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IMPACT LOAD CHARACTERIZATION FOR SECURITY BARRIER 
PERFORMANCE ASSESSMENT THROUGH SIMULATIONS USING 

GENERIC VEHICLE MODELS  
 

 
 
ABSTRACT 
The threat stemming from the use of vehicles as a weapon in urban environments may be mitigated by 
employing properly designed protective structures such as bollards, street furniture or landscaping options. 
In order to assess the performance of a barrier resistance to a vehicle impact, the initial step involves 
characterizing the load on the barrier. To this aim, two recently developed generic vehicle models are 
utilized to conduct numerical simulations of vehicle impacts on a security barrier. Various impact 
configurations are examined and compared based on force-time functions. In addition to comparing the 
impact loadings in terms of peak forces, comparisons are also done in terms of equivalent static loads, 
determined by computing the dynamic load factors (DLF). The study provides new insights into the 
characterization of vehicle impact loads on security barriers, which could improve current engineering 
practices in the field.  
 
 
Keywords:  crash simulation, security barriers, vehicle impact 
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1. INTRODUCTION 
 
Vehicle security barriers preventing the entry of vehicles into pedestrian zones can effectively mitigate 
vehicle-ramming attacks (Figure 1). For vehicle barriers to serve as an effective mitigation solution, they 
must be designed, produced, and installed to protect against specific levels of threats related to vehicle 
category and impact velocity ([1] and [2] provide a general methodology for protecting public spaces).   
 

 
Figure 1.  Example of vehicle security barriers (VSB) commonly used in an urban environment 

 
 
The performance of barriers against vehicle impact is certified through physical tests using real vehicles of 
given UNECE categories (ISO standard [3]). Naturally, due to a relatively high cost of crash test 
experiments, only a limited number of tests are conducted. As a result, the information obtained from crash 
tests regarding barrier performance is quite limited. In particular, a crash test cannot be used to assess the 
safety margins of the barrier design, such as the extent to which the tested barrier could resist higher or 
different impact loads. 
 
On the other hand, over the last decades, the automotive industry and research communities have acquired 
significant experience from the use of numerical simulations for analysing vehicle crashes, where the main 
objective is, in general, the passenger’s and vulnerable road users’ safety. More recently, the same type of 
numerical simulation tools have been introduced for analysing the performance of security barriers (e.g. 
[5], [6], [7], [8], [9], [10] and the references therein). From the perspective of numerical simulation 
methodology, the assessment of the performance of security barriers is very similar to the field of the bridge 
pier design, which needs to resist to accidental vehicle impacts [11]. 
 
As in all engineering fields, the numerical simulations tools represent many advantages over the traditional 
engineering approaches based on experiments and simple analytical analyses. They are more accurate than 
the simple analytical methods and more cost efficient than physical experiments. However, when used in 
complex fields like crash worthiness, the use of numerical simulations in practice requires significant 
preliminary efforts in model verification and validation. Given the relatively scarce availability of 
experimental validation data in the field of security barrier performance assessment, more effort must be 
devoted to numerical model verification. 
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In general, numerical models of vehicles used for the assessment of passive safety in crash conditions are 
more detailed than what is needed for assessing the performance of a security barrier. Namely, the 
simulations of vehicle impacts on barriers do not call for representing all vehicle details (in particular for 
the interiors) that penalise the time required for the analysis. Since the generic vehicle models used here are 
developed mainly for the security barrier assessment, they represent only the vehicle properties determinant 
for its crash behaviour in terms of the mechanical loads transmitted to a barrier.  
 
These models are generic in the sense that they do not represent a specific vehicle brand, but can represent 
most of the vehicles of a given category. This means that a generic vehicle model has to be adjustable 
through a set of parameters, so that its properties could fit to various configurations. In particular, with 
appropriate parameters can be varied the mass of the vehicle, including its distribution, the main vehicle 
dimensions (length, width, etc.) and some mechanical characteristics related to the crash behaviour. Two 
models are used for this work, one for the category N1 (small 3.5t truck, [12]) and the other for the 
categories N2A and N3D (medium size trucks, from 7t to 12t, [13]), both being available under an open 
source licence [14]. 
 
There are two main approaches on how the numerical vehicle models can be used for the assessment of the 
performance of a security barrier. A full simulation approach would consist of creating a 3D model also for 
the barrier and run a coupled analysis of both sub-systems, the vehicle and the barrier, in the same 
simulation. In theory, this approach would provide the most detailed information of the performance of the 
barrier. In practice, it would require very detailed information not only of the barrier design itself, but also 
of its foundation and the surrounding soil, which might not always be easily available. The directly coupled 
approach is commonly used in the literature, in particular for simulating experiments (e.g. [5], [6], [7], [8]), 
where all the needed information is available. A general methodology for the fully coupled methodology is 
described in [15], addressing also the soil-structure interaction aspects.  
 
For situations where all the detailed information is not easily available and where only a rough assessment 
of the barrier performance is needed, a simpler uncoupled approach can be employed. This kind of situation 
is for example typical for the design process, where the vehicle impact load needs to be characterized before 
defining the barrier properties into details. In addition, the uncoupled approach can only be applied by 
considering that the barrier deforms very little during the impact and that its deformation does not influence 
the way the vehicle deforms during a crash. In other words, when using the uncoupled approach for 
assessing the dynamic loading, the barrier is considered as a perfectly rigid body. The performance of the 
barrier can then be assessed in a second step by applying the dynamic loading obtained in the first 
simulation. 
 
The article [9] present an exhaustive review of the simplified maximum force estimation models for the 
purpose of the design of bollards, the most common type of security barriers used in urban environments. 
The prediction of simple force estimation models is compared to some experiments and to numerous 
simulation results. However, the work in [9] focuses on the maximum force of the given impact scenarios 
and does not consider the dynamic amplification effects, due to the barrier’s elastic response. Namely, the 
mechanical consequences of any dynamic load depend not only on the amplitude of the imposed impact 
force, but also on the eigenfrequencies of the barrier system and on the frequency content of the load.  
 
