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Spontaneously symmetry-broken (SSB) phases are locally ordered states of matter characterizing a large
variety of physical systems. Because of their specific ordering, their presence is usually witnessed by means
of local order parameters. Here, we propose an alternative approach based on statistical correlations of noise
after the ballistic expansion of an atomic cloud. We indeed demonstrate that probing such noise correlators
allows one to discriminate among different SSB phases characterized by spin-charge separation. As a particular
example, we test our prediction on a 1D extended Fermi-Hubbard model, where the competition between local
and nonlocal couplings gives rise to three different SSB phases: a charge density wave, a bond-ordering wave,
and an antiferromagnet. Our numerical analysis shows that this approach can accurately capture the presence
of these different SSB phases, thus representing an alternative and powerful strategy to characterize strongly
interacting quantum matter.

DOI: 10.1103/PhysRevResearch.6.L042048

Introduction. Symmetries play a central role in the
characterization of the microscopic properties of the large
majority of quantum systems [1–3]. In this regard, the
Mermin-Wagner-Hohenberg theorem [4,5] demonstrates that,
under specific conditions, interacting processes can lead to the
formation of the, so called, spontaneously symmetry-broken
(SSB) phases. Here, the mechanism of symmetry breaking
manifests in the appearance of locally ordered states of matter
that are captured by specific local order parameters (LOPs)
[6]. While theoretical analysis made an extensive use of LOPs,
the experimental characterization of SSB phases represented
a more challenging task. Nevertheless, the advent of ultracold
atomic quantum simulators [7,8] allowed for the investigation
of SSB regimes to finally flourish, as proved by the detection
of equilibrium [9] and out-of-equilibrium [10] density waves,
supersolids [11–13], and antiferromagnets [14–16]. In this
regard, two main aspects of ultracold experimental platforms
proved particularly important: the impressive versatility in
the engineering of Hamiltonians, and the highly accurate
detection techniques that allow one to probe local ordering.
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Specific to this last point, quantum gas microscopy [17]
represents an extremely complex and powerful method
capable of probing both density [18,19] and spin [14,20]
local distributions, where first fundamental results [21,22]
have been obtained. Regarding the tailored interactions, the
study of SSB states would benefit from sizable nonlocal
interactions, whose engineering with dipolar atoms requires
the use of lattices with ultrashort lattice spacing [9,23].
Although interesting proposals are present [24,25], the
diffraction limit might drastically challenge the effectiveness
of quantum gas microscopes to detect these phases, which
leads to an open quest for less demanding detection schemes.

Techniques based on time-of-flight (TOF) measurements
offer an alternative, as they allow the extraction of noise cor-
relation measurements (NCMs) from spatial density-density
correlations after a ballistic expansion of the gas [26], which
does not require a single-site imaging of the lattice. Through
such technique, different states of matter have already been
efficiently detected [27–31]. In this Letter, we demonstrate
that NCMs can as well be highly effective in revealing the
presence of SSB phases that are characterized by spin-charge
separation [32–34]. Specifically, we first derive the expres-
sions that show that NCMs are able to capture the three
possible SSB phases occurring in 1D spinful fermionic sys-
tems, which are always characterized by gapped charge and
spin excitation spectra [35,36]. These are a charge density
wave (CDW), an antiferromagnet (AFM), and a bond or-
der wave (BOW) with broken site inversion symmetry, as

2643-1564/2024/6(4)/L042048(7) L042048-1 Published by the American Physical Society

https://orcid.org/0009-0002-1853-4660
https://orcid.org/0000-0003-4034-5786
https://orcid.org/0000-0002-0210-7800
https://orcid.org/0000-0001-9301-2067
https://orcid.org/0000-0001-9023-5257
https://orcid.org/0000-0001-5627-8907
https://ror.org/03mb6wj31
https://ror.org/03g5ew477
https://ror.org/0371hy230
https://ror.org/01k97gp34
https://ror.org/00g30e956
https://ror.org/0149pv473
https://ror.org/00bgk9508
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevResearch.6.L042048&domain=pdf&date_stamp=2024-11-22
https://doi.org/10.1103/PhysRevResearch.6.L042048
https://creativecommons.org/licenses/by/4.0/


