the assumptions (7)–(11).
Moreover, we assume that the so-called global radius of curvature ∆(x[w])] is bounded from below by a
constant ∆0 > 0; this assumption prevents self-intersection for a sufficiently small cross section (see [41]).
In this context the cross section A(s) is replaced by a rescaled cross section εA(s), where ε > 0 is a
positive and vanishing parameter. In addition, we can define the map pε[w] and the corresponding rod
Λε[w] = pε[w](Ωε). The rescaled energy functional reads as

Eε
KP(w) = Eε

loop(w) + inf
{
Efilm(K) : K ∈ F (Λε[w],DΛε[w])

}
where

Eε
loop(w) = Esh(w)− 1

ε2

∫
Ωε

ρ(s, ζ1, ζ2)g · pε[w](s, ζ1, ζ2) dsdζ1dζ2.

As ε → 0+ we obtain a limit functional (in the sense of Γ-convergence) which is given by

E0(w) = Esh(w)−
∫ L

0
|A(s)|ρ0(s)g · x[w](s) ds+ inf

{
Efilm(K) : K spans x[w]([0, L])

}
being

ρ0(s) = lim
(ξ1,ξ2)→(0,0)

ρ(s, ξ1, ξ2).

The approximating problems have minima which converge weakly to the minimum energy solution of the
limit problem, as well as the corresponding value of the energy. This also shows that the Plateau solution
with elastic line boundary may be approximated by solutions of the problems with a rod boundary.

4. Further results and work in progress

Once the existence of minimizers has been obtained, it is useful to characterize them deriving, for
instance, the Euler-Lagrange equations. Unfortunately, since the definition of the bounding loop requires
a high number of constraints, a first simplification is to consider an elastic curve instead of the Kirchhoff-
rod as the boundary wire. Thus, a first simplification can be considering the Elastic-Plateau problem: we
are interested in performing the variational analysis of energy functionals of the type

E [γ,X] =

∫
γ
f(κ, τ) dℓ+Area(S)
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where γ is a closed curve in R3 with curvature κ and torsion τ and Area(S) is the area of the spanning
surface spanning the elastic curve γ. The derivation of minimizers and their characterization leads to
several difficulties like getting compactness in the disc-type approach or dealing with Plateau singularities.
It seems that one should use the framework of Lytchak and Wenger [42] and Creutz [43] to set the problem
in Sobolev spaces for disc-type surfaces spanning a curve with possible self-intersections, while we expect
to deal with Geometric Measure Theory to treat general surfaces.

A first attempt to investigate the mentioned problem has been done in [44–46], where in order to deal
with elastic curves, we minimize E among all disc-type maps X : D → R3 with trace pointwise equal to
the elastic curve γ (this condition is different from the classical Plateau problem rigorously solved by
Douglas and Radò [7,8] where the trace of X is a suitable reparametrization σ(s) with s ∈ [0, 1] of the
curve γ). Moreover, the area functional is substituted with

∫
D Ψ(∇X) dudv, where D is the unit disc in

R2 and X : D → R3 is a parametrization of a membrane spanning the elastic curve γ, modeled through
its deformation gradient ∇X ∈ R3×2. We adopt two different approaches to model the line integral: the
parametrized curves approach and the framed curves approach. For the first one, the curve γ is modeled
as the Euler-Bernoulli elastica, while only linear elastic membranes are taken into account (For details
we refer to [46, Theorem 2.2 - Theorem 2.3 - Theorem 2.7]). Concerning the second one, it is introduced
to deal with more general energies, both for the boundary curve and for the membrane. Precisely, we
introduce a moving orthonormal frame {t,n, b} ∈ W 1,p((0, 2π);SO(3)) with p > 1 which generates a
curve r by integration. On this basis, we impose suitable constraints to get a closed curve (For details
we refer to [44, Theorem 3.1] and [46, Theorem 3.3 - Theorem 3.5]).

Moreover, another interesting direction of investigation would be to perform a numerical study in
order to visualize minimizers and their behaviour. A first attempt has been proposed in [46, Section 4]
where ad hoc method has been introduced to test some simple configurations in the membrane case.
Precisely, developing a numerical approach is quite challenging due to the large number of constraints in
the formulation of the problem, for instance we mention the pointwise length preserving constraint which
is ill-suited in the application of a finite element method, or the choice of energy functionals, non linear
terms are hard to be treat numerically.

Finally, in its classical formulation, the Plateau problem is an optimization problem: looking for
the surface with minimal area spanning the assigned boundary. However, it would be interesting to
characterize the dynamical process since, especially from the physical viewpoint, Plateau devised many
experiments putting a wire frame into a soap solution to a soap film. In particular, a first step can be
to formulate and solve the dynamical Plateau problem in its quasi-static approximation: the idea is to
prescribe the motion of the elastic curve and, at each time step t ∈ [0, 1], a minimal surface spanning the
assigned curve must be determined. This approach generalizes the machinery introduced by Dal Maso
and co-authors for studying fractures [47].
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bilità e le loro Applicazioni (GNAMPA) of Istituto Nazionale di Alta Matematica (INdAM) though the
INdAM-GNAMPA project 2024 CUP E53C23001670001. LL’s research is funded by the European Union
- Next Generation EU. LL has been supported by the Research Project Prin2022 PNRR of National
Relevance P2022KHFNB granted by the Italian MUR. AM is supported by Gruppo Nazionale per la
Fisica Matematica (GNFM) of Istituto Nazionale di Alta Matematica (INdAM).

152



Soap films: from the Plateau problem to deformable boundaries

References

1. L. M. Siqveland and S. M. Skjæveland, Derivations of the Young-Laplace equation, Capillarity, vol. 4,
no. 2, pp. 23–30, 2021.

2. M. P. Do Carmo, Differential geometry of curves and surfaces: revised and updated second edition.
Courier Dover Publications, 2016.

3. H. Jenkins and J. Serrin, Variational problems of minimal surface type II. Boundary value problems
for the minimal surface equation, Archive for Rational Mechanics and Analysis, vol. 21, no. 4, pp. 321–
342, 1966.
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