The objective of the present article is to use recently developed generic vehicle finite element (FE) models 
([12] and [13]) for characterizing vehicle impact loads on a security barrier in terms of force-time functions.  
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Two vehicles are represented, one corresponding to the N1 category (3.5t small size truck, [12]) and the 
other to the N2A category (7.2t middle size truck, [13]), hitting a bollard in various ways. In addition to 
comparing the peak impact forces corresponding to different configurations, this paper proposes to analyse 
the impact forces also by applying a response spectrum analysis. According to this approach, a barrier 
system is represented as a simple mass-spring oscillator characterized by its main eigenfrequency. The 
response spectrum analysis is commonly used in the field of structural dynamics, in particular in earthquake 
engineering.  
 
The response spectrum analysis is used here to estimate the “dynamic load factor” (DLF) of the impact 
force-time loadings obtained from numerical simulations using full vehicle models. The DLF applied to the 
peak impact force allows estimating an equivalent static load, which would lead to the same level of stresses 
in the barrier structure as the dynamic load itself. The simplified equivalent static approach using the DLF 
is very convenient for a rough and fast assessment of barrier’s performance, because it does not require a 
very detailed model for the barrier. As shown in this paper, the DLF strongly depends on the shape of the 
impact force-time function (i.e. number of peaks, their width, etc.) and on the barrier’s eigenfrequency. 
 
The rest of the paper is organized as follows. First, the numerical generic vehicle models used for the impact 
simulations are briefly presented. Then the interaction of a vehicle with a barrier is discussed and the effect 
of the barrier natural dynamic response is evaluated. The simulation results are presented mainly in terms 
of the impact force-time function and discussed from the perspective of the vehicle crash behaviour, 
strongly dependent on the impact configuration. At the end, some conclusions are drawn, followed by 
recommendations for the future research work.    
 
 
2. GENERIC VEHICLE MODELS 
 
It is important to stress that the aim of a generic vehicle model is not to represent any existing vehicle but 
to represent the whole group of vehicles of given categories defined in the standard [3]. For this reason, 
only the features of the vehicle structure, which are brand and model independent and present (in some 
form) on any vehicle in its category are included in the model. Another aspect, which governs the decision, 
which parts of the vehicle should be included and which should be omitted, is the requirement for the 
computational efficiency of a simulation.  
 
The vehicle models considered here are designed specifically for virtual barrier testing. Unlike typical 
vehicle models used for passive safety assessment, they do not need to represent components that have 
negligible impact on crash behaviour. As a result, the model includes only the components that are crucial 
for crash stiffness and vehicle mass distribution, ensuring the vehicle model can accurately simulate the 
impact on the barrier. In addition, the crash effects of parts, which do not (or very little) contribute to the 
overall behaviour of the vehicle impact behaviour like dashboard, seats, components of passive safety and 
similar are unimportant for these analyses and they do not need to be represented in the model. However, 
in the used models the total mass is preserved by increasing the mass of other modelled components.  
To limit the change in the crash behaviour, any additional mass added to compensate for omitted 
components can only be applied to non-deforming components during impact.  
 
Following this approach two different generic vehicle models have been created recently, one for the 
category N1 [12] and one for the categories N2A and N3D [13]. Since the variations of the general vehicle 
architecture between the vehicles on the market for the categories N2A and N3D are not very significant, 
one single model can cover both categories. The N1 category is more specific and is treated apart. Both 
models are illustrated in the Figure 4. 
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Figure 2: Finite element meshes of the generic vehicle models for the N1 category (3.5 t small truck, on the 
left) and for the categories N2A and N3D (from 7t to 12t medium size trucks, on the right). 
 
The finite element models (Figure 2) were created with LS-Dyna software and are mainly composed of 
shell elements. Additionally, solid elements are used for the massive components (e.g., engine and 
gearbox), as well as some beam elements, but to a lesser extent. The N1 model contains approximately 
80,000 elements, while the N2A/N3D model contains about 180,000 elements. The element size varies 
between 10mm and 50mm and the critical time step is about 3μs (0.003ms), which makes the model 
computationally cost efficient. Altogether, the models require only a couple of hours CPU time for typical 
impacts simulations (100-500 ms) using a common laptop computer. 

 
The above-mentioned models have been validated following the standard CEN/TR 16303 and through 
comparisons to various crash tests.  The N1 generic model was validated by simulating two crash scenarios: 
one with a Ford Ecoline 56km/h crash on a rigid wall [12] and the other with a 3.5t vehicle 48km/h crash 
on a bollard [22]. As for the N2A / N3D model, it was validated by comparison to three crash tests of 7.5t 
trucks, two at 48km/h ([13] and [20]) and one at 80km/h [21]. The comparisons between the simulations 
and experiments are based on the values of displacements, velocities and accelerations of different points 
on the vehicle during the impact.  
 
 
 
3. BARRIER LOAD CHARACTERIZATION 

 
3.1. Vehicle crashing behaviour 

 
A vehicle ramming threat is usually defined only by the vehicle category, its total mass and the impact 
velocity. However, the actual load on a barrier also depends on the mass distribution, the stiffness of 
different vehicle components, and the connections between these components. The most important 
component for the crash behaviour is the frame (i.e. the chassis), composed of two frame beams, connected 
with several cross-members and to which all other components are connected directly or indirectly (Figure 
3). During an impact on a rigid barrier, the frame absorbs the largest part of the total energy. Its overall 
crushing mechanism and strength directly determine the impact duration and, consequently, the average 
impact force. The stiffer the frame, the shorter will be the impact duration and the higher the average force 
for the same initial vehicle velocity.  
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In addition, the force peaks depend much more on other components, in particular on the engine (Figure 3), 
which is a relatively big, heavy and rigid component, and in this sense very different from all other 
components. In typical configurations (e.g. [7] or [11]), the engine is responsible for the highest force peak 
acting to the barrier. The amplitude and the length of the peak corresponding to the engine hitting the barrier 
depends also on the connection with the frame. Even if the engine itself can be considered as very rigid, in 
reality it is surrounded with smaller components typically not represented in the model (e.g. cables, tubes) 
which are flexible and have a certain shock absorption capacity, difficult to quantify in practice. Therefore, 
in [12] and [13] the very stiff engine model is adjusted so that it has an additional softer layer representing 
the non-modelled components. The material properties of this artificial additional layer were calibrated in 
a way that the simulation results would match best the analysed crash experiments. 
 

 

 
Figure 3: Bottom view pf the generic vehicle model for categories N2/N3. Two main components in terms 
of the crash behaviour, the frame and the engine, are highlighted. 

