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Abstract This paper presents amulti-dimensional variable-kinematics finite elementmodel for nonlinear static
analyses of structureswith complex geometries. The approach incorporates higher-order beammodels and clas-
sical solid finite elements in a unified framework, enabling refined modeling of complex geometries. The finite
element procedure proposed follows the Carrera Unified Formulation (CUF) and uses a pure displacement-
basedmethodology. The governing equations are derivedwithin the classical continuummechanics framework,
and weak-form equilibrium equations are established using the Principle of Virtual Displacements (PVD).
Within the CUF framework, higher-order beam and hexahedral solid models are defined in a unified manner,
and the governing equations are written in terms of invariants of mathematical models used and the theory of
structures approximation. A coupling technique is used between the beam and solid elements at the nodal level
using superposition. The capabilities of fully nonlinear variable-kinematics models are investigated for the
static analysis of various rectangular and curved structures. The numerical results are compared with solutions
obtained using commercial software. Finally, the proposed methodology is applied to analyze more complex
geometries in engineering applications. The results show the capabilities of variable-kinematics models in
terms of both accuracy and computational efficiency for the computation of highly nonlinear deformed states
and localized phenomena, such as stress concentrations and buckling.

1 Introduction

In today’s engineering applications, various sectors such as civil, mechanical, aerospace, and automotive
engineering demand that structures endure extreme conditions throughout their operational lifespan while
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maintaining nominal performance standards. Typically, the design of high-performance structures is conducted
within the context of large displacements and rotations (geometrical nonlinearities) or nonlinear constitutive
behaviour (material). Accurate predictions of complex structural behaviour, such as instabilities, localized
phenomena, failure and damage, are crucial when composites, cross-ply laminates, and innovative materials
enabled by advancements in manufacturing processes are considered. However, conducting physical tests
on these components is often relatively expensive. Consequently, numerical simulation emerges as a helpful
approach for analyzing the performance of innovative materials and structures. Moreover, it is nowadays a
valuable tool for exploring novel topological features in the context of optimization problems [1].

Generally, the analysis of complex structures is performed via numerical methods based on the Finite Ele-
mentMethod (FEM). The FEM is a computationally efficient framework for its versatility and range of possible
investigations. For brevity, readers are referred to [2–4] for a comprehensive description of this methodology.
In the context of numerical simulations, the FEM has been extended in many structural applications rang-
ing from classical linear problems to fully nonlinear problems such as large displacement/rotation regimes,
progressive failure analysis, plasticity, and many others. Developing accurate and efficient FE procedures in
nonlinear structural mechanics for analyzing materials and structures can be challenging due to well-known
mathematical and numerical limitations.

The FEM enables the analysis of structures through elementary elements formulated under kinematic and
constitutive assumptions. One-dimensional (1D) beam, two-dimensional (2D) plate/shell, or three-dimensional
(3D) solid elements are defined within the framework of classical continuum mechanics. Typically, the kine-
matic assumptions for each element are based on well-established structural theories, including those formu-
lated by Euler [5] and Timoshenko [6] for beams, by Love [7], Reissner [8], and Mindlin [9] for plates and
shells. Although computationally advantageous, adopting FE models based on these classical structural theo-
ries generally leads to inaccurate and inconsistent solutions when dealing with nonlinear problems [10–12]. In
general, the most accurate solution to the governing equilibrium equations is given by adopting 3D elements
that allow a direct discretization of the discrete unknown variables of the equilibrium equations without any
kinematic assumption on the structural theory. However, employing 3D elements significantly increases the
computational costs in many cases, e.g., when dealing with thin-walled structures or ultra-thin composite
laminates.

To simulate complex structures, adopting 1D, 2D, and 3D elements simultaneously in the same model can
lead to a more efficient approach, providing accurate results with an acceptable computational cost required by
the numerical simulation. Over the years, various coupling techniques were introduced to ensure accuracy and
efficiency. Argiris and Kelsey [13] proposed the force method to provide solutions to elastic problems. Surana
[14] proposed an approach to connect solid and plate elements. Liao [15] presented the coupling between
solid and shell elements. Cofer and Will developed the same coupling [16], while Gmür and Schorderet
provided the connection between 1D and 3D elements [17]. A mixed-dimensional coupling method, based on
geometrical assumptions, was developed by McCune et al. [18]. Song [19] adopted an asymptotic approach
to join solids and beams. For completeness, the reader is referred to [20–22] for other interesting approaches
that use multi-dimensional models.

The classical FE formulations may be inadequate for analyzing highly nonlinear phenomena. Euler-
Bernoulli Beam Theory (EBBT) or Timoshenko Beam Theory (TBT) exploit a-priori displacement fields
with lower-order expressions of the strain components that can consequently limit the overall accuracy of
the model and lead to inconsistent solutions [23]. On the other hand, hexahedral 3D FE models suffer from
decreased accuracy due to locking phenomena arising from lower-order formulations and aspect-ratio con-
straints in the discretization definition. Instead, adopting higher-order structural theories is beneficial when
large deformation regimes, cross-section warping, twisting, and other local deformations are under investiga-
tion or complex stress states are required. In recent years, higher-order FE models have been developed within
the well-established Carrera Unified Formulation (CUF) framework to address static and dynamic analysis of
complex structures. Higher-order beam, plate/shell, and hexahedral models based on the CUF have demon-
strated their efficacy and accuracy in various applications, see [24–26]. The CUF offers a unified framework
for deriving FE models with variable kinematics, regardless of the specific theory of structural approximation
employed. Within this framework, the governing equations are written in terms of invariants the kinematic
model and structural theory adopted, thanks to the hierarchical formalism adopted. Refined 1D, 2D, and 3D
models are derived by adopting the same mathematical formalism without loss of generality, implementing
any higher-order structural theories to overcome the limitations of classical theories. Furthermore, thanks to
this key feature, a consistent coupling technique of different variable-kinematics models has been developed
in recent years and assessed considering the modal analysis of complex aircraft structures [27] and thin-walled
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Fig. 1 Reference and actual configuration of a deformable body

reinforced structures [28], the modelling of composites helicopter blades [29] and free-edge analysis of lam-
inated composites [30]. This work aims to extend variable-kinematic models to the geometrically nonlinear
static analysis of structures. The following presents a pure displacement-based FEmodel for studying complex
structures using unified 1D beammodels and classical 3D hexahedral models defined in the CUF framework. In
addition, the coupling technique of variable-kinematics elements is presented to describe the procedure adopted
for local mathematical model refinements, the definition of multi-dimensional models, and the development
of a novel efficient numerical tool in nonlinear structural mechanics.

This article is organized as follows: (i) Sect. 2 provides the theoretical background in the continuum
mechanics framework, including the definition of higher-order 1D beam and classical 3D solid finite element
models both exploited in the CUF framework; (ii) the derivation of weak-form governing equations and finite
element procedures implemented are described in Sect. 3, explicitly reporting the derivation of Fundamental
Nuclei (FN) of FE matrices and the iterative-incremental numerical solver adopted; (iii) different benchmark
cases to assess the capabilities of the proposed finite element modelling and coupling techniques are presented
in Sect. 4, comparing numerical results obtained by the present implementation of variable-kinematics models
with reference solutions; (iv) finally, the main conclusions are discussed in Sect. 5.

