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Abstract

Blockchain technology may solve current issues in supply chains related to the lack
of timely, correct, standardized, authentic, accessible, and verifiable information.
However, transitioning toward decentralized paradigms, as blockchain imposes, is not
easy for companies due to strategic, managerial, technological, and environmental
barriers. To overcome such barriers and support successful blockchain adoption,
we discuss the development of a use case based on an electric vehicle supply chain
and draw general insights from a technological standpoint, offering a practical guide
for building blockchain-based applications. In particular, we propose a decision-
making framework for blockchain suitability assessment; we present a methodology
for comparing the performances of the various blockchain frameworks fairly; we
analyze deterministic and parallel transaction execution in blockchain frameworks to
enhance performance; we propose guidelines for smart contract standardization; and
we discuss mitigating the “garbage in, garbage out” problem introduced by oracles
in blockchain systems. Based on our results, we conclude that, with opportune
design, technological barriers to blockchain adoption may be overcome, but this is
insufficient to push companies to embrace decentralized paradigms.
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Chapter 1

Introduction

Supply chains, the intricate networks that drive global commerce, currently face
challenges such as the lack of timely, correct, standardized, authentic, accessible, and
verifiable information. These issues result in inefficiencies in handling paperwork
and unnecessary litigation costs. Fortunately, recent technological advancements
have sparked a revolution in supply chains based on data sharing and digitalization,
known as Logistics 4.0. At the core of this revolution are peer-to-peer technologies
like blockchain and the interplanetary file system, poised to transform the way data is
shared and managed across supply chain ecosystems. Blockchain, in particular, holds
the potential to address many of the current information issues in supply chains.

Blockchain is a decentralized database where changes are approved through
majority-based voting. As a result, data manipulation is not possible as long as the
voting majority is honest. This capability positions blockchain as a solution for safe
data sharing and tamper-resistant storage among supply chain companies, potentially
becoming the single source of truth for supply chain events and responsibilities.

However, the path toward blockchain adoption in supply chains is not straight-
forward. On the strategic side, it demands the abandonment of existing business
models for decentralized ones, necessitating a disruptive paradigm shift in how value
is perceived and created. On the managerial side, new practices are required for
greater collaboration. However, existing misconceptions are impeding the general
understanding of the benefits the technology provides and the compromises it entails.
On the technical side, blockchain introduces numerous challenges, including limited
efficiency, decreased confidentiality, and issues related to the trustworthiness of data
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sources. Moreover, the environmental side faces challenges due to the lack of clear
standards and regulations.

Unsurprisingly, many blockchain-based projects for supply chains fail to achieve
tangible benefits and are quickly abandoned. The average discontinuation rate
is approximately one year, with a survival rate of less than 10% [206]. Notably,
Tradelens, one of the first and most recognized supply chain management platforms,
recently faced termination due to its failure to achieve global industry collaboration,
despite being developed by IBM, a blockchain pioneer, and Maersk, a world-leading
shipping company [74].

To address the previously mentioned issues and support successful blockchain
adoption, this thesis delves into the nexus of supply chain dynamics, blockchain
technology, and digitalization, with a particular focus on an electric vehicle supply
chain as a representative use case. Our exploration navigates the challenges and
opportunities at the intersection of these domains, aiming to chart a course toward
a more transparent, efficient, and collaborative future for supply chain operations.
With a strong technolgical focus, we discuss the development of our use case and
draw general insights, serving as a practical guide for building blockchain-based
applications.

The remainder of this thesis is articulated in the following chapters.

• Chapter 2 provides some general information on blockchain technology and
contextualizes this thesis within the existing literature.

• Chapter 3 describes a decision-making framework for blockchain suitability
assessment and introduces a logistic use case that will be developed throughout
this thesis.

• Chapter 4 provides a comparison of some of the most used permissioned
blockchain frameworks. This chapter also introduces a methodology for
comparing the performances of the various frameworks fairly.

• Chapter 5 discusses the possibility of leveraging parallel transaction execution
for the design of our solution. To this extent, the chapter introduces the “am-
biguous state representation problem” and describes an optimistic algorithm
that guarantees determinism without completely sacrificing parallelization.
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• Chapter 6 proposes some guidelines for smart contract standardization based
on the experience we gained from designing the smart contracts for our use
case.

• Chapter 7 discusses the integration of Internet of Things (IoT) devices into the
blockchain-based solution for our use case. The chapter focuses on mitigating
the “Garbage In, Garbage Out” (GIGO) problem introduced by oracles like
IoT devices.

• Chapter 8 summarizes the main takeaways from this thesis and provides a
broader outlook on blockchain adoption in logistic networks.



Chapter 2

Background

In this chapter, we provide background information on blockchain technology and
the other topics that are relevant to this thesis. We also analyze the relevant literature.
The contents of this chapter are based on Ref. [166, 34, 39, 27, 37, 40, 42, 38, 41].

2.1 Introduction

Logistics companies are undergoing a transformation process based on data sharing
and digitalization, known as Logistics 4.0. This revolution is driven by the need to
overcome well-known inefficiencies in logistics networks, particularly bureaucracy
and litigations, mainly as a consequence of the inability of supply chain companies
to collect and share data seamlessly and reliably.

Blockchain emerges as one of the possible solutions to this data sharing problem
by offering the possibility to create a decentralized database where companies can
share data without incurring the risks of unilateral or unauthorized data manipulation.
However, it also introduces many new problems, which we will discuss and address
(to some extent) in the next chapters of this thesis.

This chapter, instead, serves the purpose of making the reader familiar with the
blockchain landscape and, to this extent, covers the following aspects.

• The description of blockchain technology and related concepts.

• The contextualization of this thesis within the existing literature.



2.2 Blockchain 5

Fig. 2.1 Boundaries among distributed database, distributed ledger (DLT), and blockchain
technologies.

The remainder of this chapter is articulated as follows: we introduce blockchain
technology in section 2.2, contextualize this thesis in the current literature in Section
2.3, and conclude this chapter with Section 2.4.

2.2 Blockchain

In the past decade, blockchain technology has been intensively studied due to its
applicability to many use cases. Nonetheless, there is no universally accepted
definition for blockchain and similar technologies. Usually, all such technologies are
called distributed ledger technologies (DLTs), even though there may be significant
differences or unclear boudaries among the various DLTs. The relashionships
between distributed database, distributed ledger, and blockchain are summarized in
Fig. 2.1.

DLTs are distributed databases structured as ledgers: they record the whole
history of transactions (i.e., modifications) to the stored data. Each ledger exists in
and multiple copies, and each copy is managed by an entity called a peer.

Blockchain is a DLT characterized by its peculiar structure of the ledger: trans-
actions are grouped into blocks, which are added to the ledger one after the other
[222]. Each block contains the hash of its predecessor, thus, a block cannot be
altered without also altering all the subsequent ones. Doing so is relatively easy if a
single entity manages all the copies of the ledger, but becomes nearly impossible
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Fig. 2.2 Blockchain structure

when the ledger is managed by multiple non-trusting parties. Thus, the properties of
blockchain systems depend on their governance model. This is better explained in
Section 2.2.1.

A blockchain is usually composed of two databases: the history database, which
is the ledger containing the sequence of transactions; and the state database, which
stores the updated result of transaction execution. The state database is unnecessary,
but eliminating it causes significant performance drawbacks. The state database
avoids reading the whole ledger and re-executing all transactions to obtain the current
data values. Fast consistency checks between the two databases at a given block
height are possible by representing the state database as a Merkle tree and storing the
Merkel root hash within the block. Blockchain addresses are used to access different
portions of state database. The typical blockchain structure is represented in Fig.
2.2.

Blockchain works as follows [222]:

• users submit transactions to the peers. Transactions’ integrity and authenticity
is guaranteed through digital signatures;
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• the peers agree upon which transaction to execute through consensus algo-
rithms. The selected transactions form a block, and each peer adds it to its
copy of the ledger. Simultaneously, the peers execute the transactions within
the block and update their state database;

• blocks are linked through cryptographic hash functions, enabling fast data
verification by only knowing the latest block hash.

2.2.1 Blockchain governance

Governance describes the power to control, coordinate and direct a blockchain
system [163]. Blockchains can be categorized according to their governance model
[31, 128].

• Public blockchains allow any peer to join them and participate in the consensus
process. Public blockchains create trust among their participants by allowing
them to obtain a full copy of the ledger and autonomously validate transactions.

• Consortium blockchains have strict rules for consensus participation and ledger
interaction. Such rules are defined by the consortium members, who are the
nodes participating in the consensus at a given time. Consortium blockchains
can create trust among the consortium members, but external parties need to
trust the consortium.

• Private blockchains are managed by a single party, which must be trusted by
all the participant. Consequently, The system is centralized.

Public blockchains are permissionless because they do not pose any restrictions
on participation. On the contrary, private and consortium blockchains enforce
access control mechanisms and are, thus, permissioned. Nonetheless, consortium
blockchains are decentrlaized while private blockchains are not, making them very
different technological solutions.

2.2.2 Blockchain properties

In this section, we summarize some of the most interesting blockchain properties for
the industry [222, 128, 156].
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• Persistency: the ledger exists in multiple copies, making data losses unlikely.

• Decentralization: No single peer has sole custody of the ledger, except for
private blockchains, which are not decentralized.

• Authenticity: digitally signatures authenticate transactions.

• Autonomy: trusted third parties are not needed to submit transactions.

• Immutability: data cannot be modified after insertion, as this would cause a
mismatch between the hash of one block and the one stored in its successor.
However, the whole chain of hashes can be rewritten if the majority colludes
(51% attack). We underline that, in private blockchains, the managing can
detains all voting power and can rewrite the chain of hashes at will.

• Auditability: peers can directly inspect their copy of the ledger. Moreover,
the sequence of transactions can be re-executed at any moment to check for
potential state inconsistencies.

• Resiliency: cyberattacks can be successful only if they coherently modify the
majority of the copies of the ledger. Thus, decentralization is key for resiliency.

• Standardization: data encoding standards must be employed ti keep the copies
identical.

2.2.3 Consensus algorithms

Blockchain peers employ consensus algorithms to keep their copies of the ledger
synchronized by agreeing on the sequence of transactions to process. Various
consensus algorithms can be employed, each offering different compromises in
terms of efficiency and security and operating under different assumptions. Such
assumptions concern the modeling of the peers (also called processes in this context)
and of the network. On the processes model, Crash-Fault Tolerant (CFT) consensus
algorithms only assume the presence of correct or non-responsive processes, whereas
Byzantine-Fault Tolerant (BFT) consensus algorithms also deal with malicious
processes that may try to disrupt the consensus. On the network model, synchronous
networks are those assuming a known upper bound to message delays; asynchronous
networks only require that messages are delivered in a finite (but unknown) time;
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partially-synchronous networks assume the presence of a global event, called Global
Stabilization Time, fired at a finite but unknown time. The network is asyncronous
before GST and synchronous afterward.

In general, consensus algorithms aim to guarantee two properties:

• Safety, which is satisfied if all honest peers make the same decision, thus
finding an agreement;

• Liveness, which is satisfied if a decision is made in a finite amount of time.

Nonetheless, the FLP impossibility [75] guarantees that no algorithm can satisfy
both properties deterministically in the asynchronous network model. For this reason,
one of the two properties can be guaranteed only probabilistically or a less general
network model must be employed. If safety is guaranteed probabilistically, the
consensus algorithm has probabilistic finality, which means that decisions may
be reverted with a probability that decreases over time. If safety is guaranteed
deterministically, the consensus algorithm has deterministic finality, which means
that decisions are irreversible [15, 216].

Only BFT algorithms should be used in blockchain systems: if Byzantine nodes
are absent, decisions could be delegated to a centralized system controlled by any of
the nodes, making blockchain superfluous.

2.2.4 Smart contracts

Smart contracts as tamper-resistant computer programs. Smart contracts are in charge
of processing transactions and their execution is replicated on each blockchain peer,
guaranteeing correct results even in case a minority of the executions is faulty.
Usually, smart contracts do not guarantee data confidentiality, which requires crypto-
graphic techniques that are rarely made available in blockchain frameworks. Smart
contracts can execute arbitrary logic and can automate tasks by reacting to events
generated by users and other smart contracts according to pre-defined conditions.
The automation of legal contracts through smart contracts is an open area of research
[180].
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2.2.5 Oracles

Not all data that is submitted to a blockchain system can be verified. For example,
the temperature of a room provided by a sensor is only measurable by that sensor, not
by the blockchain peers scattered all over the world. The providers of unverifiable
data are named oracles and introduce the Garbage In, Garbage Out (GIGO) problem
in blokcchain systems. In general, transactions passing the validity checks performed
by blockchain peers may contain inaccurate data. Thus, valid does not mean correct.

2.2.6 Performance metrics

Transactions submitted to blockchain systems can be in one of the following states:

• Pending—The transaction must still appear within a block;

• Committed—The transaction has been added to a block after clearing validity
checks;

• Consolidated—The transaction is permanently and irreversibly stored in the
blockchain. For deterministic finality, commit time and consolidation time
overlap. For probabilistic finality, transactions are consolidated after they are
committed.

• Discarded—The transaction will never be added to the ledger.

Relevant metrics in blockchain systems involve read latency, transaction latency, read
throughput, and transaction throughput (TPS) [103]. Read latency is the time passing
between submitting a query to a node and receiving a response, transaction latency is
the time required to consolidate a transaction, read throughput is the number of query-
response couples a client completes in the time unit, and transaction throughput is
the amount of transactions consolidated in the time unit.

2.3 Literature review

In this section, we present a summary of the studies that are relevant to this thesis.
Due to the broad range of arguments we cover, we dedicate a subsection to each
topic.
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2.3.1 Blockchain suitability

Blockchain suitability frameworks may be divided into three categories. According
to Ref. [5]: conceptual frameworks, decision models, and decision flowcharts.

In conceptual frameworks, researchers discuss the main factors to take into
account based on their practical experiences. Some encompass non-technological
aspects like economic or regulatory factors, whereas others focus on purely techno-
logical aspects [187, 54, 119]. In particular, Ref. [10] proposes a set of open-ended
questions that should be addressed when adopting blockchain and Ref. [116] ana-
lyzes the existing literature to identify technological, organizational, and environ-
mental enablers that help businesses in implementing blockchain and IoT solutions
for secure and sustainable operations

Decision models guide blockchain adoption by leveraging mathematical con-
structs. For instance, BAF (Blockchain Applicability Framework) suggests the ideal
blockchain solution by weighting detailed user requirements [83].

Decision flowcharts are based on graphs with nodes representing closed-ended
questions and edges indicating possible answers. Users follow the path defined
by their answers, culminating with an assessment on blockchain suitability. This
approach is fairly common, with several multi-step frameworks for blockchain adop-
tion emerging in the literature [161]. Some frameworks also offer implementation
guidelines [21], examine blockchain-related security threats [171], and analyze real-
world use cases [90, 215, 78]. Ref. [48] proposes a framework specifically designed
for managers. Merging multiple frameworks into a single one is also a viable alter-
native [112]. Nonetheless, certain decision drivers proposed in the existing literature
should be revised, in our opinion. For instance, the presence of multiple writers is
an unnecessary requirement: a set of entities may want to record data written by
a third party in a tamper-resistant way. In such cases, blockchain could be viable,
as multiple record keepers could prevent invalid data modifications by the writer.
Hence, the existence of multiple decision-makers should drive blockchain adoption,
allowing keepers to determine modifiable data, instead of writers.

Ref. [132] proposes a framework of seven questions and four subquestions.
However, deep technical knowledge of blockchain technology is necessary to provide
accurate answers. Ref. [162] analyzes numerous factors that are overlooked in similar
works and proposes a ten-step decision-making framework.
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Additionally, some authors have designed decision-making frameworks for spe-
cific use cases, including the construction industry [98] and logistics [11, 77, 94].
Finally, some decision-making frameworks also suggest the most suitable blockchain
platform [73]. Table 2.1 summarizes the studies analyzed in this section and com-
pares them with the decision-making framework described in Chapter 3.

Table 2.1 Summary of decision flowchart frameworks for blockchain adoption. The table
highlights which questions of our framework are also suggested by other researchers.

Ref. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11
[98] No Yes No No No Yes No No No No No

[215] No Yes No No No No No No No No No
[21] No Yes No No Yes No No No No No No

[171] No Yes No No Yes No No No No Yes Yes
[90] No Yes No No Yes No No No No No No

[162] Yes Yes No No Yes No Yes No No Yes No
[112] No Yes No No No No No No No No No
[161] No Yes No No No No No No No Yes No
[78] No Yes No No Yes No No No No Yes No

[132] Yes Yes No No Yes No No No No Yes No
[48] Yes No No No No Yes No Yes No Yes No

Chapter 3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

2.3.2 Performance and features’ comparisons of blockchain frame-
works

Blockchain must guarantee the same performance as other technologies to replace
them in industrial information systems. For this reason, measuring the performance
of blockchain frameworks is an active research field. The various studies assessing
the performance of blockchain frameworks are summarized in Table 2.2. For each
paper, the table details which studies analyze multiple frameworks, which present ex-
perimental performance evaluations, which adopt recent releases of the frameworks,
and which attempt to reduce the differences among different frameworks to make
even comparisons.

One of the earliest studies on performance evaluations of permissioned blockchain
frameworks led to the creation of Blockbench [67], a performance evaluation tool
for blockchains with support for various blockchain clients including Fabric v0.6.0-
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Table 2.2 Summary of the studies on blockchain framework performance evaluation and
comparison.

Ref. Framework Multiple
frame-
works

Experimental
perfor-
mance
evaluation

Recent
releases

Cross-
framework
methodol-
ogy

[143] GoQuorum v2.2.1 No Yes No No
[16] GoQuorum v2.0 No Yes No No
[82] Fabric v1.2 No Yes No No
[195] Sawtooth v1.1 with PoET CFT No Yes No No
[196] Fabric v1.0 No Yes No No
[191] Fabric v1.4 No Yes No No
[169] Fabric v0.6.0 and enterprise Ethereum (Geth)

v1.4.18
Yes Yes No No

[151] Fabric v0.6 and Fabric v1.0 No Yes No No
[194] Fabric v1.2 No Yes No No
[60] Sawtooth v1.0.5 No Yes No No
[199] Fabric v1.0 No Yes No No
[8] Sawtooth v1.0 No Yes No No
[200] GoQuorum v2.0.2 No Yes No No
[67] Fabric v0.6.0-preview, enterprise Ethereum

(Geth) v1.4.18, Parity v1.6.0
Yes Yes No No

[118] Fabric v1.3 No Yes No No
[172] Fabric, Sawtooth, Burrow, BigchainDB, Mon-

goDB (September 2019)
Yes Yes No No

[22] Sawtooth v1.1.2, enterprise Ethereum (Geth)
v1.8.21, enterprise EOS v1.5.3

Yes Yes No No

[150] Fabric v1.4.4 No Yes No No
[210] Fabric v1.4.3 No Yes No No
[204] Fabric v1.0 No Yes No No
[85] Fabric v2.0 No Yes Yes No
[188] Fabric v1.4.4, Sawtooth v1.2, Indy v1.12.0,

Parity v2.5.10, GoQuorum v2.3.0, enterprise
Ethereum (Geth) v1.9.8

Yes Yes No No

Chapter
4

Fabric v2.2.2, Sawtooth v1.2.3, Besu v21.1, Go-
Quorum v21.1

Yes Yes Yes Yes

preview, Geth v1.4.18, and Parity v1.6.0 [67]. Other authors analyzed the same
frameworks, but with limited industrial relevance because of the employment of a
single-node setup which nullifies the impact of consensus and network delays [169].
For both studies, the versions of the frameworks suggest that they are now outdated.

Many authors discuss improvements to the official framework releases. Ref.
[196] proposes a BFT algorithm for Fabric v1.0 and analyzes the impact of its
employment on the ordering service [196]. Ref. [204] is an in-depth study on
Hyperledger Fabric v1.0 and analyzes how configuration parameters affect the per-
formance of the framework. Some of the improvement proposals by the authors were
subsequently adopted in Fabric v1.1 [204]. Ref. [82] describes FastFabric, which op-
timizes Hyperledger Fabric 1.2 to the point of processing almost 20000 transactions
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per second, even though some of the proposed measures may be concerning, like
storing the state database in volatile memory only [82]. Ref. [118] studies Fabric
1.3 and proposes to optimize the order and validate phases. Tests performed on a
four-nodes network with a one-node Kafka orderer show the benefits of the proposals
[118]. In industrial contexts, however, performance evaluations on official releases
guaranteeing stable and long-term support are preferred.

