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Abstract
We review the efforts made by the scientific community in more than seventy years to eluci-
date the behaviour of concentration fluctuations arising from localized atmospheric releases
of dynamically passive and non-reactive scalars. Concentration fluctuations are relevant in
many fields including the evaluation of toxicity, flammability, and odour nuisance. Charac-
terizing concentration fluctuations requires not just the mean concentration but also at least
the variance of the concentration in the location of interest. However, for most purposes the
characterization of the concentration fluctuations requires knowledge of the concentration
probability density function (PDF) in the point of interest and even the time evolution of the
concentration. We firstly review the experimental works made both in the field and in the
laboratory, and cover both point sources and line sources. Regarding modelling approaches,
we cover analytical, semi-analytical, and numerical methods. For clarity of presentation we
subdivide the models in two groups, models linked to a transport equation, which usually
require a numerical resolution, andmodelsmainly based on phenomenological aspects of dis-
persion, often providing analytical or semi-analytical relations. The former group includes:
large-eddy simulations,Reynolds-averagedNavier–Stokesmethods, two-particleLagrangian
stochastic models, PDF transport equation methods, and heuristic Lagrangian single-particle
methods. The latter group includes: fluctuating plume models, semi-empirical models for
the concentration moments, analytical models for the concentration PDF, and concentration
time-series models. We close the review with a brief discussion highlighting possible useful
additions to experiments and improvements to models.
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List of Symbols
α Empirical constant in Eq. 33
α1,2 Empirical constants in Eqs. 8 and 10
β Empirical constant in Eq. 33
δ Dirac delta function
η Kolmogorov’s microscale
ν Kinematic viscosity of air
γ Intermittency factor
�t Sampling time
ν Kinematic viscosity of air
φ Passive scalar concentration
Φc Conditional averaged scalar concentration
φs Concentration at the source
σ Total plume spread
σ 2

φ,m Variance of φ induced by meandering motion

σ 2
φ,r Variance of φ induced by relative dispersion

σ 2
φ Variance of φ

σ 2
u,v,w Variance of u, v, w

σm Plume spread induced by meandering
σr Plume spread induced by relative dispersion
σur Root-mean square of the relative velocity ur
τ Integral time scale of the concentration
τm Mixing time scale
θ Concentration threshold
ε Dissipation rate of turbulent kinetic energy
εφ Dissipation rate of the scalar variance
u Velocity vector u = (u, v, w) = (u1, u2, u3)
ur Difference between the turbulent velocity and the velocity of the

instantaneous centre of mass
x Coordinate vector x = (x, y, z) = (x1, x2, x3)
λD Decay rate for reacting scalar
Ω Generic mixing model Eq. 20
a Order 1 parameter in Eq. 34
ai Drift coefficient in Eq. 20
b Order 1 parameter in Eq. 34
Bi j Diffusion coefficient in Eq. 20
bi j Diffusion coefficient in Eq. 40
C0 Komogorov constant
Cr Richardson–Obukhov constant
D Molecular diffusivity
d0 Source size
d2r Parametrized inertial range relative dispersion
E Turbulent kinetic energy
fφ One-time one-point concentration PDF
fm PDFofmeandering plume centre ofmass position in the crosswind

plane
fφr One-time one-point concentration PDF in relative coordinates
fφu Joint velocity–scalar concentration PDF

123



Concentration Fluctuations from Localized Atmospheric Releases

hb Boundary-layer height
hs Source height
iφm Intensity of concentration fluctuations due to meandering
iφr Intensity of concentration fluctuations due to relative dispersion
iφ Intensity of concentration fluctuations
K Turbulent diffusivity of mean concentration field
K

φ
′2 Turbulent diffusivity of the variance of concentration field

L Turbulent length scale
Lφ Puff or plume size
mi Mass of a particle i
N+

θ Mean frequency of upcrossing the threshold θ

N j Number of particles within a cell j
p(x, t; x0, t0) Probability for a particle to be in x at t starting from x0 at t0
pA,B Probability for two particles A and B to be in xA, xB at t A, t B

starting from xA
0 , xB

0 at t A0 , t
B
0

Re Reynolds number
S Source term
St Turbulent spectrum
Sc Schmidt number
T Turbulent time scale
t0 Characteristic time of the source size
Tφ Scalar dissipation time scale
Ta Mean advective travel time
TL Lagrangian integral time scale
VC j Volume of a grid cell j
vpi Volume of a particle i
x Longitudinal coordinate
xi i-Coordinate
y Transversal coordinate
z Vertical coordinate
·̄ Time average
·′ Fluctuation with respect to the mean value
〈·|·〉 Ensemble conditional average
〈·〉 Ensemble average
·̃ Volumetric average
·∗ Lagrangian quantity
DNS Direct numerical simulation
EVT Extreme value theory
GPD Generalized Pareto distribution
IECM Interaction by exchange with the conditional mean
IEM Interaction by exchange with the mean
LES Large-eddy simulation
LIF Laser induced fluorescence
PDF Probability density function
PIV Particle image velocimetry
SGS Subgrid scale
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1 Introduction andMotivation

Hazards and risks related to the atmospheric dispersion of pollutants continue to draw increas-
ing attentionwithin social, economic, and political issues. Over the years, the growing interest
on this matter has been fed by the occurrence of major technological accidents (e.g., Seveso,
Chernobyl, Bhopal, Fukushima), the increasing scientific evidence of the effects on human
health of the exposure to indoor and outdoor air pollution (Loomis et al. 2013), and the risk
of terrorist acts producing harmful releases in industrial sites, and in (indoor and outdoor)
crowded public spaces. These concerns are today emphasised by the enhanced urbanization
worldwide and the higher population density surrounding industrial districts. The proximity
of industrial and residential sites represents a major concern not only for the population,
but also for public authorities and industrial operators, whose business and activities may be
adversely affected by strict regulations.

The atmospheric dispersion of pollutant is a phenomenon to which all of us are familiar,
due to the ubiquitous presence in our everyday life of ‘smoke’ plumes emitted from industrial
stacks, chimneys, car exhausts, biomass burning, or cigarettes. Without any need of specific
scientific knowledge, the turbulent nature of these atmospheric releases is evident at first
glance. A more attentive observation of the plume morphology can further reveal that its
fluctuations are characterized by a wide range of temporal and spatial scales.

Indeed, a plume (or puff) of pollutant of generic size Lφ (see Fig. 1) released in a turbulent
atmospheric flow is submitted to the action of eddies that can be larger than similar to
or smaller than the plume size. These eddies will be efficient in very different ways in
transporting the contaminant plume across the flow and mixing it with the ambient air.
Following a well-established approach (Gifford 1959), this multiscale dispersion process
can be described as the resulting action of two bulk phenomena: (i) the irregular motion of
the centre of mass of the polluted fluid volumes, and (ii) a diffusive process due to the action
of smaller scale eddies that acts in deforming and expanding the blob ofmarked fluid volumes
and locally enhancing concentration gradients. The first process is referred to as meandering,
whereas the second is referred to as relative dispersion, i.e., relative to the local centre of
mass (Csanady 1973; Monin and Yaglom 1975). The relative importance of these processes
depends on a large number of factors, namely the source size, the distance from the source
of the observation point, the conditions imposed at the source, the thermal stratification of
the atmosphere, and the geometry of the domain.

These complex multi-scale dispersion mechanisms are finally reflected in the fluctuating
character of a concentration signal recorded downstream of a pollutant source (Fig. 2). Based
on the estimates of the statistical characteristics of these signals, we can effectively determine
the impact of pollutant releases on health and the environment (and their related risks).
Nevertheless, the level of accuracy of the statistical characterization depends on the typology
of hazards that have to be assessed. In several problems, it is sufficient to estimate a time-
averaged mean concentration φ̄ over a certain period of time �t ,

φ̄ = 1

�t

∫ �t

0
φ(t)dt . (1)

This is typically the case for persistent hazards and risks associated with exposure to nitrogen
oxides or particulate matter in air, since the accumulation process filters the effect of concen-
tration fluctuations. A typical averaging time�t will range from aminimum of an hour, when
considering acute respiratory and cardiovascular damages (Wong et al. 2008; Bhaskaran et al.
2011), up to one year, when dealing with long latency pathologies (Andersen et al. 2017).
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Fig. 1 Volume rendering of turbulent dispersion of a passive scalar released from a point source as simulated
in a large-eddy simulation (2048 × 512 × 512 nodes for a domain of 6hb × hb × hb , respectively in the
along-wind, crosswind, and vertical directions). The blue arcs highlight two turbulent eddies of the same size.
When the turbulent eddy is larger (smaller) than the plume size Lφ , the eddy mostly contributes to meandering
(relative dispersion). This is further highlighted in the turbulent energy spectrum St (k) (left-low panel); hb
and η are the boundary-layer height and the Kolmogorov microscale, respectively
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Fig. 2 Concentration time series and related PDFs from the wind-tunnel experiments of Nironi et al. (2015).
At increasing distance from the source, the PDF shifts from an exponential-like in the near-field (a), to a
right-skew Gaussian-like PDF in the far-field (c)

Conversely, for the assessment of accidental hazards due to toxic or explosive airborne
pollutants (inflammability and toxicity), knowledge of themean concentration (Eq. 1)must be
coupled with the probability of exceeding a specific concentration threshold and the expected
mean time above the threshold (e.g., Hilderman et al. 1999; Gant et al. 2011; Gant and Kelsey
2012; Gunatilaka et al. 2014). Similarly, the impact of odours depends on instantaneous peak
concentrations (e.g., Capelli et al. 2013; Sommer-Quabach et al. 2014), or concentrations
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averaged over the duration of one human breath (Mainland and Sobel 2006), to which the
human nose is sensitive.

Quantifying the above-mentioned risks therefore requires the adoption of mathematical
models to compute one-point concentration statistics. In principle, we could fully rely on the
advection–diffusion equation

∂φ

∂t
+ ui

∂φ

∂xi
= D

∂2φ

∂x2i
, (2)

which exhaustively characterizes the evolution of the spatial and temporal distributions of
the scalar concentration φ(x, t) due to the action of the instantaneous turbulent velocity
field ui and molecular diffusion D. Ideally, the Navier–Stokes equation for the velocity field
and Eq. 2 can be solved by means of direct numerical simulation (DNS). Practically, this
option is unfeasible because of the high Reynolds number Re = UL/ν in the atmosphere
(Pope 2000), where U and L are characteristic velocity and length scales, respectively, and
ν is the kinematic viscosity, which is here assumed equal to D, i.e. unitary Schmidt number
Sc = ν/D ≈ 1. Indeed, the turbulent nature of the flow produces fluctuating velocity and
concentration fields over a range of scales that cannot be covered by DNS. This can only be
used as a guidance to understanding the underlying physical processes at relatively low Re
(Vrieling and Nieuwstadt 2003; Rossi et al. 2010; Branford et al. 2011; Oskouie et al. 2017).
The velocity and scalar concentration must then be treated as random fields (Monin and
Yaglom 1975), by adopting some sort of averaging operator, i.e. time averaging ·̄, ensemble
averaging 〈·〉, or volume averaging ·̃.

Adopting an averaging approach in order to filter out the smaller scale fluctuations (of
both velocity and concentration fields) leads to the formulation of the so-called large-eddy
simulation (LES)models. Contrary to all othermethods available and discussed in this review,
LES explicitly solves the three-dimensional variability of most of the turbulent structures
(i.e., those larger than the filter size). In the case of LES (reviewed below in Sect. 3.1), the
modelling of velocity and scalar field cannot be treated separately and the computational
requirements are extremely demanding.

By applying an ensemble averaging operator to the advection–diffusion equation, Eq. 2,
and using the Reynolds-averaging rule (leading to the Reynolds-averaged Navier–Stokes
(RANS) method, e.g. Monin and Yaglom 1971; Tennekes and Lumley 1972; Stull 1988) we
obtain a hierarchy of unclosed equations for the evolution of the concentration moments. The
equation for the first moment, i.e., the mean, reads

∂ 〈φ〉
∂t

+ 〈ui 〉 ∂ 〈φ〉
∂xi

= −∂
〈
u′
iφ

′〉
∂xi

+ D
∂2 〈φ〉
∂x2i

, (3)

where, as is customary, a prime represents a fluctuation from themean value, i.e.φ′ = φ−〈φ〉.
On the right-hand side (r.h.s.), we recognize the well known problem of closure of the
turbulent fluxes

〈
u′
iφ

′〉. Similarly, we can obtain the transport equation for the concentration
variance

〈
φ′2〉 (hereafter also denoted σ 2

φ ), as presented in the seminal work of Csanady
(1967),

∂
〈
φ′2〉
∂t

+ 〈ui 〉 ∂
〈
φ′2〉

∂xi
= −2

〈
u′
iφ

′〉 ∂ 〈φ〉
∂xi

− ∂
〈
u′
iφ

′2〉
∂xi

− εφ. (4)

The first term on the r.h.s. is the variance production, the second is the variance turbulent
transport, and the third εφ =2D

〈
∂φ′/∂xi ∂φ′/∂xi

〉
is the variance dissipation, which controls
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the decay of concentration fluctuations. This last term is unclosed. According to the phe-
nomenological description of the dispersion process outlined above, meandering is mainly
linked to the production of scalar variance close to the source (e.g., Fackrell and Robins
1982b; Ardeshiri et al. 2020), while relative dispersion is mostly linked to its dissipation
(e.g., Sykes et al. 1984; Cassiani et al. 2005a). Equation 4, its applications, and closures are
further discussed in Sect. 3.2.

Amore comprehensive description of the one-point concentration fluctuation statistics can
be instead captured from the evolution equation for the concentration PDF fφ . This equation
can be derived from the Navier–Stokes and the advection–diffusion equations and reads (e.g.
Pope 1985, 2000)

∂ fφ
∂t

+ 〈ui 〉 ∂ fφ
∂xi

= − ∂

∂xi

(
fφ

〈
u′
i

∣∣φ = ψ
〉) − ∂

∂ψ

(
fφ

〈
D

∂2φ

∂x2i

∣∣∣∣∣φ = ψ

〉)
, (5)

where ψ is the sample space variable of the the random scalar field φ and 〈|〉 denotes a
conditional average. The first term on the r.h.s. is the flux of probability due the fluctuating
velocity field. This is unclosed since fφ does not include any information about the velocity,
and is the equivalent of the unclosed turbulent flux in Eqs. 3 and 4 above. The second term
on the r.h.s. is the conditional Laplacian which in high Re can be shown to be equivalent to
the conditional scalar dissipation (e.g. Pope 2000, p. 546). This term defines the dissipation
of scalar fluctuations and it is unclosed because fφ does not contain any information about
instantaneous spatial gradients. All these unclosed terms can be modelled, and the closure
and solution of this equation is the subject of Sect. 3.3. From Eq. 5, the hierarchy of the
unclosed RANS equations for the evolution of the concentration moments can be obtained
by integration (e.g. Pope 2000, p. 553).