 
The vehicle crashing behaviour is strongly dependent on the type and the characteristics of the barrier. This 
is true also for the rigid, little deforming barriers. In particular, the shape of a barrier is determinant for the 
contact surface with the vehicle. For instance, if the contact surface is smaller (i.e. the load is more 
concentrated), the total impact force should decrease. Therefore, since the total impulse must be equal to 
the initial vehicle momentum, the duration of the impact is elongated and the average force decreases.  
 
 

3.2. Analytical estimations for the impact force 
 
Analytical methods for estimating the impact force from a vehicle crash have mainly been developed for 
designing road structures (e.g., bridge columns) against accidental vehicle ramming. Nevertheless, there is 
no difference between accidental and malicious vehicle ramming in terms of impact load estimation. An 
exhaustive review of existing formulas for maximum impact force assessment is provided in [9], where 
various methods are evaluated by comparing them with experimental and numerical simulation results. The 
review [9] confirms that the “Eurocode 1: Part 1-7” (EC1) provides a relatively good estimate of the 
maximum force from vehicle impact. According to [9] some other analytical methods perform better but 
require more input parameters. Specifically, the formula from the EC1 [4] 
 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑣𝑣 ∙ √𝑘𝑘𝑘𝑘 
 
needs as a specific input only the vehicle equivalent stiffness, k, while v and m are the vehicle impact 

Engine Frame beams 
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velocity and mass, respectively. The review paper [9] considers a value k = 1200 kN/m to be appropriate, 
even though reference [4] suggests using k = 300 kN/m for the equivalent vehicle stiffness. Neither of these 
references clearly indicate to which vehicle categories the equivalent stiffness values should apply, even 
though the value of k is expected to strongly depend on the type of the vehicle. In any case, since the value 
of k cannot be determined with accuracy, precautions should be taken when using this simple impact-force 
characterization approach. 
 
In addition, it is important to stress that according to EC1 [4] the duration of the impact force, Δ𝑡𝑡, is 
 

∆𝑡𝑡 = �
𝑘𝑘
𝑘𝑘

 

 
which guarantees that the impact force impulse equals the initial vehicle momentum: 
 
𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 ∙ ∆𝑡𝑡 = 𝑘𝑘 ∙ 𝑣𝑣. 
 
In the case of dynamic loading, the stress levels experienced by the impacted structure depend not only on 
the load function but also on its dynamic properties. To estimate an “equivalent static force” that replicates 
the same maximum stress levels as the original dynamic loading, the peak impact force needs to be 
multiplied by the “dynamic load factor” (DLF): 
 

𝑓𝑓𝑒𝑒𝑒𝑒 = 𝐷𝐷𝐷𝐷𝐷𝐷 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 
 
For the impact load function proposed by EC1 [4], the dynamic amplification would be always equal to 
two (DLF = 2), since the normal periods of structures of interest here (i.e. security barriers) are expected 
to be smaller than the duration of the load, Δ𝑡𝑡.  
 
It is important to stress that the analytical estimations for impact force, such as those presented in the EC1, 
assume a simple rectangular impulse load function. This assumption allows for straightforward calculations 
using standard dynamic or even static analysis approaches. However, in reality, impact loads are typically 
more complex, exhibiting a time-varying nature that may have several peaks, as shown later in this paper. 
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3.3. Computation of the force-time loading function 
 

In the impact simulation, the vehicle and the barrier interact through contact (i.e. non-penetration) condition 
and the interaction force, which represents the load on the barrier and is equivalent to these contact forces. 

  

Figure 4: The impact loading is obtained from a vehicle crash simulation against a rigid barrier. 

In general, there are two families of numerical algorithms, which can be used to impose a non-penetration 
(i.e. contact) kinematic condition: the method of Lagrange multipliers and the so-called penalty method 
(e.g. [17]). In the Lagrange multiplier method, the contact forces are computed such that the desired non-
penetration condition is satisfied exactly. Whereas in the penalty method, the kinematic constraint is 
satisfied by introducing an additional stiffness at the contact surfaces such that it prevents significant inter-
penetration between the two bodies. 

The main inconvenience of the penalty method is that it introduces additional stiffness parameters difficult 
to define without a trial-and-error approach. On one hand, if the contact stiffness is too small, there will be 
an unacceptable penetration between the interacting bodies (i.e. vehicle and barrier). On the other hand, if 
the stiffness parameter is too big, this will penalize the critical time step and the computation can become 
prohibitively long. However, there seem to be no sound theoretical approaches for selecting the stiffness 
parameters effectively for any practical situation (e.g. [16]). Therefore, the appropriate stiffness parameters 
need to be selected on a case-by-case basis. Nevertheless, the penalty approach is often preferred in crash 
analyses, because it is considered as more computationally effective than the Lagrange multipliers method, 
which requires a more complex solving algorithm, in particular for parallel simulations.   

In both cases, the computed contact forces result from the non-penetration kinematic condition and do not 
necessarily correspond to realistic physical forces. Namely, the numerical contact forces have a clear 
physical meaning only in terms of the impulse they create during the contact interaction between the two 
bodies. Therefore, if the time step is changed when using the Lagrange multiplier method, the contact forces 
will be adapted so that the impulse (force multiplied by the time step) would remain the same. Regarding 
the penalty method, the contact forces are strongly dependent on the stiffness parameters used. 

Thus, the contact forces computed directly by the simulation software, whatever algorithm used, are not 
perfectly representative of the loading forces of the barrier. Typically, the force history corresponding to 
the contact obtained by the simulation software contains a significant high frequency numerical noise. 
Therefore, in the standard engineering practice, a low pass filter is applied to the contact force outputs, 

f(t) 
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wherever the contact force values are needed (e.g. [11]). According to the common practice, the force-time 
output functions are filtered using the “Society of Automotive Engineers (SAE) Class 60 Filter” [18]. 

The contact-impact algorithms respect, by construction, the conservation of the momentum. Hence, an 
alternative way to compute the impact forces is to apply a numerical derivation scheme to the momentum-
time function computed by the simulation software. In this case, instead of frequency based filtering, the 
calculated forces are filtered by choosing the time-step for the numerical derivation. In fact, both procedures 
introduce a numerical artefact, but the physical meaning of the derivation time-step seems more 
straightforward to interpret than for the low-pass filtering approach, developed initially for general signal 
processing, not specifically for mechanical systems. 

We have also observed that sometimes the force-time functions exported from a simulation software by 
using the filtering approach mentioned above do not conserve the total momentum, i.e. their integrals are 
sometimes non-negligibly smaller than the initial momentum.  