Some authors analyze a single framework instead of comparing multiple ones.
Ref. [16] presents an in-depth performance evaluation of Quorum (GoQuorum
client v2.0) with both Raft in a three nodes network and IBFT in a four nodes
network using private and public transactions and four workloads [16]. Also other
researchers studied Quorum with IBFT, Raft, and Clique consensus with similar
objectives [141]. Ref. [143] uses GoQuorum client v2.2.1 with Raft consensus
in a network of three nodes deployed once in the cloud, once locally on physical
machines, and once on virtual machines [143]. Ref. [210] evaluates Fabric v1.4.3.
The authors tested Solo, Kafka, and Raft consenus and the impact of endorsement
policies on the overall performance [210]. Ref. [150] introduces a benchmark tool,
named HLF-GLDB, simulating the database access patterns of Hyperledger Fabric.
HLF-GLDB allowed the authors to discover some bottlenecks of Fabric v1.4.4 [150].
Ref. [85] analyzes Fabric 2.0 in-depth. The study examines network delays, various
network sizes and underlying hardware, crashing nodes, private transactions, and
multiple workloads [85]. Ref. [195] analyzes the transaction throughput of Sawtooth
v1.1 with PoET CFT under different conditions, including network size, network
bandwidth, underlying hardware, cloud service, and datacenter location [195]. Such
works do not compare different frameworks, but provide meaningful insights into
the configuration of a given one.

Some authors evaluate multiple frameworks in terms of performance. Ref. [168]
compares Fabric, enterprise Ethereum, Quorum, Corda, and MultiChain in the
following dimensions: adoption, performance, community activity, and privacy
support. The study, however, lacks an experimental performance evaluation and
bases its assessments on the results of other studies [168]. Ref. [145] conducts
a performance evaluation of Corda, enterprise Ethereum, Quorum (GoQuorum
client), and Fabric by creating networks of various sizes on the Microsoft Azure
Platform. Except for Corda, however, the versions of the frameworks are not declared
[145]. Ref. [22] compares enterprise EOS (client v1.5.3), enterprise Ethereum
(Geth v1.8.21), and Sawtooth v1.1.2. The analysis focuses on support, usability,
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documentation, scalability, throughput, and CPU and memory usage [22]. Ref.
[172] compares MongoDB and blockchain frameworks (including Sawtooth, Fabric,
Burrow, and BigchainDB) for IoT-based applications [172]. The results of these
studies are not comparable because they employ different testing methodologies.

Some blockchain benchmark tools are present in the literature. In addition to
Blockbanch [67], Bctmark [179] abstracts the underlying blockchain frameworks to
improve benchmark portability. Ref. [179] uses Btcmark to test enterprise Ethereum
and Hyperledger Fabric. Unfortunately, the tool is still in the experimental stage,
and performance metrics and standard workloads are not clearly defined [190].
The Distributed Ledger Performance Scan (DLPS) [188] offers standard workloads
that can be submitted to different blockchain networks. The DLPS defines clear
metrics for evaluating blockchain systems and matches input and output throughput
to maximize the performance of the frameworks. The DLPS supports Hyperledger
Sawtooth, Hyperledger Fabric, Hyperledger Indy, Quorum (GoQuorum client), and
Ethereum (Parity and Geth clients). Hypeledger Caliper [102] is used by many of the
previously discussed studies [145, 16, 141]. Caliper provides predefined workloads
and supports multiple frameworks. Ref. [190] summarizes the main benchmark
tools for permissioned blockchain frameworks.

All the previously analyzed benchmark tools may generate similar workloads
on different frameworks, but they do not set up blockchain networks with similar
degrees of security, decentralization, and distribution across different frameworks.
Thus, comparing the results obtained with such tools on different frameworks may
be misleading: trading security and decentralization for efficiency can enhance the
performance of any chosen framework. In Chapter 4 we discuss a cross-framework
methodology to reduce the differences among frameworks and enable meaningful
performance comparison.

2.3.3 Parallel transaction execution for blockchain performance
enhancement

Plenty of studies in the literature address the problem of parallel execution for state
machine replication (e.g., [29, 17, 3, 4, 86, 64, 109, 137]). Most of them rely on
concurrent execution of non-conflicting commands[185], as such commands are the
most frequent in many workloads (e.g., [115, 138, 137]). Nonetheless, some Merke-



16 Background

lized trees may introduce hidden dependencies among non-conflicting commands
(more on this in Chapter 5, thus introducing stricter concurrency requirements.

As previously discussed, high transaction throughput is paramount in industrial
scenarios, pushing permissioned blockchain frameworks to be designed with parallel
transaction execution in mind. Hyperledger Fabric [9], for example, abandons the
standard order-execute processing approach to embrace the more speculative execute-
order-validate one: transactions are executed optimistically and, in the validation
phase, the conflicting ones are aborted. Transaction re-execution [82] and re-ordering
[194] are common techniques to reduce the number of aborted transactions. Block-
STM [79], used by Aptos, exploits the write set of aborted transactions to speed-up
their re-execution.

Hyperledger Sawtooth [155] implements a scheduler that parallelizes transaction
execution based on their dependencies, leading to potential performance improve-
ments. Such an approach is fairly adopted in the literature [7, 213]. However,
transactions must declare their read/write sets for the parallel scheduler to speed-up
execution. Thus, clients have to pre-execute transactions locally, which may lead
to invalid transactions when the blockchain state is concurrently modified by mul-
tiple clients [213]. Additionally, application developers must minimize the risk of
transactions conflicts by opportunely designing smart contracts.

Transactions can be partitioned in shards for parallel execution also based on
static [13] or semantic [186] analysis techniques. Such approaches work well when a
prefix tree structure represents the state database, but their generalization to other tree
structures may be hindered by the ambiguous state representation problem, which
we define in Chapter 5.

PEEP [50] uses locks to protect shared resources and prevent conflicting trans-
actions from creating state inconsistencies, at the cost of introsucing a sequential
step for lock acquisition purposes. The authors underline that PEEP must use tree
structures that are unaffected by transaction insertion order (i.e., prefix trees).

Serializable Snapshot Isolation (SSI) is another technique used to execute trans-
actions in parallel. In this approach, each transaction accesses a snapshot of the
database and commits its writes only if no other transaction has modified the same
values. SSI accepts a small chance of unnecessary aborts to avoid more complex
conflict-checking techniques. Inserting transaction and conflict information directly
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into each block may expedite the validation phase [108]. SSI-based approaches have
been proposed by multiple studies [152, 177, 217].

Neuchain [164] exploits transaction parallelism without realying on an explicit
ordering phase. Transactions are associated with incremental identifiers to enable
deterministic conflict resolution, at the cost of centralization and scalability.

Blockpilot [221] pipelines and parallelizes block execution based on the idea that
block proposers and validators have different execution contexts and require varying
levels of execution determinism and transaction quantities.

Numerous blockchains keep executing transactions in sequence. Consequently,
even though new projects may exploit hardware and software co-design for parallel
transaction execution [160], the industry will likely adopt an incremental approach
to minimize disruptive changes. In Chapter 5 we describe how we introduced
parallelism in the Cosmos SDK whithout introducing breaking changes for existing
applications using it. We execute transactions optimistically and in parallel, then
we analye their dependencies to re-execute conflicting ones. Even though other
researchers use similar strategies [207], our algorithm also addresses the ambiguous
state representation problem.

2.3.4 Guidelines for smart contracts

Smart contracts were born to automate and digitalize legal contracts [201]. However,
in the blockchain context, smart contracts are code scripts that the peers of blockchain
networks execute [30]. Thus, smart contracts refer to two distinct concepts [224, 106].
In particular, Ref. [106] distinguishes between smart contract code, executed by
blockchains, and smart legal contracts, which are legal contracts in digital form [106].
The study focuses on the legal aspects of smart contracts, claiming that smart contract
code is a fragment of smart legal contracts [106]. Additionally, blockchain-based
smart contracts may only provide little benefits from a practical standpoint, as many
of the advantages advertised by enthusiasts are not legally meaningful and often
misleading [144].

In a context dominated by such hype-driven ambiguities and misconceptions,
creating standards for smart contracts is challenging [205]. Additionally, the au-
tomation of contracts from a legal perspective poses complex issues and suffers
from many limitations, including defining their scope and applicability, addressing
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internationalization, and assessing their validity [180]. Redefining existing standards
is a first step towards eliminating the incompatibilities and shortcomings between
smart contract code and smart legal contracts [53]. Additionally, pinpointing the
essential requirements smart contract code must satisfy for legal recognition is an
active research topic [68]. Such requirements include coding standards, conflict
resolution mechanisms, and universal APIs [142]. In Chapter 6, we tackle smart
contracts from a computer science perspective, focusing on the application-level
implications of the proposed guidelines.

On a more technical side, transparency, availability, and immutability are some of
the main characteristics of blockchain-based smart contracts [76]. Some researchers
propose innovative design strategies to overcome some of the current issues, includ-
ing determinism, transaction order dependency, and exception management [134].
Interestingly, embryonic standardization attempts are currently appearing in the
literature [167]. Unfortunately, such works lack generalization because they are tai-
lored to Ethereum [30]. Additionally, Ref. [167] includes some dubious guidelines.
For example, terminating contracts based on timers may cause inconsistencies at
processing or validation time, as discussed in Chapter 6.

Some standards are designed for specific use cases. For example, the literature
provides proposals of standards for altering and undoing smart contracts [139] and
for financial smart contracts [25].

On a purely technical side, paradigms and tools for smart contracts, including
strategies to reduce gas fees [107], are discussed in multiple studies [95, 224].
Formal descriptions of smart contracts and their features [96], as well as issues and
related solutions for programming smart contracts [136, 93], are also available in the
literature.

2.4 Conclusion

In this chapter, we contextualized this thesis within the existing literature and covered
the core concepts that will be referenced throughout the remainder of this thesis.

In Chapter 3, we will start our discussion on blockchain-based logistic applica-
tions by addressing blockchain suitability and introducing an electric vehicle supply
chain use case that will be further enriched in the following chapters of this thesis.



Chapter 3

Blockchain adoption

The first challenge companies face in building blockchain-based applications is
determining whether blockchain is suitable for a given use case. In this chapter,
we examine the essential technological conditions that could hinder the successful
adoption of blockchain. Additionally, we introduce a decision-making framework
designed to assist managers and decision-makers in determining the suitability of
blockchain from a technological perspective. Our aim is to offer decision-makers a
practical and easy-to-learn tool that simplifies the technical aspects of the technology,
focusing instead on managerial-level issues. The contents of this chapter are based
on Ref. [27, 38, 41].

3.1 Introduction

Blockchain is an appealing technological choice in many contexts due to its unique
value proposition. Companies are adopting blockchian for various reasons, including
fighting censorship, enhancing transparency of business processes, removing inter-
mediaries, and reducing unnecessary costs. However, the promise of quick gains
induced by the early success of blockchian-based payment and financial applications,
including Bitcoin, has generated a frenetic run for adopting blockchain without much
consideration for the compromises and drawbacks imposed by the technology.

To make the matter even worse, blockchain is a complex technology that dis-
rupts existing business models, shifting them towards decentralized paradigms,
thus introducing numerous challenges across technical, legal, and economic di-
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mensions. Consequently, decision-makers often lack the necessary knowledge to
make well-informed choices regarding blockchain adoption, falling pray to common
misconceptions in the field [184].

In this context, it is no wonder that blockchain is often selected for inappropriate
reasons, even when better alternatives exist [21, 87, 44, 120]. As a result, many
blockchain projects have short lifespans, with an average discontinuation rate of
approximately one year and a survival rate below 10% [206]. The failure to achieve
tangible benefits and the technology’s unsuitability for specific business cases are
among the primary reasons for these project discontinuations, as indicated by a
recent study [174]. An illustrative case is Tradelens, a supply chain management
platform supported by IBM and Maersk, which was recently terminated due to its
failure to achieve global industry collaboration [74].

Thus, it is imperative to develop a comprehensive framework of standards and
tools that simplify managerial decision-making concerning blockchain adoption
to enable the creation of successful use cases. This process likely encompasses
various factors, including technological, economic, managerial, legal, and human
considerations, and will probably take decades to be refined. In this chapter we make
a first step in this direction by focusing on the technological aspect.

In this chapter, we address the following aspects.

• We propose a decision-making framework for blockchain adoption that ab-
stracts the complexity of blockchain technology. This framework keeps
decision-makers focused on relevant decision drivers, assisting them in un-
derstanding when blockchain is applicable, valuable, and preferable to other
solutions from a technological standpoint. By leveraging our framework,
blockchain adoption decision-making becomes more straightforward, efficient,
and less error-prone. Importantly, the framework can be employed without
prior blockchain expertise, making it an effective tool for decision-makers who
lack the time or skills to delve into the intricacies of blockchain technology.

• We provide a rationale behind each decision driver in our framework, shedding
light on concealed caveats of blockchain technology that are often inadequately
addressed in existing literature. This discussion offers valuable insights for
businesses transitioning to decentralized paradigms. A tool implementing our
framework is available on Github [35].
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• We examine the application of our framework in a use case inspired by the
electric vehicle supply chain of a multinational corporation. This use case
represents one of the few supply chains where blockchain adoption can be
successful, offering insights into the practical application of our framework.

The remainder of this chapter is organized as follows: Section 3.2 describes the
problem tackled in this chapter, Section 3.3 elucidates the blockchain adoption
decision-making framework and introduces the Blockchain Adoption Decision Coun-
selor, a tool simplifying the application of our framework. Section 3.4 details the
application of our framework to a logistics use case inspired by a multinational
corporation’s electric vehicle supply chain. Finally, Section 3.5 concludes this
chapter.

3.2 Problem statement

Many real-world systems inherently exhibit decentralization. For example, supply
chains comprise numerous companies, and each company’s actions impact the
overall supply chain’s performance. Consequently, managing supply chains in a
decentralized manner and allowing each company to influence the best strategies for
overall improvement is a logical approach.

The advent of blockchain technologies has unlocked opportunities to decen-
tralize data management in systems that previously relied on trusted third parties.
However, determining whether blockchain adoption is appropriate poses challenges.
Blockchain is a complex technology fraught with hidden trade-offs and challenges
[198]. Grasping blockchain’s intricacies demands a solid foundation in cryptography
(e.g., digital signatures, cryptographic hash functions, zero-knowledge proofs), dis-
tributed consensus and state machine replication, non-relational databases, and more.
Consequently, decision-makers frequently lack the technical expertise required to
make informed choices regarding blockchain adoption. This issue is compounded by
numerous misconceptions about blockchain-related topics, even within academic
literature [12, 33]. Often, hype becomes the primary driving force behind decisions
on blockchain adoption: many blockchian-based projects are discontinued due to the
technology’s unsuitability for specific business cases and the failure to deliver tangi-
ble benefits [174], which underlines the difficulties decision-makers face in deciding
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if blockchain is the right technological choice. Hence, a high-level, user-friendly
decision-making framework is overdue, one that highlights the merits of blockchain
technology and, crucially, the prerequisites for realizing these benefits.

We have developed a framework to assist decision-makers in comprehending
when blockchain is a suitable, valuable, and superior solution compared to alterna-
tives. Our framework offers several advantages.

• Streamlined decision process: Our framework simplifies blockchain adoption
decisions, saving time.

• Structured methodology: Users follow a structured approach that reduces the
risks of adopting blockchain for inappropriate reasons or overlooking critical
decision factors.

• Accessibility: The framework is accessible to individuals without prior blockchain
knowledge or technical expertise.

• Alternative suggestions: When blockchain is not the optimal solution, our
framework provides viable technological alternatives.

We believe that the insights provided in this chapter can contribute to raising
awareness about blockchain technology and its genuine value proposition.

3.3 Blockchain adoption decision-making framework

This section describes our decision-making framework for blockchain adoption,
which is graphically summarized in Fig. 3.1. The framework helps decision-makers
understand if blockchain is a sound technological solution. However, before using
the framework, it is important to discuss the main reasons for adopting blockchain.

3.3.1 Blockchain’s value proposition

Manipulating data in centralized systems controlled by a trusted third party only
requires colluding with such a party. Instead, tampering with a blockchain re-
quires colluding with the majority of its participants. The main value provided by
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Fig. 3.1 The proposed decision-making framework for blockchain adoption.

blockchain comes from the assumption that the latter scenario is nearly infeasible,
making blockchain data trustworthy. Thus, blockchain’s value proposition is trust
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creation [133]. This, however, can have a few interesting applications. The most
immediate one is preventing others from manipulating data, which may be helpful for
due diligence practices, preventing censorship, or training machine learning models.
Alternatively, blockchain may be used to demonstrate one’s inability to manipulate
data, which may enhance brand reputation and quality assurance. Finally, sharing
a database with multiple other parties enforces a certain degree of standardization,
which may simplify and streamline many business processes.

3.3.2 Preliminary remarks

Once blockchain’s value proposition aligns with a certain use case, our decision-
making framework may be used to assess if the technology is well-suited from a
technological standpoint. Nonetheless, a few additional remarks are in order to better
understand our framework.

• Blockchain is meaningful when decentralized governance is required. Even
though the naming convention. distributed ledger technology has gained
adoption, decentralization is what matters, not distribution [55].

• Blockchain is inefficient and should be used only when necessary. Blockchain
is the only technology allowing for managing a database in a decentralized
fashion. However, if the database can be managed by a single entity, other
technological solutions are better [48].

• Our analysis focuses on the technological perspective. In some scenarios,
blockchain could be preferred to better technologies based on other factors,
including marketing and cost-benefit tradeoffs. For example, a company
may prefer to pay the transaction fees to deploy a smart contract on a public
blockchain instead of sustaining the costs for designing, building, monitoring,
and patching a centralized production architecture.

As a consequence of the previous points, fully private blockchains have little to
no potential to be used, in our opinion. They can be employed to prevent accidental
data modifications, but non-distributed ledgers are more efficient (e.g., ImmuDB
[158]). Thus, employing fully private blockchains can be a good marketing strategy
but not a good technological one. For example, central bank digital currencies
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[23] should not leverage blockchain if they are managed by a single entity (the
central bank). Consequently, our framework deals with the suitability of public or
consortium blockchains.

3.3.3 Q1: should multiple actors have decision power?

The pivotal consideration in determining blockchain adoption lies in the decentral-
ization of the system. If decision-making authority isn’t distributed among multi-
ple entities, it’s advisable to favor centralized solutions, such as other distributed
databases like Cassandra [122]. This preference stems from the scalability trilemma,
indicating that decentralization comes at the expense of either scalability or security
[182]. Consequently, centralized solutions exhibit higher scalability and security
compared to blockchain.

It’s crucial to emphasize that possessing decision-making authority equates to
having voting power for validating write attempts in the context of blockchain.
Blockchain can be conceptualized as a database subject to alterations through a
majority-based voting mechanism. This allows multiple entities to vote and collec-
tively determine the validity of proposed database modifications. Notably, blockchain
doesn’t extend the same assurances to read attempts, as a single malicious actor could
compromise the confidentiality of the database. Thus, while blockchain enhances
data integrity and availability, it simultaneously diminishes confidentiality.

Importantly, it’s worth noting that validating write attempts doesn’t imply having
the right to initiate writes. Drawing an analogy to a legal trial, a judge decides the
admissibility of evidence but doesn’t produce the evidence. This nuanced distinction
is a key point of differentiation between our work and existing literature.

3.3.4 Q2: do the actors trust a (third) party?

If an external entity or one of the actors is exceptionally trustworthy, the actors may
find it acceptable to delegate their decision-making power to such an entity. In such
instances, centralized solutions managed by the trusted party emerge as preferable
alternatives to blockchain, echoing the rationale outlined in the preceding section.
Conversely, blockchain becomes a viable solution when no single party enjoys the



26 Blockchain adoption

trust of all actors. This decision driver is a cornerstone in almost all decision-making
frameworks found in the existing literature, underscoring its paramount importance.

Notably, a blockchain can itself serve as a trusted third party. For instance,
individuals interacting with smart contracts on established blockchain networks (e.g.,
Ethereum) implicitly place trust in the governance models of these networks.

3.3.5 Q3: do the actors trust the majority?

While blockchain offers notable advantages, it doesn’t completely eradicate trust
issues. A fundamental prerequisite for utilizing blockchain technology is the trust-
worthiness of the majority of actors involved. Consequently, blockchain is best
suited for scenarios where the likelihood of collusion among actors is low. This
precaution is crucial because, in situations where collusion is possible, a malicious
majority could exploit the system through tampering or rewriting the database—A
phenomenon known as a 51% attack [88]. Unfortunately, existing literature has
sometimes overlooked the significance of this critical decision factor.