Mathematically, the last terms in Eqs. 4 and 5 represent a sink of scalar variance and
fluctuations, respectively. Physically, these terms model the mixing of the scalar with the
ambient air, which is the result of the complex motion of blobs of polluted fluid within the
ambient fluid. Strictly speaking, themixing is a phenomenon that takes place at the molecular
scale, and is therefore driven by local instantaneous concentration gradients. However, in very
high Re flow, the intensity of the gradients (and therefore of mixing) is governed by themulti-
scale dynamics of the turbulent flow, which folds and stirs the scalar field until gradients are
so large that molecular mixing becomes effective, and not by the molecular diffusivity itself.
This leads to the apparent paradox that the modelling of scalar dissipation does not explicitly
involve molecular diffusivity. This feature is further discussed in Sect. 3.4, where the use of
two-particle Lagrangian stochastic models for concentration fluctuations is reviewed. Note
that the link between mixing and two-particle models shows that the main time and length
scales characterizing the scalar dissipation are those of the relative dispersion process (e.g.,
Sykes et al. 1984; Thomson 1990, 1996; Sawford 2001; Cassiani et al. 2005a).

So far, we have introduced methods that make use of transport equations and minimal
closure assumptions for the time and space variations of the concentration PDF or its lower
order moments. Beside these, other approaches have been proposed in the literature, based
on phenomenological aspects and experimental evidence. These have the main advantage of
being computationally much more efficient. Gifford (1959) was the first author to use the
phenomenological concepts of meandering and relative dispersion to propose an analytical
model that, as far as we are aware, is the first quantitative model of concentration fluctua-
tions. From his seminal work stemmed a number of models, referred to as fluctuating plume
models, that are discussed in Sect. 4.1. Even simpler empirically-based models for the con-
centration moments were obtained starting from arguments about mixing or simplifications
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of the concentration variance equation (Eq. 4). These models, which have the advantage of
being in analytical closed form, are discussed in Sect. 4.2. There is also a class of heuristic
numerical models that make use of Lagrangian one-particle dispersion models and heuristic
mixing relationships based either on the RANS (Eq. 4), or PDF (Eq. 5), transport equations
to estimate the concentration variance. These are presented in Sect. 3.5.

Instead of solving a closed form of Eq. 5, the shape of fφ can be reconstructed by means
of analytical models, which require knowledge of only a few moments of concentration,
usually the mean and the variance. These can be obtained through any of the empirical or
numerical modellingmethods introduced above. The formulation of analytical models for the
PDF shape is reviewed in Sect. 4.3 and strongly relies on the comparison with experimental
measurements.

Finally, wemention the time-seriesmodels (Sect. 4.4), devoted to the evaluation of thresh-
old upcrossing rates. They are conceptually different from all other methods discussed above,
since they require information about the time dynamics of the concentration field, which are
not included into the PDF. This information is usually reconstructed through the use of a
limited number of spatial and temporal characteristic scales.

The development of all above-mentioned modelling approaches (from the adoption of
specific closure relations for Eqs. 4 and 5 to the formulation of simplified heuristic models)
relies on our understanding of the physical mechanisms that govern the turbulent mixing of
scalars emitted from localized sources. Historically, understanding these mechanisms has
heavily relied on experiments, performed both in the field and in the laboratory. These are
extensively reviewed in Sect. 2. The experimental results also provide the essential data
needed to test the reliability of each model.

To date, due to its scientific and operational relevance, turbulent scalar dispersion has been
the subject of several reviews (e.g. Hanna 1984b; Weil 1995; Wilson 1995; Warhaft 2000).
The significant scientific advances in the last 20 years motivate in our opinion a novel and
updated review, in which we specifically consider non-buoyant scalar releases from localized
sources. For a broader view on the physical processes underlying turbulent mixing (without
any focus on the effects induced by a localized release) the reader is referred to the reviews by
Shraiman and Siggia (2000), Dimotakis (2005), Sreenivasan (2018), and Villermaux (2019).

The purpose of this introduction is to provide a brief overview on the variety of modelling
methods that are today available to estimate concentration fluctuations, see also Table 1. In
what follows, we first deal with the field and laboratory experiments (Sect. 2), and then group
themodellingmethods into twomain classes: (i) models linked to a transport equation, which
usually requires a numerical solution, and (ii) models mainly based on phenomenological
aspects of dispersion, often providing analytical or semi-analytical relations. The former are
presented in Sect. 3, and include: LES, RANS, two-particle Lagrangian stochastic models,
PDF transport equation methods, and heuristic Lagrangian single-particle methods. The lat-
ter are presented in Sect. 4 and include: fluctuating plume models, semi-empirical models
for the concentration moments, analytical models for the concentration PDF, and, finally,
concentration time-series models. There may undoubtedly be overlap between these two cat-
egories. Nonetheless, we believe this classification to be the best discrimination among the
different modelling approaches.

In the following, meteorological or index notation are used when convenient, so u1 =
u, u2 = v, u3 = w represent the velocity components in the along wind x1 = x , crosswind
x2= y, and vertical x3= z, directions respectively. Vectors are represented in bold character,
e.g. x=(x1, x2, x3), and Lagrangian quantities with a star, e.g., x∗.
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Table 1 Resume of the different approaches to evaluate the concentration fluctuation statistics

Approach Sect. Statistics Known applications

μ2 μ3,4 PDF N+
θ Neutral Conv. C. geom.

LES 3.1 O O O O x x x

RANS 3.2 O x x

PDF methods 3.3 O O O x x x

2-Particle 3.4 O x

Lagrangian heuristic 3.5 O x x x

Fluctuating plume 4.1 O O I/O x x

Empirical relations 4.2 O O x

Analytical PDF 4.3 I I/O O x

Time series 4.4 I I/O I O x

The applicability of every approach is also mentioned: neutral and convective (Conv.) boundary layers, and
Complex Geometry (C. geom.). We discriminate between output (O) and input (I) of the approach; μi is
the i-statistical moment of concentration and N+

θ is the upcrossing rate (the mean frequency of exceeding
a concentration threshold θ , see Sect. 4.4). In fluctuating plume models, the concentration PDF in relative
coordinate is an input, but the overall concentration PDF can be an output, see Sect. 4.1

2 Experiments

In the 1950s and 1960s seminal experiments in open terrain produced a first insight into the
framework of concentration fluctuations from a qualitative point of view. These experiments
essentially considered dispersion in the atmospheric surface layer due to releases from point
sources placed close to the ground (Sect. 2.1.1). Laboratory studies of passive scalar releases
arose later in the literature, while early wind-tunnel experiments appeared essentially from
the late 1970s. Differently from open field experiments, laboratory experiments allowed for
the investigation of awider typology of source condition, including point (Sect. 2.2.1) and line
sources (Sect. 2.2.2) of variable size and position (with respect to the ground) and in different
flow typologies (grid turbulence, channel flow, boundary layer). At the same time, laboratory
experiments have been mainly limited to neutral flows and have been rarely performed for
non-neutrally stratified boundary layers (Sect. 2.2.3). The interest of the scientific community
shifted subsequently, from around 2000, to the dispersion within urban areas that have been
investigated by means of both field (Sect. 2.1.2) and laboratory experiments (Sect. 2.2.4).

2.1 Field Experiments

2.1.1 Open Field

Initially, field experiments have been mainly devoted to estimating the peak-to-mean con-
centration ratio (Lowry et al. 1951; Gosline 1952; Singer 1961), and investigating also the
effects of complex terrain and vegetation (Singer et al. 1963), and of buildings (Hinds 1969).

Subsequent studies were devoted to a deeper characterization of the scalar field and pro-
vided estimates of the higher-order statistics. Notably experiments by Ramsdell and Hinos
(1971), Hanna (1984a), and Dinar et al. (1988) provided estimates of fluctuation intensity
(iφ = σφ/ 〈φ〉), skewness, kurtosis, the intermittency factor (fraction of time for which
φ > 0), and PDF, and Hanna and Insley (1989) presented concentration spectra. Mylne and
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Mason (1991) and Mylne (1992) investigated concentration fluctuations from ground-level
or slightly elevated sources, for a wide range of downwind distances (45 to 1000 m). Experi-
ments by Mylne and Mason (1991) were performed in near-neutral to convective conditions,
whereas those by Mylne (1992) in stable conditions. In both cases, however, the authors
could not identify any specific effect of atmospheric stability on concentration statistics.
Mole and Jones (1994) also investigated the role of atmospheric stability, both stable and
unstable, performing measurements over a much shorter range of downwind distances than
those considered by Mylne and Mason (1991) and Mylne (1992). The influence of stability
conditions was detected in estimates of skewness and kurtosis but not so significant as to
modify the shape of the PDF.Mylne (1993) extended his previous analysis to vertical profiles
of concentration fluctuations measured at two downwind distances (50 m and 100 m). He
presented an exhaustive statistical analysis of concentration statistics, including estimates of
characteristic scalar length scales. Interestingly, he noted that, at the considered distances,
sources at or near the ground behaved differently from those at 4 m height. By comparing
the concentration fluctuation statistics obtained from fast and relatively slow sensors Mylne
et al. (1996) showed the importance of high frequency measurements in characterizing con-
centration peaks close to the source.

A significant contribution was given by the experimental works performed by Yee and co-
workers in the framework of the CONFLUX (concentration fluctuation experiments) project,
which involved three defence research establishments in the USA, UK, and Canada (Yee
et al. 1993b, 1994c, d, 1995). The experimental campaigns focused on the measurements
of time series of concentration by means of a high-frequency photoionization detector. The
gas tracer was propylene (C3H6), released from a point source for stable, near-neutral, and
unstable stability conditions. They investigated the spatial evolution of the scalar statistics,
i.e., fluctuation intensity, skewness, kurtosis, intermittency factor, and one-point PDF. More
specifically, Yee et al. (1993b) tested five models (exponential, clipped-normal, lognormal,
gamma, and Weibull) for the one-point concentration PDF and found that the lognormal and
gamma distributions gave the best agreement, respectively, at short and far ranges. Yee et al.
(1994d) investigated the same source configuration analyzing the spatial evolution of the
concentration PDF. They observed that close to the source the PDF assumed an exponential-
like shape, in the intermediate field it became bimodal, and in the far-field it had a unimodal
structure. They argued that this behaviour reflected the interaction between the meandering
and the relative dispersion. Finally, Yee et al. (1995) completed the analysis of the fluctu-
ating plume by providing estimates of the mean dissipation rate of concentration variance
as well as time and length scales related to the dissipation process. Other work focused on
statistical investigations of the scalar field induced by the emission of quasi-instantaneous
clouds using ensemble averaging. Yee et al. (1994c) showed that PDFs of maximum instan-
taneous concentration and dosage were modelled by a gamma distribution, whereas Yee et al.
(1998) observed that the temporal autocorrelation of the concentration fluctuations was well
approximated by a self-similar exponential function.

All the field measurements mentioned above used point-wise measurement systems sam-
pling at high frequency. A different approach was taken by Lewellen and Sykes (1986a)
who used a lidar system but with a quite coarse sampling volume and rate. More recently,
in a series of field campaigns performed under the COFIN (concentration fluctuations in
gas releases by industrial accidents) project by the Risø National Laboratory and Sheffield
University, a lidar system was used (Jørgensen and Mikkelsen 1993; Mikkelsen et al. 2002)
with a relatively low sampling frequency (0.33 Hz) but taking instantaneous crosswind sec-
tions with sampling length of about 1.4 m. This method allowed also measuring directly
the concentration fluctuations in the coordinate system relative to the plume centre of mass
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(Munro et al. 2003). All the crosswind sections were taken far from the source and the ver-
tical position of the source ranged from near-ground level to a height of 21 m (Munro et al.
2003). The data collected in these campaigns were used in a series of works exploring the
shape of the concentration PDF and the modelling of extreme values (see Sect. 4.3 below).
An alternative remote sensing approach based on multiple cameras was also implemented
very recently with the aim of investigating concentration fluctuations, but so far results are
limited to relative dispersion statistics (Dinger et al. 2018).

In the Project Sagebrush, continuous releases of SF6 as a gas tracer were used in stable
and unstable conditions at very low wind speed (Finn et al. 2018). The aim was to replicate
and extend the results of the Prairie Grass experiment (Barad 1958), which was limited to
the analysis of time-averaged concentrations. Finn et al. (2018) analyzed short-range plume
dispersion using a large number of detectors (1 Hz sampling frequency) for evaluating both
velocity field and scalar concentrations. The study focused on the concentration variability
during the sampling operations, and the analysis of the time series showed that themeandering
was a main source of uncertainty.

Odour plumes were specifically treated by Barynin and Wilson (1972), who compared
the sensitivity of a fast-response flame-photometric detector with that of the human nose
in detecting concentration fluctuations. Always dealing with odour plumes, Murlis et al.
(2000) related the response of some insects, such as moths, to the concentration fluctuations
of pheromones. He also compared the response of the antennae of a gypsy moth (electro-
nantennograms) to the concentration time series collected through ion detectors in open
terrain and forests. For a broader view on applications of the fluctuating plume theory for
entomological studies, the reader is referred to, e.g., Murlis et al. (1992).

Finally, we mention the experiments concerning the interaction of multiple sources on
the concentration statistics. Sawford et al. (1985) studied concentration fluctuations induced
by isolated and multiple sources in unstable and neutral atmospheric boundary layers. They
used two different gas tracers, SF6 and phosphorous, released from different sources in order
to evaluate the concentration contributions at a given point from each of the sources. These
measurements allowed the authors to compare and model the joint statistics in terms of those
provided by the single sources. Davies et al. (2000) performed high-frequency concentration
measurements in Cardington, UK, and inNevada, USA. They used an ultraviolet ion collector
and a flame ionization detector in order tomeasure the concentration fluctuations of ammonia
and propane plumes, respectively, and analyzed the behaviour of the fluctuation intensity, the
correlation due to the interaction of the two sources, and the PDF shape.

2.1.2 Urban Areas

The first significant urban campaign was that in Salt Lake City, using ground-level point
and line sources of SF6 (Allwine et al. 2002). The dataset was subsequently used by Chang
et al. (2005) to evaluate the performance of a dispersion model with the scope of estimating
maximal concentration values for hazard assessments.

In the Joint Urban 2003 experiment (JU2003), steady plumes and instantaneous puffs
of SF6 were released in Oklahoma City (Clawson et al. 2005) and measured using fast-
response analyzers in both daytime andnight-time conditions.A large variety of concentration
statistics, including fluctuation intensities, peak-to-mean ratio, concentration percentiles, and
intermittency factors were more recently discussed by Klein and Young (2011). They also
showed that the two-parametric gamma and three-parametric clipped-gamma cumulative
probability presented good agreement with the observations, particularly in the upper tail of
the distributions. Further analysis of the JU2003 dataset was presented by Finn et al. (2010),
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who showed that the higher-order statistics of the concentration were more significant in
daytime than in night-time. Finn et al. (2010) also verified that the lognormal distribution
performs better than the exponential or the clipped-normal distributions in simulating the
concentration statistics.

Santos et al. (2005) described a field experiment in the vicinity of a complex-shaped
building, presenting values of mean and standard deviation and intermittency factor of the
concentration. They emphasized the role of stability conditions and street geometries in
affecting the concentration statistics.

Finally, Biltoft (2001) and Yee and Biltoft (2004) described experiments within an ideal-
ized urban geometrymade up by a regular array of obstacles. The experiments, widely known
as the Mock Urban Setting Trial (MUST), provided a unique dataset of velocity and concen-
tration statistics: fluctuation intensity, peak-to-standard deviation ratio, probability density
function, spectra, as well as estimates of characteristic time and length scales of dominant
motions in the array plume (e.g., the integral scale, the Taylor microscale).

