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We study the mass exchange between two rotating, quantum massive vortices in a two-component Bose-
Einstein condensate. The vortices, in the majority component, exhibit a filled core, where the in-filling minority
component undergoes a quantum tunneling effect. Remarkably, we observe that the two-vortex system features
stable Josephson oscillations, as well as all the nonlinear phenomena, including the macroscopic quantum
self-trapping, that characterize a Bosonic Josephson Junction. We propose an analytical model for describing
the intervortex tunneling, obtained by implementing the coherent-state representation of the two-mode Bose-
Hubbard model. This allows us to give the explicit expression of the model’s parameters in terms of the physical
macroscopic parameters of the two-vortex system. The comparison of the dynamical scenario predicted by
the model with that emerging from the Gross–Pitaevskii equations is very good for sufficiently small atom
numbers, while at larger atom numbers it grows less precise, presumably due to the partial exclusion of the
many-body interactions from our model. The definition of an effective self-interaction parameter allows us to
include the many-body effects, thus restoring a quite good agreement with the numerical results. Interestingly, the
recognition of the bosonic Josephson dynamics paves the way to the investigation of new dynamical behaviors
in multivortex configurations.

DOI: 10.1103/PhysRevResearch.6.043197

I. INTRODUCTION

The recent research in quantum vortices with filled core
[1,2] has unveiled novel and interesting phenomena, such
as the formation of stable giant vortices [3–5] or exotic
vortex lattices [6–8], vortex collisions [5], vortex splitting
[9], and a richer dynamics with respect to massless vortices
which includes rotational states of asymmetric vortex pairs
and multimode oscillatory behaviors supported by inertial
effects [10–12]. The larger manipulability of quantum gases
compared with liquid helium has also opened the path to
superfluidity experiments in different trap geometries [13–15]
and even topologies [16–20]. Dilute, ultracold quantum gases
are in fact confined via optical potentials, where the pinning
of a vortex to a desired position is also possible [21,22].
Such a framework enabled experimental realizations of dif-
ferent configurations of “massive vortices.” These topological
excitations are realized in superfluid mixtures and involve a
quantum vortex in the major component of the mixture, whose
core is filled by a mass-peak of the second component.

Quantum massive vortices can occur in the miscible [9,23]
or immiscible [24–26] regimes of a mixture formed by
two condensates [27–29]. The dynamics of such a binary
mixture, well described by two coupled Gross–Pitaevskii
equations (GPEs) within a mean-field picture, shows in fact
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the formation of vortices in the majority component denoted
by “a,” while the minority component “b” accumulates at
the vortex cores. This is possible as the quantum vortices
represent phase singularities characterized by the formation
of a local density well at their cores [30,31]. With the intro-
duction of a second, minority component, such as a second
atomic species or the same species associated with a different
hyperfine state, the density wells at the vortex sites acquire the
function of effective external potentials. As a consequence,
the confinement of the infilling component within the vortex
cores is particularly favored if the two components are immis-
cible, which is in fact the case we restrict ourselves to in this
paper.

The effects of the density peaks in the component b, play-
ing the role of effective inertial masses, were described via a
point-like picture of the massive vortices [10,32,33]. In this
framework, the vortex dynamics is described by Lorenz-like
equations and involves the motion of the vortices while ex-
cluding the time dependence of the masses occupying the
vortex cores. In this paper we overcome this constraint and
investigate vortex configurations where a mass exchange be-
tween the vortices can take place, caused by a tunneling effect.

The well-known Bose-Hubbard (BH) model describes the
interwell tunneling effect of bosons that are trapped in arrays
of potential wells. For this reason it provides the natural
framework where the boson exchange between different vor-
tex cores in a binary mixture can be realistically modeled.

The simplest possible model, the two-well BH model,
has received outstanding attention in the last three decades
both due to its integrable character and because its non-
linear dynamics, in addition to many interesting properties,
exhibits a profound similarity with the Josephson-junction
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phenomenology. This aspect was emphasized by Milburn
et al. [34] who conducted a study on the mean-field dynamics
of neutral atoms of a Bose-Einstein condensate (BEC) in a
double-well potential, highlighting the presence of regimes
characterized by the self-trapping transition and the Josephson
effect. Further studies of such system led to the definition of
Bosonic Josephson Junction (BJJ) [35,36], and to the obser-
vation of the ac and dc Josephson effects [37].

The theoretical literature on BJJs is vast. Among many
aspects and effects, it ranges from the coherent-state picture
of BJJ dynamics [38], the study of the double-well dynam-
ics with the GPE [39], the number squeezing effect [40]
and exact multiconfigurational dynamical approaches [41], to
phase diffusion processes [42], the transition to dissipative
and self-trapping regimes [43] and the realization of atom-
tronics devices [44]. The effect of a second component on the
Josephson oscillations [45] and on the spectral properties [46]
were also explored for a binary condensate in a double-well
potential or in more complex geometries [47–49].

On the experimental front, Ref. [50] reported the direct
observation of oscillatory atomic currents in a chain of BJJs.
However, the first realization of a single BJJ, with 87Rb, was
done by Albiez et al. [51] a few years later (a review on
BJJ experiments is carried out in Ref. [52]). This validated
the presence of tunneling oscillations and of the macroscopic
quantum self-trapping, which was also observed in a one-
dimensional periodic potential [53]. Afterwards, the creation
of a BJJ with a binary condensate [54] allowed the dynamical
effects due to the intraspecies interactions to be highlighted.

In this paper, we show that it is possible to realize a
double-well BH model, namely, a BJJ, by means of a pair of
two-dimensional (2D) quantum massive vortices occurring in
the component a when the tunneling process of b between the
vortex cores is taken into account. Note that the component
a, hosting the vortices, acts as an effective potential for the
component b. Our results are supported by the numerical
simulation of the coupled GPEs for the mixture. Surprisingly,
we find that the intervortex mass imbalance and phase-shift
between the two peaks, as obtained from the GPEs dynamics,
reproduce the BH phase portraits characterizing a double-well
system, where the trajectories are both stable over time and
robust against eventual b leaks outside of the vortex cores.

To validate these findings we implement the space-mode
approximation of the field Hamiltonian of the component
b and derive analytically the two-mode BH model and the
relevant mean-field version within the coherent-state picture.
This allows us to find the phase-space portrait of the BJJ,
well known in the literature (see, e.g., Refs. [36,38]). The
comparison of the mean-field model with the phase portrait
provided by the GPE simulations shows a remarkably good
agreement. Interestingly, this result implies that vortices can
be used, in place of optical potentials, to support the forma-
tion of a BJJ. In passing, we note how the derivation of the
two-mode BH Hamiltonian allows us to find analytical ex-
pressions for the interaction and tunneling parameters directly
related to the macroscopic physical parameters of the vortex
pair.

