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Abstract
This perspective article explores the convergence of advanced digital technologies, including high-performance computing (HPC),
artificial intelligence, machine learning, and sophisticated data management workflows. The primary objective is to enhance the
accessibility of multiscale simulations and their integration with other computational techniques, thereby advancing the field of
nanomaterials technologies. The proposed approach relies on key strategies and digital technologies employed to achieve efficient
and innovative materials discovery, emphasizing a fully digital, data-centric methodology. The integration of methodologies rooted
in knowledge and structured information management serves as a foundational element, establishing a framework for representing
materials-related information and ensuring interoperability across a diverse range of tools. The paper explores the distinctive fea-
tures of digital and data-centric approaches and technologies for materials development. It highlights the role of digital twins in
research, particularly in the realm of nanomaterials development and examines the impact of knowledge engineering in estab-
lishing data and information standards to facilitate interoperability. Furthermore, the paper explores the role of deployment technol-
ogies in managing HPC infrastructures. It also addresses the pairing of these technologies with user-friendly development tools to
support the adoption of digital methodologies in advanced research.
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Introduction
Digital technologies have ushered in a new era of materials
science, enabling unprecedented advancements in the design,
characterization, and optimization of materials. By leveraging

computational modelling and simulation, researchers can simu-
late and predict properties and behavior of materials with
remarkable accuracy, explore a vast design space, and predict
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the properties and performance of materials before they are syn-
thesized [1-3]. This approach enables the discovery of materi-
als with, for example, improved mechanical strength, enhanced
thermal conductivity, superior electrical properties, or other
tailored characteristics. Simulations provide crucial insights at
different time and length scales, from atomic and molecular-
level interactions to the macroscale, that govern the structural,
mechanical, and thermal properties of materials [4,5]. More
recently, data-driven approaches, such as machine learning
(ML) and artificial intelligence (AI), are revolutionizing materi-
als research by extracting valuable patterns and correlations
from vast amounts of experimental and computational data
[6-9]. These approaches enable researchers to uncover hidden
relationships between composition, structure, morphology, pro-
cessing, and properties, accelerating the discovery of novel ma-
terials with tailored functionalities and enabling the identifica-
tion of patterns and trends. Moreover, high-throughput compu-
tational screening allows for the rapid evaluation of extensive
material libraries, providing researchers with a systematic and
efficient approach to identify promising candidates for specific
applications [10]. In addition to materials design, digital tech-
nologies can enhance the characterization and understanding of
materials. Advanced imaging techniques, coupled with compu-
tational analysis, enable researchers to examine the microstruc-
ture and behavior of materials at unprecedented resolutions [11-
13]. This aids in the understanding of fundamental properties
and the identification of structure–property relationships. The
integration of digital technologies with experimental tech-
niques also enables real-time monitoring and control of materi-
als synthesis processes, leading to improved reproducibility and
quality control. By combining these digital technologies with
integrated data management workflows, materials scientists
can, in principle, smoothly organize, share, and analyze large
volumes of materials data, fostering collaboration and enhanc-
ing the overall efficiency of materials research. The integration
of digital technologies into materials science has, thus, opened
up exciting new possibilities for materials design, discovery,
and innovation [14]. New, fully digitalized research directions
for materials development are therefore emerging at the conver-
gence of a broad range of advanced digital technologies
(Figure 1).

One significant area where these technologies can have a
profound impact is in the design and development of advanced
nanomaterials [15,16], where the relationship between structure
and morphology at different scales, processing, and resulting
properties is particularly intricate. The steady and recent
advances in hardware and software technologies have propelled
materials development in the field. On the hardware front, the
continuous improvement of high-performance computing
(HPC) systems has enabled researchers to tackle complex

Figure 1: Main digital technologies for materials innovation.

computational challenges with greater speed and efficiency.
The availability of powerful processors, increased memory
capacity, and enhanced parallel computing architectures has
significantly accelerated materials simulations and modelling
[17]. In parallel, software technologies have undergone remark-
able advancements. ML frameworks and algorithms have
evolved to handle large and diverse datasets, enabling the ex-
traction of valuable insights from materials data [6]. Additional-
ly, software advancements have facilitated the integration of
different computational models, enabling multiscale simula-
tions of materials across a broad range of length and time scales
[4,18]. Furthermore, the development of user-friendly inter-
faces and visualization tools has improved the accessibility and
usability of these advanced hardware and software technologies
[19,20].