2.2 Wind Tunnel and Flume Channel

2.2.1 Point Sources

An early experiment was that by Gad-el Hak and Morton (1979), who presented results
from a point-source release in an isotropic turbulent flow. By combining laser Doppler
velocimeter and a laser light-scattering technique, Gad-el Hak and Morton (1979) measured
simultaneously one-point statistics of concentration and velocity, reporting the downstream
evolution of the intermittency factor, the concentration fluctuation intensity, and the velocity–
concentration correlations. Yee and Wilson (2000) discussed the results a saline plume
dispersing in grid turbulence in a water channel and reported all the relevant velocity and
concentration statistics, including the concentration PDF. They measured both vertical and
crosswind profiles at several downwind distances. Brown and Bilger (1998) investigated the
dispersion of a reactive plume of NO in a background of O3 in decaying grid turbulence,
and using conserved scalar theory they could also provide concentration moments up to the
fourth order for the conserved scalar.

Almost all other experiments were instead performed in turbulent boundary layers, with
both ground-level and elevated sources. One of the earliest work was the comprehensive
monograph of Netterville (1979), who investigated a dispersing plume of helium using a hot-
film concentration detector. The measurements were very comprehensive including velocity
and scalar fluctuations, PDF, and the terms in the variance budget equation for both crosswind
and vertical profiles at several downwind distances. Soon after, the highly cited experiments
described in Fackrell and Robins (1982a, b) were performed; these have been used over the
years as reference test cases for the validation of a wide variety of numerical models. Beside
the characterization of turbulent fluxes from elevated and ground-level sources, Fackrell
and Robins discussed phenomenological and dynamical aspects of the dispersion and the
effects of the source size and of the source elevation. As with Netterville (1979), they also
evaluated the terms composing the concentration variance balance, including the variance
dissipation. Their study was recently replicated by Nironi et al. (2015), who focused on
higher-order concentration moments and deepened the analysis on the shape of the one-point
concentration PDF, which was shown to be very well modelled by a gamma distribution.

A decade after these seminal works, Bara et al. (1992) investigated the structure and
development of vertical and crosswind profiles of the mean, variance, intermittency, and
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conditional intensity of non-zero fluctuations usingwater-tank experiments. Bara et al. (1992)
also interpreted their results through a plume fluctuating model. Liao and Cowen (2002)
used a coupled PIV–LIF (particle image velocimetry–laser-induced fluorescence) system in
a water channel to measure the velocity and scalar fields of a plume released by a point source
within a turbulent boundary layer. In order to explain the ability of some animals, e.g., moths
and crabs, in tracking a plume to its source, they analyzed the reliability of an inversion
algorithm, using estimates of different concentration statistics as the reference variable. Xie
et al. (2007) analyzed extreme concentration values of both elevated and ground-level point
releases over rough boundary-layer flows. Their results for ground-level sources were shown
to be in agreement with the field experiments of Mylne and Mason (1991), and suggested
that the relative intensity of the fluctuations approaches a constant value in the far-field. In
analyzing the occurrence of concentration peaks, Xie et al. (2007) highlighted the different
roles of turbulence structure on elevated and ground-level sources.

Hilderman and Wilson (2007) performed experiments in a water channel using laser-
induced fluorescence to characterize the meandering motion of a plume dispersing in a
turbulent flow.According to their results, the centroid position of the crosswind concentration
profile is characterized by aGaussian probability density function, whereas the the fluctuation
instantaneous plume spread about the centroid follows a lognormal distribution.

As far as we are aware, one single study has considered the dispersion from multiple
point sources (Yee et al. 2003), who performed experiments in grid turbulence within a flume
channel with two point sources. They quantified the spatial distribution of the one-point
concentration PDF as well as the second-order correlation function.

2.2.2 Line Sources

Considering line sources, several experiments investigated the case of scalar dispersion in
decaying grid turbulence (Warhaft and Lumley 1978; Warhaft 1984; Stapountzis et al. 1986;
Sawford andTivendale 1992).Afirst experimentwas that ofWarhaft andLumley (1978),who
investigated the decay of temperature fluctuations produced by a heated wire.Warhaft (1984)
investigated the fluctuations due to a single andmultiple (up to four) heatedwires. He focused
on the scalar variance in order to evaluate the second correlation functions. Stapountzis et al.
(1986) measured the spatial distribution of concentration and one-point concentration PDF
and spectra. A similar experiment was also performed by Sawford and Tivendale (1992),
whose measurements were reported in detail in Sawford and Sullivan (1995) and included
both along-wind and crosswind variations of concentration moments up to the fourth order.

Raupach and Legg (1983) investigated the dispersion from an elevated line source in a
rough turbulent boundary layer, coupling a hot-wire anemometer and a cold-wire resistance
thermometer. They presented an exhaustive picture of the mean and fluctuating concentration
field, and reported centreline relative intensity for varying source diameter. Furthermore they
focused on the scalar variance as well as the velocity–scalar correlation budgets. The same
approach was extended to the case of line and plane sources within a modelled plant canopy,
as discussed in Coppin et al. (1986) and Legg et al. (1986) who reported concentration
statistics up to the fourth order.

Karnik andTavoularis (1989) considered the case of a uniform sheared turbulent flow.They
investigated the general structure of the fluctuating plume and focused on the re-appearance
of variance peaks far downstream of the source as a result of variance fluxes induced by
large-scale eddies.

Vinçont et al. (2000) investigated the dispersion of a line-source plume downwind of
a surface-mounted two-dimensional cross-flow obstacle. Using optical techniques both in a

123



M. Cassiani et al.

water flume and a wind tunnel, they reported the spatial evolution of the standard deviation of
concentration and focused on higher-order parametrization of velocity–concentration corre-
lations. More recently, Lavertu and Mydlarski (2005) performed experiments in a developed
channel flow with line sources and analyzed the shape of the concentration PDF and the
distribution of scalar variance, depending on source size and position.

2.2.3 Non-neutral Flows

Dispersion in thermally-stratified flows has been rarely investigated in laboratory experi-
ments. A significant step forward was made by the pioneering work of Deardorff and Willis
(1984), who investigated concentration fluctuations within a convective boundary layer. The
experimental set-up was a water tank heated from below, without any mean motion of the
fluid in the horizontal direction. The effect of mean advection was then reproduced by a
steady motion of the source within the tank, a method that of course does not allow for
the simulation of the effects of the shear of the mean motion or of bottom friction. With
this set-up they measured the decay of concentration fluctuation intensities along the plume
centreline and showed the reliability of the gamma distribution for the concentration PDF.
With a similar experimental set-up, Weil et al. (2002) investigated the dispersion of buoyant
plumes in a convection tank. In contrast to Deardorff and Willis (1984), a laser was mounted
on a movable table alongside the tank and towed at the stack speed in order to illuminate
a crosswind-vertical plane at a fixed distance downstream of the stack. With this approach,
they provided a set of measurements of all dispersion components, meandering, relative dis-
persion, and total dispersion, and discussed the (increased) centreline decay of concentration
fluctuation intensity with respect to the neutral non-buoyant case, as reported by Fackrell and
Robins (1982a). Finally, Marucci and Carpentieri (2020) recently investigated the effect of
stable and convective atmospheric conditions on the mean and variance of the concentration
within and above an obstacle array. As far as we are aware, no other experiments have so far
investigated the concentration fluctuations within stably stratified flows.

2.2.4 Urban Mock-Up

As with field experiments, in recent years the focus of laboratory experiments has progres-
sively shifted to the investigation of localized releases within groups of obstacles representing
simplified urban mock-ups. A first work on urban-like geometries was that of Pavageau and
Schatzmann (1999), who characterized the spatial distribution of concentration variance
within an isolated two-dimensional street canyon.

A significant body of work on three-dimensional geometries was performed by Gailis and
Hill (2006) and Gailis et al. (2007), who investigated the dispersion of a tracer within a large
array of obstacles. They reproduced at the 1:50 scale the MUST experiment (Biltoft 2001;
Yee and Biltoft 2004) in a water channel and used laser-induced fluorescence to measure
the fluctuating concentration field. Gailis and Hill (2006) reported a wide range of concen-
tration statistics and discussed similarities and differences between the full and small-scale
experiments. Gailis et al. (2007) obtained the time series of plume centroid locations and
the dispersion in the relative frame of reference. They showed that the PDF of the centroid
horizontal position is well fitted by a Gaussian distribution, whereas the motion in the vertical
direction is lognormally distributed. Furthermore, they found that the relative concentration
PDF is well approximated by a gamma distribution. This dataset contained also the profiles of
the fluctuation intensity in the relative coordinate in the x , y, and z directions. Other interest-
ing small-scale reproductions of field experiments were presented by Arnold et al. (2004) and
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Klein et al. (2011). Arnold et al. (2004) provided an overview of the wind-tunnel experiments
simulating the London site of the dispersion of air pollution and its penetration into the local
environment (DAPPLE) project, which includes measurements of concentration fluctuations
and turbulent fluxes (the latter were specifically analyzed by Carpentieri et al. 2012). Klein
et al. (2011) simulated in a wind tunnel the Joint Urban 2003 experiments (Clawson et al.
2005) and showed the correspondence between the 98-percentile concentrations recorded in
full-scale releases and those observed in the laboratory.

Other recentworks onurban-like geometries include the already cited studyofMarucci and
Carpentieri (2020) and that of Di Bernardino et al. (2019) who, however, mainly focused on
the determination of the turbulent Schmidt number rather than the concentration fluctuations.

3 Transport EquationMethods

Studying the turbulent transport of pollutants in environmental flows requires a link with the
statistics of the velocity field. Yet, as already mentioned above, LES is the only approach
considered here in which the stochastic variability of the turbulent flow is explicitly solved. In
all other approaches, the statistical description of the velocity field is assumed as input data for
the problem. This description can be relatively simple when assuming that the velocity field
canbe represented as a boundary-layerflowover a rough surface. In that case, the (horizontally
homogeneous) velocity statistics can be reconstructed through similarity relationships using
local meteorological inputs (e.g. Stull 1988; Rodean 1996). The description of the velocity
field is, however, much more difficult when dealing with flows in complex terrain and/or
within heterogeneous urban (or industrial) geometries. Depending on the approach adopted
to study the transport process, the information needed to statistically characterize the flow
may be limited to the spatial distribution of the mean velocity 〈ui 〉, the turbulent kinetic
energy E = (1/2)

〈
u′
i u

′
i

〉
, its dissipation rate ε, or even the variances and cross-correlations,〈

u′
i u

′
j

〉
, and third-order velocity moments. Estimating the relevant turbulent time and length

scales is also usually needed.
The review of the different methods adopted for the diagnosis or prognosis of velocity

fields is beyond the scope of our work. For this reason, we do not systematically go into
details on the way that these key flow variables can be estimated, assuming that a method
“exists” to obtain the required flow statistics.

3.1 Large-Eddy Simulation

Large-eddy simulation explicitly simulates the most energetic part of the turbulent spectrum,
while smaller scales, subfilter or subgrid, are parametrized using a subgrid-scale (SGS)
model (e.g. Deardorff 1973; Moeng 1984; Pope 2000). In this way, LES gives access to the
full three-dimensional and temporal variability of the (resolved) turbulent flow. However,
this is at the expense of a formidable computational requirement as the velocity field needs
to be simulated with a high resolution. Moreover, LES is necessarily unsteady and long time
averaging is needed to obtain reliable statistics. In many real world applications, requiring
large computational domains, LES is often used at the limit of the available computation
resources. Issues therefore arise because the filter is defined to be equal or close to the grid
size. Because of this, in solving the velocity field, LES results exhibit a dependence both on
the grid resolution and on the numerical methods (e.g., Pope 2004; Geurts 2006; Kemenov
et al. 2012). Avoiding these issues requires a clear gap between the filter width (and related
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mixing length in the SGS model) and the grid size (e.g. Mason and Callen 1986), a solution
that is however rarely adopted. Further specific issues arise when simulating the scalar field,
since this requires different numerical methods and SGS models (e.g., Colucci et al. 1998;
Mironov et al. 2000; Balarac et al. 2008; Kaul et al. 2009; Heinze et al. 2015).

As shown in by laboratory experiments (e.g. Fackrell and Robins 1982a, b; Nironi et al.
2015) the ratio between the size of the source and that of the larger scale eddies has a great
impact on the concentration statistics. This feature makes the LES results on concentration
statistics particularly sensitive to the grid resolution (Ardeshiri et al. 2020). To avoid this, the
size of the grid cell should be much smaller compared to that of the source, a condition that
has not been adopted in most of the studies published so far.

Imposing this gap was clearly not affordable in the early studies, e.g., of Henn and Sykes
(1992) and Sykes and Henn (1992b), due to the limited computational resources available at
that time. In studying dispersion in the convective and neutral boundary layers, they simulated
the effect of sources smaller than the grid size by using a SGS puff model. The puff expansion
was based on a parametrization proposed by the same authors in previous RANS simulations
(Sykes et al. 1984; Sykes and Henn 1992a). Results for the concentration variance, σ 2

φ , and
relative intensity of concentration fluctuations, iφ , were compared with the measurements
of Deardorff and Willis (1984) and Fackrell and Robins (1982b) in convective and neutral
conditions, respectively. The simulated cumulative distribution functions were also reported
and qualitative comparisons with lognormal and clipped-normal distributions included.

More than a decade later, taking advantage of increased computational power, Xie et al.
(2004, 2007) were able to simulate the same case study (plume dispersion in a neutral
boundary layer) with a higher grid refinement and resolving the scalar source by one grid
cell. In the scalar balance equation, they used the SMART (sharp and monotonic algorithm
for realistic transport, Waterson and Deconinck 1995) method to discretize the advection
term and adopted no SGS model for the small-scale fluctuations. Despite the grid resolution
being still limited (compared to the source size), the results of Xie et al. (2004, 2007) for σφ

and iφ , were in satisfactory agreement with their own experimental results (Xie et al. 2004,
2007) and those of Fackrell and Robins (1982b).

Around that time, Dosio et al. (2003) and Dosio and de Arellano (2006) investigated
dispersion in the core of the planetary convective boundary layer. Adopting a periodic domain
(both in streamwise and cross-wind directions), they simulated a steady point source by
means of an instantaneous line source (and using the Taylor frozen turbulence hypothesis to
transform the time after the initial release into the distance downwind the source). The source
size measured two grid spacings vertically and one grid spacing horizontally in Dosio et al.
(2003) and one grid spacing in Dosio and de Arellano (2006). No quantitative comparison
with experimental results was attempted in Dosio et al. (2003), while Dosio and de Arellano
(2006) showed instead a good agreement with the ground-level concentration fluctuations
measured in Deardorff and Willis (1984) and Weil et al. (2002), despite the simulated source
size being larger than that used in the experiments. Dosio and de Arellano (2006) also
calculated the statistics of concentration fluctuations in the coordinate system relative to the
centre of mass and obtained good qualitative agreement with a gamma PDF.

An accurate investigation on the effect of the grid resolution on the concentration fluctua-
tion statistics (up to the fourthmoment) was very recently presented byArdeshiri et al. (2020)
using the open source code parallelized LES model (PALM, Maronga et al. 2015). Notably,
by spanning a wide range of grid refinement (the source was resolved from a minimum of
one to a maximum of 83 grid cells), Ardeshiri et al. (2020) showed that the dependence of
concentration statistics on the grid size is not monotonic and explained the mechanism by
which grid resolution affects concentration fluctuations. They also showed that the gamma
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PDF is an excellent model for concentration fluctuations from point sources, but only for
downwind positions beyond the peak of concentration fluctuation intensity.