2 Structural theories and finite elements

This section presents the theoretical framework that has been developed, along with the variable-kinematics
finite element models based on CUF. The formulation of the static nonlinear problem is carried out within
the classical continuum mechanics framework. The governing equations are written in a compact matrix
representation, thereby enabling the definition of the proposed displacement-based FE model independently
of the mathematical model adopted. Subsequently, the same unified formalism defines higher-order beam
models and classical hexahedral solid FE models. Furthermore, the variable kinematic technique is presented,
allowing for combining 1D and 3D models. Within the CUF framework, this technique eliminates the need
for ad-hoc coupling procedures, ensuring a seamless integration of the different models.

2.1 Displacement, strain and stress fields

Let us consider a continuum body in the 3D space. Figure1 shows the Cartesian reference frame � =
{e1, e2, e3}, the material reference configuration �0 and actual deformed configuration � of the continuum
body.
For a generic material point of the continuum body located at coordinates (x, y, z) with respect to � reference
frame, the lagrangian displacement field is defined as follows:

u(x, y, z) = { ux (x, y, z), uy(x, y, z), uz(x, y, z) }T (1)

In the present work, the strain stems from the full Green-Lagrange strain tensor, denoted as ε. By adopting the
Voigt’s notation for symmetric tensorial quantities, the strain tensor is written as follows:

ε(x, y, z) = { εxx , εyy, εzz, εxz, εyz, εxy }T (2)
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Fig. 2 Geometrical representation of CUF-based FE models

In this work, the stress–strain relation, namely the constitutive law, is written in compact form adoptingHooke’s
law for linear elastic materials:

σ = Cε (3)

in which the Cauchy’s stress tensor is defined following Voigt’s notation:

σ (x, y, z) = { σxx , σyy, σzz, σxz, σyz, σxy }T (4)

2.2 One- and three-dimensional models via the Carrera Unified Formulation

In the CUF framework, the generic 3D displacement field is provided as a polynomial expansion of the
generalized nodal displacements by employing the theory of structure approximations. The unified formulation
of higher-order 1D CUF models for the geometrically nonlinear static analysis of beam structures is presented
in [31]. Instead, the formulation of hexahedral solid models in CUF for the geometrical and material nonlinear
analysis has been recently introduced by [32]. In the classical orthonormal {x, y, z} Cartesian reference frame,
the displacement field u is written, under the unified approach, as:

Beam 1D models: u(x, y, z) = Fτ (x, z)Ni (y)uτ i τ = 1, ..., M, i = 1, ..., N1D
n (5)

Solid 3D models: u(x, y, z) = 1 · Ni (x, y, z)uτ i τ = 1, i = 1, ..., N3D
n (6)

where Fτ is the set of the cross-section expansion basis adopted representing the theory of structures approxima-
tion, Ni is the set of Lagrange polynomials defined, respectively, by the total number of nodes N 1D

n considered
in the 1D beam axis discretization model and 3D model N 3D

n nodes. uτ i indicates the vector of generalized
unknown displacement components. A higher-order 1D beam model is uniquely characterized by the choice
of the cross-section expansion functions Fτ and the order of the cross-section kinematics expansion M . Fig-
ure2 shows the graphical representation of the unified 1D CUF model and general 3D hexahedral model.
In the present work, a variable-kinematics finite element coupling technique is proposed for models based
on Lagrange-type expansion models; thus, Fτ corresponds to the set of 2D Lagrange polynomials having as
generalized unknowns, uτ i , pure displacement components.
2D and 3D Lagrange polynomials, used respectively for the beam cross-section discretization and full 3D solid
FE model, are defined in the natural reference frame, exploiting the isoparametric formulation. The reader is
referred to [33] for the explicit expressions of linear, parabolic, and cubic Lagrange polynomials. In the case of
solid finite elements, the mathematical model is entirely characterized by the total number of nodes involved
in the definition N 3D

n , since the basis of CUF expansion functions is set to Fτ = 1, even so, the definition of 3D
displacement field is included in the unified approach and can be exploited regardless. Figures3 and 4 show
the definition of linear 1D expansion L4 (four-node) and linear 3D H8 (eight-node) finite elements and their
transformation to the natural reference frames. Higher-order 1D beam models will be discussed, specifically
referring to the finite element approximation of the beam axis using linear (B2), parabolic (B3), and cubic (B4)
models. Additionally, the cross-section expansion elements will be denoted as four-node linear (L4), nine-node
parabolic (L9), and quadratic six-node cubic (L16). In the case of fully 3D hexahedral models, the standard
tri-linear hexahedral model (H8) and tri-parabolic hexahedral model (H27) will be adopted.
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Fig. 3 Lagrange L4 linear expansion model: from material to natural reference frame

Fig. 4 Lagrange H8 tri-linear finite element: from material to natural reference frame

The adoption of LE models, as reported in [34], allows the definition of independent displacement field
discretizations to different structure sub-components. This approach, allowed by CUF, has also been called
the Component-Wise (CW) approach. Then, the independent displacement fields are coupled, imposing the
continuity of displacement components at nodal level, leveraging on the physical meaning of the generalized
unknowns of 1D beam models. To exploit the proposed CW approach also in variable-kinematics FE models,
the classical 3D FE formulations have been rewritten in the unified framework for the purposes of the present
work in multi-dimensional models for the large displacement analysis of structures.

3 Governing equations

3.1 Internal and external forces vectors

In the present work, the weak-form of the governing equations is exploited through the Principle of Virtual
Displacements (PVD). Under the hypothesis of negligible body forces, the PVD is written as follows:

δLint = δLext (7)

where δLint is the virtual variation of internal strain energy stored during the deformation process, and δLext
is the virtual variation of the work of external loads done by virtual displacements.

(a) δLint =
∫

�

δεTσdV (b) δLext =
∫

�

δuTfdV (8)

where ε is the full Green-Lagrange strain tensor, σ is the Cauchy’s stress tensor, f is the vector of external
loads, the symbol δ denotes the virtual variation. In the present work, finite element models are defined in a
Total Lagrangian (TL) approach; subsequently, all volume integrals are referred to the material (or reference)
configuration. The generic virtual displacement field for a finite element defined under CUF is then rewritten
as:

δu = Fsδus = FsN jδus j j = 1, .., Nn, s = 1, ..., M →
{
1D: δu(x, y, z) = Fs(x, z)N j (y)δus j
3D: δu(x, y, z) = 1s · N j (x, y, z)δus j

(9)
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Again, in the case of 3D hexahedral models, the set of expansion basis functions for the virtual displacement
field is set to Fs = 1. Regarding the fully nonlinear geometrical relations, in the present work the strainmeasure
adopted is the full Green-Lagrange strain tensor, rewritten in compact form as in Pagani and Carrera [31]:

ε = (bl + bnl)u = (bl + bnl)Fτ Niuτ i = (Bτ i
l + Bτ i

nl )uτ i (10)

obtaining the definition of algebraic matrices Bτ i
l and Bτ i

nl , whose formal expression are independent of the
theory of structure approximation and finite element model adopted; e.g., for the beam case the matrices are:

Bτ i
l =

⎡
⎢⎢⎢⎢⎢⎣

Fτ,x Ni 0 0
0 Fτ Ni,y 0
0 0 Fτ,z Ni

Fτ,z Ni 0 Fτ,x Ni
0 Fτ,z Ni Fτ Ni,y

Fτ Ni,y Fτ,x Ni 0

⎤
⎥⎥⎥⎥⎥⎦

(11)

Bτ i
nl = 1

2

⎡
⎢⎢⎢⎢⎢⎣

ux,x Fτ,x Ni uy,x Fτ,x Ni uz,x Fτ,x Ni
ux,y Fτ Ni,y uy,y Fτ Ni,y uz,y Fτ Ni,y
ux,z Fτ,z Ni uy,z Fτ,z Ni uz,z Fτ,z Ni

ux,x Fτ,z Ni + ux,z Fτ,x Ni uy,x Fτ,z Ni + uy,z Fτ,x Ni uz,x Fτ,z Ni + uz,z Fτ,x Ni
ux,y Fτ,z Ni + ux,z Fτ Ni,y uy,y Fτ,z Ni + uy,z Fτ Ni,y uz,y Fτ,z Ni + uz,z Fτ Ni,y
ux,x Fτ Ni,y + ux,y Fτ,x Ni uy,x Fτ Ni,y + uy,y Fτ,x Ni uz,x Fτ Ni,y + uz,y Fτ,x Ni

⎤
⎥⎥⎥⎥⎥⎦

(12)

The explicit expression of these matrices for the 3D solid models can be found in [32]. The virtual variation
of the Green-Lagrange strain tensor is carried out by adopting the discretization of virtual displacement field,
Eq. (9):

δε = δ((Bτ i
l + Bτ i

nl )uτ i ) = (Bs j
l + 2Bs j

nl )δus j (13)

Assuming Eqs. (10)–(13) for the real and virtual strain measures, the virtual variation of the internal work
is then exploited and written for a linear elastic material as follow:

∫
�

δεTσdV =
∫

�

δuTs j (B
s j
l + 2Bs j

nl )
T
C(Bτ i

l + Bτ i
nl )uτ i dV

= δuTs jK
τ si j
ll uτ i + δuTs jK

τ si j
lnl uτ i + δuTs jK

τ si j
nll uτ i + δuTs jK

τ si j
nlnl uτ i

= δuTs jK
τ si j
S uτ i (14)

where Kτ si j
S is the 3x3 Fundamental Nucleus (FN) of the secant stiffness matrix, obtained as the sum of the

linear stiffnessmatrix,Kτ si j
ll , and the nonlinear FN contributionsKτ si j

lnl ,Kτ si j
nll andKτ si j

nlnl . The FN is the building
block of the finite element matrices and is invariant with respect to the structural theory and finite element
discretization adopted. Following the same derivation procedure, the work done by external forces is defined
as:

δLext =
∫

�

δuTfdV =
∫

�

δuTs j Fs N j f dV = δuTs jF
s j
ext (15)

where Fs j
ext is the 3×1 FN of the external loads vector. Each FN of the secant stiffness matrix and external

forces vector are defined independently of the kinematic model and theory of structure approximation adopted
in the finite element displacement field definition. As a result, the derived expressions are applicable regardless
of the polynomial expansions adopted in the displacement field definition. The FN are uniquely determined
by employing the corresponding definitions of finite element shape functions denoted as Ni , N j for beam
axis and solid hexahedral nodes, and the theory of structure approximation denoted as Fτ and Fs for beam
cross-section of any order. By assembling the global secant stiffness matrix KS and external load vector Fext
through summation over indices τ , s, i and j , the PVD is written in compact notation as follows:

KSu = Fext (16)
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3.2 Linearization of governing equations

Due to the presence of geometrical nonlinearities, the static problem Eq. (16) is a nonlinear algebraic set of
equations that has to be solved iteratively, adopting incremental solvers. The equilibrium condition is then
rewritten as an equivalent minimization problem of residual nodal forces vector [35]:

ϕres = KSu − Fext = 0 (17)

This work implements a Newton–Raphson linearized iterative scheme. In the incremental procedure, a first-
order Taylor expansion of the residual forces vector around a known condition (u0,F0

ext ) is considered:

ϕres(u
0 + �u,Fext + �Fext ) = ϕres(u

0,F0
ext ) + ∂ϕres

∂u
�u + ∂ϕres

∂Fext
�λ · Fri fext (18)

where the finite variation of the external load vector is exploited utilizing the conservative load hypothesis [31],
introducing the additional variable λ, the load-scale factor. The tangent stiffness matrix is defined following the
classical approach ∂ϕres

∂u = KT . Finally, supposing that the incremental solution is an equilibrium condition,
namely, ϕres(u

0+�u,Fext +�Fext ) = 0, onemay write the final linear system of equations for the increment
of unknown variables, that has to be coupled with an additional constraint equation to close algebraically the
problem: {

KT (u0)�u = �λFre fext − ϕres(u
0,F0

ext )

c(�u, �λ) = 0
(19)

The constraint equation characterizes the numerical scheme adopted. It can be a displacement control, a load
control, or a path-following method by adopting a different constraint. The present work adopts the path-
following method proposed by Crisfield [36]. Readers are referred to [31,35,37] for detailed information
about this method.

3.3 Tangent stiffness matrix

The tangent stiffness matrix is used in the linearized equation, Eq. (19). In the following, the explicit expression
of the tangent matrix is carried out by considering the linearization of the internal strain energy. The CUF
approach leading to the definition of the fundamental nucleus remains valid, i.e., the fundamental nucleus of
the tangent stiffnessmatrix is invariant with respect to the structural theory and the finite element discretization,

�(δLint ) =
∫

�

�(δεTσ )dV =
∫

�

δεT�σdV +
∫

�

�(δεT)σdV (20)

The first term is related to the linearization of the constitutive equation. Under the assumption of linear elastic
constitutive law, or constant elasticity tensor, the finite variation of the stress adopted is rewritten as:

�σ = �(Cε) = C�ε = C(Bτ i
l + 2Bτ i

nl )�uτ i (21)

Thus, the first term in the linearized expression of the PVD is:
∫

�

δεT�σdV =
∫

�

δuTs j (B
s j
l + 2Bs j

nl )
T
C(Bτ i

l + 2Bτ i
nl )�uτ i dV

= δuTs jK
τ si j
ll �uτ i + δuTs j2K

τ si j
lnl �uτ i + δuTs jK

τ si j
nll �uτ i + δuTs j2K

τ si j
nlnl�uτ i

= δuTs jK
τ si j
ll �uτ i + δuTs jK

τ si j
T1

�uτ i (22)

where Kτ si j
T1

= 2Kτ si j
lnl + Kτ si j

nll + 2Kτ si j
nlnl is the contribution given by the linearization of the constitutive law.