Pola et al. [55] already investigated the possibility of cre-
ating a BJJ via a vortex dipole hosting a solitonic component.
In their work, however, they observed the BJJ dynamics in

the limit of a frozen vortex dipole and of a very few atoms
of the in-filling component. Conversely, in our paper, we
prove the existence of a robust BJJ dynamics for long times
and for a wide range of b-component atom numbers. In fact,
the support of the BJJ is in our case a orbiting vortex pair,
where the two vortex wells have the same circulation. Unlike
in Ref. [55], our system, involving also large numbers of
atoms in the vortex-hosting component, does not present a
significant breathing of the vortices.

This paper is articulated as follows: In Sec. II we motivate
our work and introduce the GPEs describing the mixture and
the vortex pair dynamics. Following up on that, we present
in Sec. III the numerical results revealing the presence of
a Bosonic Josephson Junction in the system of the massive
vortex pair, proving its stability and robustness. In Sec. IV we
subsequently introduce the analytical framework connected
to a Bosonic Josephson Junction, starting from a two-mode
BH Hamiltonian and deriving then its mean-field version via
the coherent-state variational approach. Here we also derive
some explicit analytical expressions for the parameters of the
Bose-Hubbard model in terms of the macroscopic parameters
of the vortex-pair system. We then discuss the comparison of
the numerics with the analytical model in Sec. V, and sum
up the conclusions and outlooks in Sec. VI. Hereafter, for the
sake of simplicity, we refer to the double-well or two-mode
BH model with the term BH dimer.

II. GROSS–PITAEVSKII DYNAMICS AND BOSONIC
JOSEPHSON JUNCTION REALIZATION

The current paper is prompted by Ref. [12] where we
proved the existence of asymmetric rotational states of a
vortex pair involving two mass-imbalanced vortices with
the same circulation. The vortices rotate specularly around
the origin at different radial positions. Our analytical so-
lution relied on a point-like model, which is based on the
time-dependent variational Lagrangian approach [10,56]. We
characterized all the possible configurations of the vortex pair,
obtaining a rich diagram of the rotational states, also involving
massless vortices. Moreover, we discussed the dynamical sta-
bility of the solutions in the presence of small perturbations.
Here arose the intuition that an adiabatic variation of the vor-
tex masses could be a phenomenon present in GPE dynamics
of the mixture. In this case, by switching to a suitable rotating
frame of reference, a BJJ dynamics for the b component could
be retrieved.

We consider here a symmetric vortex pair, where the two
vortices are identical and specularly rotating at the same dis-
tance r1 from the origin. The properties of the condensates’
mixture are well captured by two coupled Gross–Pitaevskii
equations [57], describing the two ultracold dilute quantum
gases:

ih̄ψ̇a =
(

ga

Lz
|ψa|2 + gab

Lz
|ψb|2 − h̄2∇2

2ma
+ Vext

)
ψa,

ih̄ψ̇b =
(

gb

Lz
|ψb|2 + gab

Lz
|ψa|2 − h̄2∇2

2mb
+ Vext

)
ψb, (1)
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where Vext(r) is the external potential, ma and mb are respec-
tively the atomic masses of component a and component b,
and ga, gb, and gab are the repulsive boson-boson interaction
parameters, defined by

ga = 4π h̄2aa

ma
, gb = 4π h̄2ab

mb
, gab = 2π h̄2aab

mr
,

where aa and ab are the intraspecies s-wave scattering lengths
of components a and b, while aab is the scattering length
between an atom of a and an atom of b. The reduced mass
mr is such that 1/mr = 1/ma + 1/mb. The interaction param-
eters in the Gross–Pitaevskii equations (1) are normalized by
the parameter Lz, as a consequence of the reduction to two
dimensions [58]. As a matter of fact, the modeling of a two-
dimensional dynamics on the xy plane implies the presence
of an effective thickness Lz in the direction z of the BECs
layer, where the dynamics is frozen. The order parameters
ψa = ψa(x, y, t ) and ψb = ψb(x, y, t ) are such that∫

d2r|ψa|2 = Na,

∫
d2r|ψb|2 = Nb,

where Na and Nb are the number of atoms of component a and
b, respectively, and represent two constant of motions.

For the numerical simulation of the GPEs we employ a
mixture of 23Na (a) and 39K (b) confined in a two-dimensional
(2D) disk of radius R = 50 µm. Hence, Vext(r) is a rigid wall
potential in correspondence of the disk boundary and zero
inside the disk. The masses ma and mb are respectively the
atomic masses of 23Na and of 39K. In the following, we always
take Na = 105 for the numerical simulations. The s-wave scat-
tering lengths related to the repulsive interaction parameters
are aa � 52.0a0, ab � 7.6a0, aab � 24.3a0, where a0 is the
Bohr radius. Note that, in our case, gab/

√
gagb = 1.26, i.e.,

the two components are immiscible [59]. At higher values
of this ratio, the density profile at the vortex sites shifts fur-
ther from a local harmonic potential, whereas in the miscible
regime the two peaks grow delocalized from the vortex cen-
ters. The effective thickness of the layer in the direction z is
Lz = 2 × 10−6 m.

III. RESULTS

The numerical simulations of the two corotating massive
vortices show, with unexpected clarity, that the intervortex
mass exchange essentially reproduces the BJJ mechanism (see
Appendix A for the code’s description). The two vortices
persistently orbit around the trap center keeping a constant
distance (up to a small ripple of the order of 10−3R that we
neglect), and the local fraction of component b is well trapped
although the a-density profile is only locally harmonic. This
is visible in Fig. 1, showing the density profiles of both the
components a and b.

Remarkably, both the linear region of the phase portrait
as well as the nonlinear phenomena, such as the macroscopic
quantum self-trapping, are captured. In Appendix B we recall
the phase portraits’ regimes of a standard Bosonic Josephson
Junction and their fixed points. From the comparison of the
numerical results with these plots, one can infer the positions
of the fixed points (if not clearly visible). In our numerical
results, we extract the (θ, D) trajectories, where θ is half

FIG. 1. Density profiles |ψa|2 and |ψb|2 at t = 0 along the x
direction and at y = 0. The a component hosts a vortex pair while
b is the tunneling component, featuring a BJJ dynamics. Nb = 300.

the b peaks’ phase difference, θ = (φ1 − φ2)/2, and D is the
peaks’ population imbalance, D = N1 − N2, D ∈ [−Nb, Nb].
The quantities φi and Ni are respectively the phase of peak
i, numerically extracted as an average, and the number of b
atoms in the peak i. Note that the quantity Dmb gives the mass
imbalance between the two peaks. The curves, corresponding
to different initial conditions resemble the iso-energetic levels
of the BJJ phase portrait. The examples in Figs. 2–6 show

FIG. 2. GPE (θ, D) curves for a system with Nb = 100 and
r1/R � 0.22. The collection of the extracted trajectories resembles
the BH-dimer dynamics in a specific regime. The two fixed points
of the BJJ model are reproduced along the axis D = 0. Whereas
the trajectories corresponding to the Josephson oscillations run an-
ticlockwise throughout the system’s dynamics, the π oscillations run
clockwise.
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FIG. 3. Examples for the dynamical evolution of the conjugate variables D and θ for a trajectory in the Josephson oscillations region (left)
and for a trajectory in the π oscillations region (right). The trajectories belong to the phase portrait in Fig. 2.

at a mean-field level that the corotating vortex pair makes
up a Bosonic Josephson Junction. Here, the oscillations of
the phase difference of the two local peaks are coupled with
their mass imbalance. This phenomenon is possible thanks to
the existence of circular orbit solutions for the vortex pair,
that support a mass flux of the b component in the effective
double-well potential given by the vortex wells. As men-
tioned, we interpret in the first place the two vortices as a
time-independent potential, in a rotating frame of reference.
In this way, the BH-dimer dynamics is effectively decoupled
from the vortex pair dynamics.