3.2 RANSMethods

The application of RANSmethods to study concentration fluctuations from a steady localized
source in a turbulent boundary layer goes back to Csanady (1967), who investigated the
closure of the transport equation for the concentration variance, i.e. Eq. 4.

Csanady (1967) used gradient diffusion relationships to close both the turbulent flux
of scalar concentration

〈
u′
iφ

′〉 = −K ∂ 〈φ〉 /∂xi and the third-order moment
〈
u′
iφ

′2〉 =
−Kφ′2∂

〈
φ′2〉 /∂xi (K and K

φ
′2 are, respectively, the turbulent diffusivities of the mean and

variance concentration field). He also proposed to close the scalar dissipation as,

εφ =
〈
φ′2〉
Tφ

, (6)

where Tφ is a characteristic time scale of scalar dissipation. Csanady (1967) proposed Tφ to
be proportional to the mean advective travel time downwind from the source Ta = x/ 〈u〉,
where x is the downwind distance from the source. With the application of these closures,
Eq. 4 becomes

∂
〈
φ′2〉
∂t

+ 〈ui 〉 ∂
〈
φ′2〉

∂xi
= 2K

(
∂〈φ〉
∂xi

)2

+ ∂

∂xi

(
Kφ′2

∂
〈
φ′2〉

∂xi

)
−

〈
φ′2〉
Tφ

. (7)

He found an analytical solution of Eq. 7 by assuming steady state homogeneous turbulence,
slender plume approximation, self similarity, and Kφ′2 = K . Kewley (1978) found an alter-
native analytical solution by assuming a balance between production and dissipation and
he firstly demonstrated the mechanism by which off-centreline concentration variance dou-
ble peaks may be generated in a dispersing plume. Other analytical solutions of simplified
formulations of Eq. 7 (Netterville 1979; Wilson et al. 1982b) are discussed in Sect. 4.2.

Other authors (e.g. Lewellen and Teske 1976; El Tahry et al. 1981) presented instead
numerical solutions of Eq. 7, considering dispersion within a turbulent boundary layer. Sykes
et al. (1984) solved the full set of equations for mean concentration, fluxes, and concentration
variance and compared their results to experimental measurements of Fackrell and Robins
(1982b). Sykes et al. (1984) emphasized the need of introducing a characteristic scalar length
scale to correctly model the concentration variance dissipation rate. Based on Durbin (1980)
and Sawford (1982) (see Sect. 3.4 below), they also showed that relative dispersion and
inertial range scaling should be used to define the evolving characteristic scalar length scale
of the plume as

dLφ

dt
= α1σur , (8)

where

σ 2
ur = 〈

u′
i u

′
i

〉
(Lφ/L)(2/3), (9)

is the turbulent kinetic energy involved in the relative dispersion process. The constant α1

is empirical, L is the characteristic turbulent macroscale related to the size of larger scale
eddies. These definitions imply that the dissipation time scale is

Tφ = α2Lφ/σur , (10)
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where α2 is a second empirical constant. According to this formulation, the variance dissi-
pation rate evolves rapidly when the plume is small and slows down while the plume grows.
However, Sykes et al. (1984) stressed that Eq. 9 becomes inappropriate for a large travel

time, when Lφ � L , and they imposed a further relationship εφ ∝
(〈
u′
i u

′
i

〉1/2
/Lφ

)
. Thom-

son (1997) analyzed the Sykes et al. (1984) model in view of his theoretical findings of the
behaviour of the scalar dissipation in three asymptotic regimes. In the most relevant regime,
Thomson (1997) theory predicts that Tφ = 2t/(3λs), where λs is the source geometrical
dimensionality, e.g. λs = 2 for a continuous point source, and t can be considered to be
the travel time (Ta) in this context. The Thomson (1997) analysis showed that the two con-
stants in the Sykes et al. (1984) model must be related to the source dimensionality so as to
be consistent with his theoretical analysis. Some simplifications of the Sykes et al. (1984)
model were introduced by other authors. Sykes et al. (1986) obtained a set of ordinary dif-
ferential equations for the downwind evolution of the integrated quantities over the plume
cross-sections and Galperin (1986) simplified the model for the scalar length scale discard-
ing the need to solve a prognostic equation for the length scale but introducing less general
assumptions. These early applications, adopting second-order closure models, showed the
ability of RANS models to predict concentration variance in neutral stability conditions.
To our knowledge, there are no RANS applications that simulate concentration fluctuations
in a convective boundary layer. These are indeed expected to be critical for second-order
RANS methods, which cannot formally handle counter-gradient turbulent transport typical
of convective conditions (e.g. Stull 1988).

In more recent years, RANS methods have been widely applied to simulate concentration
fluctuations in urban and urban-like array of obstacles (e.g. Efthimiou 2019). Andronopoulos
et al. (2001) applied a second-order closure to forecast concentration variance for an ideal-
ized road intersection. As with Csanady (1967), Andronopoulos et al. (2001) used diffusion
coefficients, as defined by Bartzis (1989), to close the RANS equations for the mean and
variance. The length scale for the scalar dissipation rate was simply assumed to be in equi-
librium and equal to the turbulent length scale used in the turbulent closure, i.e. Lφ = L .
This implies that the scalar dissipation time scale is proportional to the turbulent time scale
(Warhaft and Lumley 1978)

Tφ ∝ T (= E/ε). (11)

A similar approach was used by Milliez and Carissimo (2008) to simulate the concentration
fluctuations measured in the MUST experiment (Biltoft 2001; Yee and Biltoft 2004) for a
plume dispersing in an obstacle array. Hsieh et al. (2007) compared the equilibrium approx-
imation with a simplification of Sykes et al. (1984) variable length-scale approach defining
Lφ ∝ (σyσz)

(1/2), with σy and σz being the plume crosswind and vertical spreads of themean
plume, respectively. They found that the variable length scale ensures an improved perfor-
mance in reproducing the MUST experimental results. Yee et al. (2009) further improved
the length scale formulation (and related dissipation time) adapting Cassiani et al. (2005a),
who formulated a mixing time scale for a Lagrangian PDF micromixing model. It is worth
noting that, as discussed in Cassiani et al. (2005a) and outlined in Sect. 3.3, the dissipation
time used in the second-order closure model is linked to the micromixing time used in the
PDF transport equation. Yee et al. (2009) obtained a remarkably good agreement with the
MUST experimental measurements. A different approach was used by Efthimiou and Bartzis
(2011) and Efthimiou et al. (2016b); they generalized the proportionality between Tφ and
Ta (as originally proposed by e.g. Csanady (1967)) defining a local and non-homogeneous
mean travel time from the ratio of the concentration of two chemical species emitted at the
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source

Tφ ∝ Ttravel

(
= 1

λD
ln

φd

φc

)
, (12)

where φc and φd denote the concentration of a passive and decaying scalar, respectively, the
latter characterized by a constant decay rate λD .

3.3 PDFMethods

What we refer to as ‘PDF methods’ for the prediction of concentration fluctuations in atmo-
spheric flows is an approach that, historically, arises as the conjunction of twoparallel research
fields. Firstly, the atmospheric dispersion modelling community, who are devoted to the
formulation of Lagrangian one-particle dispersion models, and secondly, to the turbulent
combustion community on reacting flows. In what follows our aim is two-fold: (i) to show
how these methods have been implemented in atmospheric Lagrangian one-particle disper-
sion models whose use was initially limited to the prediction of the mean concentration
field, and (ii) to briefly review how these methods originated in a broader and more general
theoretical framework for calculating turbulent reacting flows based on the formulation of
transport equations, in order to forecast the PDF of all the relevant turbulent variables.

Fundamental concepts on Lagrangian one-particle dispersion models that are not strictly
linked to the problemof concentration fluctuations (nonetheless needed by the less acquainted
reader to understand what follows) are presented in the Appendix. These models are used to
simulate the trajectories of independent single fluid marked particles within a turbulent flow.
Each of these particles carries an unaltered amount of tracer, so that

dφ∗

dt
= 0 (13)

where, as in the Appendix, we use the star to denote a particle quantity. These models are
not suited to the estimate of higher-order (than the mean) concentration statistics, since
they are unable to simulate any mixing process. In their basic application, Lagrangian one-
particle models are therefore devoted to the estimate of the mean concentration only, and
consider only the marked particles passing through the source. In their simpler form of
random displacement models (see Eq. 38 in the Appendix) they use the gradient diffusion
approximation. Application of this approach to the estimates of fluctuation statistics requires
instead to fill the whole domain with particles (e.g. Cassiani et al. 2005a, b), each of them
moving according to Eq. 38. This allows for the inclusion of the dissipative mixing process
in the simulation and therefore the estimate of the concentration PDF. Yet, this necessitates
a further equation for the particle concentration state to be solved,

dφ∗ = Ωdt (14)

where Ω denotes a generic mixing model, i.e. a term that allows each particle to exchange
scalar concentration with the surrounding particles. Several types of mixing models have
been proposed in the literature. The simplest model is the interaction by exchange with the
mean (IEM), which has been used for decades in the context of turbulent combustion (Dopazo
and O’Brien 1974; Pope 2000),

123



M. Cassiani et al.

Ω = − (φ∗ − 〈φ〉)
τm

, (15)

where τm is the mixing time scale (see Sect. 3.3.1). The IEM model uses a simple relaxation
of the local concentration towards a local mean, but it has been shown to introduce spurious
fluxes altering the mean concentration field (Pope 1998; Sawford 2004; Cassiani et al. 2007b;
Viswanathan andPope 2008).Despite this shortcoming, the IEMmodel has beenwidely used,
for example, by Dixon and Tomlin (2007) to simulate fluctuations in an idealized urban street
canyon and by Cassiani et al. (2010) to simulate the effects of SGS emission heterogeneity
in a mesoscale dispersion model.

In a Lagrangian particle model including micromixing, the concentration moments can
be simply computed by using, for example, a cell average

〈
φm 〉

j =
∑N j

i=1 φ∗m
i

N j
, (16)

where i indicates a particle, N j is the number of particles within the j th grid cell, and 〈φm〉 j
is the mth order concentration moment in the cell. These calculated moments are affected
by statistical noise and the error decreases by increasing the number of simulated particles
(see e.g. Cassiani et al. 2007b). The concentration PDF can also be estimated from the
particle concentrations (see e.g. Pope 1985), with different methods, including the simple
box counting.

Assuming that the particle are uniformly distributed in the domain, it can be shown (see
e.g. Pope 2000), that Eqs. 38 and 14 with the definition in Eq. 15, correspond to a transport
equation for the concentration PDF of the form

∂ fφ
∂t

+ 〈ui 〉 ∂ fφ
∂xi

= ∂

∂xi

(
K

∂ fφ
∂xi

)
+ ∂

∂ψ

[
fφ

(ψ − 〈φ〉)
τm

]
. (17)

A comparison between Eqs. 17 and 5 shows that the turbulent flux of probability has been
closed by a standard gradient-diffusion approach,

− ∂

∂xi

(
fφ

〈
u′
i

∣∣ψ 〉) = ∂

∂xi

(
K

∂ fφ
∂xi

)
, (18)

while the conditional Laplacian (containing all information about the scalar fluctuation dis-
sipation) has been closed by the IEM model (see e.g. Pope 2000)

〈
D∇2φ|ψ 〉 = − (ψ − 〈φ〉)

τm
. (19)

Bertagni et al. (2019) have recently found a formal solution for the statistical moments
of concentration from the transport equation of the PDF (Eq. 17). In particular, they derived
an analytical relation for the passive scalar variance σφ , which does not require a numerical
or empirical approach and, encouragingly, it has been shown to well resemble wind-tunnel
data from a point source in a neutral boundary layer.

In recent years, most commonly, the random displacement model has been replaced in
atmospheric applications by stochastic equations for the position and velocity of particles
(Eqs. 39 and 40 in the Appendix). Similarly to that explained above for the random displace-
ment model, the physical state described by Eqs. 39 and 40 can be augmented with Eq. 14 for
the concentration. If the particles are uniformly distributed in the domain of interest, it can
be demonstrated (see e.g., Pope 2000) that this system of stochastic differential equations

123



Concentration Fluctuations from Localized Atmospheric Releases

corresponds to the following transport equation for the joint velocity–scalar concentration
PDF (e.g. Cassiani et al. 2005a, 2007b)

∂ fφu
∂t

+ vi
∂ fφu
∂xi

= − ∂

∂vi

[
ai fφu

] + ∂2

∂vi∂v j

[
Bi j fφu

] − ∂

∂ψ

[
fφuΩ(ψ)

]
, (20)

whereψ is the sample space variable of the concentration φ, and vi is here used to denote the
sample space variable of the (random variable) velocity, ui . The symbol Ω(ψ) is used here
to indicate a generic deterministic mixing model, noting that Bi j = bikb jk/2 (see Eq. 42 in
the Appendix). We briefly note that in flows with a variable air density the requirement of
uniform particle distribution must be replaced by particles distributed according to the air
density (Thomson 1987; Cassiani et al. 2015).

The use of the joint PDF ( fφu) allows the introduction of conditional (over velocity)
averages. By replacing the unconditional mean concentration in the IEM model with the
conditional mean, one obtains the interaction by exchange with the conditional mean (IECM)
micromixing model,

Ω = − (ψ − 〈φ|v〉)
τm

, (21)

introduced by Fox (1994) and Pope (1998). Pope (1998) and Sawford (2004) discuss why
the IECM model does not create spurious fluxes and does not alter the mean concentration
field. Sawford (2004) also obtained good agreement for mean and higher-order moments
of concentration measured in decaying grid turbulence. The IECM model was firstly used
for modelling concentration fluctuations from point and line sources in atmospheric-like
boundary layers under neutral stability conditions by Cassiani et al. (2005a) and in convective
stability conditions by Cassiani et al. (2005b) and Luhar and Sawford (2005). Cassiani et al.
(2007b) applied the IECM model to simulate concentration fluctuations from a line source
in canopy-generated turbulence, and Leuzzi et al. (2012) used it to simulate the fluctuations
of a plume dispersing through an array of obstacles in the MUST experiment.

An interesting aspect of the IECM model has been discussed by Sawford (2004), who
demonstrated that in homogeneous turbulence in the limit of τm → 0, i.e., when the con-
ditional average fully determines fluctuations, the IECM model is equivalent to a simple
meandering plume model where a particularly simple form of the two-point velocity corre-
lation is assumed in the relative expansion (Sawford 2004; Cassiani et al. 2005a).

Both the IEM and IECM modelling approaches discussed above suffer from the fact that
they do not allow relaxation of the PDF shape in the absence of mean scalar gradients (e.g.
Pope 2000, p. 550). This issue may significantly alter the forecast high-order concentration
moments of a dispersing plume, as was shown by Marro et al. (2018). Other approaches
to close the micromixing term include mapping closures (Pope 1991), Curl’s models (Curl
1963; Hsu and Chen 1991), the Euclidean minimum spanning tree model (Subramaniam and
Pope 1998), stochastic models based on the Langevin (Valiño and Dopazo 1991; Pozorski
and Minier 1998; Heinz 2003) or the Fokker–Planck (Fox 1994) equations, and models that
directly require spectral information (Vaithianathan et al. 2002). Recently, Meyer and Jenny
(2013) investigated the properties of the velocity-conditioned Curl’s model and proposed a
new velocity-conditioned mixing model that proved to be computationally efficient and to
have better properties compared to the IECM model with respect to the ability to correctly
relax PDF shape.