Therefore, in the numerical examples presented here and for the above-mentioned reasons, the force-time 
functions were obtained by the numerical derivation of the momentum-time functions calculated by the 
software instead of using the filtered force-time functions. 

 
3.4. Barrier response  

 
The barrier dynamic response depends not only on its design (dimensions, materials, etc.), but also on its 
interaction with the environment through its foundation, which can be of very different types (shallow, 
deep, etc.). Simulating the entire system barrier-foundation-environment is feasible, but requires a lot of 
input information, in addition to being computationally costly [15].  
 
In order to obtain a conservative estimation of a vehicle impact load, it is convenient to assume that the 
barrier undergoes a very small deformation, not affecting the crashing behaviour of the vehicle. Under this 
assumption, the impact force-time load is independent from the barrier’s dynamic response and can be 
computed by a simulation assuming a completely rigid barrier.  
 
When using a force-time function to assess the response of the barrier it must be assumed that the contact 
surface does not change significantly during the impact. Otherwise, the uncoupled approach would not be 
appropriate.  
 
The assessment of the barrier response to the impact can be done by using similar simulation tools as the 
ones used for vehicle crash analyses. In addition, it is possible to use the so-called “equivalent static force” 
approach, according to which a static force is determined to induce the same maximum deformation of the 
barrier as the direct dynamic analysis approach. 
 
In order to estimate the effect of the elasticity of the barrier on its dynamic response, it is represented by a 
one degree of freedom simple elastic oscillator (Figure 6). Then, the dynamic response of the barrier 
satisfies the following simple equation: 
 
𝑘𝑘𝐵𝐵�̈�𝑢 + 𝑘𝑘𝐵𝐵𝑢𝑢 = 𝑓𝑓𝑣𝑣𝑒𝑒ℎ(𝑡𝑡), Equation 1 
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where mB and kB are the barrier’s effective mass and stiffness, respectively, and fveh(t) is the force-time 
function obtained by the vehicle impact simulation in which the barrier is considered as perfectly rigid.  
 

 
Figure 5: The barrier is considered as a simple spring-mass system in order to estimate the phenomenon 
of the dynamic amplification due to barrier elasticity. 

 
For the discussed purposes, the spring-mass can be sufficiently characterized by its natural angular 
frequency, corresponding to 

𝜔𝜔2 = 𝑘𝑘𝐵𝐵
𝑖𝑖𝐵𝐵

. 

Actually, the effective mass and stiffness, mB and kB, do not really need to be specified explicitly. By using 
the following transformation: 

𝑤𝑤(𝑡𝑡) = 𝑘𝑘𝐵𝐵𝑢𝑢(𝑡𝑡), 

the above dynamic Equation 1 becomes: 

�̈�𝑤 + 𝜔𝜔2𝑤𝑤 = 𝜔𝜔2𝑓𝑓𝑣𝑣𝑒𝑒ℎ(𝑡𝑡), Equation 2 

The introduced variable w is the internal force corresponding to the barrier’s deformation state defined by 
u. It is important to stress that none of the variables u and w have a straightforward physical interpretation. 
Nevertheless, the maximum value of the variable w must correspond to the most deformed barrier 
configuration and the “equivalent static force” can be computed as: 

𝑓𝑓𝑒𝑒𝑒𝑒(𝜔𝜔) = 𝑘𝑘𝑚𝑚𝑚𝑚𝑡𝑡  (𝑤𝑤𝜔𝜔(𝑡𝑡)). 

In practice, the Equation 2 for the given force-time function, fveh(t), is solved for the set of N barrier 
frequencies of interest 𝜔𝜔𝑖𝑖 , i = 1,2,...N. There are several possibilities for solving the simple scalar Equation 
2. In this work, the standard central difference time integration scheme was used, most common for impact 
simulations in general. 

Then the “equivalent static force” is obtained for each barrier natural frequency of interest, 𝜔𝜔𝑖𝑖, by finding 
the maximum value of the corresponding w time history. In addition, the “dynamic load factor” can be 
determined as: 

𝐷𝐷𝐷𝐷𝐷𝐷(𝜔𝜔) = 𝑓𝑓𝑒𝑒𝑒𝑒(𝜔𝜔)
𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖

,  , 

f(t) 

kb, mb 
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where fimp is the peak value of the force-time function (§3.2) 

 

𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑘𝑘𝑚𝑚𝑚𝑚𝑡𝑡 (𝑓𝑓𝑣𝑣𝑒𝑒ℎ(𝑡𝑡)) 

 
It is important to stress that the DLF is a non-trivial function of 𝜔𝜔 which depends strongly on the shape of 
the force-time function fveh(t). In fact, only the extreme limit values do not depend on the shape of the force-

time function, i.e., 𝐷𝐷𝐷𝐷𝐷𝐷
𝜔𝜔→0
�⎯�0 and 𝐷𝐷𝐷𝐷𝐷𝐷

𝜔𝜔→∞
�⎯⎯� 1. Both these limits follow directly from Equation 2 and have 

a direct physical meaning. When the barrier has a very long normal period (𝜔𝜔 → 0), any load has a 
negligible short duration and the barrier’s response is null. On the other hand, when a barrier is very stiff 
(𝜔𝜔 → ∞), any load acts like if it was static. 
 
For any other (finite) value of 𝜔𝜔, there is no general upper limit for the value of the DLF. Such a bound 
exists only for simple force-time functions with at most one peak (e.g. triangular or step functions, see [23]), 
for which DLF ≤ 2. However, for time functions with several peaks, this upper bound does not hold and the 
DLF can exceed a value of two, as is shown in the section §4. As higher DLF are somehow associated to 
resonance effects, typical for quasi-stationary oscillations, they depend very much on the proximity between 
the barrier’s natural frequency and the characteristic frequencies of the force-time function. 
 
Although the “equivalent static force” approach is much less accurate than the fully coupled simulation 
approach, especially for barrier systems expected to undergo multimodal dynamic responses or non-linear 
deformations, it is more practical for rapid assessment and can help in selecting the most critical vehicle 
impact scenarios for a given barrier. 
Additionally, it is important to note that using the perfect rigidity assumption to determine the force history 
for flexible barriers overestimates the force amplitude [10], ensuring the conservatism of the approach. 
 