KERMAN GALLEGO-LIZARRIBAR et al. PHYSICAL REVIEW RESEARCH 6, L042048 (2024)

FIG. 1. Illustration of the AFM (a), BOW (b), and CDW (c)
phases. (d) Schematic representation of the 1D EFH model (4) at half
occupation. Atoms of different spin are illustrated with different col-
ors and two-point arrows indicate on-site (U ) and nearest-neighbor
(V ) interactions. An additional term (Jz) couples the spin of neighbor
sites. (e) Phase diagram associated to the ground state of the EFH
model in the thermodynamic limit. As the value of V/J increases, one
observes the transition between the AFM, BOW, and CDW phases
(colored in green, red, and blue, respectively). See Supplemental Ma-
terial Ref. [37] for further details. Parameters: U = 4J and Jz = 0.5J .

represented in Figs. 1(a)–1(c). Notably, while the local order-
ing of CDW and AFM appears at the level of lattice sites, in
the BOW it takes place in bonds connecting consecutive sites,
whose detection is the subject of ongoing efforts for quan-
tum gas microscopy [38,39]. The alternative use of NCMs
to detect this phase had not been proposed before. Based on
such a fundamental aspect, we then test our predictions on
an extended Fermi-Hubbard (EFH) model where the afore-
mentioned regimes can be engineered. Here, our numerical
analysis for system sizes similar to those of current exper-
iments [9] demonstrates that NCMs provide a ground-state
characterization that accurately agrees with the one derived
through LOPs, while not relying on spatially resolving the
optical lattice. Our results thus provide insights toward a more
complete understanding and characterization of SSB phases
of matter.

NCM for SSB phases. The NCM can be accessed by
a sudden release of the optical trap and a posterior flu-
orescence measurement once the atoms, of mass m, have
expanded beyond the characteristic size of the lattice dur-
ing a finite time τ [26]. After this ballistic expansion,
each momentum is associated to detection in position xν =
h̄pντ/m, where pν = p + 2νk, ν is an integer number, and
k = 2π/λ depends on the wavelength of the lattice geometry.
The Pauli principle then prevents the simultaneous detection
〈n̂σ (x) · n̂σ (x′)〉 at distances, d = x′ − x, which are multiples
of � = (2h̄k)τ/m. After normalizing by the case of indepen-
dent detection 〈n̂(x)〉〈n̂(x′)〉, the NCM writes as

N (d ) = 1 −
∫

dx〈n̂(x + d/2) · n̂(x − d/2)〉∫
dx〈n̂(x + d/2)〉〈n̂(x − d/2)〉 , (1)

where the bracket notation, 〈·〉, indicates the statistical aver-
aging over the region where fluorescence is detected. In this
work, whenever we omit explicitly the spin index we refer to
the sum over both spins, n̂ = n̂↑ + n̂↓.

Interestingly, the presence of peaks in the NCM can re-
veal symmetries of the state that are associated to structural
order in the chain [40,41], thus unveiling the presence of SSB
phases. One of these examples is the CDW, which is charac-
terized by a broken translational symmetry that manifests as a
perfect alternation between empty and doubly occupied sites.
Notably, charge excitations become gapped due to density
modulation, while the on-site pairing also generates gapped
spin excitations. In a bipartite lattice picture, this manifests
as a different site occupation, taking values ne/o,σ on each
even/odd site for spin σ ∈ {↑,↓}, which results in a NCM
of the form [37]

N (ν�/2) =
∑

σ

[neσ + (−1)νnoσ ]2/[ ∑
σ

(neσ + noσ )

]2

.