So far we have discussed how PDF methods used to forecast the moments and PDF
of the concentration have been introduced in the atmospheric community as an extension
of Lagrangian single-particle dispersion models. However, PDF methods have a broader
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application and aim to solve transport equations for the PDF of several flow properties.
Historically, the PDF methods originated from the seminal work of Lundgren (1967), who
first recognized that a hierarchy of unclosed transport equations for the velocity PDF can
be obtained from the Navier–Stokes equations by using the properties of the fine grained
PDF. More generally, the PDF can be used a single or several flow statistical properties,
and for single or multiple points, and single or multiple times (e.g., Dopazo 1994). In what
we have discussed so far, we limited our review to PDF methods to forecast the one-point
one-time PDF for the concentration, and the PDF in the transport equations was intended
as the concentration distribution or at most the velocity–concentration joint distribution.
Yet, other turbulent variables can be included. One of the most remarkable points in favour
of the use of the PDF approach is that chemical reactions of any order appear in closed
form. Indeed, previous reviews on PDF methods have mainly focused on the simulation of
reacting and dynamically-active scalars with emphasis on combustion processes (O’Brien
1980; Pope 1985; Dopazo 1994; Haworth 2010). PDF methods are also treated in books
about turbulent reacting flows (Kuznetsov and Sabel’Nikov 1986; Pope 2000; Fox 2003;
Heinz 2003; Haworth and Pope 2011).

Here, the review focuses on atmospheric applications and as customary (e.g., Thomson
1987) we assumed that the one-point one-time velocity PDF has a known analytical shape.
Therefore, we do not discuss in any detail the use of PDFmethods to forecast the velocity field
(e.g., Pope 1994, 2000), despite its interest when dealing with air pollution problems (see
for example the work by Bakosi et al. (2009) who simulated dispersion in an urban canyon).
Indeed, the computational requirement to forecast the velocity PDF in atmospheric domains
is prohibitive. In single-time single-point PDF methods, similarly to RANS methods, the
information about the mean turbulent time and length scales must be parametrized based on
known quantity or alternatively a turbulent frequency variable could be included in the joint
PDF (Pope 2000; Duman et al. 2016).

The PDF transport equations are multidimensional. Any added scalar is a further dimen-
sion in the equation and, in case of joint velocity scalar PDF equations, any velocity
component adds a further dimensions to the domain. For example if the joint PDF fφu
was considered in a 3D domain, Eq. 20 would have seven dimensions. We emphasize that
even when calculating the concentration PDF fφ , based on an assumed mean velocity and
PDF fu , the PDF transport equation must be solved for the specific initial and boundary
conditions (Cassiani et al. 2005a, b, 2007b) and the equation is still in seven dimensions.
Due to the high dimensionality, stochastic approaches are commonly the preferred methods
to numerically solve the PDF transport equation. The approaches can be Eulerian stochastic
field methods (Valiño 1998; Sabel’nikov and Soulard 2005; Garmory et al. 2006; Cassiani
et al. 2010; Wang et al. 2018) or more commonly the Lagrangian particle-mesh methods
(Pope 2000; Fox 2003; Heinz 2003), which has been briefly outlined above for the spe-
cial case of the calculation of the concentration PDF by extending atmospheric Lagrangian
one-particle dispersion models.

For atmospheric dispersion applications, assuming that the velocity PDF is known, consid-
erable optimization in the calculations is possible. In the context of Lagrangian particle-mesh
algorithm, Cassiani et al. (2005a, b) proposed the use of expanding grid to model plume dis-
persion, and Cassiani et al. (2007b) the use of nested grid with straightforward particle
splitting and erasing procedures. These algorithms advance particles in parallel and allow the
straightforward inclusion of chemical processes and therefore the possibility to model fluc-
tuations of reacting plumes. Algorithms advancing particles in parallel allow also the use of
mixing algorithm based on direct particle interaction such as Curl andmodified Curl methods
(Meyer and Jenny 2013). If there is no ambition to consider chemically reactive species, and
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by using only mixing algorithm based on the mean concentration (i.e., IEM and IECM), the
assumption of a known velocity PDF allows also the pre-calculation of the mean values to be
used in mixing models. This approach permits the use of simple algorithms amenable of triv-
ial parallelization where each particle is independently advanced (Luhar and Sawford 2005;
Postma et al. 2011a, b). This simplified approach does not allow the use of mixing algorithm
based on particle interaction nor the inclusion of chemical reactions. Moreover, if the simpler
IEM algorithm is used with a pre-calculated mean value an inconsistency arises because, as
discussed above, the IEM model creates spurious fluxes that tend to alter the mean value
from the pre-calculated (and correct) mean. This inconsistency must be considered when
evaluating the fluctuations.

PDF transport equationmethods can also be coupled to LES to provide what is perhaps the
most advanced way of simulating concentration fluctuations. This approach is named filtered
density function (Colucci et al. 1998). Aguirre et al. (2006) used this coupled approach for
simulating a turbulent reacting plume. Cassiani et al. (2007a) used this approach to simulate
the concentration PDF generated by a scalar source under-resolved by the LES.

3.3.1 The Micromixing Time Scale

The mixing, or micromixing, time scale τm is a key quantity in modelling the dissipative
effect of molecular diffusion on fluctuations. In the idealized case of homogeneous turbulent
mixing (with no mean scalar gradient), the mixing time scale is equal to the dissipation
time scale of concentration variance, i.e. τm =Tφ. In this case, the initial mixing time scale is
imposed by the initial correlation length scale of the scalar field. If the correlation length scale
is initially smaller compared the turbulent length scale it will increase, eventually reaching
that of the turbulent velocity length scale (Sreenivasan et al. 1980). The increase in the scalar
length scale will also increase the mixing and dissipation time scales until an equilibrium is
reached. At the equilibrium, the mixing time scale is only imposed by the velocity statistics
and has therefore to be proportional to the turbulent time scale T . However, when considering
the condition of inhomogeneous mixing, like the dispersion from a localized release, the
dissipation of fluctuations and, therefore, the parametrizations of τm and Tφ depend also on
the source dimensionality (line, point) and size (e.g., Thomson 1996, 1997; Cassiani et al.
2005a). Nonetheless, the proportionality between turbulent and dissipation (or mixing) time
scale has been often used also for these conditions, but the constant of proportionality varies
widely depending on the specific model or experimental set-up. We note that the behaviour
of the dissipation time scale for a localized source is similar to that of homogeneous random
field starting with a correlation length scale smaller than the turbulence scale, if the former
is integrated across the plume (Thomson 1996)

Additionally, the value of τm also depends on the the mixing model used (conditioned
on the velocity or not). As discussed in Cassiani et al. (2005a), for the IECM model τm =
Tφ(1−〈〈φ′|u〉2〉/σ 2

φ ), while for the IEMmodel τm =Tφ . Sawford (2004) suggested that, for
a localized source, τm is closely related to the process of relative dispersion, in agreement
with previous considerations on Tφ made by Sykes et al. (1984). The link between relative
dispersion and scalar dissipation has been formally demonstrated for the special case of
homogeneous turbulent mixing by Thomson (1996) (see also the discussion in Sawford
(2001)). Based on this physical link Cassiani et al. (2005a) expressed the mixing time as
τm ∝ σr/σur , where σur is the relative (to the local centre of mass) velocity standard
deviation and σr the relative spread standard deviation, expressed as
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σ 2
r = d2r

1 + (d2r − d20 )/(d20 + (4/3)E TLt)
, (22)

where d0 is the source size, TL the Lagrangian integral time scale, t the travel time of a
Lagrangian particle, and d2r the inertial range relative dispersion spread, parametrized as

d2r = Crε(t0 + t)3, (23)

where Cr is the Richardson-Obukhov constant (e.g., Monin and Yaglom 1975; Franzese and
Cassiani 2007) and t0 a characteristic time of the source size. Here, σ 2

ur is parametrized as
σ 2
ur = (2/3) E(σr/L)(2/3), if σr < L , while if σr > L the bounding value σ 2

ur = (2/3) E is
imposed; L is the characteristic turbulent length scale and depends on the stability conditions.
Under neutral stability L=E (3/2)/ε, while in convective conditions L=hb, where hb is the
depth of the convective boundary layer (Cassiani et al. 2005b). Note that this model for τm is
similar to that of Sykes et al. (1984) for Tφ , but more consistent with both the inertial range
scaling argument and the Taylor’s kinematic dispersion theory. The empirical proportionality
constant in τm ∝ σr/σur was chosen to account for source dimensionality.

In non homogeneous turbulence, Eq. 23 is discretized to capture the inhomogeneity along
a particle trajectory (Cassiani et al. 2005a). In Cassiani et al. (2007b), an upper bound to
the resulting time τm was set when this is larger than its equilibrium value proportional to
the turbulent time scale T . This formulation (or a derived one) has been also applied to
PDF (RANS) simulations of concentration fluctuations in urban canopies (Yee et al. 2009;
Leuzzi et al. 2012). Recently, Bertagni et al. (2019) applied it to an analytical solution for
the second-order statistical moment of concentration in a neutral boundary layer. Yet, more
research on a general definition of τm remains crucial to improve the generality of the mixing
models.

3.4 Lagrangian Two-Marked-Particles Methods for ConcentrationVariance

Another possible use of theLagrangianmarked-particles framework to estimate concentration
fluctuations statistics is provided by the two-marked-particles methods. These methods rely
on the same concept of the one-particlemodels, i.e. that ofwriting the relationship between the
motion of the marked particles and the moments of the scalar concentration. As discussed in
the Appendix, Eq. 37 shows the relation between the mean concentration and the one-particle
transition probability density function. This relationship can be extended to second-order
moments by considering the motion of two correlated particles (below indexed A and B)
(see, e.g., Thomson 1990; Sawford 2001)

〈
φAφB

〉
=

∫∫
t A0 ,t B0

∫∫
V
pA,B SASBdxA

0 dx
B
0 dt

A
0 dt

B
0 , (24)

where φA = φ(xA, t A), SA = S(xA
0 , t A0 ), (equivalent notation for the particle B). pA,B =

p(xA, xB , t A, t B; xA
0 , xB

0 , t A0 , t B0 ) is the probability that two particles originally at position
xA
0 , x

B
0 at time t A0 , t

B
0 will end their trajectory in xA, xB at time t A, t B . By taking t A = t B = t

and xA = xB = x, the relationship in Eq. 24 describes the second-order moment of concen-
tration in a single point and time, and can be used to compute the concentration variance in
conjunction to Eq. 37. Equation 24 implies, through pA,B , that is possible to model realiza-
tions of the correlated motion of two particles. We note that often the equations above are
written in backward formulation so that the initial time correspond to the sampling time. This
reversed formulation has many practical advantages especially if the concentration fluctua-
tions need to be calculated only in few specific points (e.g. Sawford 2001). The formulations
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above can also be extended to nth order concentration moment but this implies the ability
to model the correlated motion of N particles. Egbert and Baker (1984) and Sawford (2001)
explained why a marked particle can be used to simulate the evolution of concentration vari-
ance, and therefore its dissipation, even if the molecular diffusivity is not explicitly included.
Summarizing, this goes back to the fact that, at high Reynolds and finite Schmidt number,
the actual rate of dissipation of scalar fluctuations is independent from molecular diffusivity.
This is recognized also by the parametrization presented above for RANS models (Eqs. 6
and 10) and PDF models (see Sect. 3.3.1), where it is clear that dissipation is driven by tur-
bulent scales. Sawford (2001) discussed in detail the implication of this in terms of motion
of marked particles and marked molecules, with the latter explicitly including molecular dif-
fusivity. In a marked Lagrangian framework, neglecting molecular diffusivity corresponds to
the assumption of an infinite Reynolds number with an inertial subrange extending to arbi-
trarily small time and space scales. These arguments were already discussed in Durbin (1980)
and Thomson (1990). An important point to recognize is that the zero molecular diffusivity
limit is singular and, if properly handled, does not imply zero dissipation (Sawford 2001).

Thomson (1990) used the Fokker–Planck equation of the Markov process for two-particle
velocity and position to show a general approach by which, assuming a known analytical
shape for the two-point velocity PDF, it is possible to formulate a consistent (well-mixed
compliant) Lagrangian stochastic model for the correlated motion of two particles. The
general form of the Lagrangian equations for the velocity and positions of two particles is
the same of Eqs. 39 and 40 for a single particle but with the index extending between one
and six, indices 1–3 related to particle one and indices 4–6 to particle two. The definition
of the diffusion coefficient for the Thomson (1990) two-particle model follows exactly that
of the one particle model, Eq. 42 in the Appendix. The diffusion coefficient represents the
part of the acceleration that is uncorrelated from one time to the next and it is therefore
reasonable to assume it independent of any property of the second particle (Thomson 1990).
The definition of the drift coefficient, ensuring the respect of well-mixed conditions, follows
the same methods used by Thomson (1987) for one-particle models (briefly discussed in
the Appendix) but with several complications. However, the details of the formulation goes
beyond the scope of the present review.

Despite their physical appeal, the adoption of two-particle models have been so far mainly
limited to dispersion in homogeneous isotropic turbulence due to the difficulty in formulating
these models in non-homogeneous non-isotropic turbulence. Indeed, these methods have
been very rarely used to calculate concentration fluctuations in more complex flows for
operational purposes. Exceptions are the works by Kaplan and Dinar (1993) and Cohen and
Reynolds (2000). In simulating the dispersion from a line source in a canopy flows, Cohen
and Reynolds (2000) simplified the approach assuming a trivial form for the two-particle
correlation (where particles are initially correlated and subsequently move independently).
This simple correlation model was named the NGLS model by Thomson (1990) since it is
rooted in Novikov (1963), Gifford (1982), and Lee and Stone (1983). Despite this strong
assumption, results by Cohen and Reynolds (2000) showed a satisfactory agreement with the
experimental results by Raupach and Legg (1983). The model proposed by Kaplan and Dinar
(1993) is rather general but uses the assumption that the two-particle correlation is entailed
in the diffusion term of the stochastic equations (see Eq. 40 in the Appendix). As mentioned
above, this coefficient should represent the part of the acceleration that is uncorrelated from
one time to the next ( Thomson 1990) and it seems in contrast with the physical intuition
that the part of the acceleration that is uncorrelated from one time to the next is correlated
with that of a second particle, which can be further away. More recently Weil et al. (2018)
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proposed the use of a two-particle model, based on Thomson (1990) approach, in connection
to LES.

3.5 Lagrangian Stochastic Heuristic Methods

Recently, some authors implemented heuristic extensions ofLagrangian one-particlemethods
to include the ability to forecast concentration variance. The main reason for these develop-
ments is retaining the flexibility and computational efficiency of Lagrangian single-particle
methods. In fact, we remind that in a Lagrangian single-particle method only particles pass-
ing through the scalar source are modelled, while in a Lagrangian solver of a PDF transport
equation the whole volume of interest inclusive of the “background” needs to be modelled
(i.e, filled with computational particles). However, in a single-marked-particle framework,
the information about mixing and variance dissipation are not naturally included.