 
4. NUMERICAL RESULTS 

 
The objective of the presented numerical simulations is to assess the sensitivity of the impact load on a rigid 
barrier of different crash configurations. Two different vehicle models are used (Section §2) for impact 
simulations on a rigid bollard (Figure 6) with common characteristics. In all simulations, the considered 
impact velocity was set to 48 km/h. All the simulations were performed in the framework of three master 
thesis projects ([20], [21] and [22]). 
 
For each category of vehicles, N1 and N2A, several simulations were conducted by varying only the vehicle 
position with respect to the bollard. As it is shown further on, the relative vehicle-bollard position changes 
significantly the crashing stiffness of the vehicle reflected by significantly different force-time functions, 
even if the initial vehicle velocity and mass are kept the same. 
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Figure 6: Bollard geometry used in the simulations, considered as perfectly rigid.  

In the following, the results are first presented individually for each vehicle category and then compared. 
Regarding the finite element meshes, for the vehicles models were used element sizes based on past 
experience and are in the range from 11mm to 50mm. The mesh is finer for the front components undergoing 
large deformations during an impact and coarser for the components less deformed during an impact.  

Since in the simulation the bollard is modelled as rigid, the mesh elements cannot deform and can be 
relatively big, but only in the vertical direction (~200mm), because in the circumferential direction (~20mm) 
they need to accurately represent the circular shape. The bollard mesh element size could influence the 
simulation results only through the impact-contact algorithms, which can be sensitive to the element size 
differences between two objects in contact. However, no particular numerical issues were encountered in 
the simulations.  

 
4.1. Results for the vehicle of N1 category 

 
The N1 category corresponds to a family of small trucks, with maximum mass of 3.5t [3]. The basic 
characteristics of the model used are the following: 
 

• Wheelbase (horizontal distance between the front and rear wheels): 3420 mm 
• Vehicle length:                                                                                    5820 mm 
• Total mass (vehicle, including cargo):                                                3500 kg 

 
All the details of the N1 model (Figure 7) are available in the report [12].  
 

160 mm 

1000 mm 
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Figure 7: N1 vehicle finite element model. 

 
The baseline simulation considers an impact of the bollard with the exact centre of the vehicle with respect 
to the traversal direction (Figure 8). This is the most typical testing configuration and was also used for the 
validation of the model [12]. 
 
 

 

Figure 8: N1 vehicle model in the position of hitting the bollard in the centre (view from above).  

 

The corresponding force-time function is presented in Figure 9. The main load duration is about 170ms and 
is mainly characterized by three peaks. From the analysis of vehicle deformation plots (Figure 9) it results 
that all the force peaks correspond to the instants when the engine interacts with the bollard. Since the front 
part of the vehicle is relatively flexible, designed to absorb part of the impact energy, the impact force as 
well as the vehicle deceleration are low in the beginning of the crash. Therefore, when the stiff engine 
comes into contact with the bollard, its velocity has not decreased a lot and the force of the shock is close 
to the initial vehicle velocity (Figure 9, image a). The engine deforming almost elastically, it rebounds from 
the bollard and starts moving in the opposite direction with respect to the impact (Figure 10, image b). After 
some additional 50ms, the engine hits the bollard again and produces the second force peak (Figure 9, image 
c). The engine rebounds and impacts the bollard for a third time, but with a much smaller amplitude. 
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a)                                                b)                                               c) 

   
 

Figure 9: Force-time function obtained from the vehicle impact on a rigid bollard with the N1 model (top 
figure) and extractions from the impact simulation with the N1 model (bottom view) at different instants 
(three bottom figures). The image (a) corresponds to the instant when the engine hits the bollard (shown 
in dark yellow), producing the highest force peak. After this shock, the engine rebounds (b) and hits the 
bollard again (c) with a smaller velocity.  

 

In addition to the central impact, two alternative configurations have been analysed (Figure 10). One 
corresponds to the case where one of the frame beams would be aligned with the bollard. As the frame is 
the key component of the vehicle, it is expected that the impact would be stiffer than for the centred 
configuration, at least in the beginning of the impact. A third configuration is added, in which the vehicle 
hits the bollard in the middle between the frame beam and the centre. 

 
 

y 

x 
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Figure 10: Alternative impact scenarios. Instead of hitting the bollard with its centre (Figure 8), in the two 
configurations above, the bollard is shifted to one side and the impact is not symmetric. In the configuration 
of the bottom image, the vehicle hits the bollard straight with one of the frame beams. On the left hand side 
the full vehicle impact configurations, on the right hand side a detailed view of the vehicle frame and engine 
respect to the bollard.  

 
The way the vehicle interacts with the bollard during the impact varies a lot between the three different 
configurations (Figure 11), which is also reflected in the force-time diagrams (Figure 12).  

 
 
a)                                             b)                                       c) 

 
Figure 11: Vehicle-bollard interaction modes for different impact configurations (the bollard is shown in 
dark yellow): centred (a), aligned with the frame beam (b) and intermediate (c). In contrast to 
configurations a) and c), where the engine hits the bollard directly, in configuration b), the bollard is first 
impacted by the frame beam and then by the frame cross member, but never directly by the engine.  

 
 

The momentum-time plot (Figure 12) allows for an approximate assessment of when the vehicle comes to 
a stop. In this context, "momentum" corresponds to the vehicle's momentum, which is the sum of the 
product of the node velocity and the nodal mass over all vehicle finite element mesh nodes. For the 
“centred” and “non-centred” scenarios, the impact ends at around 170ms, whereas for the “beam-centred” 
scenario the momentum reaches a plateau close to zero at around 150ms. It is important to stress that here 
only the behaviour in the main direction (longitudinal, along the initial vehicle velocity) is analysed, but 
the vehicle response is fully 3D. In particular, in all scenarios a vertical displacement of the rear part of the 
vehicle and some rotation around the vertical axes for the non-symmetric scenarios (“beam-centred” and 

y 

x 
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“non-centred”) are observed. One of the consequences of this complex vehicle behaviour is that it is 
practically impossible to determine the impact duration with accuracy.  
 
In the force-time diagram (Figure 12), it is possible to observe that the “beam-centred” scenario leads to 
higher forces in the beginning of the impact, since the frame beam is much stiffer than the front bumper 
and its cross member components. Nevertheless, the “centred” and “non-centred” scenarios lead to much 
higher force peaks, because in these cases the engine impacts the bollard directly, which is not the case for 
the “beam-centred” scenario. In addition, the engine shock is much stronger for the “centred” scenario than 
for the “non-centred” one. 