(2)

In analogy to measurements in 2D systems with imposed
broken symmetry [31], N (�/2) is null for a homogeneous
distribution, and nonvanishing for a bipartite occupation.
Therefore, the NCM in Eq. (2) serves as a rigorous probe that
is capable of detecting translational symmetry broken phases.
In the case of a spinful fermionic CDW occurring in half-filled
1D lattices, we then expect neσ = 1 and noσ = 0, so that the
NCM saturates to N (�/2) = 0.5.

Interestingly, such analysis is also relevant for the charac-
terization of the AFM SSB phase represented in Fig. 1(a).
This phase exhibits a finite charge gap that originates from
energetically prevented local pairing, while the perfect spa-
tial alternation between ↑ and ↓ particles translates into
gapped spin excitations. For the half-filled fermionic system
described above, the AFM state, no↑ = ne↓ = 1 and no↓ =
ne↑ = 0, saturates again the NCM in Eq. (2) to the value
N (�/2) = 0.5.

In these two SSB phases, local order is present at the level
of lattice sites. In contrast to this, the BOW phase occurring
in different fermionic chains [35,42,43] is characterized by
the ordering of local bonds, brσ = 〈ĉ†

rσ ĉr+1σ + H.c.〉, which
results in a spontaneously generated lattice dimerization [see
Fig. 1(b)]. In analogy to AFM, the charge gap in the BOW re-
flects in a uniform distribution of singly occupied lattice sites,
while the lattice dimerization gives rise to the formation of
singlets in neighboring sites causing spin-gapped excitations.
Interestingly, the local ordering in the bonds translates into
additional terms in the NCM [37],

N (ν�/2) =
∑

σ

[∑
r (−1)νrnrσ

]2 + 0.5
∑

σ

[∑
r (−1)νrbrσ

]2

(∑
σ r nrσ

)2 − 0.5
( ∑

σ r brσ
)2 .

(3)

In particular, in the SSB BOW we expect a different oc-
cupation of even/odd bonds, ne/o,σ = 0.5, beσ = 1, boσ = 0,
and one obtains a nonvanishing N (�/2) = 0.5. Therefore,
a nonzero value of N (�/2) in a fermionic chain indicates
the presence of any of three possible symmetry breakings
depicted in Fig. 1. In the following, we apply these results
to a minimal model where the three SSB phases appear, and
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illustrate a strategy to rigorously detect individually each SSB
phase by using NCMs.

SSB phases in the 1D EFH model. We consider a 1D
EFH model describing a chain of length L where N spinful
fermions, labeled by σ =↑,↓, interact through local U and
nearest-neighbor V interactions [23], and are subject to an
antiferromagnetic coupling Jz > 0 [see Fig. 1(d)] [44]:

Ĥ = − J
∑
〈i j〉,σ

(ĉ†
iσ ĉ jσ + H.c.) + V

∑
〈i j〉

n̂in̂ j

+ U
L−1∑
i=0

n̂i↑n̂i↓ + Jz

∑
〈i j〉

Ŝz
i Ŝz

j, (4)

where J parametrizes the nearest-neighbor hopping, and Ŝz
i =

(n̂i↑ − n̂i↓)/2. Here, we fix both the system density N/L = 1
and the total magnetization

∑
i Ŝz

i = 0. For weak V , the on-
site interaction dominates and the finite value of Jz turns out
to be responsible for the breaking of the SU (2) spin rotational
symmetry, giving rise to the appearance of an AFM phase
[45]. A strong nonlocal repulsion V causes that fermions in
neighboring sites to become energetically unfavorable, which
results in the formation of a CDW with broken translational
symmetry [35,46]. For low enough Jz, the effective frustration
generated in the regime U ≈ 2V turns out to be responsible
for an effective Peierls instability that results in the formation
of a SSB BOW [35].