The second term of Eq. (20) is the FN of the geometrical stiffnessmatrixKτ si j
σ , stemming from the linearization

of geometrical relations: ∫
�

�(δε)TσdV = δuTs jK
τ si j
σ �uτ i (23)
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Fig. 5 Coupled 1D-3D models: assembling procedure

Finally, by substituting the expression of the contribution coming from the linearization of the constitutive
equation, Eq. (14), and the one coming from the linearization of the geometrical relations, Eq. (23), the FN of
the tangent stiffness matrix is defined as follows:

�(δLint ) =
∫

�

δεT�σdV +
∫

�

�(δε)TσdV

= δuTs jK
τ si j
ll �uτ i + δuTs jK

i j
T1

�uτ i + δuTs jK
τ si j
σ �uτ i

= δuTs jK
τ si j
T �uτ i (24)

3.4 Assembling procedure of multi-dimensional models

Thevariable-kinematicsmodels, introducedbyZappino andCarrera [38] andnowextended to the geometrically
nonlinear analysis of structures, are pure displacement-based finite element models. The unknowns of the
model, namely the degrees of freedom (DOF), are the physical displacement components of each node. This
property allows the coupling of different finite element models with different kinematics or theory of structure
approximation independently of the refined mathematical formulation adopted. The assembling procedure is
obtained by imposing the equivalence of displacement components at corresponding nodes commonly shared
between two different models. In the case of merging nodes from two different finite element models, the
fundamental nuclei of the stiffness matrices previously introduced are superimposed and combined in the
assembling procedure of the global physical FE matrices like the tangent stiffness matrix or the internal
force vector. Figure5 shows the variable-kinematics assembling procedure of refined 1D beam models and
hexahedral 3D models in terms of FE matrices assembling procedure. The adoption of LE models in the
cross-section expansion of the beam structure with higher-order 1D CUF models allows the straightforward
assembling procedure thanks to the geometrical meaning of the DOF involved in the mathematical 1D model.

Thanks to the proposed approach, the assembly procedures ensure the straightforward coupling between
variable-kinematics finite elements. This allows 1D beam models, based on higher-order structural theories,
to be connected at the nodal level with classical 3D elements. Consequently, in complex geometries, local
refinements with higher-order beam models are used, overcoming the limitations of classical beam theories,
such as rigid cross-section, incompatibility of transverse normal and shear stresses at beam edges, or constant
shear stress along the cross-section. Exploiting theCUF formalism, no ad-hoc coupling techniques are required,
e.g., Lagrange’s multipliers. The proposed coupling procedure acts at the nodal level; thus, a 3D discretization
model and a 1D cross-section expansion model are selected considering the superposition of common nodes.
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Fig. 6 Clamped angle frame: geometry and multi-dimensional discretization adopted

Even if the displacement field is continuous at each interface, local concentrations and oscillations of the stress
field may arise in the transition zone because of the introduced coupling as discussed in [38].

4 Numerical results

In this section, numerical results are presented and verified, adopting benchmark problems available in literature
or commercial codes as reference results. This work investigates different case studies, showing the capabilities
of the proposed variable-kinematics models when complex geometries are analyzed.

4.1 Clamped rectangular frame subjected to shear load

The first case is a clamped angle frame, where a curved connecting zone is considered. Figure6 shows the
geometrical features and boundary conditions considered: two straight frames, with length L = 200 mm and
cross-section dimensions t = 10 mm and h = 30 mm, are connected with a curved 90◦ corner with internal
radius R = 20 mm. The frame is made of aluminum, and the material constants considered are E = 70 GPa
and ν = 0.3. The discretization models adopted employ 1D beam finite elements for the two straight sides and
hexahedral 3D models for the corner. Different cross-section expansion models will be considered, adopting
Nh L9 element along the lateral side and NB4 finite elements along the beam axis. The corner is discretized
adopting Nh×Ntan H27 hexahedral parabolic finite elements, where Nh is the total number of elements along
the radial direction and Ntan instead along the tangential curved direction. Figure7 shows the discretization
adopted and the variable-kinematics assembly. The frame is considered clamped at one end and subjected to
a vertical out-of-plane concentrated load applied to the center of the free end.

The convergence analysis investigates the influence of beam axis kinematics, the cross-section expansion
models and the 3D discretization adopted for the corner. The proposed model results are compared with a
numerical solution obtained by a fully 3D model analyzed by ABAQUS commercial software. The accuracy
and the efficiency of the proposed approach will be analyzed by comparing the computational cost required by
the simulation and the relative difference between the proposed solutions. Tables 1 and 2 show the comparison
between displacement components computed by variable-kinematicsmodels when different values of the shear
load are considered, comparing the results with the reference solution; the number of degrees of freedom of
each model is reported in the last column and the relative errors between the proposed results and the reference
are reported in brackets. Figure8 shows the equilibrium paths measuring the displacement components at the
point-load application, obtained by 20 NB4 B4 elements and considering the previously indicated cross-section
expansion models and 3D hexahedral models.

The results suggest that:

• The convergence analysis proposed for the out-of-plane load case shows accurate displacement component
uz and ux predictions for each adopted mathematical model. In particular, regarding the out-of-plane
component uz , accurate results are observed in all displacement regimes, differently with respect to the
component ux , for which coarser discretization does not match perfectly the reference solution at the
low displacement regimes. The problem analyzed is highly nonlinear at small load values; moderate
discrepancies, less than 5%, are observed. Similar considerations are addressed regarding the convergence
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Fig. 7 Clamped angle frame: multi-dimensional discretization adopted

Table 1 Clamped angle frame: convergence analysis, tip horizontal displacement measured at the load point application (mm),
comparison between results obtained by 1D+3D CUF models and the reference

Model −ux (mm)

L9/H27 B4 F = 2.25 kN F = 5.25 kN F = 8.25 kN F = 12.75 kN DOF

2L9 + 2x6H27 10 20.4665(4.20%) 62.3523(2.57%) 90.6258(1.71%) 114.5720(1.03%) 3285
15 20.4777(4.15%) 62.3722(2.54%) 90.6437(1.69%) 114.5840(1.02%) 4635
20 20.4823(4.13%) 62.3804(2.52%) 90.6510(1.68%) 114.5885(1.02%) 5985

2L9 + 2x8H27 10 20.4543(4.26%) 62.3288(2.61%) 90.6041(1.73%) 114.5586(1.04%) 3465
15 20.4653(4.20%) 62.3485(2.57%) 90.6218(1.71%) 114.5704(1.03%) 4815
20 20.4699(4.18%) 62.3567(2.56%) 90.6290(1.70%) 114.5749(1.03%) 6165

4L9 + 4x6H27 10 21.2387(0.58%) 63.8391(0.25%) 92.1500(0.05%) 115.9014(0.12%) 5913
15 21.2508(0.53%) 63.8601(0.21%) 92.1687(0.03%) 115.9137(0.13%) 8343
20 21.2560(0.50%) 63.8691(0.20%) 92.1765(0.02%) 115.9186(0.13%) 10773

4L9 + 4x8H27 10 21.2260(0.64%) 63.8152(0.28%) 92.1282(0.08%) 115.8881(0.10%) 6237
15 21.2380(0.59%) 63.8361(0.25%) 92.1467(0.06%) 115.9003(0.12%) 8667
20 21.2431(0.56%) 63.8450(0.24%) 92.1545(0.05%) 115.9051(0.12%) 11097

3D ABQ 6000 C8D20R 21.3636 63.9962 92.1986 115.7670 92247

Table 2 Clamped angle frame: convergence analysis, tip vertical displacement measured at the load point application (mm),
comparison between results obtained by 1D+3D CUF models and the reference