More specifically, Figs. 2, 4, and 6 show examples of
(θ, D) trajectories for different systems, corresponding to dif-
ferent structures of the phase space in the BH formalism (each
trajectory in the phase space has a different color). Besides, in
Fig. 3 examples of the time evolution of the conjugate vari-
ables are illustrated. For the data visualization in the figures,
the phase-space variables D and θ are respectively normalized

FIG. 4. GPE (θ, D) curves for a system with Nb = 2000 and
r1/R � 0.31. Two fixed points of the BJJ model are simulated
along the D = 0 axis. The travel direction of the trajectories is
anticlockwise.

by the number of particles Nb and 2π . The characteristic
BJJ trajectories are present, stable over time, and robust.
The initial conditions on θ and D do not compromise the
BJJ dynamics. Not only the characteristic Josephson and π

oscillations are present but also, remarkably, the separatrices
of such domains are well reproduced by the numerics. The
method we employ for extracting θ is subject to small artifacts
(outliers) that are, however, not of concern because we neglect
them in the analysis of our results. Although we did not plot all
the trajectories, the phase portraits are symmetric with respect
to the origin so that the self-trapping can involve the large
population of any of the two vortices. Note that the angle θ is
naturally endowed with periodic boundary conditions, leading
to the cylinder geometry of the phase space.

Figure 2 shows an example where both the Josephson
(around the origin) and the π oscillations (around |θ | = 0.5π )
of the peaks’ population imbalance D and their local phase
difference θ are present. D and θ are extracted as described in
Appendix A. One can see that the intervortex tunneling allows
for Josephson oscillations of different amplitude around the

FIG. 5. Example of the time evolution of the BJJ’s conjugate
variables for a ballistic trajectory relative to the phase portrait in
Fig. 4.
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FIG. 6. GPE (θ, D) trajectories for a system with Nb = 450 and
r1/R � 0.22. The numerics reproduce the four characteristic fixed
points featured by a BJJ in this regime: two maxima, one saddle
point, and one minimum. For the sake of illustration clarity we did
not plot the symmetric counterpart, with respect to the origin, of the
island-like trajectories at the corners of the phase space. These are
traveled in clockwise direction during the BJJ dynamics, whereas the
Josephson trajectories are run anticlockwise.

origin and that their frequency is smaller the larger they are.
In the origin we see that a fixed point is reproduced by the
GPE (the minimum of energy for a two-site BH model), while
at large phase difference we see orbits characterized by large
D variations, while |θ | is within some interval around 0.5π .
In |θ | = 0.5π and D = 0, two other fixed points are correctly
simulated. These correspond to maxima of the energy in a BH
dimer. Around the separatrix between the domain including
the origin and the higher |θ | domains, the numerical noise, as
expected, increases. Remarkably, the ordered BH-dimer-like
dynamics emerges as well in the highly nonlinear, far-from-
the-origin, regions. Here, high values of the phase difference
are involved, as well as large fluctuations of the mass imbal-
ance. Also, note that, in the limit D = ±1, one of the two
vortices has almost zero mass. Examples of the dynamics of
the conjugate variables for the BJJ with the phase portrait of
Fig. 2 are shown in Fig. 3. The dynamics illustrated in this
figure is indicative of the variables’ trend in the Josephson
region, where both D and θ oscillate over time around a zero
average, and in the π oscillations region. In the latter case,
D features large oscillations around a zero average value,
while the angular variable θ presents oscillations that have an
extremely smaller amplitude, around the average value −π/2,
coinciding with π/2.

The system in Fig. 4 represents a BJJ in another regime:
here the on-site interactions are strong enough so to show
self-trapping, i.e., the D oscillations around a mean value
different from zero. In this case, these are coupled to the
ballistic evolution of the phase difference. This is well visible
in Fig. 5, where the phase shift time evolution is close to a
linear relation, while the population imbalance features larger
oscillations around a nonzero average. Such ballistic orbits

FIG. 7. Time evolution of D and θ for a self-trapped trajectory
of the phase portrait in Fig. 6. In this example, the trajectory is
the highly nonlinear regime, in the island-like region: both variables
feature small oscillations around a nonzero average.

are in fact characterized by large variations of θ , while |D|
stays confined around a mean value. Going back to Fig. 4, two
fixed points of the BJJ model are clearly reproduced along the
D = 0 axis: The minimum in the origin and the saddle point
at |θ | = 0.5π . The vortex pair contains here a larger number
of atoms Nb and the vortex centers are more distanced with
respect to the case of Fig. 2.

Finally, the BJJ of Fig. 6 features a regime where an-
other type of π oscillations occurs around |θ | = 0.5π . Such
trajectories describe a case where one of the two corotating
vortices has a large mass, while the other have a very small
mass, so that the b population is always in its largest part
trapped within a specific vortex. These π -oscillations regions,
featuring also a self-trapping character, present large average
values of D and occur at large average values of |θ |, so that
both quantities vary within a relatively small interval. They
look like “islands” in the corners of the phase space, and
the time evolution of the conjugate variables in this case is
shown in the example in Fig. 7. Again in Fig. 6, the numerics
reproduce the four characteristic fixed points featured by a BJJ
in this regime: two maxima at large |D| values and |θ | = 0.5π

(note the periodic boundary conditions in θ ), a saddle point in
|θ | = 0.5π and D = 0, and the minimum in the origin.

We conclude this section discussing briefly a possible ex-
perimental implementation of our vortex-supported BJJ in a
mixture of 23Na and 39K, trapped in a flat disk-trap via a
digital micromirror device [14]. This specific mixture, experi-
mentally realized in 2018 by Schulze et al. and by Castilho
et al. in 2019 [60] features a relatively large tunability of
the interactions. In particular, in Ref. [60], a compact and
versatile setup for the nucleation of vortices in the 23Na
BEC was implemented, and a number of 23Na condensed
atoms of the order of 106 was produced. While the mentioned
experiments are promising for the vortex nucleation in the
mixture, the creation of massive vortices could be obtained
via the experimental routine proposed in Ref. [5], where via a
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component-selective potential, the minority component could
be initially placed at the vortex nucleation positions. The vor-
tices’ nucleation at the desired positions is to be induced via
phase-imprinting methods [61,62] or by stirring a laser beam
[22,63–65], and eventually with the aid of a pinning potential
[22]. Regarding the realization of the BJJ, as an example
the experiments in Refs. [51,54] are promising instances for
a possible observation of the BJJ dynamics in the minority
component, as well as the experiments with Fermi superfluids
of Refs. [66,67]. The latter give rise to the intriguing question
on which kind of intervortex tunneling phenomena may arise
in the context of Fermi superfluids.