Cassiani (2013) proposed to assign to each (i th) released particle (from the source location)
a further state variable for the particle volume vp∗

i and a conserved mass m∗
i , according to

the marked-particle concept, for this reason the model is named volumetric particle approach
(VPA). From volume and mass, a concentration can be defined and an IEM micromixing
model (see Eq. 15), borrowed from what is done in PDF transport equation methods, is used
to compute the relaxation of the particle concentration towards the local mean value. The
mean value necessary for the relaxation is computed by discretizing the domain in grid cells
of volume VC j . From the updated concentration an updated volume can be computed, i.e. the
particle volume would increase due to mixing. It is worth noting that vp∗

i does not represent
the real volume of the particles, but it is a variable which increase is meant to represent the
homogenization of the concentration due to the scalar dissipation process. The expression
for the second-order concentration moments in the VPA approach is

〈
φ2〉

j =
N j∑
i=1

φ∗2
i

vp∗
i

VC j
(25)

where φ∗
i is the concentration of the i th particle and N j the number of particles within the

cell j . As evidenced by Cassiani (2013), this model implies an extremely simplified (and
unrealistic) form for the concentration PDF, where a fraction of the volume within each grid
cell is at constant background state (e.g., zero) and the rest of the volume is at the particle
concentrations

f (ψ) = δ(ψ)

(
1 −

∑N j
i=1 vp∗

i

VC j

)
+

N j∑
i=1

δ(ψ − φ∗
i )

vp∗
i

VC j
(26)

where ψ is the sample space variable. Due to this simplified representation of the PDF
only the first- and second-order moments of concentration can be predicted by the model,
while higher-order moments are generally incorrect. A micromixing time, similarly to what
formulated for the IEMmodel in PDF transport equationmethods, is used to ensure the correct
dissipation rate for the concentration fluctuations. Cassiani (2013) found that concentration
variance predictions were in satisfactory agreement with experiments in neutral boundary
layer, canopy turbulence, and decaying grid turbulence ( Fackrell andRobins 1982b; Raupach
and Legg 1983; Brown and Bilger 1998). Marro et al. (2018) used the model of Cassiani
(2013) to simulate the measurements of Nironi et al. (2015). Furthermore, they showed that
a gamma PDF, fully defined by the first two moments, ensures a satisfactory agreement for
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the skewness and the kurtosis. Marro et al. (2018) named this approach volumetric particle
gamma model.

Manor (2014) noted that, by using gradient-diffusion approximations, the closed con-
centration variance equation is similar to a standard mean advection–diffusion equation.
Therefore, he proposed to use the same Lagrangian stochastic one-particle methods used for
themean concentration to solve this equation.We note that this concept is similar to the earlier
approach by Netterville (1979) and Wilson et al. (1982a), who obtained Gaussian analytical
solutions for the concentration variance equation, see Sect. 4.2. Manor (2014) closed the dif-
fusion coefficient by using the apparent eddy-diffusivity concept, Ku,v,w = 2σ 2

u,v,wTLu,v,w,
thus using the same flow variables used to formulate a one-particle Lagrangian stochastic
model.With this closure, the variance production term inEq. 7 becomes a source term (always
positive) depending only on the mean concentration field,

− 2
〈
u′
iφ

′〉 ∂ 〈φ〉
∂xi

= 2σ 2
ui TLi

(
∂ 〈φ〉
∂xi

)2

, (27)

where no summation is implied in the first two indexes on the right-hand side. This term
can be pre-calculated, and assigned to modelled particles, depending on their positions in
the domain. The effects of scalar dissipation are modelled using an additional state variable
for the particles, the carried amount of concentration variance, σφ p , and allowing it to decay
with a dissipation time scale Tφ . A simple model of the form Tφ ∝ TL is used. As extensively
discussed above in Sects. 3.2 and 3.3.1 this type of definition is valid only when the scalar
length scale is larger than the turbulent integral length scale. Manor (2014) applied the model
to dispersion in a urban area as measured in the JU2003 field experiment. Ferrero et al.
(2017) applied Manor (2014) approach to the experimental measurement of Fackrell and
Robins (1982b) by using a dissipation time scale linearly growing in time. Oettl and Ferrero
(2017) implemented a similarmodel in an operational Lagrangian dispersionmodel for odour
impact evaluation.

Kaplan (2014) used the relationships between two-particles models and second-order
moment of concentration, Eq. 24, and demonstrated the following relationship to hold

〈
φ(x, t)2

〉 =
∫
V
p(x, t; x0, 0)S(x0, 0)Φc(x, t; x0, 0)dx0, (28)

where S is the scalar source function, and p(x, t; x0, 0) is the probability of a single particle
being in x0 at the initial time to be in x at time t . The quantity Φc(x, t; x0, 0) is defined
in Kaplan (2014) and called the conditional-averaged scalar concentration. Here we briefly
note that the conditional probability defining this conditional average is the ratio between
the two-particle transition probability (see Sect. 3.4) and a one-particle transition probability
associated to one of the two particles composing the particle pair (see Sect. 6). To go forward
Kaplan (2014) took an heuristic approach and noted that Φc(x0, 0; x0, 0) = S(x0, 0) at
the initial time and that for larger time, when two particles are far away, Φc(x, t; x0, 0) =
〈φ(x, t)〉. Therefore,Φc(x, t; x0, 0) is included as an additional state variable transported by
the particle and its evolution is again modelled by a simple linear relaxation towards the mean
state (i.e., an IEM model) governed by a time scale. Kaplan (2014) used the formulation of
Sykes et al. (1984) to model this time scale. Once the model is discretized, the expression
used to calculate the second-order concentration moment in a cell of volume VC j in this
approach is

〈
φ2〉

j =
N j∑
i=1

Φ∗
ci

m∗
i

VC j
, (29)

123



M. Cassiani et al.

It is worth noting that this formula can be recast in a form equivalent to that used in the VPA
approach previously proposed by Cassiani (2013), since m∗

i = φ∗
i × vp∗

i and realizing that
φ∗
i = Φ∗

ci , because both are evolved starting from the initial source concentration towards a
local mean (calculated in a cell of volume VC j ) by the IEM model. This is also discussed in
a recent review by Ferrero et al. (2020).

4 Phenomenologically-Based Approaches

Themodels presented in the previous sectionwere all based on the balance equation of a given
statistical quantity, characterizing the one-point fluctuations of the scalar concentration. In this
balance equation, the statistics of the velocity field appear explicitly and can be provided as an
input parameter. In what follows, we review another typology of models whose formulation
shortcuts any sort of transport equation, and therefore we have to rely on some empirical
evidence. The focus of these models, which we have referred to here as ‘phenomenologically
based’, is directly on the the one-point statistics of the scalar concentration. In all of these
models (except for theLagrangian stochasticmeandering approach, Sect. 4.1) the information
on the statistics of the velocity fields appear only implicitly, i.e. through the determination
of parameters modelling the dispersion and the mixing of the scalar.

4.1 Fluctuating PlumeModels

Thebasis of this approachwas initially proposedbyGifford (1959) and consists in considering
two independent processes in the dispersion of a slender fluctuating plume: the meandering
and the relative dispersion (see Fig. 1).

These two mechanisms can be treated as independent with the assumption that they are
related to spatial scales well separated (Hanna 1986). Physically, this assumption has to rely
on the existence of a spectral gap between the large and the small scale eddies acting on the
plume (the reader is referred to the discussion chaired by S. Corssin between F. Gifford and
G.K. Batchelor in the last section of Gifford (1959)). This condition is expected to hold only
in the very near-field or in the far-field (Yee et al. 1994b).

Mathematically, this assumption permits to express the one-point concentration φ as a
random variable that is function of two independent random variables: the crosswind position
of the center of mass due to the meandering (ym, zm), and the scalar concentration in a
relative frame attached to this centre of mass φr . These random variables are characterized
by specific PDFs, referred to as fm and fφr , respectively for position of the centre of mass
and concentration in relative frame. Consequently, the PDF of the concentration φ, fφ , will
be the convolution of fm (the PDF of the location of the plume instantaneous centroid) and
fφr (the PDF of the concentration field in the centre of mass reference (x, ym, zm))

fφ (ψ; x) =
∫ hb

0

∫ ∞

−∞
fφr (ψ; x, ym, zm) fm (ym, zm; x) dymdzm, (30)

where ψ is the sample space variable for the concentration φ, while to simplify the notation,
we used (ym, zm) to denote both random variables and sample space variables. The reader
should note that, although mean wind shear can be included in this framework, the plume
meandering is strictly defined as a crosswind phenomenon. This means that along-wind
turbulent dispersion is neglected and therefore, only ym and zm appear in this relationship.
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Here we used the notation fφ (ψ; x) as customary in the fluctuating plume community, but
we stress that this is just the one-point one-time PDF fφ in the specific point x.

The assumed independence betweenmeandering and relative dispersion processes implies
that the total crosswind plume standard deviations σy,z in absolute coordinates, can be
expressed as a function of the outer (meandering, σym,zm) and the inner (relative disper-
sion, σyr ,zr ) crosswind plume standard deviations. Applying the parallel axis theorem of
moments of inertia, one obtains (Csanady 1973; Gailis et al. 2007)

σ 2
y,z = σ 2

ym,zm + σ 2
yr ,zr . (31)

The quantities σ 2
zm/σ 2

zr and σ 2
ym/σ 2

yr are usually referred as meander ratios. Two out
of the three terms in Eq. 31 are normally parametrized. For instance, Fackrell and Robins
(1982b) used the results presented in Hay and Pasquill (1959) and Smith and Hay (1961).
Other authors (e.g., Marro et al. 2015) modelled σy,z by applying Taylor’s statistical theory
of diffusion (Taylor 1922) and σyr ,zr using the Richardson–Obukhov law (Richardson and
Walker 1926; Obukhov 1941; Franzese and Cassiani 2007).

In the literature, only fewmodels for the PDF of the centroid location have been used. The
main assumption is the statistical independence between plume meandering in the crosswind
and vertical directions. In this case, fm can be expressed as the product of the two components,
i.e. fm = fym fzm , which are functions of the local crosswind spreads, σym for the horizontal
and σzm for the vertical (e.g., Gailis et al. 2007; Marro et al. 2015). Yee and Wilson (2000)
showed that the further hypothesis of isotropic dispersion induces the circular symmetry of
fm that, therefore, can be suitably modelled with a normal distribution.
Luhar et al. (2000) proposed a particle-based meandering approach that consists of com-

puting fm by means of simulations of the centroid trajectories with a Lagrangian stochastic
model. This model is especially suitable for problems where analytical tractability of the
mean absolute dispersion is not feasible. The approach was used for modelling fluctuations
of concentration in a convective boundary layer (Luhar et al. 2000; Franzese 2003) and in a
plant canopy by Mortarini et al. (2009), although in this latter case the fluctuations close to
the ground could not be well reproduced by the model. This approach requires to parametrize
only the relative dispersion spread σyr ,zr .

The first applications of the fluctuating plume model neglected the concentration fluc-
tuations due to the relative dispersion and only considered the high-order statistics of the
concentration due to meandering (Gifford 1959). This approach approximates fφr as a Dirac
delta distribution δ

fφr (ψ; x, ym, zm) = δ (ψ − 〈φr (x, ym, zm)〉) , (32)

where 〈φr 〉 is the spatial distribution of the mean concentration relative to the instantaneous
plume centroid. The approximation of fφr as a Dirac delta function was implicit in Gifford
(1959), whereas it was explicitly discussed in Sawford and Stapountzis (1986).

The relativemean concentration 〈φr 〉 is often parametrized as aGaussian distribution (e.g.,
Sawford and Stapountzis 1986; Yee et al. 1994b). However,Marro et al. (2015) approximated
it with a double Gaussian in order to take into account the ground reflection, Gifford (1970)
used a top-hat distribution, and several authors used a skewed sum of two Gaussian distri-
butions for convective conditions (Luhar et al. 2000; Cassiani and Giostra 2002b; Franzese
2003).

The classic formulation in Eq. 32, neglecting the effects of concentration fluctuations in
relative dispersion coordinates, was applied in some works prior to 1994. Gifford (1959)
compared the solutions computed through an isotropic two-dimensional model with few
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experimental data available at that time (Lowry et al. 1951; Gosline 1952) and also with
some measurements coming from personal communications. Fackrell and Robins (1982b)
simulated the effects on fluctuation intensity of varying the source size in an anisotropic inho-
mogenous velocity field and Sawford and Stapountzis (1986) tested 1D and 2D meandering
models in order to compare the concentration PDFs induced by a line source and a point
source, respectively.

A significant step forward in the meandering models was made by Yee et al. (1994b), who
included the contribution to the in-plume fluctuations due to the relative dispersion. To that
aim, the authors proposed to parametrize fφr as a gamma distribution. This shape of PDF is
not rigourosly justified, but is based on some heuristic and experimental considerations (see
Sect. 4.3). We mention that other authors tested a lognormal distribution for fφr (Franzese
2003; Hilderman and Wilson 2007; Gailis et al. 2007).

The introduction of a more complex parametrization for fφr requires to model the relative
intensity of concentration fluctuations, iφr = σφr/〈φ〉r . Most of the studies assumed iφr
dependent on the x-coordinate only (i.e., 1D model) and constant across the (y, z) width of
the plume (e.g.,Yee et al. 1994b;Yee andWilson 2000; Luhar et al. 2000;Cassiani andGiostra
2002b; Franzese 2003; Mortarini et al. 2009). This simplification provides reliable solutions
close to the source, where the meandering is predominant. Conversely, it becomes unrealistic
in the far field, where the relative dispersion is the main mechanism and iφr approximates the
global fluctuation intensity iφ . In the far field, iφr is characterized by a U-shaped profile since
the intermittency is lower in the plume centerline and larger on the edges (Gailis et al. 2007).
The 1Dmodel for iφr can be interpreted as a bulk or plume-averaged parameter at a particular
downwind distance x from the source location that provides reasonable values of the scalar-
field statistics (Reynolds 2000; Gailis et al. 2007; Mortarini et al. 2009). Three-dimensional
models of iφr were tested by Gailis et al. (2007) and Marro et al. (2015) against some
experimental datasets. The three-dimensional modelling was shown to be preferable when
the meandering process is negligible with respect to the relative dispersion, namely when
the the higher-order moments assume a bimodal shape (see Marro et al. 2015). Some aspects
about the asymptotic behaviour of this upgraded fluctuating model deserve to be discussed.
Neglecting the effect of relative dispersion (iφr → 0), the distribution for fφr is defined
as in Eq. 32 (pure meandering model). Conversely, in the far field, the instantaneous plume
centroid is basically located on plume centerline (σym,zm → 0) and fm tends to a Dirac delta
function. Thus, the concentration PDF is only described by the relative dispersion process,
i.e., fφ ∼ fφr , which is excellently reproduced by the gamma distribution.

Some more advanced applications of a fluctuating plume model included interference
between two point sources (Yee et al. 2003), and chemical reactions (Ferrero et al. 2013).