We strongly advocate for decision-makers to thoroughly assess the potential for
51% attacks before embracing blockchain technology, as these attacks are not uncom-
mon [140, 209]. It’s essential to recognize that smaller networks are more susceptible
to 51% attacks, requiring fewer actors to collude. Additionally, certain blockchains
may be vulnerable to attacks with an even lower percentage of colluding peers due to
specific voting protocols. Therefore, especially in consortium blockchains, verifying
the presence of a trustworthy (super)majority becomes imperative.

3.3.6 Q4: are the actors equally influential?

For blockchain to emerge as a viable solution, it’s crucial that actors maintain
a comparable level of decision power. When one actor wields disproportionate
influence over others, the likelihood of that influential actor imposing a centralized
solution is high. In such instances, adopting blockchain becomes challenging, as
the dominant actor has little incentive to share control of the database. Even if a
blockchain is implemented, the influential actor could potentially compel others to
align with its decisions, raising concerns about the overall trustworthiness of the
majority.
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In real-world scenarios, achieving a perfect balance of influence is rare and
subject to fluctuations over time. To account for this, risk assessment strategies can
be employed to consider the possibility of a minority gaining sufficient influence to
manipulate others’ decisions. Porter’s five forces analysis [170] offers a valuable tool
for gauging the influence of various actors, with a focus on studying the bargaining
power of customers and suppliers. This analysis can provide insights into the
dynamics of power among actors and inform decisions regarding the applicability of
blockchain technology.

To illustrate, consider Amazon [175], which manages one of the world’s largest
marketplaces. Sellers benefit from features such as increased visibility and logistical
support but are bound by Amazon’s non-negotiable policies. In situations where
an entity like Amazon possesses significant bargaining power, the adoption of a
blockchain solution becomes unlikely, as the powerful entity can dictate the use of
its managed database. Conversely, the adoption of blockchain might be plausible
in scenarios involving the collaboration of equals, such as the creation of a unified
marketplace between Amazon and Alibaba [91], where both e-commerce giants
share comparable bargaining power.

3.3.7 Q5: is data sharing advantageous for the actors?

Blockchains serve as shared databases, and participation in a blockchain network
implies a willingness to share and receive data. In cases where data is not meant
for sharing, centralized databases, where the manager retains complete control,
are more suitable. However, blockchain can be harnessed in scenarios demanding
unconventional data-sharing methods, and we’ve identified several such cases: partial
sharing, delayed sharing, conditional sharing, and proof sharing.

Partial sharing involves the need to share data with only specific actors. While
a separate blockchain with selected receivers is ideal, practical considerations may
lead actors to store encrypted data in a unified blockchain, sharing the decryption
key exclusively with the intended recipients. This way, encrypted data remains
in a tamper-proof database accessible to all actors, but only those possessing the
decryption key can recover the original information. Different encryption/decryption
keys can be employed to reveal data to distinct subsets of actors.
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Delayed sharing allows for data sharing in the future while ensuring non-alteration
in the interim. For instance, certain countries unveil classified documents after a pre-
determined period. Storing encrypted documents in a blockchain and subsequently
disclosing the decryption key ensures the authenticity and integrity of the documents
at the time of disclosure.

Conditional sharing enables data sharing contingent on a specific event, such
as a company sharing confidential data only in the event of litigation. Similar to
delayed sharing, blockchain can be utilized to uphold the authenticity and integrity
of encrypted data, revealing the decryption key when necessary. Notably, if the
anticipated event never transpires, blockchain stores data that remains undisclosed.

Proof sharing involves sharing not the data directly, but a proof computed on the
data (e.g., zero-knowledge proofs [92]) or a fingerprint of the data (e.g., the hash
of the data [220]). Such approaches aim to guarantee data integrity and minimize
information disclosure. Interestingly, blockchain is employed to share data, albeit
not in its original form.

3.3.8 Q6: have actors aligned interests to cooperate?

Blockchain systems operate on the principle of majority consensus, a state achievable
when actors are motivated to adhere to common rules. For blockchain to be viable, it
necessitates a scenario where cooperation is not only advantageous but also willingly
embraced by the participating actors [149].

Public blockchains often employ economic incentives to align actors’ goals and
encourage adherence to predefined rules [159]. In contrast, consortium blockchains
commonly rely on indirect incentives, such as business opportunities and cost savings.
In domains like logistics, the benefits of data sharing extend to improved demand
forecasting, reduced paperwork, and streamlined asset tracking throughout the supply
chain. This shared interest creates a foundation for long-term cooperation among
actors in the supply chain, fostering an environment where blockchain adoption
becomes both feasible and sustainable.
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3.3.9 Q7: have misbehaving actors opposed interests?

Even when actors are highly motivated to cooperate, there’s a risk that stronger
incentives to cheat may emerge, especially in scenarios offering quick and easy gains.
To address this concern, it’s crucial to ensure that misbehaving actors face conflicting
goals, where one actor’s gains equate to another’s losses. This minimizes the risk of
collusion attempts, as actors would need to act against their own interests to corrupt
the system.

Consider the example of Bitcoin [192]. Each Bitcoin holder is motivated to
create new Bitcoins, increasing their purchasing power. However, this also inflates
the existing supply, diminishing the purchasing power of other holders. As a result,
Bitcoin holders have conflicting interests when it comes to misbehaving, making
collusion attempts unlikely.

We now consider a scenario where a group of friends is betting on the winner
of a horse race, assuming that each friend picks a different horse. If the friends opt
not to rely on trusted third parties, they might choose to create their own blockchain
and utilize a smart contract to collect money in advance and then distribute it to
the winner. The verifiability and tamper-proof properties of the blockchain would
seemingly assure the correct handling of the bet, making blockchain appear to be
a suitable solution. Unfortunately, in this situation, the majority of the friends may
end up losing the bet and are likely to collude to reclaim their money instead of
forwarding the prize to the winner. Since blockchain decisions, including smart
contract behavior, are based on majority agreements, the winner of the bet may not
receive the prize. Thus, blockchain should not be employed when cheating attempts
favor the majority. However, if the contract were deployed on a public blockchain,
the collusion among friends would likely be insufficient, as only a global-scale
collusion could invalidate the bet.

3.3.10 Q8: are all the relevant actors involved in the management
of the system?

By leveraging blockchain, decisions can be taken through majority voting instead of
being delegated to a trusted third party. However, it’s essential to recognize that a
blockchain system acts as a third party for actors without voting power. Consequently,
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blockchain doesn’t provide additional trustworthiness guarantees to these actors,
and members of the blockchain should not expect entities to acknowledge the
trustworthiness of third-party managed blockchain systems.

Taking logistics as an example, consortium blockchains are often utilized to
facilitate data exchange among supply chain companies [92]. However, final retail
consumers are rarely part of the consortium due to lacking the means, technical
knowledge, time, economic incentives, and willingness to be involved. For them,
logistic blockchains function as trusted third parties. Consequently, supply chain
companies should not join a blockchain system solely to enhance data transparency
for final consumers, as consumers have no reason to trust the data stored in a
blockchain more than the data provided by their retailer. Thus, blockchain systems
should be used to create value for their participants, not external entities.

3.3.11 Q9: are the actors sufficiently autonomous?

The resiliency of blockchain is directly tied to its level of decentralization. To ensure
sufficient resilience to errors and tampering attempts, actors within the blockchain
should be as autonomous and independent as possible. If too many actors depend
on others for tasks such as coding smart contracts, maintaining an updated ledger
copy, participating in the voting process, and validating transactions, the blockchain,
though seemingly decentralized, becomes substantively centralized. In such a sce-
nario, blockchain provides no advantages over centralized systems but still introduces
significant scalability drawbacks. Therefore, it is crucial not to use blockchain if
genuine decentralization cannot be guaranteed. Importantly, increasing the number
of blockchain nodes managed by each actor does not enhance decentralization, as
distribution and decentralization are distinct concepts [55].

Non-autonomous actors pose a threat to decentralization, as they rely on poten-
tially dishonest third parties. Consequently, non-autonomous actors may be exploited
to reinforce a dishonest minority. As a result, a small group of autonomous actors
offers superior decentralization and security guarantees compared to a larger number
of non-autonomous actors.
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3.3.12 Q10: should retroactive data manipulation be prevented?

Data stored in a blockchain is considered tamper-resistant as long as the append-
only property of the ledger is upheld by the honest majority. This means that once
data is inserted, it cannot be manipulated thereafter in a sufficiently decentralized
blockchain. Updates are only possible by appending a newer version of the data to
the ledger. Importantly, the blockchain retains both versions, enabling actors to track
changes. Blockchain proves to be a valuable solution when preventing retroactive
data manipulation is crucial. However, if this property is not a priority, simply
standardizing data exchange protocols among actors is sufficient for efficient data
sharing.

In certain scenarios, companies may opt for decentralized solutions to prevent
themselves from engaging in retroactive data manipulation. This strategic choice
effectively enhances the transparency and verifiability of the company’s operations.
For instance, a poker service could leverage blockchain and multi-party computation
techniques [223] to ensure the fair extraction of cards, mitigating accusations of
favoritism towards any player.

When preventing retroactive data manipulation is not a top priority, each actor
can manage its centralized database and utilize standard data-sharing protocols to
exchange information with other actors. Interestingly, blockchains are sometimes
adopted solely to enforce standardization [156].

3.3.13 Q11: should proactive data manipulation be prevented?

As discussed earlier, blockchain is effective in preventing retroactive data manipula-
tion. However, it has limited capability in preventing proactive data manipulation—
Instances where manipulation occurs before the data is stored in the blockchain.
This limitation is particularly evident in the case of oracle data, which often conveys
information about the physical world and is challenging to verify and validate.

In the realm of logistics, consider the measurement of the temperature of a
frozen product at a specific time. Typically, the actor handling the product at that
time is responsible for taking this measurement. Other actors, lacking physical
possession of the product, must rely on and cannot independently verify the accuracy
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of this measurement provided by the handling actor. In such scenarios, blockchain is
susceptible to the ’garbage in, garbage out’ (GIGO) problem [51].

In contrast, Bitcoin transactions are entirely digital, allowing each peer to inde-
pendently verify them. Peers can maintain a registry of the balance of each Bitcoin
holder, enabling them to determine who has enough coins to spend. Nonetheless, very
few use cases can be modeled without relying on oracles, which limits blockchain
usefulness when proactive data manipulation must be prevented.

3.3.14 Blockchain Adoption Decision Counselor

Fig. 3.2 The user interface of the BADC tool

The Blockchain Adoption Decision Counselor (BADC) is a tool that further sim-
plifies the application of our decision-making framework. The tool is implemented
by leveraging the Angular framework [154] and is available on Github [35].

BADC exposes a graphical user interface that collects the user’s answers and
evaluates the blockchain adoption feasibility. The tool moves to the next question as
soon as the user answers the current one. Nonetheless, the user may decide to fill in
the questions in any order by selecting them through the slider. The results button
becomes clickable once all the questions are answered. The results button loads a
different view displaying BADC’s blockchain suitability evaluation (see Fig. 3.2).

The evaluation view presents BADC’s assessment based on suitability, usefulness,
and alternatives.

BADC classifies blockchain suitability into three categories: recommended, sub-
optimal, and discouraged. The recommended category indicates that blockchain
is the best technological alternative and that its adoption is encouraged. The sub-
optimal category indicates that blockchain is usable, but other technologies should
be preferred. Nonetheless, other factors (e.g., economic or regulatory ones) could
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Table 3.1 Comparison between public and consortium blockchains

Public Consortium
Decentralization Higher Lower
Development
costs

Low High

Development
time

Short Long

Infrastructure
costs

No Yes

Transaction fees Yes No
Flexibility No Yes
Computational
resources

Shared Dedicated

Speed Low High
Privacy Whole world Consortium

level
Best suited Light or inter-

mittent work-
loads

Heavy work-
loads, legal
compliance

still make blockchain a good compromise. The discourage category indicates that
blockchain is not applicable and should be avoided.

BADC also provides an evaluation of the usefulness of blockchain technology. In
particular, BADC warns the user if blockchain is not sufficient to provide the expected
value proposition, for example, due to the presence of the GIGO problem. In some
applications, blockchain may be coupled with additional technologies patching its
shortcomings.

In addition to the previous classifications, BADC also suggests potential techno-
logical alternatives that may be preferable to the blockchain. Thus, decision-makers
may follow the suggestion and change their technological orientation.

3.3.15 Public vs consortium blockchains

Public and consortium blockchains offer different tradeoffs that may be well suited
for different use cases. Consortium blockchains may be used when a group of
non-trusting entities has the necessity to control who can read/write data to the
blockchain (e.g., for compliance with GDPR regulatons). Moreover, they are a
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good fit when there are specific requirements for the network configuration, or when
a goal throughput must be guaranteed. Usually, consortium blockchains do not
require a transaction fee, but each actor must manage one or more nodes (with
the related costs and management problems). Such costs are fixed, even if the
network is unused. Consortium networks are usually small-sized, which means
that transactions can be processed efficiently, but the network is less decentralized
and, thus, secure. Public blockchains are a good fit when data can be publicly
accessible. Usually, public networks require a per-transaction fee, so they are a
good choice when transaction submission is infrequent. Since a single network hosts
multiple applications, computational resources are shared and hardly ever wasted. Of
course, confidentiality of both public and consortium blockchains can be enhanced
through encryption techniques which, however, usually require use case-specific
implementations. The main differences between public and consortium blockchains
are summarized in Table 3.1,

Let’s consider a voting system for political elections. By assuming to put aside
some concerns like anonymity, it is possible to describe elections as an event that
happens sporadically, but that produces a huge amount of transactions in a short
period of time. In such a case, a public blockchain is a good fit:

• The blockchain is used by many different users, not only by voters.

• Voters only need to deploy a smart contract and are not requested to manage a
node.

• When there is not an election, voters controlling a node can mine other users’
transactions and get a reward.

• In the election period, voters will submit many transactions. Even if none of
them owns a node, they can rely on the computational resources of the network
in exchange for a transaction fee.

• Even waiting some weeks for the transactions to be processed should not be a
problem. Anyway, voters may decide to overpay their transactions in order to
speed up the process.

• The election records are public, and the election results can be verified by any
interested party.
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Let’s consider a simple supply chain. Products must be tracked continuously,
from a supplier to a consumer, and decisions are taken in real-time based on the state
of the products, the availability of carriers and warehouses, etc. In such a case, a
consortium blockchain is a good fit:

• Transactions are submitted to the blockchain continuously and at regular rates.

• Transactions must be committed immediately to make real-time decisions.

• Costs are not a concern since the system pays itself in terms of process
optimization and litigation reduction (if not, there is no point in using a
blockchain).

• Data are not visible to competitors, but are disclosed to the consortium mem-
bers.

Let’s consider the previous example but in the case of seasonal products (e.g.,
Easter eggs). In such a case, a cost-optimized solution could rely on a public
blockchain, since a consortium blockchain would be idle for most of the time.
However, based on other restrictions (e.g., GDPR), it could be unadvisable to store
data in a public ledger, even in the form of a hash, which is a fingerprint of the data.
In fact, since hashes are deterministic and unlikely colliding, they are good identifiers
and could be used to track and link data. For example, if different companies store
the list of the hashes of the emails of their clients on a public blockchain, a hash
present in all the lists would likely imply that the same person is a client of all
the companies. Thus, each company would have access to the complete list of
relationships entertained by each of its clients.

3.4 Use case: electric vehicle supply chain

This section discusses how we used our decision-making framework to determine
the applicability of blockchain technology to a logistic use case based on the electric
vehicle supply chain of a multinational company. We conducted such an activity
in the context of the Cyber security cOmpeteNCe fOr Research anD InnovAtion
(CONCORIDA) project [56].
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3.4.1 Use case description

The electric vehicle market is dominated by influential actors. The demand for
electric batteries comes in large part from a few multinational companies, which
are often battery cell suppliers’ biggest clients. Contextually, a limited number of
suppliers can fulfill the demand of electric vehicle manufacturers. Similarly, only
a few shipping companies can handle the volumes imposed by such a large and
distributed supply chain. Hence, the current market conditions impose the creation
of long-lasting relationships, as changing partners is not possible.

Nonetheless, the current lack of timely, correct, authentic, and verifiable infor-
mation may hinder long-term commercial relationships. Companies do not want
to pay for the errors of their partners but assessing responsibilities in a fair and
verifiable way is difficult when data is scattered across multiple information systems,
as reconstructing the sequence of events affecting a given battery or vehicle is not
possible. In particular, shocks, high temperatures, and an inappropriate state of
charge may cause premature degradation of the batteries.

We worked with a multinational electric vehicle manufacturer to assess the suit-
ability of blockchain in the context of their electric vehicle supply chain. Currently,
battery cells are shipped by suppliers to the vehicle manufacturer’s battery assembly
plant. After being assembled, batteries are delivered to the vehicle assembly plant. A
complex process is used to assemble vehicles, which are then shipped to the dealer.
External logistic companies handle the transportation of the batteries. Sensors are
used to monitor the batteries’ temperature, position, vibration level, and charge
level. Currently, each company manages its own information system and has limited
visibility on the events affecting batteries and vehicles managed by other supply
chain companies.

The objective of the use case is to use Industry 4.0 technologies to improve the
logistic processes in terms of cost and quality. In particular, the use case presents
some requirements.

• Companies want to track batteries and vehicles along the whole supply chain.
The tracking system should guarantee the timely, safe, secure, and cost-
effective charging, monitoring, and certification of the vehicles (batteries).
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• Tracking information should be delivered in real-time to all the supply chain
companies, which helps guarantee the safety of the operators and the correct-
ness of the charge level at the moment of delivery.

• Different internal and external operators may recharge the vehicles (batteries)
if needed.

• The charging service is provided in predefined areas by mobile or fixed devices.

• Cyberattacks targeting the charging areas put at risk both the vehicles and the
power grid. Thus, charging areas should be carefully secured and monitored.

• Data should be shared only with the supply chain companies.

• The system should guarantee data correctness, authenticity, availability, and
integrity.

• Access to the companies’ systems should be granted to trusted operators and
any intrusion should be prevented and mitigated.

• The system should comply with the current regulations (e.g., GDPR).

• A universal source of truth should assign responsibilities to companies in case
negative events arise. The responsibility assignment process should be fair,
unambiguous, transparent, and auditable.

3.4.2 Value proposition

A blockchain-based tracking system may comply with the majority of the require-
ments of our use case, as digitally signed transactions would be ordered, timestamped,
and recorded across multiple nodes. Thus, a blockchain could guarantee data au-
thenticity, integrity, and availability. Moreover, blockchain’s transparency could
improve the fairness and verifiability of the responsibility assignment process, and
some cyberattacks could be neutralized or mitigated by blockchain’s redundancy and
resiliency. Thus, a blockchain-based system would allow us to fairly and unequivo-
cally assign responsibilities by linking harmful events, batteries affected, handling
actors, and time.

Sharing standardized data through a blockchain system may offer additional
benefits to the partners. In particular, the additional data available to the partners may
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reduce decision uncertainty, improving the machine learning and optimization tech-
niques applied to demand forecasting and production process scheduling. Moreover,
information tracking could be used as a form of health guarantee for refurbished and
used vehicles, increasing their market value [203].

Nonetheless, blockchain also introduces many challenges (e.g., technical, eco-
nomic, and legal). However, a more impelling question should be answered before
analyzing the potential benefits and obstacles of designing a blockchain-based solu-
tion: can a blockchain be used in the first place? In other words, do the fundamental
blockchain assumptions hold in our use case?

We describe the application of our decision-making framework to the previously
described use case to answer such a fundamental question.

3.4.3 Decision-making framework application

In this section, we apply our decision-making framework to assess the suitability of
blockchain for the examined electric vehicle supply chain.

Q1: should multiple actors have decision power?

A unified information system for the entire supply chain is desirable to prevent data
from scattering across multiple information systems. Thus, such a unified system
should be democratically managed by the totality of the supply chain companies.

Q2: do the actors trust a (third) party?

Supply chain companies are motivated to avoid responsibilities to reduce economic
losses, making them unreliable. Moreover, external companies should not have
access to the supply chain data. Thus, we could not identify a party that was trusted
by all the supply chain companies.

Q3: do the actors trust the majority?

The current market conditions enforce the creation of long-term relationships. The
supply chain companies are likely trustworthy, as losing a client/supplier is likely to
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cause severe business drawbacks. We could identify ten different companies in the
examined supply chain, each having a strong motivation to guarantee the quality of
the final electric vehicle. Thus, the majority is likely trustworthy.

Q4: are the actors equally influential?

Actors have similar bargaining power in the examined use case. A few electric
vehicle manufacturers drive the demand for electric batteries, a few battery suppliers
can fulfill such demand, and a few logistic companies have the necessary means
to handle such volumes. Of course, the supply chain also includes other minor
companies which are likely to follow the decisions of the big players as they do not
have sufficient influence to oppose them. Thus, the systems results balanced overall,
with no single company having enough influence on all the others.