 
Figure 12: The momentum-time plot (on the left) and the force-time plot (on the right) for the N1 simulations 
for the three different impact configurations: centred, frame beam-centred and non-centred. 

 
In any case, as already stressed in the Section §3.3, the maximum force is not completely determinant for 
the stresses supported by the barrier system. Namely, as for a dynamic loading in general, the consequence 
of an impact load, in terms of maximum stresses in the barrier, does not only depend on the peak value of 
the force-time function, but also on how it interacts with the natural dynamic response of the barrier system. 
Since here the duration of the impact load is much larger than the expected natural periods, the barrier 
response can be amplified due to resonance effects. 
 
Figure 13 presents the “dynamic load factors” (DLF) depending on the barrier’s natural frequency (defined 
Section §3.3) for the three configurations considered above. The “equivalent static load” is presented in the 
Figure 14. It is important to stress that the “equivalent static load” graph is equal to the DLF graph scaled 
by the force peak value. Therefore, even if the DLF of the “beam-centred” scenario is globally bigger than 
the DLF of the “centred” scenario, the corresponding “equivalent static force” is much higher for the 
“centred” scenario because of the much higher peak force. 
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Figure 13: The “dynamic load factor” (DLF) depending on the natural frequency of the barrier system 
for the N1 simulations for the three different impact configurations: centred, frame beam-centred and 
non-centred. 

 
 

 
Figure 14: The “equivalent static force” depending on the natural frequency of the barrier system for the 
N1 simulations for the three different impact configurations: centred, frame beam-centred and non-
centred. 
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Table 1 compares the simulation results in terms of the peak impact force, fimp, and the equivalent static 
force feq

max (§3.4) with the impact force parameters obtained with “Eurocode 1: Part 1-7” (EC1) [4] formulas 
(§3.2). Additionally, the values of the impact duration, ∆t, and the average impact force, favg are also 
compared. It is important to stress that while for the EC1 approach the value for ∆t is given directly (§3.2), 
in the numerical simulation it is difficult to determine when exactly the vehicle comes to stop, due to 
significant oscillations of the force-time function. 

The estimation of the impact duration can lead to a direct determination of the average impact force: 

𝑓𝑓𝑎𝑎𝑣𝑣𝑎𝑎 = 𝑖𝑖∙𝑣𝑣
∆𝑡𝑡

, 

where m and v are the vehicle mass and impact velocity, respectively. Since these are independent of the 
considered configurations, the estimation of the average impact force depends only on the estimation of the 
impact duration. It is important to stress that for the analytical EC1 approach average impact force and 
impact force are equal: 

𝑓𝑓𝑎𝑎𝑣𝑣𝑎𝑎 = 𝑓𝑓𝑖𝑖𝑖𝑖𝑖𝑖      

since by construction the impact force is constant over a given time interval and the maximum and average 
forces are equal. In addition, for the EC1 approach DLF=2 always holds, as it applies to rectangular force-
time functions with a sufficiently long duration ([23]). 

 

 centred beam-centred non-centred EC 1  
(k=300kN/m) 

EC 1 
(k=1200kN/m) 

fimp [kN] 2542  976 1312 432   864 

feq
max [kN] 5660 2894 2331 864 1728 

favg [kN] 275 311 275 432 864 

∆t [ms] 170 150 170 108 54 

DLFmax 2.2 3.0 1.78 2.0 2.0 

Table 1: Main impact force parameters for the three different impact configurations: centred, frame beam-
centred and non-centred, and by applying the Eurocode 1 [4] formula using two different values for the 
equivalent stiffness, k=300kN/m and k=1200kN/m (section §3.2). The compared impact force parameters 
are the peak force fimp , the maximum equivalent static force feq

max (section §3.4), the average force favg, the 
duration of the impact, ∆t and the maximum DLF value. 
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4.2. Results for the vehicle of N2A category 
 
 
The N2A category corresponds to a family of medium heavy trucks, with maximum mass of 7.2t [3]. The 
basic characteristics of the model used are the following: 
 

• Wheelbase (horizontal distance between the front and rear wheels): 5090 mm 
• Vehicle length:                                                                                    8500 mm 
• Total mass (vehicle, including cargo):                                                7200 kg 

 
Other details on the N2A model (Figure 15) are available in the report [13]. 
 
 

 
Figure 15: Finite element model of the N2A vehicle. 

 

Similarly to the simulations performed with the N1 model (Section §4.1), several relative bollard-vehicle 
positions were analysed. In addition to the baseline “centred” scenario, there were also considered positions 
where the bollard-to-vehicle centre distance is equal to: 150mm, 400mm and 750mm (Figure 13). The 
distance of 400mm corresponds to a position of the bollard aligned with one of the frame beams (i.e. “beam-
centred”), the distance of 150mm corresponds to a situation equivalent to the “non-centred” N1 scenario 
and the distance of 750mm corresponds to a situation where the vehicle impacts a bollard further from the 
frame beams.  
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Figure 16: Four impact scenarios analysed with the N2A model. In addition to the three scenarios 
considered with the N1 model (“centred”, “beam-centred” and “non-centred”), a fourth scenario is 
considered, according to which the vehicle hits the bollard a bit further away from the centre than the 
frame beam. The considered bollard distances from the vehicle symmetric axe are: 0mm (“centred”), 
150mm, 400mm (“beam-centred”) and 750mm (“outlying”). On the top, the whole model from above is 
shown and in the bottom the vehicle without the cabin. 

 
The Figure 17 shows the deformed states of the vehicle after the impact for the various scenarios. As 
expected, the more the bollard is distanced from the symmetric axis of the vehicle the more the vehicle 
exhibits rotation around the vertical axis. In the 0mm (“centred”) and 150mm (“non-centred”) scenarios, the 
engine hits the bollard directly, whereas in the scenarios 400mm (“beam-centred”) and 750mm (“outlying”) 
it rather slides along. 