The presence of the aforementioned SSB phases can be
characterized by their respective LOP,

Sc = 1

L

∑
i

(−1)i〈n̂i↑ + n̂i↓〉/2, (5)

Sz = 2

L

∑
i

(−1)i
〈
Ŝz

i

〉
, (6)

B = 2

L

∑
iσ

(−1)ibiσ , (7)

capturing the CDW, AFM, and BOW phases, respectively. For
fixed values U = 4J and Jz = 0.5J , our calculations of the
LOPs in Fig. 1(e) confirm that the variation of V results in the
appearance of the discussed SSB phases in the ground state of
the EFH model (4) [47].

Discriminating among the different SSB phases through
NCMs. So far, we have discussed that NCMs based on TOF
measurements can probe the three SSB phases that appear
in Eq. (4), but cannot directly discriminate among them in
the reciprocal space where they operate. To circumvent this
situation, we introduce a strategy where NCMs, in combi-
nation with tunable superlattices, can be used to reveal the
presence of each SSB. For the ground state |ψ0〉 of Ĥ and a
symmetry of interest, we induce a time-dependent superlattice
to reduce the energy of either of the possible charge or spin
sectors associated to the symmetries of study. We will use
the notations C©, A©, and B© for the superlattice modulation
compatible with the order that spontaneously appears in the
CDW, AFM, and BOW phase, respectively:

Ĥ C©e
o
(t ) = −	T(t )

∑
σ,i∈even

odd

n̂iσ , (8)

Ĥ A©e
o
(t ) = −	T(t )

∑
i∈even

odd

(n̂i↑ − ni↓), (9)

Ĥ B©e
o
(t ) = 	T(t )

∑
σ

∑
i∈even

odd

[ĉ†
2i,σ ĉ2i+1,σ + H.c.]. (10)

Here, we have defined 	T(t ) = (t/T )2	, where T is the total
time of the passage, and the index e/o indicates whether the
modulated Hamiltonian favors the occupation of even/odd
sites [or bonds in the case of B©].

Let us now illustrate in greater detail how this strategy
can assist distinguishing the discussed SSB phases. Starting
with the CDW phase, in Figs. 2(b) and 2(c) we show the
evolution of Sc and the noise correlator (respectively), as one
starts from the ground state of the EFH model for a fixed
value of V = 5J , where the CDW phase is present. The ini-
tial values N (�/2) ≈ 0.5 and Sc ≈ 0.5 indicate the presence
of the SSB phase where even sites are initially occupied.
As we now shape the lattice to decrease the energy cost of
occupying even sites, we observe at final time T J = 50 no
change in those values along the adiabatic evolution through
the ground-state manifold of Ĥ + Ĥ C©,e (continuous lines),
which indicates that the SSB is unaltered. However, along the
evolution with Ĥ + Ĥ C©,o (dashed line) where the occupation
of odd sites is favored, we observe that the state fails to reach
adiabatically the state with opposite parity due to the closing
of the gap along that path. As a consequence, the final values
of the LOP and NCM do not saturate to 0.5, indicating that
a state with broken symmetries has not been reached in this
occasion. When looking into the final values of Sc after these
two different paths in Fig. 2(a), we observe that this behavior
holds for V � 2.25J (colored in blue, where the CDW phase
is present) while, for V � 2.25J , the evolution along the even
(continuous lines) and odd (dashed) adiabatic paths result into
the same absolute values of Sc. Remarkably, this different
evolution along the even and odd paths (8)–(10) schematized
in Fig. 3(a) can also be sensed purely from NCMs. In the blue
line of Fig. 3(b), we calculate the maximum difference 	N
between the values of N (�/2) reached over time by those
paths, which is null for V � 2.25J , while it is nonvanishing in
the region V � 2.25J , thus revealing the presence of the CDW
phase without any need of LOPs or single-site resolution.