IV. THEORETICAL MODELING: ESTIMATE OF THE
BOSE-HUBBARD PARAMETERS

Given a circular-orbit solution [12], where the two vor-
tices are rotating specularly to each other around the origin
at frequency �, we can treat the vortex pair as an effective
external potential for the component b. When switching to
a rotating reference frame of frequency �, the effective ex-
ternal potential becomes virtually time-independent. Hence,
the Hamiltonian relative to the component b, in the second
quantization formalism, is

H = H0 + U = H0 +
∫

d3r
gb

2
(ψ̂+

b )2ψ̂2
b , (2)

H0 =
∫

d3r

(
− h̄2

2mb
ψ̂+

b �ψ̂b

)

+ gab

∫
d3rρaψ̂

+
b ψ̂b − �

∫
d3rψ̂+

b L3ψ̂b, (3)

and L3 is the z component of the angular momentum operator,

L3 = −ih̄

(
x

∂

∂y
− y

∂

∂x

)
. (4)

In Appendix C 3, we show that, for two corotating vortices,
the angular-momentum term in Hamiltonian (3) is zero. In
the above, ρa = ρa(r) = |ψa(r)|2 is the density profile of the
majority component a and all the spatial vectors are 2D. Note
that the component a only contributes to H via the term gabρa,
which is the effective external potential felt by the component
b and is treated as time-independent.

From the Gaussian ansatz in Eq. (6) [11] we derive the
oscillation frequency ω of any of the wells in the locally
harmonic potential approximation. As aforementioned, we
consider here identical wells at distance r1 from the origin.
Hence, the two wells have the same Gaussian width σa:

ω2 = 2gabna

mbσ 2
a Lz

, na = Na

π
(
R2 − 2σ 2

a

) . (5)

ρa = na

Lz

(
1 −

2∑
i=1

e
− |r−rv,i |2

σ2
a

)
, (6)

where rv,i is the 2D vector of coordinates of vortex i.

A. Space-mode approximation

Starting from the Hamiltonian (2), we perform a two-mode
approximation in the spirit of Ref. [34]. We expand the field

operator ψ̂b in terms of space modes

ψ̂b =
2∑

i=1

b̂i(t )Wi(r), i = 1, 2, (7)

where b̂i are the bosonic mode operators, such that [b̂i, b̂ j] =
[b̂+

i , b̂+
j ] = 0 and [b̂i, b̂+

j ] = δi j . The functions Wi(r), in
Eq. (7), are the ground-state wave functions of the right well
“1” and of the left well “2” (corresponding to the two effective
potential wells placed at the vortex cores in component a), in
the local harmonic approximation of the well profiles,

Vhar = 1

2
mbω

2|r − rv,i|2, ω2 = gab
2na

mbLzσ 2
a

.

From now on the dependency of the mode operators on
time and of Wi on space are left implicit. The functions Wi are
given by

Wi = γ exp(−α|r − rv,i|2), α = mbω

2h̄
, (8)

with the normalization constant γ = √
2α/(πLz ). Note that,

at large values of gab/
√

gagb, different functions Wi might be
more appropriate to precisely capture the BJJ dynamics.

After plugging the ansatz described by Eq. (7) into the
Hamiltonian (2), we obtain the final b Hamiltonian in the
two-mode approximation (refer to Appendix C for its explicit
derivation in the general case of two different vortex orbits),

Htm = U

2

2∑
i=1

n̂i(n̂i − 1) − μNb − J (b̂+
2 b̂1 − b̂+

1 b̂2), (9)

with Nb = ∑2
i=1 n̂i, n̂i = b̂+

i b̂i the particle number operator of
site i, and

μ = − gabna

Lz(1 + 2ασ 2
a )

(
1 − 2ασ 2

a e
− 8αr2

1
1+2ασ2

a

)
, (10)

the chemical potential. The contribution μNb can be neglected
as Nb, being a constant of motion, does not affect the proper-
ties of the system. The interaction and tunneling parameters,

U = gbα

πLz
= gb

h̄πLz

√
gabnamb

2σ 2
a Lz

(11)

and

J = gabna

Lz

[
1

σ 2
a

(
h̄

mbω
+ r2

1

)
e− mbω

h̄ r2
1

+ 4

2 + 1/
(
ασ 2

a

)e
− 4αr2

1 (1+ασ2
a )

1+2σ2
a

]
, (12)

respectively, are calculated for a double-well system cor-
responding to a vortex pair where the vortices are at the
same distance from the disk center but in opposite positions
(r2 = −r1). Note the dependency, in Eqs. (11) and (12), on
the macroscopic vortex parameters. At increasing gabna the
harmonic-oscillator (squared) frequency ω2 increases, leading
in turn to a stronger confinement and hence to a rise in the
onsite interaction U . Conversely, U decreases with increasing
σa, i.e., the Gaussian vortex-profile width. Furthermore, U
depends linearly on the b atoms interaction parameter gb, as in
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standard BH models, while the tunneling parameter J rapidly
decreases with increasing r1, i.e., the vortices’ half-distance.
It is also worth observing that the second term in Eq. (12)
represents an extra contribution with respect to the standard
tunneling parameter of Ref. [34]. This is due to the fact that
the effective potential created by the vortices features a har-
monic characteristic length (2α)−1/2 that is comparable with
the vortex width σa (of the same order of the component-a
healing length), and to σa being in general not negligible with
respect to the vortices’ distance 2r1.

In Appendix C we derive the general expression of J for
the case where the two vortices rotate onto two different cir-
cumferences. We proved the existence of these configurations
for two individual massive vortices in Ref. [12], and their
extension to a BJJ is analogous to the single-orbit case.

