
Ph.D. thesis abstract 
Ph.D. est omnis divisum in partes tres: first of all, the testing branch. Then, the 
algorithm optimization and parallelization branch. Lastly, the Artificial Intelligence (AI) 
branch. 

Testing. Chips are becoming larger and larger as new modules are added to improve 
performance and safety measures. 

In the testing domain, together with my colleagues at CAD group, we began developing 
tools for the evaluation of test programs. Those tools include an EVCD file analyzer, a 
toolchain built around it and a new metric for improving the speed of test routines 
development. The toolchain is able to speed up the ability to evaluate large test 
programs on an automotive System-on-Chip (SoC) from the SP58 family including more 
than 20 million gates, reducing the wall-clock time of execution from days to hours for 
larger files. 

On the other hand, the new metric called connectivity is able to speed-up automatic 
test generation using a well-known evolutionary tool called µGP. Moreover, it can also 
be used by programmers, providing a fast feedback with comparison to the standard 
fault coverage. However, we do not aim to replace the fault coverage metric, as it is the 
standard that provides complete information; thus, the connectivity, by computing 
partial information, is able to detect quick-to-fix errors in the execution of the program, 
providing instruction-level feedback to the test engineer. 

Algorithms and Parallelization. Algorithms from NP class solve relevant problems today, 
and eWort is put into improving their current performance. In particular, together with my 
colleagues and thesis students we focused on the Maximum Common Subgraph (MCS) 
problem, a well-known NP-hard problem that is used in molecule mining and even 
security. We improved the state of the art algorithm McSplit and its variants, among 
which the latest McSplitDAL, by applying the PageRank algorithm to classify vertices of 
the graphs. We were able to improve the original result up to 1.07 times on graphs of 
size up to 100 vertices. We also tested diWerent vertex classification algorithms on 
larger graphs of up to 7000 vertices, finding that, while PageRank is not always the 
winning metric, it provides the most stable improvements. 

As Central Processing Units (CPUs) get more and more capable, and the multi-core 
paradigm became standard for large computations, also the many-core approach is 
becoming more important over the years: from Artificial Intelligence to computer 
graphics, Graphics Processing Units (GPUs) are ubuquitous in today's world, and 
research is being put into adapting or improving currently known algorithms into the 
many-core approach. In particular, together with my colleagues and thesis students we 
focused on the Graph Coloring (GC) problem, a well-known NP-complete mathematical 



problem. We were able to improve one of the state of the art algorithms on GPU, called 
Jones-Plassman-Luby, with a custom CUDA implementation, improving over the most 
famous implementation, Gunrock, up to 62 times, with a geometric mean of 3.16 times. 

Artificial Intelligence. Together with Université Paris Saclay, we developed a system that 
is able to abstract rules using given knowledge of basic concepts. In particular, the 
objective of the system is building an inductive explanation of a game, detecting 
objects, categories and rules that the objects follow. Using a standard image detection 
library, OpenCV, we were able to feed videos involving 2 games, Arkanoid and Pong. By 
using a basic image recognition we were able to detect objects and their movements, 
detecting their velocities and positions. After this step, we were able to detect 
interactions between objects, creating a cause-eWect relationship between interactions 
and change of status. In the end, we use a genetic algorithm provided by the Inspyred 
library to induce a set of categories and rules that apply to each category, involving 
interactions between them. 