The applicability of this method is not restricted to CDWs,
but it can also be used to detect AFM and BOW phases, as we
illustrate in Figs. 2(d)–2(f) and Figs. 2(g)–2(i), by repeating
the same analysis for the adiabatic passages Ĥ A©(t ), and Ĥ B©(t ),
respectively. In the first case, we observe that the unequal
evolution of Sz and the NCM [panels (e) and (f)] under the
two parities of the path in Eq. (9) reveal the presence of an
AFM phase for V/J � 2.1. Starting from the ground state of
the EFH model for the latter case and V/J = 2.16, the BOW
phase manifests from the different values of the bond-order
LOP, and NCMs [panels (h) and (i)] reached by the system af-
ter the adiabatic suppression of tunneling in even or odd bonds
(indicated with red continuous and dashed lines, respectively),
following Eq. (10).

The presence of a specific SSB phase in the Hamiltonian
thus manifests as a maximum discrepancy 	N 
= 0, between
the value of the NCM reached over time by the two possible
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FIG. 2. (a) Black line follows the LOP associated to charge order (Sc) for different values of nearest-neighbor interaction strength, V/J .
Blue lines indicate the final value of Sc after one adiabatically introduces the on-site dimerized energy shift in Eq. (8). Blue continuous line
corresponds to the symmetry sector that is compatible with the initial sector of the ground state, and the dashed line corresponds to the opposite
sector. Panels (b) and (c) indicate the evolution of Sc and N (�/2) (respectively) for a fixed V/J = 5 (yellow line). In (d) we focus on the LOP
associated to antiferromagnetic order (Sz), represented in black. Continuous and dashed green lines show the final value of Sz for the even and
odd adiabatic paths in Eq. (9). Panels (e) and (f) indicate Sz and N (�/2) (respectively) for V/J = 0 (yellow line). In (g) we follow the same
approach for the LOP associated to bond order (B), represented in black. Continuous and dashed red lines show the final value of B after an
adiabatic frustration of the tunneling in the bonds corresponding to the transformation (10) compatible with the ground state, or the opposite
one, respectively. Panels (h) and (i) indicate the evolution of B and N (�/2) (respectively) for V/J = 2.16 (yellow line). Parameters: U = 4J ,
Jz = 0.5J , 	 = 10J , 100 sites, and T J = 50.

paths (e and o) associated to that symmetry [(8)–(10)]. One
should note that, in an experiment, the SSB will be decided by
an uncontrolled pinning potential and will be different in each
realization. Therefore, the symmetry breaking will manifest
as a bimodal distribution of measurement outcomes, where the
separation 	N between the two peaks is the relevant measure.
Remarkably, this magnitude, represented in Fig. 3(b), allows

FIG. 3. (a) Schematic representation of the superlattices induced
by the adiabatic transformations (8)–(10). (b) Difference in the NCM
reached after the even or odd sector of those transformations reveals
the presence of the CDW, AFM, and BOW phases of the EFH model
(4) (see main text). Parameters as in Fig. 2.

one to reconstruct the same phase diagram as the one obtained
from LOP [see Fig. 1(e)].

Discussion and outlook. We have shown that noise cor-
relation measurements can represent a fundamental tool in
order to probe spontaneously symmetry broken phases with
spin-charge separation. Specifically, we derived an alternative
detection scheme that combines tailored lattice designs with
time-of-flight probings. The latter allowed to accurately reveal
the presence of each of the three SSB phases that can occur
in 1D fermionic systems. It is worthwhile to underline that
proposals aimed to explore the SSB, CDW, and BOW phases
have been mainly based on trapping magnetic atoms into 1D
optical lattices [48,49], where the subwavelength separations
required to enhance the interaction strength pose a challenge
for quantum gas microscopy. In this regard, our proposed
scheme, combined with the recently introduced technique of
the quantum gas magnifier [50], might thus represent a more
feasible and flexible strategy. Other approaches to obtain ex-
tended interactions would be the use of Rydberg atoms [51,52]
or dipolar molecules [53,54] trapped in optical lattices. Al-
though these phases do not allow for a description in terms
of local order parameters, they are still characterized by the
phenomenon of symmetry breaking that our proposed method
might detect efficiently. In conclusion, our results open up
avenues in the comprehension and detection of spontaneously
symmetry-broken states of matter.
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