Note that, according to Milburn, Corney et al. [34], the
two-mode approximation is only valid in the limit

Nb �
√

h̄

2mbω

1

ab
= Nh, (13)

i.e., when the intraspecies interactions do not perturb signif-
icantly the ground state of the harmonic oscillators. Note as
well that, as Nh ∝ 1/(ab 4

√
gab), the smaller is the scattering

length of ab or the smaller is gab, the more the ansatz (7) is
appropriate for capturing the double-well phenomenology

B. Mean-field approximation

Since the numbers of bosons contained in the two wells
is rather large, the purely quantum description based on
Hamiltonian (9) can be replaced by the mean-field BH
model obtained within the coherent-state picture of Ref. [38].
The mean-field Hamiltonian is given by Hmf = 〈ψb|Htm|ψb〉,
where |ψb〉 reads

|ψb〉 = ei S
h̄ |Z〉, |Z〉 = ⊗i=1,2|zi〉,

and S is the effective action related to Hamiltonian Hmf. The
state |zi〉 is the Glauber coherent state whose parameter zi =
〈zi|bi|zi〉 ∈ C represents the local order parameter of the well i
and allows one to define the relevant average boson population
|zi|2 = 〈zi|b+

i bi|zi〉. The resulting mean-field Hamiltonian is

Hmf =
2∑

j=1

U

2
|z j |4 − J (z∗

2z1 + z∗
1z2),

whose derivation is discussed in Appendix D. With a con-
venient change of variables, the phase space is reduced to
two dimensions. By defining the new pairs of canonically
conjugate variables,

D = |z1|2 − |z2|2, θ = φ1 − φ2

2
,

N = |z1|2 + |z2|2, ψ = φ1 + φ2

2
,

where z j = |z j |eiφ j , the following final BJJ Hamiltonian is
obtained:

Hmf = U

4
N 2 − μN + U

4
D2 − J

√
N 2 − D2 cos (2θ ). (14)

Note that the variable N is a constant of motion representing
the total number of atoms Nb of the BJJ, and ψ is an auxil-
iary variable, so that the phase space is made up by the two
conjugate variables D and θ , where D represents the popu-
lation imbalance between the two wells, while θ represents
their phase shift. The relevant equations of motion read (the
associated Poisson brackets are given in Appendix D)

h̄Ḋ = 2J
√
N 2 − D2 sin (2θ ), (15)

h̄θ̇ = −U

2
D − JD√

N 2 − D2
cos (2θ ), (16)

while Ṅ = 0 and the equation for ψ plays the role of an
auxiliary equation. Again, following Ref. [38] it is convenient
to define the quantity

� = 2J

UN , (17)

discriminating different regimes of the phase portrait. Finally,
the frequency ν of the (θ, D) orbits in the small-oscillation
limit [i.e., close to (0,0)] is

ν =
√

2JNU

h̄2

(
1 + 2J

NU

)
= 2J

h̄

√
1

�
(1 + �), (18)

while a solution of Eqs. (15) and (16) in the linear domain
is given by D = A cos (νt ) and θ = − Aν h̄

4JN sin (νt ) with A de-
pending on the initial condition. The frequency ν (18) depends
on the properties of the mixture and on the distance between
the two vortices.

V. RESULTS AND DISCUSSION: COMPARISON WITH THE
GROSS–PITAEVSKII EQUATION DYNAMICS

We compare the GPE results with the two-well mean-field
BH model predictions using for the BH parameters the analyt-
ical expressions (11) and (12) in terms of the parameters of the
vortex pair. We take a series of parameter pairs (U, J ) while
only Nb varies and we compare the GPE phase portraits and
the real-time dynamics with the trajectories obtained via our
model. Here, we set σa = 0.179R, Na = 105, and r1 � 0.22R.

We find that, for a small number of atoms, i.e., Nb = 10,
there is a general good agreement between the model and the
GPE, both in the phase portrait and in the BH-dimer dynamics
(see Figs. 8–10). As visible in Fig. 8, a mismatch only stems
in the strongly nonlinear regime, characterized by π -phase os-
cillations [θ (t ) ≈ π/2]. These are, however, still qualitatively
captured. Focusing on the time evolution, Fig. 9 compares the
GPE and BH dynamics in the Josephson oscillations domain
[which features small oscillations of D(t ) and θ (t )) around
zero]. Here we see that not only the shape of the trajectories
in the phase space is well captured but also the BH-dimer
dynamics. When going further from the linear region, as in
Fig. 10, we see that our model underestimates the frequency of
BH-dimer dynamics, while the shape of the (θ, D) trajectory
is still qualitatively well captured. In general, in the nonlinear
region the ratio of the GPE-extracted frequency to the BH
model frequency νGPE/νBH can vary approximately from 1.1
to 1.6 for the tested trajectories. To sum up, in the small-Nb

limit, the analytical expressions for the BH model parameters
are reliable and the macroscopic effects occurring in the BJJ
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FIG. 8. Comparison between the GPE-extracted phase portrait
and our analytical BH model. Nb = 10, � � 1.5. Whereas the π

oscillations’ trajectories are traveled in a clockwise direction, the
Josephson oscillations’ trajectories are traveled anticlockwise.

are well described. However, for trajectories in the phase
space that are further from the Josephson-oscillation domain,
some small discrepancy arises. These involve situations of a
larger mass-imbalance between the two vortices, which may
excite other phenomena in the GPE simulation. In general,
this suggests that this discrepancy is not of concern, rather,
the good agreement still persisting is remarkable.

The larger Nb, the more evident the mismatch, which is,
however, substantially improved via an effective correction
of the coefficient U [Eq. (11)]. In this case, we obtain an
overall good agreement of the phase portraits such as those
in Figs. 11–13, where some nonqualitative discrepancies arise
again only in the strongly nonlinear domain. This is the case in
the π oscillations region of Fig. 11, and in the π -oscillations
“islands” of Figs. 12 and 13. Regarding the time evolution
of the conjugate variables for a BJJ at larger Nb, we find
that the double-well dynamics is often well reproduced by
the numerical simulations. The oscillation frequency in the

evolution of D and θ can be underestimated by our model
of a factor νGPE/νBH that goes approximately from 1.1 to
1.6 for the examined trajectories. As an example, the time
evolution of D and θ illustrated in Fig. 14 are cases of a
very good agreement between the frequency of the BH- and
the GPE-extracted dynamics at larger Nb values (in this case
Nb = 1000) and upon the effective correction of U .

This effective correction of U is such that Ueff = U/ f ,
where f > 1 and in most cases f increases with Nb. The value
of f is found via the best fit of the phase-space trajectories and
variables’ dynamics, as obtained via the GPEs with our model.
We interpret this correction as an effective correction of gb,
namely, as an effect of the intraspecies interactions, which are
not taken into account in the space-mode approximation. The
ansatz (8) is in fact valid in the limit expressed by Eq. (13).
Parameter gb controls the repulsive interactions, resulting in a
wider b peak with respect to the noninteracting case. Further-
more, this effect is larger for larger Nb, something that gives
a reasonable interpretation of the U correction. Possible ways
to improve the model include the numerical computation of
the BH parameters, or models that go beyond the standard
two-mode approximation [39,68].

Finally, we mention an alternative scheme that could be
adopted to interpret the discrepancies. One could in fact al-
ways leave U untouched and tune the parameter σa for every
system, at most to large effective values, so that the phase
portrait provided by numerical simulations features a very
good agreement with that of the double-well BH model. This,
however, at the price of losing the agreement in the real-time
dynamics, obtaining in fact a large overestimation of the fre-
quency by the model, which increases with increasing Nb.