Model uz (mm)

L9/H27 B4 F = 2.25 kN F = 5.25 kN F = 8.25 kN F = 12.75 kN DOF

2L9 + 2x6H27 10 105.7439(1.34%) 179.0502(1.13%) 213.6598(0.74%) 242.4510(0.52%) 3285
15 105.7804(1.31%) 179.0947(1.10%) 213.7070(0.72%) 242.5055(0.50%) 4635
20 105.7955(1.30%) 179.1128(1.09%) 213.7259(0.71%) 242.5273(0.49%) 5985

2L9 + 2x8H27 10 105.7218(1.37%) 179.0368(1.13%) 213.6566(0.74%) 242.4537(0.52%) 3465
15 105.7581(1.33%) 179.0812(1.11%) 213.7036(0.72%) 242.5082(0.50%) 4815
20 105.7732(1.32%) 179.0993(1.10%) 213.7226(0.71%) 242.5300(0.49%) 6165

4L9 + 4x6H27 10 107.4332(0.23%) 180.5947(0.27%) 214.7964(0.21%) 243.2478(0.20%) 5913
15 107.4721(0.27%) 180.6419(0.25%) 214.8467(0.19%) 243.3065(0.17%) 8343
20 107.4886(0.28%) 180.6616(0.24%) 214.8674(0.18%) 243.3306(0.16%) 10773

4L9 + 4x8H27 10 107.4108(0.21%) 180.5814(0.28%) 214.7933(0.22%) 243.2506(0.20%) 6237
15 107.4495(0.25%) 180.6285(0.26%) 214.8435(0.19%) 243.3092(0.17%) 8667
20 107.4660(0.26%) 180.6482(0.25%) 214.8642(0.18%) 243.3332(0.16%) 11097

3D ABQ 6000 C8D20R 107.1850 181.0920 215.2570 243.7270 92247
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Fig. 8 Clamped angle frame: equilibrium paths

analysis proposed for the transversal displacement component with respect to the load direction, which
was computed accurately in all cases.

• Similar percentage differences between the variable-kinematics results and ABAQUS 3D solutions are
observed across almost all discretizations considered in both proposed analyses. Results for variable-
kinematics models with fewer finite elements along the beam axis also agree. Thus, one can observe that
the accuracy is strictly dependent on the cross-section and curved corner discretizations. The proposed
coarser discretization ensures computational efficiency but suffers from decreased accuracy. Notably, the
4L9−10B4+ 4x6H27 achieves accurate predictionswith a 94% reduction in computational costs compared
to the reference solutions, with acceptable percentage differences relative to refined models.

4.2 Clamped angle frame

The second case study deals with a clamped angle frame geometrically nonlinear static analyses. Many authors
have investigated this benchmark problem in nonlinear static analysis, and in the present work, the case of
Zouari et al. [39] has been taken as a reference study case. In the reference, this large deflection problem has
been analyzed in its two-dimensional version, considering plane-strain finite element models. The frame is
clamped at the left end and subjected to a horizontal force at the top-right end. Figure9 shows the geometrical
features and boundary conditions considered. The frame dimensions are L = 0.1 m, h = 0.01 m, and
thickness t = 0.01 m. The mechanical properties are expressed using the Young modulus and Poisson ratio,
respectively set to E = 3 · 1011 Pa and ν = 0.3, consistently with the nondimensional properties reported in
the reference case study. The mathematical models adopted employ unified 1D beam finite element models
for the two straight sides of the frame and hexahedral 3D models for the corner. The two square cross-section
beams are modeled employing a single L9 element cross-section expansion element and NB4 finite elements
along the beam axis. The corner is discretized, adopting only one H27 hexahedral parabolic finite element.
Figure9b shows the graphical representation of the discretization adopted. The first numerical investigation is
a convergence analysis considering increasing numbers of finite elements along the two straight beams. Tables
3 and 4 show the comparison between displacement components computed by variable-kinematics models
when different values of the shear load are considered, comparing the results with a reference solution. In
particular, the relative errors between the proposed results and the reference are reported in brackets. Figure10
shows the equilibrium path at the load point application, obtained adopting NB4 B4+1L9 models for each
side.

Figure11 shows the contour of the stress components σxx and σyy when 4B4−1L9+1H27 is considered
as discretization model. The results suggest that

• The convergence analysis shows that the model 2B4+1L9 provided a convergent solution. Minor differ-
ences are evidenced in all the cases, but accurate results are obtained in all instances.

• The percentage differences between the proposed results and the reference are under 1% for all the dis-
cretization considered. In almost all load conditions, more accurate results are obtained when increasing
finite elements along the beam axis are considered.
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Fig. 9 Clamped angle frame: geometry and multi-dimensional discretization adopted

Table 3 Clamped angle frame: convergence analysis, tip horizontal displacement measured at the load point application [mm],
comparison between results obtained by 1D+3D CUF models and the reference

F (kN) uyre f [39] 1 B4 2 B4 4 B4 5 B4 10 B4

4 1.6490 1.6375(−0.695%) 1.6428(−0.374%) 1.6394(−0.584%) 1.6391(−0.602%) 1.6391(−0.598%)

8 2.9820 2.9600(−0.737%) 2.9664(−0.523%) 2.9615(−0.688%) 2.9611(−0.702%) 2.9612(−0.697%)

12 3.9990 3.9694(−0.741%) 3.9735(−0.639%) 3.9682(−0.769%) 3.9679(−0.779%) 3.9681(−0.773%)

16 4.7610 4.7273(−0.708%) 4.7279(−0.696%) 4.7228(−0.802%) 4.7225(−0.808%) 4.7228(−0.803%)

20 5.3330 5.3001(−0.618%) 5.2973(−0.670%) 5.2925(−0.759%) 5.2923(−0.763%) 5.2926(−0.758%)

24 5.7750 5.7389(−0.626%) 5.7333(−0.721%) 5.7288(−0.80%) 5.7287(−0.802%) 5.7290(−0.797%)

28 6.1200 6.0822(−0.617%) 6.0747(−0.741%) 6.0703(−0.812%) 6.0702(−0.813%) 6.0705(−0.808%)

32 6.3950 6.3561(−0.609%) 6.3471(−0.749%) 6.3429(−0.815%) 6.3429(−0.815%) 6.3432(−0.811%)

36 6.6180 6.5786(−0.595%) 6.5687(−0.744%) 6.5646(−0.807%) 6.5646(−0.807%) 6.5649(−0.803%)

40 6.8030 6.7625(−0.595%) 6.7522(−0.747%) 6.7480(−0.809%) 6.7480(−0.808%) 6.7483(−0.804%)

DOF 243 405 729 891 1701

Table 4 Clamped angle frame: convergence analysis, tip vertical displacement measured at the load point application (mm),
comparison between results obtained by 1D+3D CUF models and the reference

F [kN] uxre f [39] 1 B4 2 B4 4 B4 5 B4 10 B4

4 −0.7860 −0.7789(−0.898%) −0.7845(−0.185%) −0.7827(−0.414%) −0.7825(−0.442%) −0.7826(−0.438%)

8 −1.6710 −1.6538(−1.028%) −1.6639(−0.424%) −1.6604(−0.635%) −1.6600(−0.660%) −1.6601(−0.654%)