Q5: is data sharing advantageous for the actors?

Data sharing allows for transparently assigning responsibilities and building long-
term relationships among companies. Moreover, sharing standardized data may
reduce decision uncertainty, improve demand forecasting, and simplify production
planning. By detecting failures in the early stages of the supply chain, it could
be possible to improve the quality of the final electric vehicles, which could be
beneficial to the brand reputation of the supply chain companies.

Q6: have actors aligned interests to cooperate?

Currently, market competition is among supply chains, no longer among organiza-
tions [127]. Hence, supply chain companies have a strong motivation to cooperate,
as the value perceived by the final consumer is a sum of the value generated by each
link in the supply chain. Thus, supply chain companies’ performance is tied to the
performance of the supply chain as a whole.

Q7: have misbehaving actors opposed interests?

If a company damages the batteries (or the vehicles) and does not take responsibility
for it, the economic loss will affect some other member of the supply chain. In the
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worst case, the final consumer will purchase a defective vehicle, which would have
a negative impact on the reputation of the whole supply chain. Thus, each supply
chain company has a strong motivation to prevent selfish behaviors and to request the
maximum process quality from the other supply chain members. Thus, misbehaving
collusion attempts are unlikely.

Q8: are all the relevant actors involved in the management of the system?

All the supply chain members are meant to participate in the blockchain-based shared
information system, except for the final consumers, which lack the proper means
and incentives to maintain a blockchain node and increase the level of security and
decentralization of the system. Thus, the value of the blockchain system must be
measured according to the benefits provided to the battery suppliers, the vehicle
manufacturers, and the transportation companies. The benefits to the final consumer
must not be considered, even though every supply chain aims at maximizing the
value produced for the final consumer.

The goal of the system is to assign responsibilities among the supply chain
companies to create long-term cooperation, and all such companies could be included
in the management of the blockchain system.

Q9: are the actors sufficiently autonomous?

The supply chain of our electric vehicle supply use case comprises both small and
big companies. Big companies have the skills and financial resources to set up and
manage their blockchain node, while small companies will likely rely on the services
provided by the bigger ones. Nonetheless, the ten big companies of our use case
should be sufficient to create a truly decentralized blockchain system.

Q10: should retroactive data manipulation be prevented?

Retroactive data manipulation must be prevented to create a unified and reliable
record of the events affecting a given battery (or electric vehicle), which is necessary
to fairly, transparently, and verifiably assign responsibilities. Supply chain companies
should be prevented from hiding or reassigning responsibilities by tampering with
the record.
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Q11: should proactive data manipulation be prevented?

Preventing proactive data manipulation is desirable. Supply chain companies should
be prevented from storing incorrect or imprecise data in the blockchain system.
However, on-field data is obtained by leveraging sensors, which introduces the
GIGO problem: companies may manipulate the sensors, displace them, or disrupt
the communication between the sensors and the blockchain system to prevent the
recording of unfavorable data. If data cannot be reliably collected, responsibilities
cannot be correctly assigned.

3.4.4 Blockchain suitability assessment

From our assessment, blockchain can be applied to the examined use case, but it is
not enough to guarantee the desired results. We believe that the adoption of a unified
information system based on blockchain could determine an improvement over the
currently adopted solutions, as it would prevent retroactive data manipulation. The
previous assessment can also be obtained through the BADC tool.

Blockchain must be complemented with other technologies to provide the ex-
pected benefits. In particular, designing opportune strategies to reduce the likelihood
of proactive data manipulation is important. For example, if the cost of manipu-
lating a sensor is higher than the benefit produced by such manipulation, then it is
reasonable to assume that the sensor is unlikely to be manipulated. To this extent,
Narrowband-IoT technologies and the involvement of telecommunications operators
could guarantee a sufficient degree of data reliability. Nonetheless, in this chapter,
we do not address the proactive data manipulation problem and keep our focus on
blockchain adoption.

Given the positive blockchain suitability assessment, we will discuss the im-
plementation of our solution. In the next chapters of this thesis, we will further
develop this use case by tackling additional problems like framework selection, IoT
integration, parallel transaction execution, and more.
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3.5 Conclusion

Interest in blockchain technology is surging among individuals, countries, and
companies. Yet, the path to blockchain adoption is far from straightforward, given its
complexity, necessitating a reevaluation of traditional problem-solving approaches
from a decentralized standpoint.

This chapter introduced a decision-making framework designed to aid readers
in evaluating blockchain adoption from a technological perspective. We explored
various decision drivers that illuminate whether blockchain is not only applicable
but also valuable and preferable to alternative technologies. Our framework offers a
unique resource for decision-makers, encompassing key factors often overlooked
in existing literature. Notably, it is accessible to individuals without an in-depth
understanding of blockchain intricacies, enabling managers to drive blockchain
adoption efficiently within their organizations, sidestepping the need for extensive
blockchain expertise.

Through practical application within a logistic use case centered on a multina-
tional electric vehicle supply chain, we discovered that blockchain applications can
be advantageous. However, it’s vital to recognize that blockchain must be comple-
mented with other technologies, for example to solve the garbage in, garbage out
problem.

Our framework underscores the crucial relationship between decentralization
and blockchain system security. A paramount takeaway is that blockchain should
only be considered when a sufficient level of decentralization can be assured.

In Chapter 4 we will take a step forward toward blockchain adoption by ana-
lyzing some of the most used frameworks available in the market and discussing a
methodology to compare their performances to select the best suited for our electric
vehicle supply chain use case.



Chapter 4

Framework selection

After assessing the suitability of blockchian technology, companies are challenged by
the problem of choosing the most appropriate blockchain framework to implement
their applications. Multiple solutions are currently available on the market, each
with its own strengths and weaknesses. Unfortunately, the variety of offered features,
the lack of standard benchmarks, and the absence of comparison guidelines make
the framework selection choice fairly complex. This chapter analyzes some of the
most popular permissioned blockchain frameworks and proposes a methodology
to compare their performances to streamline the framework selection process. The
contents of this chapter are based on Ref. [34, 27, 40, 41].

4.1 Introduction

At present, the blockchain landscape is swiftly evolving, with blockchain adoption
extending beyond the financial sector into various industries, each with unique
requirements. Consequently, numerous blockchain frameworks are emerging to
address these diverse needs, with new stable releases appearing regularly. However,
this constant influx of frameworks and updates poses a challenge for companies
trying to navigate technological decisions, as keeping up with emerging technologies
and evaluating the impact of new features becomes impractical.

Efficiency is a crucial factor limiting the applications that can leverage blockchain
technology effectively. For instance, in industrial IoT applications like logistics,
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where processing numerous transactions within a specific time frame is essential [165,
61], a fair evaluation procedure for different blockchain solutions is fundamental.

Despite the growing importance of blockchain, the literature lacks comprehensive
comparative analyses of multiple frameworks. Rapid technical advancements render
many existing analyses and evaluations outdated. Additionally, numerous articles
focus on performance evaluations of a single framework, hindering fair comparisons
due to variations in configurations and testing methodologies.

To address these gaps, this chapter presents an updated comparative analysis and
a fair performance evaluation of various permissioned blockchain frameworks. The
primary contributions include:

• A comprehensive comparative analysis of widely-used blockchain frameworks,
including Hyperledger Fabric [9], Hyperledger Sawtooth [155], and Consen-
Sys Quorum (utilizing both the GoQuorum and Hyperledger Besu clients) [59].
The analysis covers aspects such as governance, maturity, support, latency,
privacy, interoperability, flexibility, efficiency, resiliency, and scalability.

• Introduction of a methodology for conducting a fair comparative performance
evaluation of different blockchain frameworks. To the best of our knowledge,
this methodology is the first to focus on the cross-framework fairness and
comparability of tests. In particular, this methodology is innovative, as it
allows for minimizing differences among the different frameworks.

• Presentation of one of the most comprehensive cross-framework performance
evaluations in the literature. To address gaps in existing research, recent
releases of the frameworks were tested. Moreover, to minimize differences
among the various frameworks, similar transactions were submitted, and the
same underlying hardware was employed. Different blockchain nodes were
deployed over the same industrial cloud infrastructure (Amazon AWS).

Thus, our findings provide a thorough overview of the analyzed frameworks,
serving as a valuable guide for companies making informed technological choices.

The remainder of this chapter is structured as follows: Section 4.2 introduces
some of the most used blockchain frameworks and discusses the problem addressed
in this chapter. Section 4.3 presents the comparative analysis and Section 4.4 de-
scribes the performance evaluation of the various frameworks. Section 4.5 discusses
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blockchain framework selection in our electric vehicle supply chain use case. Finally,
Section 4.6 presents our conclusions.

4.2 Background

In this section, we introduce the frameworks analyzed in this chapter and the problem
statement.

4.2.1 Blockchain frameworks

Hyperledger Fabric

Hyperledger Fabric [9] is an open-source framework designed to meet prevalent
industrial needs, including identity management, role definition, policy establish-
ment, performance optimization, and data confidentiality. Fabric is part of the
Hyperledger ecosystem, an open-source community focused on developing stable
frameworks for enterprise-grade blockchain deployments [130]. Offering a modular
and scalable architecture, Fabric supports smart contracts written in various widely
adopted programming languages. For selective data sharing, Fabric allows private
transactions (private data collections) and the creation of independent lightweight
chains (channels). Fabric currently supports CFT consensus algorithms like Raft,
Kafka (deprecated), and Solo (deprecated), with a future plan for BFT consensus
[100]. At the time of writing, version 2.3.2 is the latest available.

Fabric distinguishes between two node types: orderers and peers. Peers execute
transactions and maintain ledger copies, while orderers construct blocks. Fabric’s
transaction processing unfolds in three steps:

• execute — Each transaction type adheres to an endorsement policy specify-
ing which peers must execute it. Clients submit transactions exclusively to
endorsing peers for scalability at the cost of decentralization. Endorsing peers
process the transaction without ledger updates, sending a signed message back
to the client for delivery to orderers.

• order — Orderers create blocks by sequencing received endorsed transactions.
Blocks are then broadcasted to all channel peers.
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• validate — Each peer scrutinizes the correctness of transactions within the
received block, updating its ledger copy. Transactions conflicting with preced-
ing ones within the same block are deemed invalid, among other validation
checks.

Hyperledger Sawtooth

Hyperledger Sawtooth [155], another integral member of the Hyperledger framework,
prioritizes flexibility and separation of concerns, abstracting the application layer
from the security layer. This approach facilitates the creation of blockchain systems
with replaceable components. Similar to Fabric, Sawtooth supports smart contract
composition in multiple programming languages. It incorporates both BFT (PBFT
and PoET SGX) and CFT (PoET CFT and Raft) consensus algorithms. Transaction
processing in Sawtooth follows the standard order-execute-validate strategy, with
transactions grouped into batches. The most recent version, as of the writing of this
document, is Sawtooth 1.2.6.

Key modules within the Sawtooth framework include:

• validator component — Responsible for scheduling transactions and ledger
management.

• consensus engine — Implements the chosen consensus algorithm.

• REST API component — Simplifies client interaction with the validator com-
ponent.

• transaction processor (TP) — Implements smart contract logic.

ConsenSys Quorum

ConsenSys Quorum [59], an open-source blockchain protocol rooted in the Ethereum
protocol, provides a platform for crafting high-performance permissioned blockchain
systems with robust data confidentiality. Compatible with the Ethereum protocol,
Quorum facilitates seamless migration of Ethereum smart contracts. Quorum en-
compasses two projects: one based on the GoQuorum client, originally developed
by J.P. Morgan and currently maintained by ConsenSys, and another based on the
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Hyperledger Besu client, implemented in Java. GoQuorum supports Raft (CFT),
Clique (BFT), and IBFT version 1.0 (BFT), while Besu supports Ethash, Clique, and
IBFT (versions 1.0 and 2.0). At the time of this writing, GoQuorum is at version
21.4.2, and Besu is at version 21.1.7.

In instances where both projects share common features, the term "Quorum" is
employed generically, with "GoQuorum" and "Besu" specifying the individual im-
plementations. Quorum’s transaction processing follows the standard order-execute-
validate strategy.

4.2.2 Problem statement

Selecting an appropriate blockchain framework can pose a challenge, given the
scarcity of comparative analyses [193]. Our literature review in Sec. 2.3 revealed
numerous research gaps.

• Limited availability of comparative analyses.

• Some analyses concentrating on highly specific applications.

• Testing often involves modified framework versions, rendering results less
relevant for official, supported releases.

• Divergent testing methods and conditions hinder meaningful comparisons,
even qualitatively.

• Outdated analyses that lack current relevance.

Despite these challenges, the significance of evaluating the performance of
diverse blockchain frameworks is underscored by the considerable volume of articles
devoted to this topic.

In response to these needs, we present a comprehensive methodology for as-
sessing blockchain frameworks in industrial use cases. This methodology serves as
the foundation for our performance evaluation of some of the most widely adopted
blockchain frameworks in industrial settings.
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4.3 Comparative analysis

This section compares multiple blockchain frameworks from a high-level perspective.

4.3.1 Governance

Expounding on the ability to control, coordinate, and direct a blockchain system,
governance, as detailed in Sec. 2.2.1 [163], involves decisions shaped by majority
voting, with consensus algorithms serving as the voting mechanisms [146]. Analyz-
ing consensus algorithms becomes paramount for comprehending the governance
model of a blockchain system, and we have outlined the offered consensus algorithms
for each framework in Sec. 4.2.1.

Given its absence of an official BFT consensus implementation, Fabric, despite
fully decentralized execute and validate steps, is categorized as a private blockchain.
Concerns regarding the reliability of Hyperledger Fabric have been voiced in envi-
ronments susceptible to ordering service compromise [135]. Additionally, Fabric’s
state is organized as a flat key-value store rather than a Merkle tree. This structure
necessitates querying multiple peers to validate retrieved data, making it impractical
for scaling on medium to large networks.

Sawtooth and Quorum, when deployed with a BFT consensus, extend their utility
to constructing both public and consortium blockchain systems, thus providing a
means for non-trusting parties to resolve their trust issues.

4.3.2 Maturity

Maturity, signifying the production readiness of blockchain frameworks, asserts
that Fabric, Sawtooth, and Quorum are all production-ready, as indicated by their
documentation and version numbers [100, 58, 105]. Fabric emerges as the most
widespread and used technology among the three, evidenced by its plethora of
implemented use-cases [65, 129]. Quorum, too, enjoys common industry usage
[59, 65]. While Sawtooth sees somewhat less adoption in the industry [65, 129], it
has found widespread acceptance in the academic world [166, 43, 28, 111].
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4.3.3 Support

Fig. 4.1 Developer activity (e.g., commits, pull requests, forks, etc.) on GitHub in the years
2017–2020. The image illustrates the most active communities in the blockchain landscape.
Sources: [46, 47].

Support, in this context, refers to the extent to which blockchain frameworks
facilitate adoption in terms of both technological enhancements and user experience.

Fabric, Quorum, and Sawtooth are active projects, receiving support from both
official and unofficial channels.

In our assessment, the Fabric framework is well-documented, though setting
up a system from scratch may present non-trivial challenges, warranting potential
improvements in official documentation.

In our evaluation, the Sawtooth framework stands out as well-documented and
easy to set up, providing comprehensive tutorials for test system setup and detailed
configuration options for custom production systems. Sawtooth’s abstraction of vari-
ous blockchain layers makes it an excellent framework for understanding blockchain
technology.

In our view, the Quorum framework is partially documented, relying on Ethereum
documentation for core concepts. However, it offers many tutorials for test system
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setup, focusing on practical aspects. While not as detailed as Fabric or Sawtooth
documentation, Quorum’s emphasis on practicality is evident.

Regarding community activity, Figure 4.1 depicts GitHub developer analysis
from [46] and [47]. Fabric and Besu gain support, GoQuorum remains stable, and
Sawtooth experiences a downtrend. As Sawtooth’s data for 2020 is absent, we
extracted it directly from GitHub, represented by a dashed line.

4.3.4 Latency

Latency, as defined in Sec. 2.2.6, denotes the time taken for transaction processing.
Transaction finality can be probabilistic or deterministic based on the consensus
algorithm used. Probabilistic finality enhances scalability but introduces higher
transaction latency [147]. PBFT [45], IBFT [57], and Raft [157] ensure deterministic
finality, while Clique [202], Ethash [214], and PoET (CFT and SGX) [99] offer
probabilistic finality.

4.3.5 Privacy

Privacy, in this context, pertains to the ability to share data with a subset of blockchain
system participants. Various strategies are applied [155]:

• Share the hash of the data with all peers, and the actual data only with those of
interest. This underlies Fabric’s private data collections [211] and Quorum’s
Orion and Tessera modules [2].

• Create a separate system—usually costly and potentially insecure. Fabric
addresses this through channels, separate blockchains with their own ledger,
sharing common components and reducing hardware requirements compared
to separate systems [9].

• Store ciphered data, which is feasible but requires client-managed encryption.
Sawtooth exclusively adopts this strategy [155].
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4.3.6 Interoperability

Interoperability, referring to the atomic transfer of data across multiple blockchains
[121], remains unaddressed by the analyzed frameworks. Cross-chain communica-
tion, akin to interoperability but without atomicity, is also absent [219].

Partial interoperability may be achieved using cross-chain communication proto-
cols or relying on game theory and time synchronization or third-party trust assump-
tions. Protocols like notary schemes or hash-locking [19] have drawbacks, including
limited use cases, inefficiency, third-party trust, and atomicity violation. More-
over, they do not facilitate the transfer of asset history across different blockchains,
hindering transparency and verifiability.

Full blockchain interoperability is unattainable without ledger merging [121],
and cross-chain communication necessitates trusted third parties [219].

4.3.7 Flexibility

Flexibility, denoting the capacity to replace components or add features, varies
among the frameworks.

Sawtooth stands out as the most flexible, allowing dynamic component replace-
ment and on- and off-chain settings configuration [155]. Quorum and Fabric also
offer flexibility, supporting configurable parameters and plugins [58, 101, 9].

4.3.8 Efficiency

Efficiency measures the amount of information a blockchain framework can process
per unit of time. Key insights from the in-depth analysis in Section 4.4 reveal
that the choice of a smart contract programming language significantly impacts
overall performance. Notably, Fabric and GoQuorum demonstrate exceptional
performance across various tests. While Besu performs well with light transactions,
it experiences notable performance decay with heavier tasks. Sawtooth’s efficiency
shows improvement with larger transaction batches, though its parallel scheduler
potential remains underutilized due to the limited number of vCPUs utilized in our
tests [65, 129, 155].
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4.3.9 Resiliency

Resiliency, reliant on consensus algorithms, distinguishes between CFT and BFT.
Fabric offers CFT algorithms, while Sawtooth and Quorum provide both CFT and
BFT options. Notably, quantum-safe elliptic-curve cryptography is currently absent
in all the frameworks [18].

4.3.10 Scalability

Scalability denotes the ability to expand the size of a blockchain network while
mitigating adverse effects on other system properties, such as efficiency. As outlined
in the scalability trilemma, enhancing scalability in a blockchain system often
involves a tradeoff with decentralization or security [165]. A notable example of
this tradeoff is the preference for CFT over BFT algorithms, a choice embraced by
Fabric, Quorum, and Sawtooth.

Fabric employs endorsement policies as an alternative method to enhance scala-
bility. By allowing different nodes to execute distinct sets of transactions in parallel
and leveraging channels, Fabric essentially adopts an approach akin to creating
separate blockchain systems [9].

Quorum’s IBFT consensus algorithm introduces dynamic changes to the set of
nodes participating in the consensus protocol. This feature enables the maintenance
of a small, efficient set of consensus nodes, while affording all peers the opportunity
to be part of this set for a limited duration [57].

In the case of Sawtooth, the set of consensus nodes in its PBFT is an on-chain
setting that can be dynamically updated. This mechanism results in a behavior similar
to that of Quorum’s IBFT, offering adaptability in response to evolving network
dynamics

4.4 Performance analysis

As articulated in Sections 4.1 and 2.3, the absence of a standardized methodology for
comparing the performance of multiple blockchain frameworks has complicated the
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Fig. 4.2 The testing environment architecture involved creating a network of four virtual
machines on AWS, with each virtual machine hosting multiple components. Components of
the same framework were identified by a consistent color. The Sawtooth node comprised
a validator, a consensus engine, a REST API, and two transaction processors—one for
managing on-chain settings and another for processing test transactions. The Fabric node
included a peer, an orderer, and a certificate authority. In contrast, both the GoQuorum and
Besu nodes each consisted of a single component

decision-making process when choosing an appropriate blockchain. This challenge
is exacerbated by the limited interoperability among different blockchain solutions.