VI. CONCLUSIONS AND OUTLOOK

To sum up, the thorough numerical study of the dynam-
ics of a massive-vortex pair unveiled a robust realization of
the BJJ, triggered by the intervortex b-boson tunneling. We
extracted several phase portraits from the simulation of the
coupled Gross–Pitaevskii equations and observed, remark-
ably, all the characteristic phenomena featured by a BJJ,
including the Josephson and π oscillations and the macro-
scopic quantum self-trapping. Thanks to the existence of

FIG. 9. Comparison between the time evolution of the population imbalance D (left) and the phase shift θ (right) as extracted from the
GPEs versus as predicted by our analytical model, for a trajectory close to the origin in the phase space, i.e., in the linear domain (zoom in the
insets). The system is the same of Fig. 8, with Nb = 10.
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FIG. 10. (left) Comparison between the dynamics of D as extracted from the GPEs versus the results of our analytical model, for a
large orbit at the boundary with the π -oscillation domain, i.e., a trajectory in the strongly nonlinear domain. (right) Comparison between the
dynamics of the phase shift θ as extracted from the GPE versus the prediction of our analytical model for the same trajectory as the left panel.
The system is the same as in Fig. 8, with Nb = 10.

circular orbit solutions for the two vortices [12], we were able
to treat the vortex pair as fixed-point solution in a rotating
frame of reference. Thus, they constitute a time-independent
effective potential for their in-filling component, tunneling
within the two-vortex effective double-well potential. Despite
the small, fast variations of the vortex radial positions, the
BH-dimer dynamics stayed unaffected and stable over time.
Hence, vortices in BECs can be used in replacement to optical
potentials to support the formation of a BJJ. The remarkable
fact that vortices can host a component undergoing quantum
tunneling offers a rich and intriguing scenario. This suggests
future extensions starting from the minimum building block,
i.e., the vortex pair, here presented.

FIG. 11. Comparison between the GPE-extracted phase portrait
and our analytical BH model. Nb = 50, Ueff = U/5, � � 1.5. The
Josephson oscillations’ trajectories are traveled anticlockwise, while
the π oscillations’ trajectories are traveled clockwise during the BJJ
dynamics.

We modeled the BJJ Hamiltonian associated with the com-
ponent b filling the two vortex cores. In our system, ψa

represents a background time-independent order parameter.
Starting from the quantum b Hamiltonian, we performed a
two-mode approximation and then derived, via a coherent-
state approach, its corresponding mean-field version. We
presented a final Bose-Hubbard model where the parameters
are explicitly expressed in terms of the system’s physical
quantities. In the derivations, we considered b as localized
around the center of two locally harmonic wells, a condition
justified by the immiscibility of the two species.

FIG. 12. Comparison between the GPE-extracted phase portrait
and our analytical BH model. Nb = 450, Ueff = U/11, � � 0.4. For
illustrative purposes we did not plot for all the trajectories their
symmetric counterpart with respect to the origin. This is the case
for the self-trapped regimes in the corners of the phase space, where
the trajectories are constrained within small ranges of both the conju-
gate variables and have nonzero average. The travel direction of the
trajectories is as in Fig. 6.
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FIG. 13. Comparison between the GPE-extracted phase portrait
and our analytical BH model. Nb = 1000, Ueff = U/13, � � 0.2. The
travel direction of the trajectories is anticlockwise, except for the π -
oscillations “islands” at the corners of the phase portrait, where the
direction is clockwise.

Finally, we compared our analytic Bose-Hubbard model
with the numerical results. We found a very good agreement
of the model with the GPE in the small-Nb limit, both in the
phase portraits and in the BH-dimer dynamics, while at larger
b-atom numbers an effective correction of the onsite interac-
tion parameter U is necessary to obtain a good agreement with
the numerics. We interpreted this correction, increasing with
Nb, as an effect of the intraspecies interactions, which lead to
an enlargements of the in-filling for the two-mode approxima-
tion. Nonetheless, an eventual improvement of the model via
a new ansatz for the modes Wi is out of the scope of our paper,
whereas it would be interesting for the future. Noticeably, the
effectively corrected model was shown to capture even the
separatrices in the phase portraits and the strongly nonlinear
phenomena qualitatively. Some quantitative discrepancies can
arise in the nonlinear regions, where the BH-dimer frequency
is underestimated of up to a factor 1.6 for in the examined
orbits. This is likely due to other phenomena occurring in the
GPE, such as a more pronounced asymmetry in the vortex
wells or larger variations of the vortex radial positions. As
a future outlook, it would be in fact intriguing to incorporate
into the model the coupling between the vortex dynamics and
that of the BH-dimer, by taking into account the variations in
the distance of vortices.

Other following-up scenarios include the vortex BH trimer
and the emergence of chaos [49,69,70], the tunneling within
a massive vortex necklace [71,72], and a lattice [73]. In ad-
dition, it would be interesting to model the asymmetric BH
dimer [52,74], where the two vortices have different sizes.
This is made possible thank to the in-filling component in-
fluencing the healing length of the condensate a. Further
interesting outlooks are the inclusion of multiply quantized
vortices, whose stability is guaranteed by the in-filling com-
ponent [5], the case of attractive interactions [54], and the
tunneling of a BEC mixture [47,48].
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APPENDIX A: NUMERICAL SIMULATION

After nucleating the vortices via the imaginary-time proce-
dure, we start the “real-time” simulation. Here the dynamics
of the two order parameters is simulated by resolving the
GPEs through the fourth-order Runge-Kutta algorithm. We
compute the two vortex masses by integrating the b-density
field ρb over two separated domains. These are obtained by
dividing the disk domain (containing the mixture) by the axis
of the segment through the two vortex centers. This method
requires an initial estimate of the vortex positions, which is
done via an image processing tool. Finally, we compute the
phases of b peaks by integrating the b-phase field, weighted by
ρb, onto separate domains that are further restricted in compar-
ison with those employed for the masses. We restrict the data,
in this case, to the neighborhoods of the two peaks, setting to
zero all the data outside the circles of radius 0.01R centered in
the two peaks. This is done to minimize numerical artifacts.
Note that the distance between the two vortices should be
large enough for a meaningful extraction of the vortex masses
and phases as described above.