12 −2.5300 −2.5043(−1.016%) −2.5161(−0.550%) −2.5115(−0.732%) −2.5109(−0.754%) −2.5111(−0.747%)

16 −3.3040 −3.2723(−0.960%) −3.2836(−0.618%) −3.2784(−0.773%) −3.2778(−0.792%) −3.2780(−0.786%)

20 −3.9750 −3.9430(−0.804%) −3.9527(−0.560%) −3.9474(−0.695%) −3.9467(−0.711%) −3.9470(−0.705%)

24 −4.5570 −4.5197(−0.819%) −4.5275(−0.648%) −4.5220(−0.768%) −4.5214(−0.782%) −4.5216(−0.776%)

28 −5.0540 −5.0150(−0.773%) −5.0209(−0.655%) −5.0154(−0.763%) −5.0148(−0.776%) −5.0151(−0.770%)

32 −5.4820 −5.4411(−0.746%) −5.4454(−0.667%) −5.4400(−0.766%) −5.4394(−0.777%) −5.4397(−0.772%)

36 −5.8510 −5.8094(−0.711%) −5.8124(−0.660%) −5.8070(−0.751%) −5.8064(−0.762%) −5.8067(−0.757%)

40 −6.1720 −6.1294(−0.690%) −6.1314(−0.657%) −6.1261(−0.744%) −6.1255(−0.754%) −6.1258(−0.749%)

DOF 243 405 729 891 1701
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Fig. 10 Clamped angle frame: equilibrium paths

Fig. 11 Clamped angle frame: stress component contours for P = 8.474 × 103 N, stress in Pa

• The proposed variable-kinematicsmodels have proven efficient regarding the computational costs required.
A save in terms of DOF of around 85% is registered comparing the 1 B4 model with the 10 B4 model,
considered the most accurate one, without any relevant variations of the accuracy.

4.3 Doubly-curved thick beam

The third case study concerns the static analysis of a clamped doubly-curved beam. In the proposed analysis,
the mechanical behavior of the frame is investigated in two distinct load conditions. First, a uniform traction
tension is applied at the tip-free end along the y-direction.After that, the static nonlinear response is investigated
when a transverse shear pressure is applied at the same free end considered before. The frame dimensions are
L = 30 mm, curvature radius R = 2 mm, section height h = 6 mm and thickness t = 3 mm, and middle span
inclination θ = 10◦. Figure12a shows the geometrical features of the analyzed frame, while the boundary
conditions and the load case considered are shown in Fig. 12b. The mechanical response of the structure is
evaluated by analyzing the displacement components of the point “A” located at the free-end of the frame, as
indicated in Fig. 12b. The beam is composed of aluminum, and consequently, its mechanical properties are
defined in terms of Young modulus and Poisson ratio, set to E = 70 GPa and ν = 0.3, respectively.

The discretization of the whole frame considers CUF 1D beam finite element models or hexahedral 3D
models for the two connecting curved regions. The structure has been discretized in two ways concerning the
distinct zones. The straight beam-like sub-regions have been discretized adopting 1D CUFmodels, employing
Ny B4 cubic elements along each beam axis and NE L9 over each beam cross-section. Following the cross-
section sub-regions identified by the 1D expansion models, the two curved regions have been discretized
considering NE parabolic H27 elements along the radial direction and Nt H27 elements along the total span.
In the following, each discretization adopted will be referred to as Ny B4−NE L9 + NE×Nt H27. Figure13
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Fig. 12 Doubly-curved thick beam: case study reference description

B4

HEXA27

B4

B4

3 L9
3 H27

3D model nodes

1D cross-section nodes

Fig. 13 Doubly-curved thick beam: multi-dimensional discretization adopted. Example representation of nodes superposition
in the case of 3 L9 cross-section expansion elements and corresponding 3 hexahedral elements along the radial direction of the
curved frame

shows the discretization technique adopted and the variable-kinematics nodes merging procedure, achieved
in correspondence of overlapping surfaces and corresponding nodes between different finite element models.
The numerical solutions obtained adopting higher-order variable-kinematics models are compared with the
reference solution obtained by ABAQUS 3D models. The effects of the mathematical models adopted on
the mechanical response of the structure are investigated. A convergence analysis is carried out, analyzing
the displacement components of point “A” with different discretization, considering the increasing number
of beam and hexahedral elements. Table 5 compares the numerical results obtained via variable-kinematics
discretization models and the full ABAQUS 3D reference solutions. In particular, for three different load
conditions, the values of the horizontal uy and vertical uz displacement components measured at the point “A”
are reported, analyzing the influence of the mathematical model adopted. The percentage difference between
the proposed 1D-3D CUF results and the full 3D solution is also in brackets.

The shear pressure load case is considered in Table, 6, with displacements measured again at point “A”. The
whole equilibrium paths are then computed to analyze the global behavior of the structure on a broader load
range. Figures14 and 15 show the equilibrium curve of the frame when a normal traction pressure is applied,
considering the horizontal and vertical displacement components of the point “A” separately. The same results
are reported in Figs. 16 and 17 regarding the analysis of a shear traction pressure applied at the free end of the
frame. Figures18 and 19 show the contour plots of normal and transverse σyy and σyz stress components when
the structure is subjected to a normal pressure of p = 900 MPa, comparing the stress distributions obtained
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Table 5 Doubly-curved thick beam under traction pressure: horizontal uz and vertical uy displacements components (mm)

p = 900 MPa p = 1650 MPa p = 2400 MPa

B4 Model uy uz uy uz uy uz DOF

2 2 L9 + 4x2 H27 52.767(1.98%) 20.466(0.27%) 62.830(3.38%) 22.784(0.20%) 67.639(4.32%) 23.502(0.20%) 1575
2 L9 + 6x2 H27 52.844(1.84%) 20.470(0.29%) 62.881(3.30%) 22.785(0.20%) 67.679(4.27%) 23.501(0.21%) 1935
3 L9 + 4x3 H27 52.836(1.85%) 20.176(1.15%) 62.837(3.37%) 22.642(0.83%) 67.603(4.37%) 23.421(0.55%) 2205
3 L9 + 6x3 H27 52.913(1.71%) 20.180(1.13%) 62.887(3.29%) 22.643(0.82%) 67.642(4.32%) 23.421(0.55%) 2709

5 2 L9 + 4x2 H27 52.755(2.00%) 20.451(0.20%) 62.823(3.39%) 22.766(0.28%) 67.635(4.33%) 23.486(0.27%) 2790
2 L9 + 6x2 H27 52.833(1.86%) 20.455(0.22%) 62.875(3.31%) 22.768(0.27%) 67.675(4.27%) 23.487(0.26%) 3150
3 L9 + 4x3 H27 52.822(1.88%) 20.179(1.13%) 62.827(3.38%) 22.642(0.82%) 67.598(4.38%) 23.420(0.55%) 3609
3 L9 + 6x3 H27 52.901(1.73%) 20.184(1.11%) 62.879(3.30%) 22.644(0.81%) 67.638(4.33%) 23.421(0.55%) 4410