Finally, Cassiani and Giostra (2002b) introduced a framework based on the linear trans-
formation of the mean concentration field that extends the use of meandering plume models
as a post-processor to any mean concentration field, that may be available from any mod-
elling method or even experimental measurements. Cassiani and Giostra (2002b) applied
this approach to dispersion in the convective boundary layer obtaining results equivalent to
those of Luhar et al. (2000), but without any need to use stochastic Lagrangian model of
particle trajectories and instead using the mean concentration obtained by a semi-analytical
model (Cassiani and Giostra 2002a). Bisignano et al. (2017) applied this approach to the
neutral wind-tunnel measurements of Nironi et al. (2015) obtaining satisfactory agreement
for concentration moments up to the fourth order.
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4.2 Empirical Models for the Statistical Moments of Concentration

There is a class of closed relationships that, although are empirically obtained, have been
shown to be a possible simpler and rapid alternative to demanding numerical simulations in
some conditions. The main results originated from Chatwin and Sullivan (1990), who found
that the central statistical moments of a passive scalar in self-similar turbulent flows (jets,
wakes, and boundary layers), at large distance from the source, nicely follow

〈φn〉 = βn φn
0

α

[
r(α − r)n + (−1)n(α − r)rα

]
, (33)

where φ0 = 〈φ〉max is the maximum mean value in a transversal/vertical section (in the
centerline for a jet or a wake, and on the wall for a boundary-layer plume), and r =〈φ〉/φ0.
From comparison with several experimental results, Chatwin and Sullivan (1990, 1993)
proposed 1<α <1.5 and 0<β <1. Equation 33 is particularly attractive because from the
mean concentration field onemay readily obtain higher-ordermoments in an expeditiousway.
Sawford and Sullivan (1995) explored the validity of Eq. 33 close to the source and found
that the results are strongly dependent on the source configuration. They also suggested an
additional parameter to Eq. 33 that can heuristically take into account the effect of molecular
diffusion.Mole andClarke (1995) additionally verified the empirical relationship byChatwin
and Sullivan (1990) with more experimental results, confirming the range of value for α and
β. Mole and Clarke (1995) also pointed out that Eq. 33 leads to the simple relationship
between the skewness Sk and the kurtosis Ku

Ku = aS2k + b, (34)

where a and b are ∼1, which depend on the experimental set-up (Schopflocher and Sullivan
2005). Equation 34 can be easily used to verify, for example, the properness of a PDF model
(see Sect. 4.3).

Another class of semi-empirical models developed by Wilson et al. (1982a, b, 1985)
stemmed from Netterville (1979). Netterville (1979) proposed that the spatial distribution
of the concentration variance was governed by a diffusion equation identical to that of the
mean field, and that the effect of the ground could be accounted for through an image source.
The main issue in such diffusion model is that production and dissipation of variance are
neglected. Wilson et al. (1982b) argued that this deficiency can be compensated by defining a
virtual location for the variance source to include the effects of production, and by an image
sink to account for the increased dissipation near the surface. By doing so, and by setting some
calibration parameters through experiments,Wilson et al. (1982b, a), respectively, verified the
model for the concentration variance with a ground-level and an elevated source.Wilson et al.
(1985) later extended the analysis to the intermittency factor and the conditionally-averaged
concentration fluctuation statistics.

4.3 Analytical PDFModels

The complexity of turbulence has so far prevented from a theoretical solution for the PDF
of concentration. Suitable numerical results may be obtained for a given experimental set-up
through the demanding PDF methods (see Sect. 3.3). Yet, for practical purposes, a closed-
form analytical function is needed to permit rapid calculations. Based on experimental and
field data, several PDF models have been tested during the years for the concentration of a
passive scalar released from a point source (see Table 2). Despite the effort, the question on
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which model better reproduces the concentration PDF remains open. In fact, the response
usually depends on the experimental conditions.

One aspect of the concentration PDF that is somewhat controversial is related to the prob-
ability of φ = 0 (clean air). This might potentially be addressed through the intermittency
factor γ , that is the probability of φ > 0. Yet, a correct definition of γ remains elusive. In
fact, although φ = 0 is a physically plausible value, it is in contrast with the description of
scalar mixing according to the advection–diffusion equation, Eq. 2 (Chatwin and Sullivan
1989, 1993). Furthermore, the intermittency is not a precisely measurable quantity since its
experimental value depends on a threshold that must be necessarily related to the instrument
used for measuring the concentration (e.g., Fackrell and Robins 1982b) or, in case of odours,
to the neurobiology of the olfactory system (Celani et al. 2014). Similarly, a threshold is also
required in numerical simulations due to the presence of molecular and numerical diffusivi-
ties. Chatwin and Sullivan (1989, 1993) proposed an alternative definition of intermittency
that is based on the representation of the concentration in a single realization neglecting the
dissipative effects of molecular diffusivity, i.e., γ = 〈φ〉/φs where φs is the unique value of
the concentration at the marking source. Yet, the validity of this definition seems justified
only in the very early phases of dispersion.

The mathematical representation of intermittency in the concentration PDF can also be
the subject of a debate. Some authors (e.g., Lewellen and Sykes 1986a; Yee 1990; Yee et al.
1993c) use a Dirac delta function representation so that the concentration PDF is composed
of two parts

fφ =γ fφ>0 + (1 − γ )δ(φ), (35)

where δ is the Dirac delta. However, if a concentration threshold is considered, below which
the value is either not measurable or unattainable, the integral of the concentration PDF
below this threshold could be as well used to define the intermittency. Conveniently, the
exact modelling of intermittency may be not relevant for several practical purposes that are
linked to the high values of concentration and for which it is indifferent if the probability
of low values of concentration lies exactly in φ = 0 or in a positive small interval. Our
recommendation is that the explicit representation of a finite probability of φ = 0 shall be
included in the PDF only if one is interested in that specific value or if this is necessary to
correctly fit the calculated or observed concentration moments due to the choice of the model
function representing the concentration PDF. The possible PDF models are the main subject
of this section and are reviewed below.

The PDF models proposed in the literature (Table 2) are mostly two-parameter distribu-
tions, i.e., the first two statistical moments (mean and variance) provide the full concentration
statistics. These models include: the clipped-normal, the gamma, the Weibull, the lognor-
mal, and the beta. The only one-parameter distribution is the exponential, which is thus very
appealing for practical purposes but it well resembles experimental data just close to the
source of emission, i.e., in the meandering regime. The first comparisons between experi-
mental data and PDF models suggested the clipped normal as best fitting distribution (see
the first lines in Table 2). It was later shown that the clipped-normal does not universally
reproduce the right skewness and the heavy upper tail of the concentration distribution (e.g.,
Yee et al. 1993c).

More recent results have been converging on the choice of the gamma distribution as
best PDF model for the concentration from a point sources at least over a certain range
of downwind distances from the source (e.g., Yee and Skvortsov 2011; Marro et al. 2015;
Ardeshiri et al. 2020),
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Table 2 Table extended from Efthimiou et al. (2016a)

Publication Distributions

Hanna (1984c) Exponential F

Lewellen and Sykes (1986b) Clipped normal F

Sawford (1987) Clipped normala, Exponential, Lognormal F

Dinar et al. (1988) Clipped normala, Exponential L

Yee (1990) Clipped normala, Exponential, Lognormal F

Mylne and Mason (1991) Clipped normala, Exponential F

Yee et al. (1993b) Gammaa, Lognormal F

Yee et al. (1993c) Exponential, Gamma, Lognormal, Weibulla,
Clipped normal, Conjugate beta,
K-distribution

F

Lewis and Chatwin (1997) Exponential and GPD L

Yee and Wilson (2000) Gamma L

Luhar et al. (2000) Gamma L

Munro et al. (2001) EVT F

Lung et al. (2002) Gammaa, Lognormal, Weibulla F

Villermaux and Duplat (2003) Gamma L

Munro et al. (2003) Beta and GDP F

Yee and Biltoft (2004) Clipped gammaa, Clipped normal L

Gailis et al. (2007) Gammaa, Lognormal L

Yee et al. (2009) Clipped gamma L

Yee and Skvortsov (2011) Gamma L

Bartzis et al. (2015) Beta L

Nironi et al. (2015) Gamma L

Efthimiou et al. (2016a) Lognormal, Gammaa L

Oettl and Ferrero (2017) Weibull, Gammaa, Lognormal F

Models used to fit the concentration distributions from punctual sources in field (F) and laboratory (L) exper-
iments
aHighlights the best fitting model(s)

fΓ = λλφλ−1

Γ [λ]〈φ〉λ exp(−λφ/〈φ〉) (36)

where λ = 1/i2φ = 〈φ〉2/σ 2
φ and Γ [·] is the gamma special function (Abramowitz and Ste-

gun 1965). Furthermore, experimental observations in confined turbulence (Villermaux and
Duplat 2003; Duplat and Villermaux 2008) suggested the gamma distribution as a universal
model in the context of passive scalars released from point sources.

As anticipated, the problem of theoretically deriving a solution for the concentration
PDF remains unsolved. Yet, few notable works that undertook the issue may be mentioned.
Csanady (1973, pp. 225–227) speculatively deduced a lognormal distribution assuming that
the concentration is the product of a large number of independent dilution events induced by
the turbulent eddies at a constant rate. A slightly different heuristical approach to obtain the
lognormal in themeandering regimewas proposed byYee et al. (1993b, in theAppendix), and
is based on the assumptions that a wide range of independent eddies carry the passive scalar.
In the same Appendix, Yee et al. (1993b) also obtained a gamma distribution for the relative
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dispersion regime by assuming a Poisson distribution for the number of contaminated parcels
contained in a finite volume of the well-mixed plume. Kowe and Chatwin (1985) obtained,
under simplified assumptions, several solutions for the passive scalar PDF in the case of
instantaneous cloud releases as a function of the axes of the rate of strain tensor. Yee and
Chan (1997) derived a clipped-gamma distribution assuming ad hoc closures for what they
called pseudo-diffusion and pseudo-dissipation terms. Chatwin (2002) presented empirical
considerations to support the idea that, under simplifying assumptions, the PDF is inversely
proportional to the mixing process by molecular diffusion. As Chatwin debated, this relation
may serve in the modelling of the mixing term in the PDF transport equation. Villermaux
and Duplat (2003) hypothesized that the stirring of stretched sheets leads to an aggregation
process with a unique family of concentration distribution, i.e., the gamma distribution, stable
by self-convolution.

The beta, as other clipped-distributions, has an upper limit for the concentration. This
discloses the debate about whether the distribution model actually needs an upper limit.
Theoretically, repeating a release event an infinite number of times, one could find a con-
centration equal to the source concentration at a certain point downwind the source (Wilson
1995). This could mean that no upper bound is needed for the values that the concentration
can assume. However, the undiluted concentration downwind the source is so improbable
that, for application purposes, the concentration may be considered bounded between a lower
limit, which is usually zero or the background concentration, and an upper limit, physically
given by the effect of molecular diffusion, which lowers the concentration below the value
at the source (Munro et al. 2001). This upper bound can be defined through extreme value
theory (EVT) (Munro et al. 2001, 2003) or empirical relationships (Efthimiou et al. 2017).

Extreme value theory may also be used to better reproduce the upper-tail of the concen-
tration distribution. In fact, the PDF models are usually fitted to the bulk of the concentration
data, so they do not necessarily perform well in the upper tail of the PDF, especially if
high data values tend to be sparse. The EVT is a complex mathematical tool which can be
used to reduce this issue (Munro et al. 2001), by assessing, from a given ordered sample
of concentration peaks, the probability of events more extreme than the peaks previously
observed. Through EVT, the Generalized Pareto Distribution GPD has been shown to fit the
upper tail of the PDF in various field observations (Mole et al. 1995), laboratory experiments
(Schopflocher 2001; Mole et al. 2008), and numerical approaches (Xie et al. 2004). Yet, the
GPD does not have a structure complex enough to reproduced the full shape of concentration
PDF (Schopflocher 2001), so several works have combined the GPD to other distribution
function as the exponential (Lewis and Chatwin 1995), or the beta (Munro et al. 2003).
We need to stress out that the uncertainty of the EVT methods remains very high (Munro
et al. 2001), and that recently the gamma distribution has been shown to provide good esti-
mates even for the upper tail of the concentration (Efthimiou et al. 2016a). Thus, the gamma
distribution may be an easier-to-implement alternative.

Finally, a rather lower amount of research has been devoted to the definition of a proper
model for the one-point one-time PDF for line sources of emission. This open challenge could
be addressed starting from experimental (e.g. Stapountzis et al. 1986; Lavertu andMydlarski
2005; Lepore andMydlarski 2011) and numerical (e.g. Boppana et al. 2012) PDFs of passive
scalar obtained in turbulent channels. Notably, Venaille and Sommeria (2008) have shown
that in confined turbulence the gamma distribution (Eq. 36) does not correctly reproduce the
PDF of the passive scalar emitted from a line source. They also experimentally observed
that the validity of self-convolution models based on the aggregation of stretched sheets
(Villermaux and Duplat 2003) is questionable even at low Re and strongly depends on the
source of injection.
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4.4 Time-Series Models

At a fixed receptor, the concentration of a passive scalar dispersed in the atmosphere exhibits
a strongly stochastic dynamics determined by the underlying turbulent velocity field (see
Fig. 2). In several applications, as the assessment of hazards related to toxic substances
or the level of annoyance induced by nuisance odours, a proper definition of the temporal
characteristics of the concentration signals may be fundamental. Indeed, when we deal with
these problems, even the full characterization of the concentration PDF is insufficient, and
must be complementedwith the knowledge of temporal quantities such as themean frequency
of exceeding a certain concentration threshold θ (upcrossing rate N+

θ ). The upcrossing rates
are key level-crossing statistics, as from them it is possible to readily calculate: the peak
concentration in a given sampling time, the mean interval of time above a certain threshold
(upcrossing time), and the mean waiting time (return period) (Yee et al. 1993a;Wilson 1995).

Several approaches have been adopted during the years to address the temporal character-
ization of the concentration signals. Among the first to tackle the problem, Högström (1972)
used an experimentally-calibrated fluctuating plumemodel (see Sect. 4.1) to reproduce odour
frequencies of field experiments in Sweden. The comparison between field data and theoret-
ical results was imprecise, probably both for the complexity of the field experiment and the
strong assumptions of the fluctuating model, for which Gaussian one-point one-time PDF
and spatial distribution for the mean concentration were assumed. Yet, based on this notable
attempt, similar models have been developed more recently (de Melo Lisboa et al. 2006;
Dourado et al. 2014).

Another approach was proposed by Kristensen et al. (1989) and Yee et al. (1993a), who
adopted Rice’s theory (Rice 1944) to relate the upcrossing rates to the joint PDF of con-
centration and its time derivative ( fφφ̇), or in alternative the PDF of the concentration time
derivative conditioned to the θ threshold ( fφ̇|θ ). However, the definition of one of the two
PDFs ( fφφ̇ or fφ̇|θ ) may require several assumptions (Kristensen et al. 1989; Wilson 1995)
and jeopardize the applicability of Rice’s theory.

Lately, the research has focused on stochastic models that reproduce the concentration
time series (Du et al. 1999; Hilderman andWilson 1999; Jones and Thomson 2006; Cassiani
et al. 2009). In general, all these models require the PDF (or alternatively the mean and the
intensity of concentration fluctuations) and a time scale (usually the Eulerian integral scale)
to be set (both usually estimated from experiments or by means of empirical relations).
More specifically, the stochastic model of Du et al. (1999) numerically reproduces a non-
intermittent (φ>0) concentration time series, and consequently allows for the evaluation of
the upcrossing rates. Du et al. (1999) also showed that the assumption of a lognormal PDF,
instead of a gamma PDF, provides a better estimate for the atmospheric upcrossing rates
measured by Yee et al. (1993b). However, they also state that this could be a peculiarity of
the dataset used for the model verification. Hilderman and Wilson (1999) further extended
the model by Du et al. (1999) to intermittent signals. The stochastic model by Jones and
Thomson (2006) uses a correlation-distortion technique that, starting from a PDF and an
energy spectra, generates a Gaussian process with modified spectral characteristics, and
eventually yield a non-Gaussian process with the desired spectral characteristics. The model
by Iacono and Reynolds (2008) reproduces an observer who is randomly moving in an
inhomogeneous plume, and is thus applied to the biological study of odour-mediated insect
flights. Iacono and Reynolds (2008) also provided an analytical relationship for the Eulerian
integral time scale, based on the field data by Yee et al. (1994a). Lastly, Cassiani et al. (2009)
coupled a system of Eulerian stochastic equations for the velocity and concentration time
series, to a Lagrangian PDF micromixing model. The Lagrangian model is used to obtain
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the concentration PDF and the concentration statistics conditioned on the velocity, which are
required by the Eulerian model. Notably, consistent relationships are formulated between the
Eulerian and Lagrangian dissipation time scales used in the models.