APPENDIX B: PHASE PORTRAITS OF A BOSONIC
JOSEPHSON JUNCTION

In Fig. 15 we recall the different regimes of the phase
portraits of a standard Bosonic Josephson Junction (see also
Ref. [38]). The trajectories in the phase-space feature constant
energy, and are relative to the Hamiltonian (14), with N = N .
The phase space is made up by the two conjugate variables D
and θ , where D is the population imbalance between the two
sites of the BJJ, and θ is half the phase difference between
the two many-body states of the BJJ in the semiclassical
approximation. In Fig. 15, D ∈ [−N, N] is normalized by the
number of particles N in the BJJ. Note that the phase portraits
are symmetric with respect to the origin, and the phase space
has a cylindrical geometry, due to the periodicity in θ featured
by the Hamiltonian. The fixed points are sketched in red,
and the labels “(m),” “(M),” and “(s)” indicate respectively
an energy’s local minimum, maximum, and saddle point. The
parameter � (17) discriminates what regime the BJJ belongs
to. Following the examples in the figure, from left to right and
top to bottom, we can distinguish four different notable cases.
(i) In the case of � < 1/2, the Josephson oscillations’ orbits
are present around the origin, while the ballistic trajectories
are present in the nonlinear regime. These are instances of
self-trapping and feature a free evolution of θ , while the pop-
ulation imbalance D stayed trapped around nonzero average
values. An instance of π oscillations occurs at the corners of
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FIG. 14. (left) Comparison between the time evolution of the population imbalance D as extracted from the GPE and as predicted by
our analytical model, for a trajectory close to the separatrix, in the phase space, between the Josephson oscillations region and the ballistic
phase shift oscillations. (right) Comparison between the time evolution of the phase shift θ as extracted from the GPE and as predicted by our
analytical model, for the same trajectory as in the left panel. The system is the same as in Fig. 13, Nb = 1000, Ueff = U/13.

the phase space, where island-like orbits take place. These
also exhibit a self-trapping character. In these regions, both
the conjugate variables vary over time with a nonzero average
value. Four fixed points are present, i.e., the energy minimum
in the origin, two energy maxima in the corners, and a saddle
point at (θ = ±0.5π, D = 0). (ii) As � reaches the value

of 1/2, the ballistic orbits disappear, and the π -oscillations
island-like regions expand in the vertical direction. As in the
previous case, four fixed points are present. (iii) Further on,
at 1/2 < � < 1, a new type of π -oscillations orbits appears,
featuring large oscillations of D, while |θ | is trapped around
the average value of π/2. In this case, qualitatively, the same

FIG. 15. Different regimes of the phase portraits of a BJJ. From left to right and top to bottom: � � 0.28, � = 0.50, � � 0.65, � � 1.30.
The colors represent the energy landscape of the BJJ, where the energy E given by the Hamiltonian (14) is normalized by h̄ω, with ω given by
Eq. (5). The fixed points are sketched in red. Note that, due to the cylindrical geometry of the phase space, the fixed points can be equivalently
represented on the straight line θ = 0.5π (as in the figure) or on the straight line θ = −0.5π .
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fixed points as in the previously examined regimes are present.
(iv) Finally, at � > 1, the BJJ features no self-trapping re-
gions, and only the Josephson and the π oscillations persist. In
this final case, the two maxima have collapsed to the position
(θ = ±0.5π, D = 0), and the saddle point has disappeared.
On the other hand, the position of the energy minimum in the
origin persists.

APPENDIX C: SPACE-MODE APPROXIMATION

Here we present the derivation of the BH Hamiltonian in
the general case of two vortices rotating on different orbits
of radii r1 and r2, always with an angular position shift of π .
Recall that we assume the vortex cores can be associated with
a Gaussian width of σa, so that their corresponding potential
wells have a frequency ω, in the harmonic approximation,
given by

ω2 = 2gabna

mbσ 2
a Lz

.

Within the space-mode approximation the ground state of
the ith well associated with the boson mode bi is Wi =
γ e−α|r−rv,i|2 , with α = mbω/2h̄ and γ = √

2α/(πLz ), and we
assume (Wi,Wj ) = δi j . In fact, we assume σa � R and, jus-
tified by the immiscibility condition, R2  1/2α. Hence, the
a-density profile at the vortex sites and the Wi wave functions
are “narrow Gaussians.” The Gaussian Wi is centered in the ith
vortex position rv,i.

1. Free Hamiltonian H0

In the rotating reference frame the Hamiltonian H = H0 +
U of the component b exhibits two contributions. The second
one U describes boson-boson interaction and will be analyzed
later. The first one is

H0 =
∫

d3r

(
− h̄2

2mb
ψ̂+

b �ψ̂b

)
+ gab

∫
d3rρa(r)ψ̂+

b ψ̂b

− �

∫
d3rψ̂+

b L3ψ̂b = (I ) + (II ),

where

ρa(r) = na

Lz

(
1 −

2∑
i=1

e
− |r−rv,i |2

σ2
a,i

)

shows the gab-dependent coupling with the component-a den-
sity and the angular-momentum term emerging from the
rotation. In the following we substitute the ansatz (7) into H0

and solve the integrals.

2. Integral (I)

(I ) =
∫

d3r

(
− h̄2

2mb
ψ̂+

b �ψ̂b

)
+ gab

∫
d3rρaψ̂

+
b ψ̂b

=
2∑

i, j=1

b̂+
i b̂ j

∫
d3rWi

[
Hho + gabρa − mbω

2

2
|r − rv, j |2

]
Wj

=
2∑

i=1

b̂+
i b̂iE0 +

2∑
j,i=1

b̂+
i b̂ jKi j,

where the ground-state energy

E0 = h̄ω

2

emerges from the action of the harmonic-oscillator (local)
Hamiltonian

Hho = − h̄2

2mb
� + mbω

2

2
|r − rv, j |2

on its ground state Wj , and the two-index symbol Ki j reads

Ki j =
∫

d3rWi

[
gabρa − mbω

2

2
|r − rv, j |2

]
Wj .

Hence, we can rewrite (I ) as

(I ) =
2∑

i=1

(E0 + Kii )b̂
+
i b̂i + b̂+

2 b̂1K2,1 + b̂+
1 b̂2K2,1

=
2∑

i=1

Ein̂i + b̂+
2 b̂1K2,1 + b̂+

1 b̂2K2,1.

After some long but not complex derivations, we obtain

Ki j = gab
na

Lz
δ2

i j − πγ 2gabna

2α + 1
σ 2

a

2∑
l=1

eA�(xi,x j )eA�(yi,y j )

− γ 2

2
mbω

2Lze
− α

2 |rv, j−rv,i|2 π

4α

(
1

α
+ |rv, j − rv,i|2

2

)
,

(C1)

where rv,i = (xi, yi ),

A�(xi, x j ) = exp

⎡
⎣

(
αXi j + xl

σ 2
a

)2

2α + 1
σ 2

a

− α
(
x2

i + x2
j

) − x2
l

σ 2
a

⎤
⎦,

Xi j = xi + x j , and A�(yi, y j ) is found by replacing xi (x j)
with yi (y j) in A�. With the substitution x1 = r1 cos �, y1 =
r1 sin �, x2 = −r2 cos �, y2 = −r2 sin �, i.e., taking two
corotating vortices in the general case of two different orbits
[12], we get, for i �= j,

Ki j = −gabna

Lz

[
4

2 + 1/(ασ 2
a )

e
− α(1+ασ2

a )(r1+r2 )2

1+2ασ2
a

+ e− α
2 (r1+r2 )2

2σ 2
a

(
1

α
+ (r1 + r2)2

2

)]
. (C2)

Finally, for Kii we obtain, for two corotating vortices

Kii = gabna

Lz
(
1 + 2ασ 2

a

)(
1 − 2ασ 2

a e
− 2α(r1+r2 )2

1+2ασ2
a

) − h̄ω

2
. (C3)
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3. Integral (II) (angular momentum)

We then substitute the ansatz (7) in the integral (II ) and
after doing some derivations we find

(II ) = −�

∫
d3rψ̂+

b L3ψ̂b

= ih̄�

∫
d3r

2∑
i=1

b̂+
i Wi(x∂y − y∂x )

2∑
j=1

b̂ jWj

= −2ih̄�Lz

2∑
i=1

2∑
j=1

γ 2

2
b̂+

i b̂ je
− α

2 (r2
v,i+r2

v, j )+αrv,i·rv, j

×
[
−xv,i + xv, j

2
πyv, j + yv,i + yv, j

2
πxv, j

]
.