10 2 L9 + 4x2 H27 52.754(2.01%) 20.448(0.18%) 62.821(3.39%) 22.764(0.29%) 67.632(4.33%) 23.485(0.27%) 4815
2 L9 + 6x2 H27 52.832(1.86%) 20.453(0.20%) 62.873(3.31%) 22.766(0.28%) 67.672(4.28%) 23.486(0.27%) 5175
3 L9 + 4x3 H27 52.821(1.88%) 20.179(1.14%) 62.826(3.39%) 22.642(0.82%) 67.597(4.38%) 23.420(0.55%) 6741
3 L9 + 6x3 H27 52.900(1.73%) 20.184(1.11%) 62.878(3.31%) 22.644(0.82%) 67.637(4.33%) 23.421(0.55%) 7245

ABQ 1140 C3D20R 53.833 20.411 65.028 22.830 70.696 23.549 21249

Comparison between variable-kinematics discretization model and ABAQUS 3D reference solutions for different load conditions

Table 6 Doubly-curved thick beam under shear pressure: horizontal uz and vertical uy displacements components (mm)

p = 500 MPa p = 1000 MPa p = 1500 MPa

B4 Model −uy −uz −uy −uz −uy −uz DOF

2 2 L9 + 4x2 H27 18.666(1.28%) 40.510(1.81%) 21.208(0.48%) 56.567(2.94%) 23.146(0.15%) 65.563(3.82%) 1575
2 L9 + 6x2 H27 18.659(1.32%) 40.600(1.59%) 21.205(0.49%) 56.643(2.81%) 23.146(0.15%) 65.623(3.73%) 1935
3 L9 + 4x3 H27 18.664(1.29%) 40.582(1.64%) 21.211(0.46%) 56.631(2.83%) 23.153(0.18%) 65.613(3.75%) 2205
3 L9 + 6x3 H27 18.657(1.33%) 40.672(1.42%) 21.208(0.48%) 56.707(2.70%) 23.153(0.18%) 65.672(3.66%) 2709

5 2 L9 + 4x2 H27 18.674(1.24%) 40.510(1.81%) 21.233(0.36%) 56.577(2.92%) 23.217(0.46%) 65.619(3.74%) 2790
2 L9 + 6x2 H27 18.665(1.29%) 40.599(1.60%) 21.228(0.38%) 56.652(2.79%) 23.214(0.45%) 65.678(3.65%) 3150
3 L9 + 4x3 H27 18.672(1.26%) 40.581(1.64%) 21.235(0.35%) 56.642(2.81%) 23.222(0.48%) 65.670(3.66%) 3609
3 L9 + 6x3 H27 18.663(1.3%) 40.671(1.42%) 21.230(0.38%) 56.717(2.68%) 23.220(0.47%) 65.729(3.58%) 4410

10 2 L9 + 4x2 H27 18.674(1.24%) 40.509(1.81%) 21.235(0.35%) 56.579(2.92%) 23.230(0.52%) 65.634(3.72%) 4815
2 L9 + 6x2 H27 18.665(1.29%) 40.599(1.60%) 21.230(0.38%) 56.654(2.79%) 23.227(0.51%) 65.693(3.63%) 5175
3 L9 + 4x3 H27 18.672(1.25%) 40.581(1.64%) 21.237(0.34%) 56.643(2.81%) 23.235(0.54%) 65.684(3.64%) 6741
3 L9 + 6x3 H27 18.663(1.3%) 40.670(1.42%) 21.231(0.37%) 56.718(2.68%) 23.233(0.53%) 65.743(3.56%) 7245

ABQ 1140 C3D20R 18.909 41.257 21.310 58.278 23.111 68.167 21249

Comparison between variable-kinematics discretization model and ABAQUS 3D reference solutions for different load conditions

via 10B4−3L9 + 6x3 H27 and the ABAQUS 3D solution. A similar comparison is proposed in Figs. 20 and
21 where the contour plots of normal σyy and σzz stress components are proposed, considering the frame
subjected to a shear pressure of p = 500 MPa and discretized with the same model indicated previously. The
results suggest that:

• The convergence analysis proposed for the traction pressure case showed that accurate vertical displacement
component uz predictions are obtained for each adopted mathematical model. Moderate discrepancies, less
than 5%, are observed for the horizontal displacement component uy , increasing as the load value increases.
Similar considerations are addressed regarding the convergence analysis proposed for the transversal dis-
placement component with respect to the load direction, which was computed accurately in all cases.
On the other hand, the discretization model affects the transversal displacement component, but accuracy
decreases when the pressure increases.

• In both proposed analyses, similar absolute percentage difference values between variable-kinematics
results and ABAQUS 3D solutions are observed in almost all the discretization considered. Results are
also in good agreement for variable-kinematics models with fewer finite elements along the beam axis. The
predictions obtained via variable-kinematic models are not affected by the total number of finite elements
along the beam axis. However, they show sensibility to the cross-section discretization, consequently on
the discretization along the radial and tangential directions of the curved corner. The coarser discretization
proposed has guaranteed comparable accuracy and efficiency in the required computational costs. Good
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Fig. 14 Doubly-curved thick beam, normal traction pressure case, p = (0, py, 0): equilibrium curve, horizontal displacement vs
pressure applied

Fig. 15 Doubly-curved thick beam, normal traction pressure case, p = (0, py, 0): equilibrium curves, vertical displacement vs
pressure applied

predictions are obtained already with the 2B4−2L9 + 4 × 2 H27 model, for which a reduction of 92% in
terms of computational costs concerning the reference solutions is observed, and percentage differences
are acceptable concerning refined models.

• Stress contour plots show a good agreement with the reference solution. Smooth stress distributions are
computed, and local stress concentrations corresponding to the curved corner are coherently predicted.
Discrepancies are observed in the case of traction and shear pressure loads or in the computation of stress
components, attributed to the different mathematical models adopted in the two numerical models and the
local effects arising from the coupling of different structural theories in the corners.

• The 3D solid model is less stiff than the variable-kinematic models proposed; thus, larger displacements
are observed. This behavior has also been investigated by the authors in other works [32]. The reason is
the different 3D discretization of the corners. The reference 3D model has a finer mesh at the corners.
Even if the behavior of the displacement components does not match the complete 3D solution perfectly,
low relative percentage differences are observed, under 5%, which is a considerable and reasonable result
given that this difference arises at very large displacements.
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Fig. 16 Doubly-curved thick beam, shear traction pressure case, p = (0, 0, −pz): equilibrium curve, horizontal displacement vs
pressure applied

Fig. 17 Doubly-curved thick beam, shear traction pressure case, p = (0, 0, −pz): equilibrium curves, vertical displacement vs
pressure applied

Fig. 18 Doubly-curved thick beam under traction pressure: contour plot of σyy stress component for p = 900 MPa, stress values
in MPa. Comparison between variable-kinematic results and ABAQUS 3D solutions
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Fig. 19 Doubly-curved thick beam under traction pressure: contour plot of σyz stress component for p = 900 MPa, stress values
in MPa. Comparison between variable-kinematic results and ABAQUS 3D solutions
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Fig. 20 Doubly-curved thick beam under shear pressure: contour plot of σyy stress component for p = 500 MPa, stress values
in MPa. Comparison between variable-kinematic results and ABAQUS 3D solutions
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Fig. 21 Doubly-curved thick beam under shear pressure: contour plot of σzz stress component for p = 500 MPa, stress values in
MPa. Comparison between variable-kinematic results and ABAQUS 3D solutions
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Fig. 22 Pipe joint: geometrical features and boundary conditions considered