  

150 mm 

x 

y 

400 mm 
750 mm y 

x 
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  0mm   
 
 
 

150mm   
 
 

400mm   
 
 

750mm   
 
 
 

Figure 17: Vehicle deformed state (top view) during the impact for four studied scenarios shown in Figure 
16: 0mm (“centred”), 150mm (“non-centred”), 400mm (“beam-centred”) and 750mm (“outlying”). On 
the left, the whole vehicle is shown and on the right, the full frame and the engine with the driveline are 
visible. 
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As for the N1 simulations, according to the momentum- and force-time plots (Figure 18) the direct shock 
of the engine to the bollard creates the highest force peaks for the configurations 0mm (“centred”) and 
150mm (“non-centred”). Nevertheless, for the 400mm “beam-centred” scenario, the force peak is much 
higher for the N2A simulations than for those of N1. This is because the frame beams are much stiffer in 
an N2A than in the N1 vehicles. The main reason is due to the presence of shock-absorbers in the N1 model, 
which reduce the frame beam crushing strength, that do not exist in the N2A model. Even if this could be 
model dependent, there is a more general trend according to which the frame shock absorbers are common 
for the N1 category vehicles [13] but not for the N2A category vehicles [12]. 
 
The 750mm (“outlying”) scenario, not analysed in the N1 simulations, exhibits another very different 
behaviour, where unlike in the other scenarios, the force peak is due to the bollard interacting with the first 
wheel axle.  

 

Figure 18: The momentum-time plot (on the left) and the force-time plot (on the right) for the N2A 
simulations for the four different impact configurations: 0mm (“centred”), 150mm (“non-centred”), 
400mm (“beam-centred”) and 750mm (“outlying”). 

 
In the Figure 19 the “dynamic load factors” (DLF) depending on the barrier’s natural frequency (Section 
§3.3) are presented for the four configuration considered above. The “equivalent static load” is presented 
in the Figure 20. It is important to stress that the “equivalent static load” graph is equal to the DLF graph 
scaled by the force peak value. Therefore, some scenarios can have lower values of the DLF (e.g. 400mm 
“beam-centred”) but have high values of the “equivalent static load” due to a high force peak, or vice versa, 
high DLFs compensate the fact that the peak force is smaller.  
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Figure 19: The dynamic amplification effect depending on the natural frequency of the barrier system for 
the N2A simulations for the four different impact configurations: 0mm (“centred”), 150mm (“non-
centred”), 400mm (“beam-centred”) and 750mm (“outlying”). 
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Figure 20: The “equivalent static force” depending on the natural frequency of the barrier system for the 
N2A simulations for the four different impact configurations: 0mm (“centred”), 150mm (“non-centred”), 
400mm (“beam-centred”) and 750mm (“outlying”). The top figure presents the results for the frequencies 
up to 500Hz and the bottom figure focuses to frequencies up to 200Hz, in order to distinguish better the 
different curves for lower frequencies, which are expected to be more representative of the real barriers. 
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Table 2 compares the simulation results in terms of the peak impact force, fimp, and the equivalent static 
force feq

max (§3.4) with the impact force parameters, obtained with the EC1 [4] formulas (§3.2). Like for the 
N1 simulations (§4.1), the value of the impact duration, ∆t, and the average impact force, favg are also 
compared.  

 0mm 150mm 400mm 750mm EC 1  
(k=300kN/m) 

EC 1 
(k=1200kN/m) 

fimp [kN] 1324 1267 1642 1070 620 1239 

feq
max [kN] 3313 3495 3363 3155 1239 2479 

favg [kN] 384 320 384 274 620 1239 

∆t [ms] 250 300 250 350 155 77 

DLFmax 2.5 2.8 2.0 2.9 2.0 2.0 

Table 2: Main impact force parameters for the four different impact configurations: 0mm (“centred”), 
150mm (“non-centred”), 400mm (“beam-centred”) and 750mm (“outlying”), and by applying the EC1 [4] 
formula using two different values for the equivalent stiffness, k=300kN/m and k=1200kN/m (section §3.2). 
The compared impact force parameters are the peak force fimp, the equivalent static force feq

max (section 
§3.4), the average force favg, the duration of the impact, ∆t, and the maximum DLF value. 

 
 

4.3. ANALYSIS 
 

4.3.1.  General trends 
 
Both simulations sets, N1 (§4.1) and N2A (§4.2), conclude that the “centred” scenarios are globally the 
most penalizing. This is particularly true for the N1 case, both, in terms of the maximum force and by taking 
into account the dynamic amplification (through the DLF) in terms of the “equivalent static load”.  
 
In the N2A simulations. the scenarios 0mm (“centred”) and 150mm (“non-centred”) exhibit similar behavior 
in all aspects. They are characterized by a strong direct interaction between the engine and the bollard, the 
source of the highest impact forces. Nevertheless, in terms of the force peaks, the highest is obtained with 
the 400mm (“beam-centred”) scenario, in the beginning of the impact due to a high stiffness of the frame 
beam being hit directly. For this case, the “equivalent static load” is also higher than for the more “centred” 
scenarios, for the barrier’s natural frequencies over 60 Hz, whereas it is much lower for frequencies below 
60Hz. The “outlying” scenario is the least penalizing in terms of force peaks, but also in terms of “equivalent 
static forces” except for very low frequencies and for some peaks at some specific frequencies. 
 
The results show that the “equivalent static load” is strongly dependent on the barrier’s natural frequencies. 
However, the natural frequencies of a barrier are not easy to be determined because they can be significantly 
influenced by the barrier’s foundation design and the surrounding soil conditions. If the bollard considered 
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in this study (Figure 6) was perfectly anchored in the ground, its first natural frequency is expected to be 
between 80Hz and 120Hz, depending also on the material used (usually a bollard is a steel shell filled with 
concrete). Due to the foundation flexibility, the first natural frequency of the bollard system could be much 
lower. On the other hand, the natural frequencies could be also higher for different bollard geometries (e.g. 
a bigger diameter). 
 
Regarding the dynamic amplification effects, assessed through the DLF values, the general trend is that 
they are smaller than 2 only for low frequencies (i.e. < 50 Hz for the N1 case and < 20 Hz for the N2A case) 
and that they can approach or exceed the value of 3 for higher frequencies. As explained in §3.4, the DLF 
is bounded by the value of 2 only for simple single-peak force-time functions. Therefore, for realistic impact 
force-time functions, the DLF should be computed specifically for each scenario of interest.  
Because of the dynamic amplification effects represented by DLF, potentially higher than the commonly 
assumed value of 2, an impact load should not be characterized by considering only the peak forces.  
 