This section elucidates the testing environment and outlines the conducted tests
on various frameworks. Notably, the tests were executed using identical virtual
machines, while the smart contract had to be implemented individually in each
framework. Furthermore, the configurations of the diverse frameworks were not
fine-tuned. This decision was made due to variations in configuration settings among
different frameworks, each of which can significantly alter the system’s behavior.

In terms of the frameworks incorporated in the tests, we selected some of the most
widely-used blockchain frameworks: Hyperledger Fabric, Hyperledger Sawtooth,
and ConsenSys Quorum (featuring both the GoQuorum and Hyperledger Besu
clients).



54 Framework selection

Table 4.1 Test environment for each blockchain framework, highlighting the main differences
among the various frameworks.

Fabric Sawtooth Besu GoQuorum

Version 2.2.2 (Jan, 2021) 1.2.3 (Oct, 2019) 21.1 (Feb, 2021) 21.1 (Feb, 2021)

Components per
instance

1 peer, 1 orderer, 1
Fabric Certificate
Authority

1 validator, 1 con-
sensus engine, 1
REST API, 1 set-
tings transaction
processor, 1 test
contract transac-
tion processor

1 Besu node 1 GoQuorum
node

State Database LevelDB LMDB RocksDB LevelDB

Consensus Raft Raft, PBFT IBFT 2.0 Raft, IBFT 1.0

Smart Contract Go, Java Go Solidity Solidity

Batch Size - 1 transaction - -

Number of chan-
nels

1 - - -

Endorsement Pol-
icy

All peers must en-
dorse each trans-
action

- - -

4.4.1 Testing environment

To perform the tests, we constructed a network consisting of four AWS instances.
The instances belonged to the same availability zone and to the same virtual private
cloud (VPC). Each instance was a r5a.large virtual machine, with 2 vCPUs, 16 GB
of RAM, and 50 GB SSD. The testing environment infrastructure is shown in Figure
4.2.

The following settings describe the test environment used for the performance
evaluation.

• Network topology: complete graph, with instances hosted in the same avail-
ability zone.

• Number of instances: 4.

• Instance type: AWS r5a.large.

• DISK (single instance): 50 GB gp2 SSD (EBS volume).

• RAM (single instance): 16 GB.
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• CPU (single instance): AMD EPYC 7000, 2.5 GHz, and 2 vCPUs.

• OS: Ubuntu 20.04.2 LTS.

• Node: v10.24.

• Go: go1.13.

• Docker: 20.10.3, build 48d30b5.

• Docker-compose: version 1.28.4, build cabd5cfb.

• Solidity: 0.8.0+commit.c7dfd78e.Emscripten.clang.

• Java: openjdk v1.8.0_292.

4.4.2 Methodology

Table 4.2 Transaction parameter configurations for various test types. The concurrency test
involved accessing a varying number of different addresses, ranging from one to the total
number of submitted transactions. In the size test, transaction payload sizes ranged from
0.1 to 50 kB. The iteration test encompassed a variation in the number of read and write
operations, spanning from 1 to 1000.

Test No. ad-
dresses

Payload size (kB) No. iterations

Size max 0.1; 1; 10; 20; 50 1

Concurrency 1; 100;
max

0.1 1

Iteration max 0.1 1, 10, 100, 1000

As discussed in Section 4.3.10, blockchain frameworks offer the option to trade
off decentralization and security in favor of efficiency and scalability. Establish-
ing the performance superiority of one framework over another is straightforward
when one is configured for scalability, and the other prioritizes security and de-
centralization. Consequently, comparing the performance of various frameworks
becomes meaningless unless comparable conditions are ensured for all frameworks.
While guidelines for evaluating the performance of a single framework exist [103],
and some multi-framework benchmark tools have been developed [67, 188], these
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resources lack a methodology for creating equivalent testing environments for com-
paring the performance of different blockchain frameworks. To bridge this gap, we
introduce a novel methodology addressing the following concerns.

• Node functional requirements: Frameworks consist of multiple modules that
need allocation to hardware resources. However, some frameworks exhibit
greater modularity than others. Hence, defining a blockchain node based
on its functional requirements becomes crucial. This enables the creation of
classes of equivalent modules across diverse frameworks, facilitating consistent
module assignment to hardware resources. To our knowledge, no prior study
has tackled this issue.

• Distribution requirements: it is imperative to employ identical network topolo-
gies and geographic node distributions across various frameworks. It is note-
worthy that enforcing uniform geographic distribution becomes feasible only
after establishing a cross-framework definition of a blockchain node.

• Resiliency requirements: similar security, decentralization, and replication
levels must be mandated across different frameworks, especially concerning
the execution of smart contracts and participation in the consensus protocol.

• Number of ledgers: determining the fixed number of separate ledgers managed
by each blockchain system and specifying the workload each ledger undergoes
is essential. Deploying multiple ledgers offers a straightforward approach to
enhancing the throughput of a blockchain system.

• Standardized workloads: designing a suite of standardized tests is necessary
to assess the upper bound of a generic production system’s performance.
Hyperledger Caliper and the DLPS also utilize standardized workloads for
benchmarking purposes.

Regarding the functional requirements of nodes, Fabric distinguishes among
ordering, endorsing, and validating nodes. Similarly, Sawtooth separates the layers
for conensus, ledger management, and smart contract processing. In contrast, a single
Quorum node performs all three operations. Consequently, we present an abstract
definition of a blockchain node based on its functional requirements, enabling
the consistent assignment of framework modules to hardware resources across
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diverse frameworks. An abstract blockchain node signifies a non-trusting entity in a
blockchain network and should independently perform all pertinent operations. We
define an abstract blockchain node as a set of components executing the following
tasks:

• security management, covering cryptographic operations and privacy manage-
ment.

• transaction management and Smart Contract Execution, encompassing order-
ing, scheduling, and processing transactions;

• peering and networking management (i.e., networking with other peers);

• consensus management (e.g., mining, fork resolution);

• database management, inclusive of ledger and state database updates;

For each framework, we formed networks consisting of four nodes, with each
node assigned to a distinct virtual machine. This ensured a one-to-one correspon-
dence between virtual machines and nodes. Subsequently, we allocated modules to
virtual machines, aligning with the functional requirements defined for an abstract
blockchain node, as depicted in Figure 4.2 and detailed in Table 4.1. Notably, our
tests exclude private transactions, making a single Besu or GoQuorum node sufficient
to meet the abstract blockchain node criteria. Sawtooth, as discussed in Section 4.2.1,
incorporates various modules, with a Sawtooth validator consistently connected
to the transaction processor managing on-chain settings. In our deployment, we
colocated the consensus engine and the transaction processor for test transactions on
the same virtual machine.

Additionally, we established four Fabric organizations, representing non-trusting
parties. For each organization, we deployed one peer and one orderer on a sin-
gle virtual machine. This configuration aligns with the abstract node definition,
where a single node is responsible for both transaction processing and consensus
management.

Concerning geographic distribution, all nodes for each framework were deployed
within the same Virtual Private Cloud (VPC) and maintained full connectivity.

Concerning resiliency requirements, all nodes were mandated to actively partic-
ipate in both consensus and transaction execution. In Fabric, this translated to the
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endorsement of transactions by all four nodes, ensuring each transaction underwent
execution precisely four times—Once per node. Where feasible, equivalent consen-
sus algorithms were employed across frameworks, with Raft implemented by all
of them. Additionally, PBFT and IBFT exhibited similar behavior when consensus
nodes were not subject to dynamic replacement.

Concerning the number of ledgers, each blockchain system was assigned a single
ledger, leading to the use of a single channel in Fabric.

For workload simulation, various scenarios were considered:

• transactions writing varying amounts of data to the ledger: this scenario mimics
situations where different IoT devices contribute data to the ledger.

• presence of parallelizable and sequential transactions: sequential transactions,
typical in step-by-step processes, coexisted with parallel transactions, common
in scenarios involving multiple independent processes (e.g., sensors monitoring
diverse assets simultaneously).

• transactions updating varying numbers of objects: for example, a single sensor
monitoring a cargo might need to simultaneously update data related to one
specific good or all shipped goods.

For the performance evaluation, a singular transaction type was defined, encom-
passing the following operations:

• loading a data structure from the ledger, comprising a counter and a string.

• incrementing the counter and replacing the string with its payload.

• storing the modified data structure back to the ledger at its original address.

• iteratively repeating these steps for a predetermined number of iterations.

Consequently, each transaction was characterized by the following parameters.

• Blockchain address, denoting the location where the data structure is stored.
Transactions targeting the same address generated a sequential workload, while
transactions targeting different addresses generated a parallelizable workload.
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• Payload size, specifying the amount of data to be copied in the data structure
modified by the transaction.

• Number of iterations, determining how many times the transaction continues
loading and storing data.

Three types of tests were conducted on the frameworks, each focusing on one of
the aforementioned parameters.

• Size test: transactions read from and wrote to the ledger with varying amounts
of data. The minimum payload size during the tests was set to 0.1 kB, consid-
ering that a single hash is usually no shorter than this value.

• Iteration test: each transaction performed a varying number of load and store
operations, simulating transactions updating the state of one or more assets.

• Concurrency Test: transactions read from and wrote to a varying number of
different addresses. This allowed observation of the frameworks’ behavior
when transactions were sequential (i.e., reading from and writing to the same
address) or parallelizable (i.e., reading from and writing to completely different
addresses).

Table 4.2 summarizes the configuration used in each test. Each test was repeated
ten times with each set of parameters. Transactions were submitted to one of the four
nodes at a rate of 500 transactions per second (tps). This input rate was chosen to
surpass the maximum throughput achieved by the frameworks, thereby highlighting
their distinct behaviors under the same workload. Performance was measured by a
client external to the blockchain system under test. Time measurement by the client
extended from transaction submission to transaction consolidation, occurring after a
single block confirmation, as deterministic consensus algorithms were employed. It
is crucial to note that our objective was to measure the frameworks’ performance
under similar conditions, and the obtained results do not represent the maximum
throughput of the frameworks. Determining maximum throughput typically involves
addressing non-polynomial, complex maximization problems that are rarely solved
exactly [62].
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4.4.3 Environmental similarities and limitations

The frameworks were tested on the same hardware. Moreover, the configurations
of the frameworks were not tuned. Depending on the programming languages
supported by each framework, similar smart contracts were written in Go, Java, and
Solidity. However, some differences existed, due to the unique APIs offered by each
framework. The main differences between the frameworks are reported in Table 4.1.
For each framework, the table describes the version, the components instantiated
on each virtual machine, the consensus protocol, the programming language used
to implement the smart contracts, the default state database, the batch size (for
Sawtooth), and the endorsement policy and the number of channels (for Fabric).

4.4.4 Results

This section presents the results obtained from the performance evaluation.

Fig. 4.3 Transactions per second (TPS) measured for varying levels of transaction paralleliz-
ability: sequential transactions (parallelizability = 1), transactions with partial paralleliz-
ability (allowing up to 100 parallel transactions), and fully independent transactions (max
parallelizability).

The results of the concurrency test are shown in Figure 4.3. Fabric did not perform
well for sequential transactions: many of the transactions failed the validation step, as
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explained in Section 4.2. However, in the vast majority of use-cases, transactions are
parallelizable, and both Fabric and Quorum performed well. Sawtooth’s performance
was affected by the choice of small batches and attained a TPS value half that
achieved by Fabric. Moreover, Sawtooth’s parallel scheduler did not provide any
benefit. This was likely due to the choice of AWS instances with only two vCPUs.
For Fabric, the choice of smart contract programming language was important, as
those written in Java did not perform the same as the ones written in Go. CFT
consensus algorithms boosted performance in all the frameworks, but on small
networks, such as the one used for the tests, the performance gain did not justify
the sacrifice of decentralization. However, by increasing the number of nodes,
the performance advantages of using CFT algorithms on fully connected networks
should become considerable, as they have lower message complexity. As the number
of exchanged messages is relevant and not the total number of nodes, performances
are unlikely to decay on big networks if each node is connected to a limited number
of peers. This strategy is adopted by probabilistic consensus algorithms and impacts
latency and finality instead of efficiency.

The results of the concurrency test are showcased in Figure 4.3. Fabric exhibited
suboptimal performance for sequential transactions, with a notable number failing
the validation step (refer to Section 4.2 for detailed discussion). Nevertheless,
in scenarios where transactions could be parallelized, both Fabric and Quorum
demonstrated satisfactory performance. On the other hand, Sawtooth’s performance,
influenced by the use of small batches, resulted in a TPS value half that achieved
by Fabric. Furthermore, the parallel scheduler in Sawtooth did not yield discernible
benefits, possibly due to the choice of AWS instances with only two vCPUs.

In the case of Fabric, the choice of the smart contract programming language
played a crucial role, with Java-written contracts exhibiting different performance
characteristics than those written in Go. Across all frameworks, CFT consensus
algorithms consistently outperformed BFT ones. However, on small networks like
the one employed for the tests, the performance gain did not justify sacrificing
decentralization. Nevertheless, scaling up the number of nodes could make the
performance advantages of CFT algorithms significant, as their lower message
complexity is likely to play a crucial role in large and fully connected networks.

It’s worth noting that performance is unlikely to deteriorate on larger networks if
each node is connected to a limited number of peers, as the number of exchanged
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messages, rather than the total number of nodes, is the primary performance limit-
ing factor. This strategic approach aligns with probabilistic consensus algorithms,
impacting latency and finality rather than efficiency.

Fig. 4.4 TPS with varying payload sizes, ranging from 0.1 to 50 kB.

Figure 4.4 illustrates the outcomes of the size test, validating the trends identified
in the concurrency test. Notably, Besu exhibited a swift degradation in perfor-
mance with larger transactions. In general, the increase in transaction payload size
corresponded to a decrease in TPS, as the volume of data stored per second escalated.

Figure 4.5 showcases the results of the iteration test, affirming the observed
performance deterioration of Besu with longer-lasting transactions. Overall, as the
number of load and store operations per transaction increased, the quantity of read
and write operations per second also rose, albeit with a decrease in Transactions
per Second (TPS). Additionally, none of the frameworks appeared optimized for
multiple read and write operations on the same address within a single transaction.
In such scenarios, it is advisable to perform only the first read and the last write
operations, a consideration worth noting in smart contract development.

Our performance evaluation results deviate from those in other studies, a common
occurrence due to variations in tools, configurations, and testing methodologies. To
mitigate variability, we compare our results to studies employing official framework
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Fig. 4.5 TPS with varying read/write amounts. A pair of read/write operations (iteration = 1)
mimics a transaction updating a single asset, whereas multiple read/write operations mimic a
transaction updating multiple assets.

versions and discard studies using outdated versions due to potential technological
disparities.

Ref. [188] reported superior transaction throughput results across all frameworks
and we attribute the variance to more powerful hardware usage. Additionally, even
minor differences in framework configurations may significantly impact system
performance; for instance, we observed GoQuorum’s performance doubling when
logging is disabled.

Ref. [85] focused on Fabric exclusively, adopting an adaptive-based testing
methodology that aligns input and output transaction rates. However, such a strategy
poses challenges in cross-chain comparisons, as diverse frameworks contend with
distinct input transaction rates. We opted for a uniform workload (in terms of
transaction rate) across different frameworks. Furthermore, the study employed
eight peers instead of our four, potentially doubling overall throughput. While
numerical values differ, some similarities in overall framework behavior, especially
performance decay with increasing payload size, persist.

Ref. [141] did not specify the version of Quorum used, thus the release of
Quorum may be outdated even though the study is recent. Differences in transaction
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complexity with respect to this work are likely present and due to Caliper usage. The
study employed a single, high-performance virtual machine, differing significantly
from our distributed four-node setup. Consequently, while certain results may
align (e.g., 4-nodes Raft and 4-nodes IBFT), methodological distinctions preclude
generalizations.

Table 4.3 Results of the performance evaluation. Each row represents one of the tests
performed. For each test, the configuration used and the results obtained are reported.

No. ad-
dresses

Payload
size
(kB)

No.
itera-
tions

Fabric
(Raft,
Go)

Fabric
(Raft,
Java)

Sawtooth
(Raft,
Go)

Sawtooth
(PBFT,
Go)

Besu
(IBFT
2.0,
Solidity)

GoQuorum
(Raft, So-
lidity)

GoQuorum
(IBFT,
Solidity)

1 0.1 1 (3.0 ±
0.2) ·
10−1

(1.7 ±
0.3) ·
10−1

(3.1 ±
0.1) ·10

(2.9 ±
0.1) ·10

(1.8 ±
0.3) ·102

(1.2 ±
0.03) ·102

(1.33 ±
0.07) ·102

100 0.1 1 (2.4 ±
0.2) ·10

(1.7 ±
0.3) ·10

(3.2 ±
0.1) ·10

(3.2 ±
0.5) ·10

(1.7 ±
0.4) ·102

(1.46 ±
0.05) ·102

(1.32 ±
0.05) ·102

max 0.1 1 (1.95 ±
0.02) ·
102

(1.68 ±
0.02) ·
102

(2.9 ±
0.2) ·10

(2.8 ±
0.4) ·10

(1.6 ±
0.5) ·102

(1.44 ±
0.04) ·102

(1.26 ±
0.08) ·102

max 1 1 (1.85 ±
0.02) ·
102

(1.56 ±
0.02) ·
102

(2.5 ±
0.1) ·10

(2.6 ±
0.2) ·10

(3.0 ±
0.6) ·10

(1.18 ±
0.06) ·102

(1.01 ±
0.07) ·102

max 10 1 (1.24 ±
0.03) ·
102

(1.02 ±
0.03) ·
102

(1.1 ±
0.8) ·10

(1.1 ±
0.4) ·10

(4±1) (5 ± 2) ·
10

(4 ± 1) ·
10

max 20 1 (8.9 ±
0.3) ·10

(7.5 ±
0.2) ·10

(7±5) (7±2) (2.2 ±
0.5)

(2.6 ±
0.8) ·10

(2 ± 1) ·
10

max 50 1 (5.1 ±
0.5) ·10

(4.3 ±
0.1) ·10

(4.6 ±
0.5)

(4±1) (1.1 ±
0.5)

(1.2 ±
0.4) ·10

(1.1 ±
0.5) ·10

max 0.1 10 (1.48 ±
0.05) ·
102

(9.6 ±
0.2) ·10

(1.0 ±
0.1) ·10

(7±1) (1.3 ±
0.2) ·102

(1.30 ±
0.03) ·102

(1.13 ±
0.05) ·102

max 0.1 100 (6.8 ±
0.6) ·10

(2.25 ±
0.93) ·
10

(4.07 ±
0.02) ·
10−1

(3.7 ±
0.1) ·
10−1

(2.2 ±
0.3) ·10

(7.2 ±
0.3) ·10

(3.18 ±
0.02) ·10

max 0.1 1000 (7.2 ±
0.1)

(2.63 ±
0.05)

(1.26 ±
0.02) ·
10−1

(1.12 ±
0.03) ·
10−1

(2.3 ±
0.1)

(9±1) (4.9 ±
0.5)

The results obtained are additionally detailed in Table 4.3. Each row in the table
corresponds to one of the conducted tests, providing information on the configuration
employed and the resulting outcomes.
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4.5 Use case: electic vehicle supply chain

Our electric vehicle supply chain use case involves a set of requirements related to
operational efficiency, privacy, and regulatory compliance. Based on the discussions
in this chapter, permissioned blockchain platforms may be a suitable option as they
address the typical needs of industrial applications, offering efficiency, adaptability,
and the ability to restrict network access to designated members. Now, we need to
choose the most suitable framework based on our analysis.

We may eliminate Hyperledger Fabric due to concerns about data verifiability
resulting from using a flat key-value store to represent state and resilience against
potential malicious actors due to the absence of BFT algorithms. Security and
decentralization are key factors in our use case.

Considering framework performance, we may discard Sawtooth; while its perfor-
mance is likely sufficient, opting for more efficient frameworks might be wiser.

Lastly, we may rule out GoQuorum in favor of Besu, which is more supported and
has a more active community on Github. Consequently, it may receive patches and
updates for longer periods. Additionally, many tools developed within the Ethereum
ecosystem can be used with Quorum too, enabling faster application development,
testing, and deployment.

4.6 Conclusion

The interest blockchain is gaining is prompting a response from the market, with
many frameworks for decentralized application development appearing and receiving
multiple updates and enhancements. Selecting the most appropriate one becomes dif-
ficult due to the lack of fair comparison methodologies and tools. In this chapter, we
analyzed Hyperledger Fabric, Hyperledger Sawtooth, and ConsenSys Quorum (with
both the GoQuorum and the Hyperledger Besu clients), which are some of the most
used frameworks currently available, from multiple perspectives. Additionally, we
presented a methodology for fairly comparing the performance of blockchain frame-
works. Hopefully, this methodology will help companies in performing unbiased
evaluations of existing frameworks.
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In Chapter 5, we will extend this discussion by analyzing a possible way to
enhance the performance of blockchain frameworks, given that this is presently one
of the main barriers to blockchain adoption.