All the aforementioned stochastic models require a numerical approach to address the
level crossing statistics. Analytical exceptions were provided by Yee (2000) and Bertagni
et al. (2020), who, starting from the assumption of lognormal and gamma PDFs, respec-
tively, derived closed form relationships for the upcrossing rates N+

θ and other level-crossing
statistics.

5 Discussion

We have reviewed the advancement in the understanding of scalar concentration fluctuations
from localized sources from the past 70 years, starting from the early experimental and
modelling works in the mid 20th century to the most recent work.

A large number of experimental works have been performed both in the laboratory and in
the field. Laboratory experiments have the main advantage of minimizing the uncertainties of
the control parameters: the velocity field is statistically steady and the scalar flux at the source
is perfectly known. In these conditions experimental errors are relatively easily evaluated. At
the same time, these experiments are performed with Reynolds number that are lower than
those characterizing real atmospheric flows, which may raise questions on how these are
effectively representative of atmospheric dispersion processes. This issue does not exist in
field measurements but, on the other side, there are higher experimental uncertainties in the
results. This is mainly due to the fact that a proper steadiness of the flow is rarely achieved.
Moreover, the complete characterization of the flow statistics typically available in laboratory
experiments is seldom achieved in field experiments.

The literature cited in this review shows that there is a limited overlap between the config-
urations investigated in field and laboratory experiments. Most field experiments considered
the case of extremely small sources (compared to boundary-layer thickness), mainly located
at (or near) the groundwith concentrationmeasurements within the surface layer. Conversely,
most laboratory experiments considered instead the case of an elevated source with a rel-
atively ‘large’ size, and few experiments were actually devoted to the characterization of
ground-level releases. A systematic investigation of the effects of source size is so far con-
fined to laboratory experiments, since data for field campaigns are generally collected far
away from the release location where source effects are lost. Effects of atmospheric stabil-
ity (although confined to the surface layer) have been systematically investigated in field
experiments, with the exception of very stable conditions. These effects have been instead
investigated extremely rarely in laboratory experiments: very few laboratory measurements
are available for unstable conditions and none in stable conditions. Finally, note that line-
source experiments are so far confined to laboratory studies and are anyway relatively fewer
compared to point-source studies.

All these features point out that there is a need in increase the overlap between labo-
ratory and field measurements, which will certainly improve our confidence in the ability
of laboratory experiments to correctly represent atmospheric dispersion and mixing. In this
perspective, we think that it would be worth performing field experiments with elevated
releases (of relatively large size), i.e., reproducing the configuration of laboratory experi-
ments (Fackrell and Robins 1982a, b) that have been so far considered as a reference case
for the validation of a wide range of modelling approaches. Developments of remote-sensing
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techniques and unmanned aerial vehicles equipped with micro-sensors are likely to fill this
gap in the coming years. Beyond that, there is a clear need to improve the size of experi-
mental datasets devoted to the characterization of concentration fluctuations in a variety of
atmospheric stability conditions, both in the laboratory and in field experiments.

Despite their limitations, experiments performed so far have certainly elucidated the
behaviour of concentration fluctuations, notably the second-order concentration moment.
The evolution of higher-order moments and the overall PDF shape has still not been fully
revealed. The gamma distribution has been so far proven to be the most suitable model for
the concentration PDF from point sources over a wide range of downwind distances. Excep-
tions are the near-source region, where the concentration fluctuation intensity increases, and
perhaps, the region where the concentration fluctuation intensity has nearly constant values.
However, this is not the case for line sources for which the gamma PDF seems not to be a
suitable model. Therefore, more research is necessary to fully elucidate the PDF shape and
its representation in all phases of plume evolution.

On the modelling side, we have reviewed the available methods used to forecast concen-
tration fluctuations at the very high Reynolds numbers typical of atmospheric flow. Among
these, LES is certainly the most comprehensive approach, although LES is computation-
ally very demanding and results are very sensitive to grid resolution and numerical methods
used. These characteristics make the application for small localized atmospheric releases
difficult and this is reflected in the limited literature thoroughly applying and evaluating LES
capability for concentration fluctuations. Two-particle Lagrangian methods are also difficult
to apply in realistic conditions and again this is reflected in the limited relevant literature.
RANS, heuristic Lagrangian, and PDF transport equation methods appear to be the most
useful modelling alternatives and have similar needs for parametrizations. They especially
need a proper definition of the concentration variance dissipation/micromixing time scale.
Current parametrizations of this time scale rely on inertial-range scaling arguments but also
on empirical constants of uncertain generality. More research is needed to fully validate
formulations and generality of these time-scale models. For instance, a rigorous method for
incorporating geometrical dimensionality of the source in the formulations is lacking.

RANS and heuristic Lagrangian methods forecast only the first-order and second-order
concentration moments while PDF transport equation method can potentially forecast
moments of any order, although computational resources limit this theoretical approach.
In many instances, the concentration PDF is needed and analytical formulations are often
preferable to the numerical representation provided by a PDF transport equation method.
The gamma PDF shape and some other models are defined by just first- and second-order
concentration moments but they have limitations. More sophisticated and general PDF for-
mulations may be therefore useful. However, formulations that are more general will need
more parameters, and therefore knowledge ofmore concentrationmoments to set their values.
We believe that a method suitable to obtaining concentration moments of order higher than
the second and, at the same time, flexible enough to be useful in practical applications, is the
PDF transport equation method. However, with the caveat of using a suitable mixing model.
The IEMand IECMmodels do not seem adequate for this purposewhile velocity-conditioned
particle interaction models or stochastic mixing models may be a suitable alternative. A task
for future research relates to validating the accuracy of these classes of mixing models in
reproducing moments higher than the second and even the full PDF shape. Given the ever-
increasing computational resources and recent improvement in mixing models, it is likely
that the solution of the PDF transport equation will soon become a suitable (and perhaps
preferable) modelling choice whenever a reduced response time is not the main criterion for
model selection. On the other hand, we have also reviewed models that are more suitable
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when a rapid response is needed and limited computational resources are available. All of
the approaches presented here are well adapted for dispersion over homogeneous terrain and
in near-neutral stability. In the case of complex flow fields and variable stability conditions
several of the methods are, however, not fully adapted. With the aim of giving some guid-
ance to practitioners, we have summarized in Table 1 the actual state-of-the-art situation
concerning the applicability of existing approaches. The fluctuating plume model remains a
reliable alternative to more ‘expensive’ methods, but only in a downwind range very close
to the source. Its application further away from the source should be adopted only when a
minimal computational requirement is the main criterion for modelling selection. Similar
considerations hold for semi-empirical methods.

If LES is not used and the time evolution of the turbulent signal is needed, as for example
in threshold-crossing problems, models that compute one-point one-time statistics need to be
supplemented by methods for providing the time evolution of the turbulent signal. The for-
mulation of these models is relatively straightforward because all the necessary statistics and
time scales are readily available after the (previous) run of the model for forecasting concen-
tration moments. Note that the time scales used in a time-series model have to be consistent
with the time scales used in models for concentration moments. Therefore, the time-series
simulation seems a quite straightforward task. Nevertheless, to our knowledge, validation
studies of time-series models are currently limited to neutral stability conditions and a flat
homogeneous landscape. Further investigations are needed to evaluate their suitability in the
case of more complex flow topologies and stability conditions.

To date, experiments, supplemented by a theoretical approach in homogeneous isotropic
turbulence, have been the main tool to guide our understanding of concentration fluctuations
in atmospheric turbulent flows. With the increase in computational resources, it is likely that
DNS (despite still confined to relatively low Reynolds number) will play an increasing role in
elucidating concentration fluctuations from localized atmospheric releases and a contribution
may also come from LES if grid and numerical effects are properly characterized.

This review reveals that there are nowadays a variety of approaches in order to numeri-
cally estimate the statistics of concentration fluctuations downwind of a localized pollutant
source. Despite the significant amount of work in this field in the last few decades, these
approaches are not yet widely adopted by the practitioner for technical studies and real-world
problems. In fact, even though dispersion models are worldwide used for the prediction of
hourly-averaged pollutant concentration (mainly in the context of chronic risks assessments),
models used to estimate concentration fluctuations are rarely adopted. There are two reasons
for this: one is that these approaches are generally more complex than canonical dispersion
models; the other, which is probably the most important, is that there are today very few leg-
islative constraints that would make mandatory the adoption of such models. For example, in
recent years, different attempts have been made to include prescriptions for odour thresholds
that lead to the development of operational models for the estimate of odour concentration
(Brancher et al. 2020). As evidenced in Brancher et al. (2017), however, these prescriptions
vary significantly from one country to another, and even between different regions of the same
country. Furthermore, most of the time, the adoption of such prescriptions is still considered
as optional according to existing laws. Therefore, the spread of knowledge required to apply
approaches for the estimate of concentration fluctuations has yet to occur in the technical
community. It is our hope that this review will contribute in this regard.

We have not covered in detail the related problem of concentration fluctuations for exten-
sive area sources, e.g., forests or urban areas. Whether these need to be treated as localized or
extensive area sources is perhaps a matter of scales, but most importantly, in these cases the
role of concentration fluctuations is mainly relevant in conjunction with atmospheric chem-
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ical processes, an aspect that has not been addressed here. Nonetheless, at least two of the
techniques reviewed here can be naturally extended to handle the influence of fluctuations on
chemical reactivity: the PDF methods reviewed in Sect. 3.3 and the LES method reviewed
in Sect. 3.1, the latter with the caveat of high resolution. An early example of the application
of PDF methods to extended planar sources is Cassiani et al. (2005c) and an early example
of application of LES is Patton et al. (2000). Between the two, the PDF method is certainly
less computationally demanding (Pope 2000).

Finally, we would like to remark that the review spans a wide number of experimental
works and covers modelling approaches of quite different natures. While preparing it we
found several works of which we were previously unaware, and probably relevant papers
have been missed. We apologize accordingly.

Acknowledgements Open Access funding provided by NILU - Norwegian Institute For Air Research.
Massimo Cassiani acknowledges the partial support from the European Research Council under H2020-
EU.1.1.-EXCELLENT SCIENCE/project ID 670462, COMTESSA. The resources for numerical simulations
and data storage were provided by UNINETT Sigma2 - the national infrastructure for high performance com-
puting and data storage in Norway under projects NN9419K and NS9419K. Pietro Salizzoni acknowledges
the Région Auvergne Rhône Alpes Project SCUSI.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

6 Appendix

The Lagrangian particle approach to turbulent dispersion in the atmosphere dates back to
the seminal work of Taylor (1922) and the historical evolution of this approach is very well
captured in the review of Thomson and Wilson (2013). Lagrangian single-marked-particle
models (e.g., Thomson 1987;Wilson and Sawford 1996) are routinely used for calculating the
motion of an independent marked particle which suffices to calculate the mean concentration
of a conserved scalar. Recalling that the concentration carried by amarkedLagrangian particle
is conserved (see e.g., Monin and Yaglom 1971), i.e., dφ/dt = 0, we may write (Thomson
1987) for the mean concentration of a conserved scalar

〈φ(x, t)〉 =
∫
t0≤t

∫
V
p(x, t; x0, t0)S(x0, t0)dx0dt0, (37)

where S(x, t) is a scalar source function, the space integral extends over the whole volume,
and p(x, t; x0, t0) is the probability that amarked particle that is in x0 at the initial time t0 will
be in x at the final time t . Lagrangian single-marked-particle models are used to compute this
transition density. In the simpler form of random displacement models, also called zero-th
order models (e.g., Thomson and Wilson 2013), a stochastic equation can be written for the
position of a wandering particle (x∗),

dx∗
i = 〈ui 〉 dt + ∂K

∂xi
dt + √

2KdWi , (38)
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where ∗ denotes a particle quantity, K is the turbulent diffusivity, and dWi is an uncorrelated
Wiener process with zero mean and variance dt (see e.g., Pope 2000). The solution of this
equation for an ensemble of independent particles passing through the source can be used to
calculate the transition density and, according to Eq. 37, the mean concentration. We note
that, by neglecting molecular diffusivity and closing the turbulent fluxes by eddy diffusivity,
i.e.,

〈
u′
iφ

′〉 = −K ∂ 〈φ〉 /∂xi , Eq. 38 corresponds to a Lagrangian solution of Eq. 3, see e.g.
Monin and Yaglom (1971, Sect. 10.3).

In recent years, most commonly, numerical Lagrangian dispersion models have been for-
mulated using stochastic equations for the particle velocity and not just the particle position.
This approach has developed in the atmospheric dispersion community to overcame the lim-
itations of the gradient diffusion approximation for both the dispersion near the sources and
in unstable stratification (e.g., Thomson 1987; Thomson and Wilson 2013). Including the
particle velocity, the Lagrangian equations for the dispersing particle have the general form

dx∗
i = u∗

i dt, (39)

du∗
i = ai (x∗, u∗, t)dt + bi j (x∗, t)dWj . (40)

This system of equations for particle velocity and position correspond to a Fokker–Plank
(transport) equation for the evolution of the single-time single-point velocity PDF (e.g.,
Thomson 1987). By assuming an analytical shape for the PDF of the velocity, fu , the drift
coefficient (ai ) is usually defined through the well-mixed approach proposed by Thomson
(1987). It is worth noting that the proper parametrization of ai is necessary to ensure that, at
a fixed point, the statistics computed in the Lagrangian framework are equal to the Eulerian
statistics. In the atmospheric boundary layer the analytical shape of the velocity PDF can
be assumed Gaussian in neutral and stable conditions, and a skewed sum of two Gaussian
in convective conditions (e.g., Thomson 1987; Stull 1988; Rodean 1996; Luhar et al. 1996;
Rotach et al. 1996; Cassiani et al. 2005c, 2015; Thomson and Wilson 2013). For a neutral
boundary layer with negligible cross-correlations 〈u′

i u
′
j 〉, a possible formulation of the drift

term ai is

ai = − u′
i
∗

TLi
+ 1

2

∂σ 2
ui

∂xi
+ u′

i
∗

2σ 2
ui

(
u∗
j
∂σ 2

ui

∂x j

)
, (41)

where u′
i
∗ are the Lagrangian velocity fluctuations and TLi are the Lagrangian integral time

scales and no summation is implied on repeated i indexes. Formulations of ai for the con-
vective boundary layer can be found in Luhar et al. (1996) and in Cassiani et al. (2015). The
diffusion coefficient bi j is determined by consistency with Kolmogorov similarity theory
for the Lagrangian structured function (Thomson 1987) as originally suggested by Obukhov
(1959) (see also Monin and Yaglom 1971) and it is generally defined as

bi j = δi j
√
C0ε, (42)

where δi j is the Kronecker delta and C0 is the Kolmogorov constant.
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