It is important to emphasize, that the used “equivalent static” approach considers a perfectly elastic barrier 
response and does not take into account any non-linear effect like cracking, plastic deformation or sliding.  
 

4.3.2.  N1 vs. N2A 
 
In terms of the peaks of the force-time functions, it is possible to observe that there is no significant 
difference between the N1 vehicles and the N2A vehicles. While in both cases force peaks of about 1MN 
are commonly observed, the highest peak is actually obtained for the smaller N1 vehicle in the “centred” 
scenario (2.5MN). Although the total impulse of the impact forces, which must equal the initial momentum 
of the vehicle, is approximately twice as big for the N2A vehicle as for the N1 vehicle, the N1 vehicle 
exhibits higher impact force peaks. This is because in the N1 simulations, the engine hits the bollard at a 
higher velocity than in the N2A simulations, where the initial deceleration of the vehicle is larger due to 
stiffer frame beams.   
 
Namely, the N2A is a heavier duty vehicle, therefore its frame beams are stiffer and, in addition, do not 
have a shock absorbing part (i.e. crash boxes) like the N1 vehicle does. Therefore, in the N2A “beam-
centred” simulation the frame stiffness is responsible for a force peak of 1.6MN, whereas in the N1 
equivalent case, the corresponding peak value is only 0.5MN. 
 
In Figure 21, the momentum-time plots for the “centred” scenarios N1 and N2A are compared. As expected, 
the total momentum decrease (equal to the total impulse of the impact force) for the N2A case is twice as 
big as the one for the N1 case, corresponding exactly to the mass ratio, with the impact velocity being the 
same (48 km/h). In Figure 21, it is observed that the momentum decrease at around 110ms is almost the 
same, indicating that the average impact force before 110ms is similar for the N1 and N2A cases.  
 
On the other hand, the corresponding force-time functions are very different (Figure 22). The N2A forces 
are bigger in the first 40ms, but the N1 peak at 50 ms is almost twice as high as that for the N2A case. After 
the second engine-bollard shock (§4.1) at around 110ms, the N1 force drops significantly, whereas in the 
N2A case, it remains relatively high up to 200ms.  
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Figure 21: Momentum-time plot for the “centred” scenarios for the two different vehicles, N1 and N2A. 

 
Figure 22: Force-time plot for the “centred” scenarios for the two different vehicles, N1 and N2A. 

 
 
It is important to stress that the comparison of the force-time functions between different vehicles, N1 and 
N2A, is not entirely determinant for the load on the bollard. Namely, the N1 and N2A vehicles do not 
necessarily hit the bollard at the same height (i.e. vertical position with respect to the bollard), which means 
that the impact forces are not directly representative of the torque imposed to the barrier system. The ground 
clearance of N2A vehicles is expected to be about 25% higher than for the N1 vehicles, but this property is 
highly dependent on brand and model. In any case, the more penalizing height of the impact on a bollard 
for the N2A vehicles does not change the conclusion that a lighter N1 vehicle could eventually produce 
similar or higher stresses in the barrier system for some specific scenarios and barrier’s dynamic properties. 
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4.3.3.  Analytical vs. simulation approach 
 
In the Tables 1 and 2, the main impact force characteristics between the analytical EC1 [4] approach and 
the numerical simulations are compared. As the analytical approach is based on a significant simplification, 
considering the vehicle impact force being constant over the entire time interval, it gives significantly 
different results from the numerical simulations, which use a much more detailed representation of the 
vehicle crash load. In particular, a vehicle is composed of various components, each with different stiffness, 
making it difficult to represent a vehicle's crashing behaviour with a single equivalent stiffness. 
 
The main limitation of the EC1 [4] approach is that it completely neglects force variations during the impact. 
In particular, there is no distinction between the average and the peak force, since the force is constant over 
a given time interval. Consequently, when comparing the analytical approach to the numerical simulations, 
it tends to overestimate the average force and to underestimate the peak force.  
 
Nevertheless, by adjusting the vehicle equivalent stiffness (e.g. from 300kN/m to 1200kN/m), it is possible 
to obtain a more realistic peak force value, but at the cost of underestimating the impact duration. As the 
impact duration has a smaller influence on the barrier’s response for the situations of interest, it makes sense 
to prioritize higher vehicle equivalent stiffness values (e.g. 1200kN/m) in order to match better the force 
peaks.  
 
In summary, in this study the vehicle impact simulations provide in most scenarios higher peak forces than 
those of the EC1 [4] approach. Additionally, for many frequency intervals, the DLFs obtained from the 
simulations actually exceed the value of two, an upper bound for simplified force-time functions considered 
by EC1 [4].  
 
 
5. CONCLUSIONS 
 
Two recently developed generic vehicle models, one for the N1 category and the other for the N2A 
category, are used in this study to evaluate the vehicle crash response in terms of a force-time load on a 
rigid barrier. Contrary to the common perception that heavier vehicles are more detrimental to a barrier, our 
study reveals that this is not always the case. Namely, it is shown that the main impact force peaks are due 
to the engine hitting the barrier and that the severity of this shock depends especially on the velocity 
decrease in the beginning of the impact. The front parts of the N2A vehicle being stiffer than those of the 
N1 vehicle, the initial vehicle deceleration is higher and the N2A engine hits the barrier with a smaller 
velocity than in the N1 case.  
 
Moreover, the study shows that the maximum impact force is not the only important indicator of an impact 
load on a barrier. Because realistic force-time functions can have several peaks, they can exhibit higher 
“dynamic load factors (DLF) than the value of two, the upper bound for simple single-peak (i.e. impulsive) 
force-time functions. 
 
Because the impact load on a barrier is very dependent on the vehicle’s stiffness, the force-time load 
changes significantly for the different relative barrier-vehicle positions. Symmetrical (i.e., "centred") 
impact scenarios, commonly used in physical experiments, often lead to the most severe load, but this 
outcome may depend on the barrier’s natural frequencies, themselves function of materials, dimensions, 
and the effect of foundations. 
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Our numerical simulations prove to be highly effective in replicating realistic vehicle impact behaviour and 
can be confidently used for virtual testing of security barriers. Given the complexity of crash phenomena, 
simulation tools are well suited for studying the sensitivity of the impact force load to various input 
parameters related to vehicle properties and impact scenarios.  
 
In the future, the key findings of our study should be validated through more extensive sensitivity analyses, 
particularly by studying the influence of the impact velocity and the vehicle characteristics. 
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