Chapter 5

Boosting performance

The previous chapter focused on comparing blockchain frameworks, particularly
from the performance standpoint. Often, however, the performance offered by
blockchain frameworks is insufficient due to the complexity of the state machine
replication process. In such cases, various performance/scaling techniques can
be exploited to customize blockchain frameworks and obtain some performance
improvements, albeit often at the cost of security or decentralization. In this chapter,
we discuss how we successfully integrated parallel transaction execution in the
Cosmos blockchain framework, a feat that poses both theoretical and practical
challenges. The contents of this chapter are based on Ref. [27, 42, 41].

5.1 Introduction

Logistic processes often generate vast quantities of real-time data, necessitating
robust processing capabilities. Thus, the successful implementation of blockchain in
industrial settings hinges on ensuring optimal performance levels. However, within
blockchain networks, all peers process the same operations in the same sequence, in
accordance with the state machine replication model [185, 123]. Thus, workloads
are replicated rather than distributed among the peers. In addition, some blockchain
systems process transactions in sequence to avoid creating state inconsistencies
among different peers, at the cost of constraining performance substantially.

Although multiple works deal with parallel transaction execution in the context
of state machine replication (e.g., [138, 17]), traditional strategies may not be directly
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applicable to blockchain systems. Blockchains often represent their state by lever-
aging hierarchical data structures, like Merkelized trees, instead of flat key-value
stores. Merkelized trees allow for efficient data integrity verification, even when
retrieved from potentially untrusted peers. Unfortunately, the use of Merkelized
trees may impose stricter concurrency contraints due to the order-dependent nature
of their operations. In particualr, some Merkelized trees introduce some indirect
dependencies among transactions that are imposed by the contingent state of the
tree structure, not by the transactions themselves. Taking these dependencies into
account is mandatory to prevent the creation of multiple state representations and
inconsistencies in blockchain systems. We may consider, for example, the inseriton
of keys 1..4 in a Merkelized AVL tree, as shown in Figure 5.1. The transactions
access different keys and should be concurrently executable under parallel state
machine replication, but different transaction schedules may generate different trees.
The two trees in Fig. 5.1 hold the same values in the same order but differ in their
Merkle root hashes. We name this issue as the “ambiguous state representation
problem”.

(a) Insert order: 1→2→3→4 (b) Insert order: 4→3→2→1

Fig. 5.1 Different insertion orders of the same set of values can result in different state
representations in (Merkelized) AVL trees.

Apart from characterizing the ambiguous state representation problem, this
chapter introduces an algorithm for parallel and optimistic transaction execution in
blockchain systems that guarantees the creation of a consistent tree representation
across all peers. Our approach is general and can be employed with any Merkelized
tree structure. To the best of our knowledge, this is the first attempt to introduce
parallelism into blockchains using such generalized data structures. The focal points
of this chapter are as follows.
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• Definition and formalization of the ambiguous state representation problem
when introducing parallel transaction execution on Merkelized trees.

• Descrption of an algorithm for parallel transaction execution that avoids the
ambiguous state representation problem.

• Practical implementation of our algorithm into the ppopular Cosmos SDK
framework. Existing Cosmos applications only need to update a single package
dependency to benefit from parallel transaction execution.

• Comprehensive performance evaluation with varying network configurations,
based on standard workloads generated with the YCSB benchmark.

The subsequent sections of this chapter are structured as follows: Section 5.2
presents the ambiguous state representation problem and an overview of the Cosmos
blockchain. Section 5.3 delineates our algorithm for avoiding the ambiguous state
representation problem in parallel transaction execution. Section 5.4 presents a
coprehensive performance evaluation of our algorithm under various network config-
urations. Section 5.5 discusses blockchain performance enhancement in our electric
vehicle supply chain use case. Finally, Section 5.6 concludes the chapter.

5.2 Background

This section presents the ambiguous state representation problem and provides a
brief introduction to the Cosmos blockchain, which we used to test our algorithm.

5.2.1 Problem description

We define a blockchain B[h] with the last committed block h for a set of peers
P = {0,1, . . . ,(n−1)} in the following manner:

B[h] := {σ[h],0,σ[h],1, . . . ,σ[h],n−1}, (5.1)

where σ[h],i is part of the set S comprising all Merkelized trees with values in
the leaves representing a key-value store with keys in K. The function MRoot : S→
{0,1}κ generates the Merkle root of a Merkelized tree with security parameter κ .
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The state transition function f : S×Γ→ S produces a new state tree σ[h+1] ∈ S
by considering the current state σ[h] ∈ S and a schedule (i.e., a total order) Γ of
transactions T[h+1] = {t0, t1, . . . , tm−1} committed in block h+1. Each transaction
involves one or more read, insert, or delete operations on the state tree. These
operations are atomic and target a single key/leaf in the state tree, with only insert
and delete operations capable of modifying the tree.

The functions Keys : T → K, WriteSet : T → K, and ReadSet : T → K will be
used in Section 5.3. Keys returns the set of keys targeted by a transaction, while
WriteSet and ReadSet return the mutative and read sets of a transaction, respectively.
Notably, the keys in K solely identify the leaves of a tree. Therefore, transactions
possess the same read/write sets if they operate on the same leaves, irrespective of
inner nodes. Parallel transaction execution may result in different peers executing
different schedules. For this reason, we introduce the following definitions.

Definition 5.2.1. Let tree σ ∈ S. Two schedules Γi and Γ j of T are considered
σ -equivalent, denoted as Γi =σ Γ j, if and only if:

MRoot( f (σ ,Γi)) = MRoot( f (σ ,Γ j)). (5.2)

Definition 5.2.2. B[h] is in a consistent state σ[h] if and only if:

∀i, j ∈P : MRoot(σ[h],i) = MRoot(σ[h], j). (5.3)

Theorem 5.2.1. Let B[h] be in a consistent state σ[h]. B[h+1] is in a consistent state
σ[h+1] if and only if ∀i, j ∈P : Γi =σ[h] Γ j.

Proof. The definition of state transition function for each peer is as follows:

∀i ∈P : σ[h+1],i = f (σ[h],i,Γi). (5.4)

If we apply the MRoot function to both sides of the previous equation, we obtain:

∀i ∈P : MRoot(σ[h+1],i) = MRoot( f (σ[h],i,Γi)). (5.5)

However, σ[h] is consistent: ∀i ∈P : σ[h],i = σ[h]. Additionally, finding hash colli-
sions is unlikely. Thus:

∀i ∈P : MRoot(σ[h+1],i) = MRoot( f (σ[h],Γi)). (5.6)
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Sufficiency. If ∀i, j ∈P : Γi =σ[h] Γ j, then, by definition:

∀i, j ∈P : MRoot( f (σ[h],Γi)) = MRoot( f (σ[h],Γ j)). (5.7)

We can now use Eq. 5.6 on both sides to obtain:

∀i, j ∈P : MRoot(σ[h+1],i) = MRoot(σ[h+1], j). (5.8)

Thus, σ[h+1] is consistent.

Necessity. If ∃i, j ∈P : Γi ̸=σ[h] Γ j, then, by definition:

∃i, j ∈P : MRoot( f (σ[h],Γi)) ̸= MRoot( f (σ[h],Γ j)). (5.9)

We can now use Eq. 5.6 on both sides to obtain:

∃i, j ∈P : MRoot(σ[h+1],i) ̸= MRoot(σ[h+1], j). (5.10)

Thus, σ[h+1] is not consistent.

The ambiguous state representation problem is introduced to address situations
where different transaction schedules lead to distinct state representations due to
indirect dependencies not visible at the transaction level. In fact, the Merkle root of
a Merkle tree embeds information on both the state and the internal structure of the
tree representing it. Thus, it may happen that different nodes reach the same state
but build different trees, resulting in Merkle root hash mismatches and consensus
failures. Additionally, the issue of transaction fees being paid to the block proposer
often results in write conflicts among all transactions within a block. Our algorithm
proposes a workaround for both these problems.

5.2.2 Cosmos

Cosmos [117] operates as a network of interconnected blockchains, using the Inter-
Blockchain Communication protocol for cross-chain data transfer. The Cosmos
ecosystem provides various tools for facilitating blockchain creation and network
expansion. The software stack of a typical Cosmos blockchain, illustrated in Fig. 5.2,
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Fig. 5.2 Software stack of a Cosmos SDK application.

includes Tendermint Core (now Comet BFT) and the Cosmos SDK. Comet BFT is
responsible for managing state machine replication while Cosmos SDK streamlines
application-level development. The two modules interact through the ABCI interface.
The following methods are invoked in the following order:

• BeginBlock: signals the start of a new block to the application.

• DeliverTx: delivers a single transaction to the application, with this method
being invoked once per transaction.

• EndBlock: indicates the end of the block.

• Commit: instructs the application to produce the Merkle Root and return it to
the Tendermint Core.

In the ABCI 2.0 specification, a change is made to the transaction processing
methods, introducing a single method, FinalizeBlock, to deliver all transactions to
the application in a single operation.

Developers can use the Cosmos SDK to accelerate blockchain creation, as it
supports multi-asset public Proof-of-Stake (PoS) blockchains and permissioned
Proof-of-Authority (PoA) blockchains. The SDK provides functionality for account
management, gas measurement, fee payment, and staking to developers.
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This chapter demonstrates our approach to enhancing the default transaction
execution efficiency of the Cosmos SDK.

5.3 Algorithm description

Fig. 5.3 Comparison of blockchain transaction execution: default (left) and our proposal
(right).

Our analysis of the ambiguous state representation problem reveals that executing
write operations out of order could lead to distinct tree representations, even when the
operations target different tree leaves. However, these representations only differ by
some rotation operations, implying that they assign the same values to the same keys.
Consequently, while these representations cannot be used to compute the Merkle
root hash, they remain useful for reading and writing values. In a broader context,
peers can leverage flat key-value stores for reading and writing values, provided they
can compute the same Merkle root hash in the end.

Our solution, as outlined in Algorithm 1, relies on several key functions:

• Iterator (txs): generates an iterator for the given array of objects.

• Next (i): advances iterator i to the next value.

• HasNext (i): checks if the iterator has reached the end of the array.

• GetValue (i): retrieves the value currently pointed to by iterator i.
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• AnteHandleSync (tx, store): executes the ante handler for transaction tx syn-
chronously. Values are read from /written to store. It returns the updated
store.

• CreateArray (): returns an empty array.

• WrapStore (store): creates a hashmap that acts as a write-back cache for store.
A dirty bit is used to identify modified data, allowing the separation of read
and write sets.

• ExecuteAsync (tx, store): executes tx asynchronously by reading from and
writing to store.

• ExecuteSync (tx, store): executes tx synchronously by reading from and writing
to store.

• Append (array, elm): appends elm to the end of array, returning the newly
created array.

• PopFront (array): removes the first value of the array and returns it.

• Wait (future): waits for future to complete.

• IsRWConflict (firstCache, secondCache): checks if the read set of secondCache
contains at least one value also present in the write set of firstCache.

• WriteSetUpsert (firstCache, secondCache): merges firstCache and second-
Cache, with the values in secondCache overwriting those in firstCache.

• WriteBack (cache, store): writes the values in cache back to store.

We can deconstruct our implementation into three steps to clarify how the algo-
rithm operates.

5.3.1 Sequential step: reordering

Invalid transactions should not be executed within blockchains. Therefore, an
ante handler is executed prior to each transaction, performing both stateless and
stateful validity checks. These checks may include verifying signatures, checking
block expiration, and more. Notably, an essential check involves the payment of
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transaction fees to the block proposer, necessitating the sequential execution of ante
handlers. Consequently, interleaving ante handlers and transactions prevents the
parallel execution of transactions. We propose to process transactions in parallel
after sequentially executing all ante handlers, as illustrated in Figure 5.3.

5.3.2 Parallel step: optimistic execution

Following the sequential execution of all ante handlers, transactions are processed
in parallel. Each transaction is linked to a write-back cache and interacts with it
for both reading from and writing data. Consequently, each transaction operates
without awareness of the updates made by others, and its read and write sets can be
determined based on the contents of the associated write-back cache. As a result,
peers can execute transactions in any order.

5.3.3 Sequential step: conflict resolution

To avoid ambiguous state representations, we propagate the writes of various transac-
tions to the underlying state tree in the sequential order in which transactions appear
in the block. However, before implementing such changes, we must prevent com-
putational anomalies and potentially re-execute conflicting transactions. We decide
whether a transaction ti must be re-executed based on the following observations:

• ReadSet(t0, . . . , ti−1)∩ReadSet(ti) ̸= /0: No re-execution is required since the
state remains unaltered.

• ReadSet(t0, . . . , ti−1)∩WriteSet(ti) ̸= /0: As each transaction is unaware of
modifications made by others, the values read by t0, . . . , ti−1 remain unaffected
by the writes of ti. Therefore, no re-execution is necessary.

• WriteSet(t0, . . . , ti−1)∩ReadSet(ti) ̸= /0: ti needs to be re-executed as it did
not observe the modifications made by its predecessors.

• WriteSet(t0, . . . , ti−1)∩WriteSet(ti) ̸= /0: Two scenarios can be distinguished.
If ti carries out updates, a conflict between the read set of ti and the write set
of its predecessors also exists, leading back to the previous case. If ti performs
blind writes, its writes can be propagated to the underlying state tree without
re-execution.
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In essence, re-execution is necessary only if WriteSet(t0, . . . , ti−1)∩ReadSet(ti) ̸=
/0. In all other cases, the writes of ti can be propagated to the underlying state tree.

5.4 Experiment analysis

Our integration of the algorithm within the Cosmos SDK was aimed at demonstrating
the feasibility of our solution and evaluating potential performance improvements.
To this end, we developed a key-value store application on top of the Cosmos SDK
and compared the average number of committed Transactions Per Second (TPS)
between the official release and our parallel implementation. Both versions used
the same key-value store application, as a single dependency needs to be updated to
switch between the official release and our implementation. Throughout our tests,
we did not encounter any disruptions in consensus, affirming the determinism of our
solution.

5.4.1 Setup and environment

We established a network of 40 Virtual Machines (VMs) on AWS, each equipped
with the c6a.2xlarge instance family and 120 GB of gp3 SSD. Each VM hosted a
Docker container in host network mode, and the tests were conducted using version
0.45.13-ics of the Cosmos SDK. The Yahoo! Cloud Serving Benchmark (YCSB)
was employed to generate workloads, including the update-heavy, read-mostly,
read-latest, and read-modify-write workloads (named A, B, D, and F respectively).
The system performance was evaluated externally, with each client submitting 105

transactions to every peer in a round-robin fashion. We explored various network
configurations, thread counts, and pre-existing record counts during our tests.

5.4.2 Performance analysis: thread count

Figure 5.4 depicts the performance variations with different thread counts. Increasing
the number of threads led to overall performance improvements. Notably, the
throughput reached a saturation point of 400 TPS with just two threads in workload F.
Parallel transaction execution consistently outperformed the single-threaded system,
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Fig. 5.4 Performance while varying numbers of threads.

providing higher throughput across all workloads, despite the moderate performance
gains observed in workloads involving simple computations.

The latency cumulative distributions are illustrated in Figure 5.5 for the single-
threaded and 8-threaded systems. The parallel approach consistently demonstrated
superior performance over the single-threaded system in all workloads. For instance,
in workload A, the multithreaded execution reduced the median latency from 10.3
seconds to 7.9 seconds.

5.4.3 Performance analysis: network size

Figure 5.6 showcases the performance trends with varying network sizes. With the
exception of the 4-node network under workload B, parallel transaction execution
consistently provided higher throughput. While no clear correlation was observed
between the performance gains and the network size, the significance of the tests
conducted with 40 nodes remains useful for various real-world deployment scenarios.
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(a) Workload A (b) Workload B

(c) Workload D (d) Workload F

Fig. 5.5 Comparison of the latency cumulative distributions.

5.4.4 Performance analysis: database size

Figure 5.7 demonstrates the performance variations with different numbers of pre-
existing records. Similar to the previous cases, parallel transaction execution con-
sistently resulted in higher throughput, with increasing gains as the number of
pre-existing records grew. This trend is rational, considering the increased traversal
time for larger state trees. Future research may delve deeper into the impact of
parallel transaction execution on even larger state trees.

5.4.5 Summary

To summarize our findings:



5.5 Use case: electic vehicle supply chain 79

(a) Workload A (b) Workload B

(c) Workload D (d) Workload F

Fig. 5.6 Performance of different network sizes.

• Parallel transaction execution offers benefits in terms of throughput and latency
across all workloads.

• The ambiguous state representation problem poses significant constraints on
parallel transaction execution, resulting in reduced throughput and latency
gains.

5.5 Use case: electic vehicle supply chain

Our electric vehicle supply chain use case necessitates the tracking of millions of
batteries and vehicles. Therefore, achieving a performance level of tens of thousands
of transactions per second is imperative for implementing a continuous monitoring
approach. Based on the results of this chapter, simply relying on parallel transaction
execution is insufficient to bridge the considerable performance gap spanning multi-
ple orders of magnitude between the required and available performance capacities
of blockchain frameworks.

As a result, we have chosen to abandon continuous monitoring and instead focus
on storing information related to harmful events. This decision significantly reduces
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(a) Workload A (b) Workload B

(c) Workload D (d) Workload F

Fig. 5.7 Performance while varying numbers of pre-existing records in the blockchain state.

the required throughput to a few dozen transactions per second. In this context,
fine-tuning performance through parallel transaction execution is likely unnecessary.
However, we may revisit this decision when transitioning to production, where we
anticipate dealing with more complex transactions.

5.6 Conclusion

The ambiguous state representation problem can lead to inconsistencies in the state
of a blockcahain when executing transactions in parallel. This chapter introduces
an algorithm that addresses this issue by ensuring that write operations are carried
out in a specific order, without fully compromising concurrency. We integrated our
algorithm into the widely used Cosmos SDK to demonstrate its viability and examine
the potential performance enhancements. We conducted a comprehensive perfor-
mance assessment, indicating that our implementation consistently outperformed
the existing one by 5%-10% in terms of Transactions Per Second (TPS) across all
scenarios. Other techniques [221, 79] yield better results in terms of eficiency gains,
but do not address the ambiguous state representation problem.
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The performance gain we obtained falls short of resolving the scalability chal-
lenges inherent in blockchain technology. Nonetheless, our optimizations have
yielded tangible benefits for end users, as validated through evaluations conducted
from an external client, even within networks consisting of numerous peers.

After achieving sufficient performance, we may start defining the logic of our
application, which translates to designing smart contracts in the blockchain context.
In Chapter 6, we delve into this topic by discussing some guidelines for smart
contract standardization.
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Algorithm 1 ProcessBlock executes block transactions and updates the state tree
coherently

1: function PROCESSBLOCK(store, txs)
2: i← ITERATOR(txs) ▷
3: repeat
4: i← NEXT(i) ▷
5: tx← GETVALUE(i) ▷
6: store← ANTEHANDLESYNC(tx,store) ▷
7: until HASNEXT(i) ▷
8: f wss← CREATEARRAY() ▷
9: accum←WRAPSTORE(store) ▷ Wrapped stores are hashmaps acting as

write-back caches
10: i← ITERATOR(txs) ▷
11: repeat
12: i← NEXT(i) ▷
13: tx← GETVALUE(i) ▷
14: ws←WRAPSTORE(store) ▷
15: f ws← EXECUTEASYNC(tx,ws) ▷ f ws is a future-like object
16: f wss← APPEND( f wss, f ws) ▷
17: until HASNEXT(i) ▷
18: i← ITERATOR(txs) ▷
19: repeat
20: i← NEXT(i) ▷
21: tx← GETVALUE(i) ▷
22: f ws← POPFRONT( f wss) ▷
23: ws←WAIT( f ws) ▷ Wait for future to be ready
24: if ISRWCONFLICT(accum,ws) then ▷ re-execute if read-write conflicts

arise
25: accum← EXECUTESYNC(tx,accum) ▷
26: else
27: accum←WRITESETUPSERT(accum,ws) ▷ accum is updated with

values in ws
28: end if
29: until HASNEXT(i) ▷
30: WRITEBACK(accum,store) ▷ Writes are sequentially propagated to the

underlying store, avoiding the ambiguous state representation problem
31: return
32: end function



Chapter 6

Demystifying smart contracts

Blockchain-based applications use smart contracts to implement the application logic.
The guiding principles for software design, development, testing, and validation in
centralized systems seamlessly extend to smart contracts, with the only caveat that
smart contracts must be deterministic and guarantee consistent executions across
different peers at any time. Nonetheless, the actual benefits and limits of smart
contracts are often misunderstood, and many misconceptions are widespread in
the field. In this chapter, we address some of the most frequent ones and define
guidelines for smart contract standardization. The contents of this chapter are based
on Ref. [27, 37, 41].