For two corotating vortices such that x1 = r1 cos �, y1 =
r1 sin �, x2 = −r2 cos �, y2 = −r2 sin �, the factor in the
square brackets is zero and H0 is rotation-invariant:[

−xv,i + xv, j

2
πyv, j + yv,i + yv, j

2
πxv, j

]
= 0.

4. Interaction term U
Let us compute the interaction term U by substituting the

ansatz (7) in the relevant expression:

U =
∫

d3r
gb

2
(ψ̂+

b )2ψ̂2
b

= gb

2

∫
d3r

2∑
i=1

b̂+
i Wi

2∑
j=1

b̂+
j Wj

2∑
k=1

b̂kWk

2∑
l=1

b̂lWl

� gb

2

2∑
i=1

∫
d3rW 4

i (b̂+
i )2b̂2

i = gb

2

2∑
i=1

K0n̂i(n̂i − 1),

where

K0 =
∫

d3rW 4
i = α

πLz
.

Finally, the Hamiltonian H0 becomes, in the two-mode ap-
proximation,

Htm = −μ

2∑
i=1

n̂i − J (b̂+
2 b̂1 − b̂+

1 b̂2) + U

2

2∑
i=1

n̂i(n̂i − 1),

(C4)

where J = −|K12| = −|K21|, U = gbK0, and μ = −(E0 +
Kii ). In the limit r2 = r1, we obtain the parameters of
Eqs. (10), (11), and (12).

APPENDIX D: MEAN-FIELD APPROXIMATION

The procedure of Ref. [38] for obtaining the mean-field
Hamiltonian associated with Htm assumes that bosons in the
ith well are described by the (local) coherent state |zi〉, defined
by the equation bi|zi〉 = zi|zi〉, related to the annihilation op-
erator b̂i of the Weyl-Heisenberg algebra {bi, b+

i , b+
i bi, Ii} at

site i. The expectation values

〈zi|b̂i|zi〉 = zi, 〈zi|n̂i|zi〉 = |zi|2,
show that zi can be seen as the order parameter describing
the phase order at the i-th site, while 〈zi|n̂i|zi〉 describes the
average boson population. The trial state of the variational
coherent-state approach for the many-boson component b can
be written as

|ψb〉 = ei S
h̄ |Z〉, |Z〉 = ⊗i=1,2|zi〉,

where

|zi〉 = e− |zi |2
2

+∞∑
m=0

zm
i√
m!

|m〉, zi ∈ C,

and |m〉 are the eigenstates of the number operator b+
i bi. By

imposing the condition 〈ψb|(ih̄∂τ − Htm)|ψb〉 = 0 one gets
the effective action

S =
∫ t

0
dτL, L = ih̄〈Z|∂τ |Z〉 − 〈Z|Htm|Z〉,

where L represents the effective Lagrangian, and Hmf =
〈Z|Htm|Z〉, corresponds to the effective Hamiltonian. After
some derivations we find

Hmf = 〈Z|Htm|Z〉 =
2∑

j=1

(
U

2
|z j |4 − μ|z j |2

)

− J (z∗
2z1 + z∗

1z2). (D1)

The associated Euler-Lagrange equations are

ih̄ż1 = −μz1 + U |z1|2z1 − Jz2, (D2)

ih̄ż2 = −μz2 + U |z2|2z2 − Jz1, (D3)

while variables z∗
1, z∗

2 obey the complex-conjugate version of
these equations. Interestingly, the same equations of motion
can be derived by defining the Poisson brackets

{A, B} = 1

ih̄

2∑
m=1

[
∂A

∂zm

∂B

∂z∗
m

− ∂A

∂z∗
m

∂B

∂zm

]
,

showing how brackets {zi, z∗
k } = δik/(ih̄) replace commutators

{bi, b+
k } = δik in the derivation of the mean-field (semiclas-

sical) picture of the BH dimer. Not surprisingly, the atoms’
number N = 〈Z|∑i b+

i bi|Z〉 = |z1|2 + |z2|2 represents a con-
stant of motion, namely, {N ,Hmf} = 0. Via an appropriate
transformation, we find two new pairs of canonical variables
replacing z1, z∗

1, z2, z∗
2. These are

N = |z1|2 + |z2|2, ψ = φ1 + φ2

2
,

D = |z1|2 − |z2|2, θ = φ1 − φ2

2
,

where z j = |z j |eiφ j has been used. Finally, the mean-field
Hamiltonian in the new variable reads

Hmf = U

4
N 2 − μN + U

4
D2 − J

√
N 2 − D2 cos (2θ ),

(D4)
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associated with the Poisson brackets

{A, B} = 1

h̄

[
∂A

∂D

∂B

∂θ
+ ∂A

∂N
∂B

∂ψ
− ∂A

∂θ

∂B

∂D
− ∂A

∂ψ

∂B

∂N

]
,

satisfying {θ,N } = 0 = {ψ, D}, {θ, D} = − 1
h̄ = {ψ,N }.

The relative equations of motion

h̄Ḋ = 2J
√
N 2 − D2 sin (2θ ), (D5)

h̄θ̇ = −U

2
D − JD√

N 2 − D2
cos (2θ ), (D6)

h̄Ṅ = 0, (D7)

h̄ψ̇ = −U

2
N + μ + JN√

N 2 − D2
cos (2θ ), (D8)

feature the conserved quantity N , corresponding to Nb, and
show that the variable ψ is auxiliary. Hence, the system is
represented by the restricted phase space of the conjugate
variables (θ, D), representing the phase shift of the two peaks
and the population imbalance between the sites of the BJJ.
Note that the coherent state approach holds if the local boson
population 〈n̂i〉 is large enough. The expectation values

n̂i ≈ 〈n̂i〉 = 〈b̂+
i b̂i〉 = |zi|2,

b̂i ≈ 〈b̂i〉 = zi,

b̂+
i ≈ 〈b̂+

i 〉 = z∗
i

show how the coherent-state variational approach is equiva-
lent to applying the Bogoliubov approximation.
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