Table 7 Pipe joint: dimensions of each sub-components

Sec. A Sec. B Sec. C Joint

lC1 40 mm lC2 56 mm lQ 23 mm hJ 24 mm
rext 13.2 mm rext 8.2 mm hQ 12 mm d 6 mm
rext 12 mm rext 7 mm tQ 1.5 mm wJ 17 mm

4.4 Pipe joint structure

The last case study investigates the geometrically nonlinear static analyses of a simplified pipe systemconnected
with a central joint. This case study shows the capabilities of multi-dimensional finite element modeling,
adopting classical hexahedral finite elements for connecting zones and refined higher-order beam models.
In the global symmetric frame, a joint connects two horizontal hollow square cross-section beams and two
vertical cylindrical hollow beams with different internal and external radii. Figure22 shows each beam frame’s
geometry, cross-section visualization, and boundary conditions. The dimensions of each beam and connecting
joint are listed in Table 7. The whole frame under analysis is made of steel, for which Young modulus and
Poisson ratio are E = 210 GPa and ν = 0.3. The mathematical model adopted in the 3D joint discretization
(the red-colored zone) employs only hexahedral parabolic 3D H27 finite elements. The lateral square cross-
section beams adopt refined beam models with 20 parabolic L9 (nine-node) cross-section elements and five
cubic B4 elements along the beam axis. Cylindrical beams are modeled employing 30 L9 models for the
circular cross-section and ten cubic finite elements along the beam axis. The graphical representation of the
mathematical models adopted in the discretization and the connecting zone, allowed by the use of LE models,
is depicted in Fig. 23. Figure24 shows the load conditions applied, considering four F concentrated forces at
the free end of the cylindrical beam and eight F/2 concentrated loads at the free end of the hollow square beam.
Also, results are expressed in terms of displacement components of the point "A" represented in the same
figure, located at coordinate (0, LC1 + hJ + LC2 , rextA).

Figure25 shows the equilibrium curves of the structure, specifically showcasing the displacement of point
“A” as indicated in Fig. 24. These curves represent the structure’s response to incremental increases in the shear
load applied at the circular tip-free end of the frame. This figure compares the linear and nonlinear curves in
detail, revealing notable discrepancies, particularly for shear loads exceeding 6 kN. By referring to the same
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3D model connecting nodes
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Fig. 23 Pipe joint: multi-dimensional discretization modeling adopted and variable-kinematics models assembling

Fig. 24 Pipe joint: reference frame and load conditions

figure, the specific values of displacement components at equilibrium conditionsmarked are reported explicitly
in Table 8, in which the computational cost required by the simulation, in terms of DOF, is reported. Within
the moderate load range, the structure exhibits an almost linear behavior.
However, beyond this range, local effects, such as localized buckling of the cylindrical clamped frame, become
apparent near the 9–10 kN range. These local effects are shown in Fig. 26a,which depicts the deformed structure
in two non-trivial equilibrium states. Additionally, Fig. 27 provides a contour plot of stress components of the
joint frame when considering the post-buckling configuration with a shear load value of F = 10.14 kN. The
global equilibrium path shows a highly nonlinear static response to the applied loads. Notably, typical buckling
behavior is observed at the computed critical load of F = 9.20 kN, where slight variations in the applied load
result in significant increases in displacement components. The highest stress values exceed the linear elastic
thresholds, and material nonlinearities should be considered. The results suggest that:

• The proposed approach can detect local effects concerning stress distributions and buckling.
• If compared to standard 3D approaches, the computational cost is low given that some 60k DOFwere used.
• The CUF-based FE model’s independence from kinematic assumptions and structural theory approxi-
mations allows for the straightforward discretization of different cross-section beams within the same
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Fig. 25 Pipe joint: multi-dimensional discretization modelling adopted and variable-kinematics models assembling

Table 8 Pipe joint: displacement components measured at the point “A” for different values conditions

Equilibrium conditions

F (kN) ux (mm) uy (mm) uz (mm) F (kN) ux (mm) uy (mm) uz (mm)

0.00 0.0000 0.0000 0.0000 5.61 −4.9101 3.1180 13.2871
0.05 −0.0312 0.0197 0.1351 9.20 −8.1083 5.6731 19.6508
0.16 −0.1002 0.0631 0.4284 10.14 −15.9897 10.6175 25.9269
0.40 −0.2558 0.1608 1.0631 10.58 −18.8694 12.6802 27.6567
0.91 −0.6191 0.3880 2.4284 10.16 −21.9841 14.9957 28.4426
1.76 −1.2831 0.8014 4.6121 10.46 −20.0800 13.5115 27.9940
3.17 −2.5373 1.5832 8.0492 10.53 −18.5592 12.4582 27.4918
DOF 60138

Fig. 26 Pipe joint: deformed configurations for the local buckling representation, displacement in (mm)

environment. By adapting the cross-section expansion discretization to meet the accuracy requirements
and discretization constraints necessary for applying the variable-kinematics coupling technique, advanced
FE discretization of complex structures can be efficiently implemented.

5 Conclusions

The present work proposes variable-kinematics models based on the unified one-dimensional (1D) beam and
three-dimensional (3D) solid finite elements for geometrically nonlinear static and stress analyses of complex
structures. Within the well-established Carrera Unified Formulation (CUF) framework, higher-order 1D beam
models and classical 3D hexahedral models are defined, resulting in a compact definition of pure displacement-
based finite element models. Within this framework, governing equations have been written in terms of Fun-
damental Nuclei (FN) in a resulting definition of finite element (FE) matrices independent of the theory of
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Fig. 27 Pipe joint: plot contour of stress components for F = 10.14 kN, stress in (MPa)

structure approximation and kinematic models of the displacement field. The proposedmulti-dimensional cou-
pling technique has been derived from the definition of the geometrically nonlinear problem in terms of FN.
The adoption of higher-order theories allows the analysis of complex mechanical responses, overcoming the
limitations of classical beam theories and FE formulations regarding modeling complex mechanical behavior
such as cross-section kinematics and localized buckling, with a straightforward coupling technique with the
standard 3D FE models, thanks to the CUF framework. The following conclusions can be drawn:

• The present approach proved reliable for various structural configurations, namely a clamped frame, curved
beams, and pipes. The coupling between higher-order 1Dmodels and 3D elements provided high accuracy.

• Global and local mechanical responses were detected. Variable-kinematics models were adopted for pre-
dicting a highly nonlinear mechanical response, proving local phenomena prediction and local stress
concentrations.

• The discretization based on enriched kinematics proved to be efficient concerning computational costs with
accuracy similar to the adoption of fully 3D models.

Future works will deal with the variable-kinematics modeling of complex structures for rotodynamic
analyses, finite element modeling of soft biological systems in the hyperelastic framework, and the general-
ization of this coupling technique for shell-like and composite structures. Moreover, to address compatibility
requirements at interfaces discussed in the previous section, future works will consider the Node-Dependent
Kinematics (NDK) [40,41] technique to analyze complex structures adopting different structural theories
node-wise.
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