6.1 Introduction

Digital tokens are experiencing increased adoption, reshaping business models as
traditionally illiquid assets now find association with digital tokens and become
tradable on decentralized finance marketplaces. In logistics, tokenization represents
a way for companies to add transparency to the history of products, promote quality,
and gain visibility over social- or environmental-friendly practices they employ.
Tokenization is permeating various other sectors as well, with Non-Fungible Tokens
(NFTs) and exchangeable coins gaining prominence in the market [148].

The pivotal drivers of this paradigm shift toward tokenization are smart contracts,
which provide companies and individuals with flexibility, security, and automation
[66]. These tamper-resistant computer programs leverage blockchain technology to
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ensure the accuracy of their executions. Smart contracts find application in diverse
objectives, such as ensuring data source quality, safeguarding assets and tokens,
and augmenting and automating fairness in business processes. One particularly
compelling objective involves the automation of legal contracts [80].

Nonetheless, creating tamper-resistant, decentralized, secure, legally recognized,
and economically advantageous smart contracts is a complex endeavor that demands
consideration of various technical and legal aspects [106]. Smart contracts seldom
operate in isolation; for instance, in logistics, drones handle on-field operations,
while IoT devices gather on-field data for analysis through artificial intelligence,
stochastic programming, and granular computing approaches. Ensuring decentral-
ized data feeds for smart contracts often requires tracking a single product using
multiple IoT devices. However, this approach can be impractical due to economic or
physical constraints, and processing data from redundant sources adds complexity to
algorithms without necessarily enhancing accuracy. Establishing a comprehensive
smart contract framework poses challenges as multiple concerns must be addressed
concurrently, leading to the recent emergence of standards in the literature [167].

Despite the growing interest in smart contracts, numerous misconceptions per-
sist. Defining smart contracts is challenging from a technical standpoint, given the
varied functionalities offered by blockchain platforms, each employing different
deployment and execution strategies. This diversity, coupled with the diverse back-
grounds and priorities of those interested in the topic, has fostered the proliferation
of misunderstandings and partial truths. The term "smart contract" itself can be
misleading, suggesting legally recognized digital agreements rather than general-
purpose computer programs. Furthermore, the properties of smart contracts often
hinge on the configuration and decentralization level of the underlying blockchain
system, making generalizations imprecise. In this context, the creation of precise
definitions, standards, guidelines, and best practices for smart contracts has become
a pressing necessity. Additionally, considering the broad audience interested in the
topic, discussions about smart contracts must be conducted with precision, accuracy,
and widespread understanding, adding an extra layer of complexity to the task.

This chapter aims to outline some basic principles defining smart contracts and
define guidelines for future standards. The discussion may help researchers, lawyers,
computer scientists, and decision-makers understand smart contracts’ benefits and
caveats. Our main objectives are as follows:
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• We describe smart contracts in a multifaceted fashion to make them under-
standable by a broad audience.

• We identify, discuss, and correct some common smart contract misconceptions.

• We define some guidelines for implementing and executing smart contracts,
highlighting the applicability, compromises, and limits of the technology.
Hopefully, future standards will adopt our guidelines by adapting them to
specific use cases, where principles must meet practicality.

The remainder of this chapter is structured as follows: Section 6.2 briefly intro-
duces the problem addressed in this chapter; Section 6.3 discusses some guidelines
for smart contracts; Section 6.4 focuses on smart contracts for our electric vehicle
supply chain use case; Section 6.5 presents some final comments on smart contract
standardization.

6.2 Problem statement

Presently, smart contract research is advancing rapidly across diverse domains.
Researchers are challenged by communication due to their varied backgrounds and
viewpoints, spanning computer science, economics, and law. Frequently, crucial
nuances are overlooked to simplify descriptions of smart contracts, fostering an
environment conducive to the proliferation of misconceptions and incomplete truths.
This limitation even extends to emerging standards on smart contracts.

In this chapter, we aim to unravel prevalent misconceptions surrounding smart
contracts, offering a high-level perspective on the subject. Our discussion navigates
both technical and non-technical aspects without neglecting essential details. By do-
ing so, we present guidelines intended to assist readers from diverse backgrounds in
demystifying the technology, comprehending its limitations, and discerning potential
areas of adoption.
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Table 6.1 Categorization of this chapter’s claims on smart contracts

Category Claims: a smart contract...

Perspectives

is an equivalence class
is a state-transition function

is a computer program
belongs to the system

Properties
is digital

is tamper-resistant
is likely bug-free if independently coded and verified

Misconceptions

has to be certified
has to be stored on-chain

is immutable
might leave the state of the system unchanged

has an intrinsic meaning and interpretation
has legal value

Guidelines

should be declarative (not procedural)
should be independently coded (preferably)
should be independently tested (preferably)

should be independently executed (preferably)
may leverage validity proofs

should not rely on local information (e.g., the node’s clock)
should avoid oracles as much as possible

should avoid undefined behaviors (e.g., iteration order)
should be inspectable and provide access to its source code

should be integrated into a framework that defines its meaning
may be integrated into a framework for legal recognition

should be avoided if the code must be certified

Requirements
must be deterministic

must be verifiable
must store its output on-chain
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6.3 Smart contracts: misconceptions and guidelines

This section discussess common misconceptions related to blockchain-based smart
contracts and proposes some guidelines for their standardization. The content of this
section are summarized in Table 6.1.

6.3.1 Smart contracts are state-transition functions

A conceptual lens for understanding a blockchain system involves framing it as
a finite state machine [30]. In this conceptualization, smart contracts are state-
transition functions, transitioning the system from one state to another. Specifically,
a smart contract can be articulated as a function δ : S ×I →S , where S denotes
the finite and non-empty set of the blockchain’s states and I represents the set of
potential input transactions.

In a broader context, this vision emphasizes that smart contracts manipulate
two distinct types of data: the (internal) ledger data, deemed trustworthy, and the
(external) transaction data, whose accuracy demands validation. Depending on
the use case, relying solely on ledger data may prove insufficient for verifying
transaction data. Consequently, there exists an inherent constraint on the utility of
smart contracts. While the option to overcome this constraint by accepting partially-
verified transaction data exists, such an approach introduces the “garbage in, garbage
out” dilemma and compromises the reliability of ledger data.

6.3.2 Smart contracts must alter the state of the system

In contrast with generic state-transition functions, smart contracts must modify
the system’s state; reading or elaborating data without modifying the state makes
checking the execution correctness of the smart contracts impossible. For example,
the following code snippet shows how to define pure or view functions [49] in
Ethereum.

contract Logger {
uint64 rowID;
function persist(uint64 id) external {
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rowID=id;
}
function lastID() view external

returns (uint64) {
return rowID;
}

}

When invoking pure or view functions, a single node handles the execution
and could provide a wrong response. This is expected: view or pure functions
are not smart contracts but commodity tools for retrieving data from the Ethereum
blockchain or elaborating transaction data. Assimilating pure or view functions to
smart contracts is a common misconception [178, 208] and is likely induced by their
declaration occurring within a data structure labeled with the “contract” keyword.
Not all frameworks have reserved keywords for marking functions that do not alter
the ledger, but the general concept still applies: the only smart contract’s verifiable
output is the one stored on-chain. This happens because peers reach consensus
on state transitions, which are a consequence of write operations, not read ones:
malicious peers could answer queries even when not allowed to by only leveraging
their copy of the ledger. However, they cannot do the same with write operations,
which would require altering also the copies of honest peers.

This guideline has important implications from a practical standpoint. For
example, when generating a document, the smart contract should also store on-chain
the document or a fingerprint of it. Additionally, reading the document (or other data)
may require querying multiple peers or requesting a single message digitally signed
by all of them. This happens, for example, with platforms like Hyperledger Fabric
that use flat key-value stores to represent their state. Alternatively, platforms like
Ethereum leverage Merkle trees which, as discussed in Chapter 5, allow verifying
data correctness by only knowing the Merkle root, even if such data is retrieved from
a single malicious peer. This approach is more efficient, even though the Merkle
root must still be queried to multiple peers. Thus, in general, data retrieval requires
executing multiple queries. The impracticality of this approach often translates to
users trusting a few reputable peers, introducing a degree of trust and centralization
even in blockchain systems.
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6.3.3 Smart contracts must be verifiable

Ensuring the verifiability of a smart contract’s execution is crucial to prevent system
forks and ensure consensus. However, verification time may differ significantly
from the contract’s execution time, posing limitations on the use of time-related
primitives [1]. Even if all nodes share a common atomic clock, it only synchronizes
contract execution, not verification. While this doesn’t prohibit the use of time-
related primitives, their incorporation requires careful consideration. For instance,
checking if the timestamps of two blocks are less than a month apart yields consistent
results over time. Conversely, evaluating the same check with the last block’s
timestamp is problematic, leading to changing outcomes over time. Thus, time-
based smart contracts, as proposed in Ref. [167], may introduce inconsistencies
during verification. Therefore, smart contracts should solely rely on input transaction
information or blockchain-stored data, excluding local factors like the executing
node’s time measurement.

This guideline holds significant implications in managerial and legal contexts, as
certain use cases may be challenging to model through smart contracts. In blockchain
systems, determining if an event occurred within a specific time window is feasible,
but pinpointing the exact moment is not. In Bitcoin [124], for instance, block validity
checks implement measures to prevent miners from manipulating block timestamps,
but their accuracy is limited to a few hours. Consequently, deadlines can only be
approximately verified.

6.3.4 Smart contracts must be deterministic

The preceding section underscores a broader fundamental aspect. A smart contract
should yield identical outputs across all executing nodes, not solely at a specific
future moment. Put differently, smart contracts must exhibit determinism. This
imperative is frequently overlooked and extends beyond time-based primitives. For
instance, in the Go programming language, maps represent unordered sets of key-
value pairs, making the iteration order unpredictable. Such behavior can impact
serialization libraries. More broadly, the handling of randomness in smart contracts
demands careful consideration. This issue is actively under investigation, with key
techniques for its resolution grounded in multi-party computation [70].
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Adopting a more expansive viewpoint, smart contracts necessitate the standardiza-
tion of data representation and processing. This standardization ensures uniformity
among different peers, enabling them to converge on the same state.

6.3.5 Smart contracts are equivalence classes

A prevalent misunderstanding revolves around considering a smart contract as a
singular entity [89]. However, in blockchain systems, nodes lack the capability to
verify the sequence of operations performed by others. Their evaluation is based
on whether they arrive at the same state post-computation. Consequently, distinct
transition functions yielding an identical resultant state are indistinguishable. There-
fore, a smart contract represents a category of equivalent state transition functions.
These functions, when provided with the same input state and symbol, generate iden-
tical output states. Illustrated below is a code snippet exemplifying two equivalent
implementations of the same smart contract.

func sum(a uint8, b uint8) {
a = a + b
store(a)

}
func sum(a uint8, b uint8) {

var i uint8
for i = 0; i < b; i++ {

a = a + 1
}
store(a)

}

Notably, a blockchain system operates seamlessly even when some nodes employ
the first function, while others opt for the second, as evidenced by empirical veri-
fication on Github [36]. This observation gains significance when smart contracts
require legal validity. In such cases, defining the actions smart contracts should
perform becomes imperative, rather than specifying how they should execute [84].
Consequently, smart contracts are recommended to be articulated in declarative
languages. The development of such languages is an active area of research, holding
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the promise of rendering smart contracts more accessible for implementation and
comprehension [84].

6.3.6 Smart contracts do not need to be stored on-chain

Another prevailing misconception, potentially influenced by the Ethereum protocol,
is the notion that smart contracts must be stored on-chain [176, 183]. Contrary to this
belief, as discussed in the preceding section, the decentralized nature of blockchain
systems precludes a node from scrutinizing the computations undertaken by its peers.
Consequently, storing a smart contract’s code on-chain doesn’t compel uniform
implementation across all nodes. Instead, it merely serves as a straightforward
method to disseminate the smart contract code to every participant in the blockchain.
Public blockchains like Ethereum leverage this approach to automatically update
the pool of smart contracts on each node. In contrast, alternative platforms such as
Sawtooth [155] diverge from this practice, choosing not to store the code on-chain.
Instead, individual peers assume the responsibility of installing the requisite smart
contracts on their respective nodes. The underlying principle is that nodes need not
be aware of the code others execute but only the eventual state they reach. With the
presumption of an honest majority, consensus on a common state is achieved. This
guideline’s empirical substantiation is accessible on Github [36].

Storing the code of a smart contract on-chain could be valuable in other contexts.
For example, it could be important to track which version of a smart contract was
running at a given point in the past for verifiability purposes. Moreover, the on-chain
version could be the one that a tribunal should use in case of litigation. However, if
the on-chain implementation is the only one having legal value, the peer that codes
it could manipulate the behavior of the smart contract for selfish purposes (e.g.,
by hiding a backdoor). Even if the honest majority forks the system to restore its
correct state, a tribunal could be forced to overrule the majority-based decision of
the blockchain network and favor the legally recognized branch generated by the
malicious peer. Thus, if the on-chain implementation is the only one having legal
value, additional strategies must be implemented to guarantee its correctness (e.g.,
formal approval from the majority of peers).

Using declarative languages for coding smart contracts introduces additional
challenges regarding where they can be stored and in which format. Given that
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multiple implementations of the same smart contract may exist, with each node
using only one, and since all possible implementations are not known a priori, it is
impossible to store all of them on-chain. Thus, only the source code of the smart
contract (in a declarative language) may be stored on-chain, while the machine code
should be generated autonomously by each peer and stored off-chain.

6.3.7 Smart contracts are not immutable

This misconception is related to the previous one. If a blockchain is immutable, and
a smart contract is stored on-chain, then the smart contract is immutable [189, 181,
114]. However, the term immutable is misleading. More correctly, a blockchain is
append-only. Consequently, even if what is stored in a blockchain cannot be altered,
a newer version of it can always be appended to the ledger. Thus, even when smart
contracts are stored on-chain, they can be updated. One possible strategy for the
Ethereum blockchain is described in Ref. [97]: the smart contract stores the address
of another smart contract in one of its state variables. Whenever the original smart
contract is invoked, it propagates the invocation to the smart contract at the stored
address. The behavior of the original smart contract is modifiable by updating the
stored address. Additionally, the peer majority can always decide to soft/hard fork
the system to replace a given smart contract. Thus, Ethereum smart contracts are
immutable only if they do not implement an update mechanism and the majority is
unwilling to alter them. Thus, Ethereum smart contracts are tamper-resistant, more
than immutable. Other platforms (e.g., EOSIO [125]) allow updating smart contracts
by overwriting the old code with the new one [110].

While storing a smart contract’s code on-chain presents advantages, such as
facilitating version tracking for verifiability and legal considerations, it introduces
complexities. For instance, reliance on the on-chain version for legal validity creates
a single point of failure, enabling the coding peer to manipulate the smart contract’s
behavior for personal gain (e.g., concealing a backdoor). Even if the honest majority
initiates a fork to rectify the system’s state, a tribunal might be compelled to override
the network’s majority-based decision, favoring the legally recognized branch forged
by the malicious peer. Therefore, if the on-chain implementation holds exclusive
legal value, additional strategies are imperative to ensure its correctness, such as
formal endorsement from the majority of peers.
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6.3.8 Smart contracts are not legal contracts

Due to their nomenclature, blockchain-based smart contracts are commonly assimi-
lated to actual contracts [197, 131, 153], which is a fallacy [66]: blockchain-based
smart contracts fundamentally function as computer programs. This inherent na-
ture expands their utility to a vast array of applications, extending well beyond the
confines of a mere agreement [66]. While smart contracts transcend the scope of
legal contracts, they typically omit specifications regarding their intended users, and
users do not digitally signing the smart contracts themselves, but the transactions for
interacting with them. Consequently, the status of smart contracts as legal contracts
is not inherently assured, necessitating validation through existing legal frameworks.
In specific jurisdictions, the definition of a legal contract may seamlessly encompass
smart contracts, while in others, parallel legal contracts may be requisite to legitimize
their status [69]. The potential for smart contracts to automate legal contracts, at least
partially, is acknowledged [144]. However, this intersection of computer science and
law remains an evolving research domain, demanding meticulous hybrid framework
design [106, 126].

In the broader context, an independent blockchain cannot supplant existing
contracts or serve as an indisputable evidentiary source in legal disputes. Although
smart contracts can streamline data exchange among multiple entities, their legal
validation is contingent on jurisdiction. Managers contemplating the adoption of
blockchain technology should exercise caution, recognizing that the reduction of
legal costs is not an automatic guarantee and necessitates thoughtful consideration
of economic implications.

6.3.9 Smart contracts do not provide meaning

Smart contracts function as computer programs, processing sequences of bits and
generating corresponding sequences of bits. However, they lack explicit details
regarding the meaning and correct interpretation of the produced bit sequences. For
instance, a smart contract might store the sequence e, s, t, a, t, e on-chain. While it
may be assumed that this sequence represents the word estate, such an assumption
cannot be guaranteed. The letters might be the outcome of a random extraction,
necessitating separate interpretation. Moreover, the word estate carries different
meanings in Italian and English, contributing to potential disparities in interpretation.
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Consequently, smart contracts alone are insufficient; they require external standards
to establish the encoding/decoding of data and guide data consumers in its interpreta-
tion. The formulation of rules for data interpretation cannot be naively stored on the
blockchain, as it would lead to a circular problem.

To some extent, various blockchain protocols (e.g., Ethereum) implicitly de-
fine data encoding and decoding standards. However, due to their agnostic and
general-purpose nature, these protocols lack sufficient details to ensure a definitive
and meaningful interpretation of stored data. This deficiency hinders the legal legit-
imization of smart contracts. From a managerial viewpoint, implicit rules for data
interpretation may suffice when smart contracts are employed solely for data sharing
among multiple companies. However, for legal validity, these rules must be explicit
or, in some manner, widely recognized and acknowledged. In such cases, smart
contracts should be seamlessly integrated into a hybrid framework encompassing
both computer science and law-related aspects.

6.3.10 Preferably, smart contracts should be independently coded
and deployed

Diverging from the prevalent practice in many blockchain networks, such as Ethereum,
smart contracts should not be singularly coded and deployed universally across all
nodes within the system. This stands in contrast to the fundamental concept of
blockchain, which operates on a premise where nodes inherently distrust each other.
Consequently, a node should refrain from accepting the implementation provided by
other untrusted nodes, opting instead to independently implement all smart contracts
to ensure their correctness. As long as all honest nodes share a common understand-
ing of how smart contracts should impact the system’s state, the various independent
implementations should fall within the same equivalence class. Consequently, all
nodes can converge on the same state, even when utilizing distinct implementations
of identical smart contracts.

Regrettably, the demand for each node to individually implement its smart
contracts proves impractical in numerous scenarios. Only some use cases involve
consortium blockchains where a limited number of actors require a few shared smart
contracts, as seen in logistics applications [166, 34]. In such instances, each actor can
feasibly code and deploy its implementation of the smart contract. However, in public



6.3 Smart contracts: misconceptions and guidelines 95

blockchains, nodes often engage with only a subset of available smart contracts,
lacking the necessary expertise and resources to craft independent implementations.
Requiring each node to independently code all smart contracts, even those unused,
becomes overly burdensome in such situations. Nonetheless, malicious exploitation
of a bug becomes significantly challenging with just a few independent and uniformly
distributed implementations, as any potential bug would likely affect only a segment
of the network. Thus, promoting the creation of multiple implementations and
allowing peers to choose which one to install on their node could mitigate the risk of
bug exploits in smart contracts.

From a managerial perspective, this guideline significantly impacts the economics
of blockchain-based projects, redistributing development costs across various nodes
rather than sharing them. Additionally, ensuring that all independent implementations
align within the same equivalence class demands extra efforts. Notably, creators
of widely adopted smart contracts could fund the development of independent
implementations to mitigate the risk of bug exploits, akin to existing bug bounty
programs.

6.3.11 Preferably, smart contracts should be independently au-
dited and tested

Smart contracts ought to undergo independent auditing and testing by nodes before
their utilization commences. Consequently, analogous considerations to those out-
lined in the previous guideline remain pertinent. Nonetheless, this guideline is likely
to garner more widespread adoption, given that testing a smart contract should be
comparatively more straightforward than coding it. Facilitating the testing process,
it is considered a best practice to publish the source code of smart contracts, as this
simplifies the auditing of the machine code.

From a pragmatic standpoint, nodes may face challenges in testing smart con-
tracts due to the same resource and competency constraints outlined in the previous
guideline, particularly within public blockchain networks. Consequently, especially
when economic incentives for testing are lacking, smart contracts may not be as
secure and trustworthy as commonly assumed.



96 Demystifying smart contracts

6.3.12 Smart contracts may leverage validity proofs

In certain scenarios, the demand for independent executions of computationally-
intensive smart contracts may be too demanding, and opting for a single execution
with proof of its correctness could be preferable. Consider the problem of solving
a Rubik’s cube, for example. Finding a sequence of moves that restores the cube’s
original configuration is fairly challenging. However, if the moves are provided, it
becomes simple to verify whether or not they constitute a solution. The following
code snippet illustrates the two alternative approaches:

func rubik_heavy(problem Problem) {
solution := solve(problem)
if solution != nil {

store(solution)
}

}
func rubik_light(problem Problem,

moves []Move) {
solution := verify(problem, moves)
if solution != nil {

store(solution)
}

}

Remarkably, the lightweight approach still necessitates executing a portion of
the protocol as a smart contract, specifically the solution verification and storage.
Thus, smart contracts inherently have a complexity baseline, as the verification and
storage steps must always be carried out in a decentralized manner. Nonetheless,
many blockchain platforms are successfully incorporating validity proofs to enhance
scalability. In this context, zero-knowledge proofs, such as those used in protocols
like zkSync, prove particularly beneficial [92, 81].

6.3.13 Smart contracts do not need to be certified

Regardless of the use case, smart contracts need not undergo certification, as certifi-
cation bodies act as trusted third parties, and blockchain endeavors to eliminate such
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entities. While it is in the nodes’ best interest to thoroughly test and audit their smart
contract implementations (Almakhour et al., 2020), even utilizing external software
testing services, a blockchain system should not rely solely on specific authorities for
validation. Smart contract correctness should be guaranteed by the consensus among
nodes to reach the same state. Ideally, each node should independently code and
test its implementation based on the strategies they see fit. If a blockchain system
considers external authorities for smart contract certification, alternative strategies
are preferable:

• Transition to a centralized system controlled by the certification body. How-
ever, this poses a risk of allowing the certification body control over the smart
contract through a potential backdoor.

• Utilize oracles, trusted third parties providing real-world data to the blockchain.
While oracles are often necessary for obtaining real-world data, certifying
smart contracts by having certification bodies run the code and store the result
in the blockchain can be simpler and more efficient. Employing a decentralized
oracle network (Breidenbach et al., 2021) can limit the influence of each
oracle, allowing verification of results produced by various certification bodies.
Nonetheless, this solution ties decentralization to the number of certification
bodies rather than the number of nodes.

From a broader perspective, any form of centralization undermines the value of
blockchain-based smart contracts. Decision-makers should carefully evaluate the
decentralization potential of a system before opting for blockchain-based solutions.
In some cases, the impracticality of decentralized solutions may lead to accepting
centralized compromises, potentially defeating the original purpose of employing
blockchain.

6.3.14 Preferably, smart contracts should not rely on oracles

Dependence on oracles poses challenges not limited to the process of code cer-
tification. Trusting data from oracles inherently introduces a trusted third party,
compromising the system’s decentralization [144]. Unfortunately, entirely elimi-
nating oracles from a blockchain system is seldom feasible. Consequently, smart
contracts should minimize reliance on oracle-provided data, with the implementation
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of strategies aimed at deterring oracle misconduct. Oracle services, such as Chainlink
[26], employ economic incentives and multiple data feeds to mitigate manipulation
attempts.

In a broader context, smart contracts do not resolve the “garbage in, garbage out”
issue when oracles are in play. Therefore, because blockchain can prevent retroactive
data manipulations and rarely proactive ones, decision-makers should assess whether
such guarantees align with their specific use case and justify the adoption of the
technology.

6.3.15 Smart contracts are (likely) bug-free

Assuming that multiple nodes independently code a smart contract, the likelihood
of all implementations sharing the same bug diminishes. Nonetheless, it’s plausible
that these implementations might rely on a common library, and bugs impacting
the library would consequently affect all implementations. Still, the underlying
concept of the scalability trilemma [6] remains relevant: augmenting the number of
independent implementations raises the coding effort and enhances the likelihood of
attaining a bug-free smart contract, as discussed in Section 6.3.10.

It’s worth emphasizing that achieving similarly bug-free programs in centralized
settings would demand comparable implementation efforts. Given that such an
approach deviates from standard industrial practices, its cost-effectiveness remains
questionable. However, in the context of smart contracts managing valuable assets
(e.g., decentralized finance protocols), this strategy could be considered to mitigate
the risk of cyberattacks.

6.3.16 Smart contracts are (likely) tamper-resistant

The independent execution and verification by multiple nodes make smart contracts
tamper-resistant, rendering the corruption of their execution reasonably unfeasible.
However, this may not hold true if collusion incentives and opportunities for nodes
exist in the system. Additionally, it’s essential to note that tamper resistance doesn’t
inherently ensure that a smart contract behaves as expected. The resistance stems
from multiple independent executions, while correctness is a result of diverse and
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independent implementations. Even if all nodes implement identical versions, the
smart contract retains tamper resistance (albeit not guaranteed to be bug-free).

Highlighting that the level of tamper resistance in smart contracts correlates with
the decentralization degree of the blockchain network is crucial. The effectiveness of
smart contracts wanes if a single node can exert influence or if nodes possess strong
collusion motivations. Therefore, decision-makers must scrutinize the inter-node
relationships before joining a blockchain network. In a broader sense, blockchain
doesn’t entirely eradicate trust issues, as peers still rely on the assumption that the
majority behaves honestly.

6.3.17 Smart contracts belong to the system

The issue of ownership concerning smart contracts remains a contentious subject.
Typically, the creator assumes the role of the owner, but there’s flexibility for a smart
contract to confer special privileges to a designated entity. However, it’s vital to
recognize that the management and execution of a smart contract rest with the nodes
of the blockchain system. In the event that a majority of nodes decide to modify
the smart contract, the nominal owner would wield no authority or entitlement to
impede the changes. Consequently, the effective owner of a smart contract is, in
essence, the blockchain system itself. Although this statement holds philosophical
implications with potentially limited practical ramifications, it underscores the altered
connotations that the concept of ownership assumes within a blockchain system.

6.4 Use case: electric vehicle supply chain

We applied the guidelines discussed in this chapter when designing the smart con-
tracts for our electric vehicle use case. Even though the legal recognition of smart
contracts is still a debated topic, we believe that a blockchain-based solution could
act as a deterrent and favor the honest behaviors of the actors in the supply chain.
In the end, the difficulties in replacing partners should push companies to establish
long-term cooperation, and as long as the assignment process is fair and transparent,
they should be willing to accept their responsibilities.
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We decided to avoid storing personal data on the chain to circumvent regulatory
issues, such as those related to the General Data Protection Regulation. Overall, we
chose to keep smart contracts as lightweight as possible and move data off-chain
where feasible. To this extent, we moved processing logic off-chain and treated smart
contracts as data loggers that only check permissions and write data to Besu’s event
storage instead of contract storage. This prevents smart contracts from accessing
past data but enhances efficiency [52].

In Chapter 7, we will extend this discussion by providing an overview of the
complete solution.

6.5 Conclusion

In this chapter, we discussed some general guidelines for smart contract standard-
ization. What emerges is that the future adoption of smart contracts is hard to
predict: full decentralization is impractical and imposes many additional challenges,
but accepting too many compromises for practicality risks defeating the purpose
of leveraging smart contracts in the first place. Nonetheless, we are certain that
standardization is key for the future of smart contracts, and, in our opinion, future
standards should avoid treating smart contracts as a standalone technology but should
contextualize them within broad-scope frameworks, taking into account economic,
legal, and technical issues alike.

In Chapter 7, we will discuss the integration of IoT devices in blockchain systems
and finalize the design of our blockchain-based system for our electric vehicle supply
chain use case.



Chapter 7

Integrating oracles

The last missing piece to build a complete system for our electric vehicle supply
chain use case is the integration of IoT devices tracking batteries and vehicles. In
this chapter, we discuss the adoption of the Narrowband-IoT protocol to certify the
origin of IoT data and reduce the risk of data manipulation. We then present the
complete blockchain-based solution for our use case.

7.1 Introduction

Data sharing and digitalization are the key drivers of the Logistics 4.0 revolution.
In the course of this thesis, we analyzed data sharing in-depth by discussing how
blockchain technology enables the creation of decentralized databases where compa-
nies can share data without incurring the risk of unilateral or unauthorized modifica-
tion attempts. In this chapter, instead, we focus on digitalization, which requires the
creation of cyber-physical systems.

Cyber-physical systems are automated and self-adapting systems that bridge
the gap between the physical and digital worlds, resulting from the integration of
multiple technologies. In particular, IoT devices are responsible for locating and
identifying physical entities and collecting vast amounts of data about them. Data
mining and machine learning techniques help extract relevant information from the
gathered data and react to potential issues within the supply chain. The Internet
of Services (IoS) paradigm enables the interconnectivity and exchange of services
among devices and humans.
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Clearly, IoT devices are a key element of cyber-physical systems, serving as the
interface between the physical and digital worlds. Fortunately, in recent years, the
size, imprecision, and cost of IoT devices have drastically decreased, boosting their
widespread adoption and improving the quality of sensed data.

Nonetheless, IoT integration in decentralized contexts remains tricky: the need
for combining the digital and physical worlds is not contemplated in traditional
blockchain networks like Bitcoin and adds an additional layer of complexity to
logistic use cases. Sensors are responsible for the GIGO problem in blockchain
systems, can be easily manipulated, and, for this reason, are one of the favorite targets
of cyberattacks. Even more critically, just displacing a sensor may be sufficient to
jeopardize a blockchain-based solution.

We address the problem of IoT integration in logistics networks by covering the
following aspects:

• We propose to employ patented IoT devices [20] to reduce the attack surface on
external data sources. The devices can leverage the Internet Services Provider’s
(ISP) network infrastructure to enrich sensed data with additional information,
including time and position of the transmitting antenna.

• We finalize our system for the electric vehicle supply chain use case.

The remainder of this chapter is organized as follows: Section 7.2 discusses the
GIGO problem, Section 7.3 analyzes the use of the Narrowband-IoT protocol for
secure IoT communication, Section 7.4 describes the final architecture of our electric
vehicle use case, and Section 7.5 concludes this chapter.

7.2 Problem statement

The GIGO problem is a well-known issue in computer science, referring to the idea
that even correct processes will yield incorrect results if the input data is inaccurate.
Data sources may be unreliable due to malicious behavior or unforeseen issues,
which can arise from both trust and technical problems.

The issue of trust among companies has already been extensively analyzed in the
literature from various perspectives, including inter-organizational systems, game
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theory, and supply chain management. In particular, the Prisoner’s Dilemma is often
used to model relationships between companies [113]. In such a game, cooperation
(i.e., trusting and being trustworthy) is the best strategy for the system as a whole,
whereas defection is the best strategy for individual players. Interestingly, in a single
iteration of the game, rational players are likely to defect based on the likelihood of
encountering defecting players. However, in multiple iterations, cooperation emerges
as the best strategy for all but the final round (as the game ends, there is no future
incentive for cooperation) [32]. Consequently, while trust naturally emerges in the
long run [24], a business crisis may push a company to defect, as immediate gains
are valued more than future benefits [63]. For similar reasons, trust management
systems and contractual solutions fail to ensure accountability when too little is at
stake [72, 71]. Cooperation is sustainable only if its long-term value outweighs the
short-term benefits of defection [14].

Trust is a prerequisite for the successful creation of inter-organizational systems
[104, 218]. However, even when companies do not trust each other, blockchain can
serve as a technological solution to trust issues. Unfortunately, the GIGO problem
also extends to blockchain-based systems, which are often considered secure due
to their decentralized nature, heavy use of cryptography, and high levels of data
and execution redundancy. Specifically, oracles provide blockchain systems with
unverifiable external data that cannot be obtained otherwise. While this extends
the applicability of blockchain systems far beyond the exchange of digital assets,
it also introduces a single point of failure that can jeopardize the entire system, as
information asymmetry favors opportunistic behavior [212]. Given the impossibility
of completely eliminating the dependency of logistics information systems on moni-
toring devices, we propose a technical solution that limits the exploitability of such
devices.

7.3 Narrowband-IoT for enhanced connectivity

To the best of our knowledge, solving the GIGO problem is not possible from a
technical standpoint, but some strategies may reduce the risk of processing garbage
data. In particular, it is possible to employ special devices [20] that leverage the
Narrowband-IoT protocol and the network infrastructure of the Internet Service
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Provider to enrich sensor data with additional metadata retrieved from the antenna
used for transmission. The main benefits of adopting such devices are as follows.

• The device is onboarded with a SIM card equipped with a cryptographic
module that can handle asymmetric cryptography. The SIM’s cryptographic
module guarantees that the private key is randomly generated and only known
to the SIM itself.

• The SIM directly communicates with the ISP’s antennas through the Narrowband-
IoT protocol. Thus, there is no need to introduce message brokers, as short-
ranged protocols do (e.g., Bluetooth Low Energy).

• The SIM enriches the sensor’s measurements with additional metadata like
the position of the antenna used for transmission and the transmission time.
Cross-checking SIM and sensor data allows the detection of manipulation
attempts.

• The software on the SIM is digitally signed, and its integrity can be verified.

In addition to the above, Narrowband-IoT allows for connecting tens of thousands
of devices to the same antenna, improves transmission in hardly reachable places,
and is very energy-efficient. IoT devices using it may last more than ten years [173].

The main limitations of this solution relate to physical attacks on the sensors and
collusion attempts with the ISP. Discouraging physical attacks may be achieved by
making the cost of performing the attack exceed the value of the tracked product.
This should be sufficient to prevent data manipulation attempts from supply chain
companies, but may not always be feasible. Collusion attempts with the ISP are
possible but unlikely. The ISP has no real advantage in jeopardizing its reputation
and potentially losing many clients just to favor one of them. Nonetheless, relying on
the ISP introduces a certain degree of centralization, and setting up countermeasures
is recommended.

7.4 Use case: electric vehicle supply chain

In this section, we describe the complete arcitecture we designed for our use case.
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Fig. 7.1 Architecture of our solution.

7.4.1 System architecture

Blockchain adoption is challenging if blockchain-based solutions cannot process all
the data required by production systems. For this reason, we decided to implement
many of the features that would be present in a production environment and used
some production data to evaluate the performance of our system to obtain meaningful
results. In particular, we created a blockchain network of four nodes using the IBFT
2.0 consensus algorithm. The data stored in the blockchain is also persisted in an
external database, namely the cache database. The cache database solves two issues:
legacy application integration and query offloading. On-chain data is not encrypted,
as data sharing is the objective of adopting blockchain technology.

Besu offers three layers of permissioning: node permissioning, account per-
missioning, and API permissioning. Node permissioning regulates peering. Only
connections to other nodes of our system are allowed. Account permissioning regu-
lates which accounts can update the ledger. We generated and granted permissions
to a few thousand accounts representing IoT devices. API permissioning autho-
rizes selected devices to invoke a node’s API methods. We used Keycloak and the
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Fig. 7.2 Performance evaluation with multiple AWS instance families

OpenId Connect Client Credentials grant to restrict access to known clients. It is
important to underline that account permissioning can be enforced at the network
level, while node and API permissioning can only be enforced at the node level.
Thus, Byzantine nodes cannot perform unauthenticated write operations but can
answer unauthenticated read attempts. Such a limitation is common to all blockchain
systems, which may limit the adoption of the technology. We used multiple clients
to persist production data in the blockchain and Ethsigner to handle the private keys
safely, enabling the integration with low-end IoT devices which may not be equipped
with a cryptographic module. Nonetheless, such devices should be replaced by
the ones that we previously described in this chapter. The proposed architecture is
represented in Fig. 7.1.

7.4.2 Performance Evaluation

We tested our system on different AWS instance families to evaluate the impact
of various factors, including the RAM size, the number of CPUs, and the network
bandwidth. We used Hyperledger Besu v21.1.0 on all four nodes, as versions v22.7.4
and v22.7.6 turned out to be unreliable due to frequent crashes. We connected
a single client to each node. A coordinator service instructs the clients on the
workload to submit and synchronizes their interaction with the blockchain. We used
workloads of 1600 transactions (400 per client) that we submitted to the blockchain
at maximum input rate. We measured the number of transactions processed per
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second (TPS) from when the coordinator submits a workload to the clients to when
the last client completes the task. We used three types of instance families: AWS
r5a.large instances are memory-optimized, AWS m5n.large instances are general
purpose with large bandwidth, and AWS c6a.x large instances are compute optimized.
The results of our performance evaluation are shown in Fig. 7.2.

AWS c6a.xlarge instances offer the best performance: such instances are equipped
with four vCPUs, which is twice as much as the other two instance families. AWS
m5n.large instances have slightly better performance than r5a.large instances, but
we believe such a difference is a consequence of the different types of processors
leveraged by the two families. Thus, the additional network bandwidth offered by
m5n.large and the additional RAM provided by r5a.large instances may not improve
the performance of our blockchain system. This result indicates that the bottleneck
of our system is the number of vCPUs in the current configuration.

7.5 Conclusion

IoT devices acting as oracles are one of the most critical aspects of blockchain
systems. On one side, they play a crucial role in interconnecting the physical world
and the digital one; on the other, the data they provide is rarely verifiable and may
be exploited to render blockchain systems unusable. Unfortunately, oracle data
verifiability is still an open research issue, and there is no clear solution to it. At
the moment, mitigation strategies are our best option. In this chapter, we discussed
one possible mitigation strategy based on the adoption of specific IoT devices that
can leverage the ISP network infrastructure to certify (to some extent) the origin of
sensor data. We then finalized the design of the blockchain-based system for our
electric vehicle supply chain use case.

In Chapter 8, we will provide some conclusive remarks on the main takeaways
of this thesis.
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Conclusion

Supply chains are undergoing a revolution based on data sharing and digitalization,
with blockchain standing out as a key enabler of this transformative process.

In this thesis, we delved into the adoption of blockchain in logistics networks,
focusing on an electric vehicle supply chain use case. Our objective was to establish
a single source of truth for supply chain companies, promoting fair and transparent
assignment of responsibility, and ultimately reducing bureaucracy and litigations.
Thus, we needed to design a system that could track information across the entire
supply chain while ensuring the timely and secure storage and retrieval of gathered
data.

We began by proposing a decision-making framework for blockchain adoption,
which we applied to assess the feasibility of employing blockchain in our solution.
Our conclusion affirmed that blockchain is well-suited for our use case but em-
phasized the necessity of integrating it with other technologies to establish trust in
oracles.

Next, we conducted an analysis of popular blockchain frameworks to select the
one aligning best with our goals. To compare framework performance, we developed
a methodology aiming for consistent degrees of security and decentralization across
all options. Ultimately, we chose Hyperledger Besu, considering its favorable com-
promise between performance, community support, features, resilience to malicious
peers, and industrial readiness.
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Recognizing the importance of optimizing performance for our solution, we
investigated parallel transaction execution in blockchain frameworks. Addressing the
ambiguous state representation problem in certain Merkle trees used in blockchains,
we proposed an optimistic algorithm ensuring determinism without fully sacrificing
parallelization. Although yielding some performance improvements, these were
insufficient for our use case. Consequently, we decided to abandon continuous
monitoring, opting to register only harmful events in our blockchain-based solution
to reduce performance requirements.

Subsequently, we developed smart contracts to implement the application logic
of our use case. Drawing from this experience, we formulated general and platform-
agnostic guidelines for standardizing smart contracts, aiming to assist researchers
and practitioners in their judicious use of smart contracts.

The final piece in designing our solution involved the integration of oracles. We
advocated for the use of specialized IoT devices capable of enhancing sensor data
with additional metadata based on the time and position of the ISP’s antenna used for
transmission. Cross-checking sensor and antenna data may help revealing potential
data manipulation.

In conclusion, we believe our designed solution holds the promise of enabling
supply chain companies to achieve the objectives of the use case, facilitating secure
data sharing and reducing litigations. However, we acknowledge that the primary
obstacles to blockchain adoption are not technical but managerial. The shift from
industrial secrecy to data sharing and the integration of competition with cooperation
must take place. Recognizing that achieving such a radical paradigm shift may take
decades, we remain hopeful that, step by step, blockchain and tokenization will
contribute to enhancing the social, environmental, and economic impact of supply
chains.
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