In parallel to the use of large-scale computing infrastructures,
consumer-driven off-the-shelf computational technologies have
emerged as powerful tools for materials simulations, empow-
ering researchers with accessible and affordable solutions. One
notable example is the utilization of consumer graphics process-
ing units (GPUs) for accelerated materials simulations [21,22].
Modern GPUs, originally designed for gaming and multimedia
applications, possess immense parallel processing capabilities
that can be harnessed for scientific computations. Researchers
have successfully leveraged GPUs to accelerate computation-
ally intensive simulations, such as molecular dynamics and
quantum chemistry calculations [23,24]. Even more significant
has been the impact of GPU computing on AI. GPUs are inher-
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ently designed for parallel processing, making them exception-
ally well-suited for the demanding calculations and massive
data throughput required in AI tasks. Accordingly, GPUs are
nowadays considered the most efficient technological platform
for performing AI and data-intensive tasks [13,25]. This has
enabled the development of complex models that can process
vast amounts of materials data. Another consumer-driven tech-
nology that has boosted the digitalization of materials research
is cloud computing. Cloud-based platforms provide on-demand
access to HPC resources and large databases and infrastruc-
tures. Cloud-based infrastructures for materials research offer
scalability, flexibility, and accessibility, empowering research-
ers to collaborate, analyze data, and perform simulations more
effectively [14]. The application of cloud computing to materi-
als research include the use of materials data repositories (e.g.,
Materials Project [26] and NOMAD [27]), HPC clouds (includ-
ing commercial providers), materials simulation platforms
(Materials Cloud [28]), collaborative research environments
(ResearchGate Labs [29], Mendeley Data) and other services
for AI, data analytics, visualization, and training. Cloud plat-
forms have also been used to perform simulations in the materi-
als science domain [30] and to perform automated data analysis
[31]. However, the power of cloud computing is being enforced
even in other computationally intensive domains such as
climate modelling [32], further highlighting how this computing
paradigm can be a crucial enabler for higher-scale simulations
and modelling activities. Moreover, the continuous develop-
ment of efficient open-source software packages has boosted
the field of materials simulations. Advanced tools for the simu-
lation of materials across a broad range of scales, such as Quan-
tum ESPRESSO [33], LAMMPS [34], GROMACS [35], and
OpenFOAM [36], implement complex simulation algorithms,
making it easier for researchers to perform complex simula-
tions without extensive programming knowledge. The open-
source nature of these packages encourages community contri-
butions, fostering a collaborative environment and driving con-
tinuous improvement in materials simulation capabilities. Addi-
tionally, consumer-driven technologies like virtual reality (VR)
and augmented reality (AR) have shown promise in materials
visualization and design. VR and AR platforms offer immer-
sive and interactive experiences, enabling researchers to visu-
alize complex material structures, analyze properties, and
manipulate models in real time. These technologies enhance the
path towards the development of new materials, facilitating
informed decision-making and accelerating the design of novel
materials with desired characteristics [37-39]. These key tech-
nologies can enable the disruptive potential of digital technolo-
gies in materials development by addressing aspects related to
both predictivity and automation. The integration of multiscale
physical and data-driven modelling of materials can support the
prediction of materials properties and the design of novel mate-

rials and processes. In addition, digitalization also enables the
uptake of automation in materials development. Beside the
implementation of automation and robotics in the development,
synthesis, and characterization of materials, automation in
modelling has emerged as a powerful approach to streamline
and enhance the efficiency of computational studies. By lever-
aging digital technologies and advanced algorithms, research-
ers can automate different aspects of the materials modelling
process, from data generation to model selection and parameter
optimization [7,40,41]. Furthermore, automation enables the
integration of experimental data with computational models,
facilitating the calibration and validation of models and provid-
ing a more comprehensive understanding of materials behavior
[10]. The automation of various modelling tasks, such as data
preprocessing, model generation, and parameter optimization,
through the use of advanced algorithms and software tools,
streamlines computational workflows and minimizes manual
effort. This automation not only improves efficiency but also
enhances reproducibility and reduces the potential for human
error.

User-friendliness of software platforms and frameworks used
for materials modelling tasks has also significantly improved in
recent years. Ready-to-use software packages provide pre-
implemented algorithms and methods, eliminating the need for
researchers to develop complex simulation platforms from
scratch. The availability of software platforms and packages
and interfaces enables a more efficient translation of scientific
and technological questions into simulation and modelling
workflows [42,43]. Additionally, these tools often come with
pre-built databases, libraries, and visualization capabilities,
further enhancing their usability and efficiency.

In this work, we outline different aspects of data-intensive
digital and integration technologies, outlining their role as key
enablers for the realization of digital twins (DTs) in the context
of materials and nanomaterials development. We will also
showcase some of the work carried out towards these goals,
illustrating the main principles behind the development of tools
and approaches. The paper is structured as follows: The first
section revolves around data-centric approaches for materials
development, emphasizing the pivotal role of data; the second
section is about the realization of digital twins of nanomaterials,
elucidating conceptualization and implementation; the third
section is about key enabling digital technologies in materials
development, highlighting a fully digital, data-centric approach
through the integration of HPC and ML technologies; in the
fourth section, we outline the role of semantic technologies for
the management of data and information within materials devel-
opment; in the fifth section we describe infrastructures support-
ing data-centric workflows, covering common development
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tools for research on nanomaterials, workflow building tools,
and deployment strategies such as virtualization and container-
ization; finally, we describe a typical application scenario
featuring most of the approaches and technologies discussed in
the paper.

Data-centric approaches for materials
development
Data-centric approaches are revolutionizing conventional mate-
rials development pipelines by streamlining and informing the
entire workflow. Traditionally, materials development relied
heavily on experimental characterization and trial-and-error
methods, which can be time-consuming and resource-intensive.
However, with the rise of digital technologies, data-centric ap-
proaches have emerged as a more efficient and effective alterna-
tive [6,8,44,45].

The role of data-centric approaches in the development of mate-
rials, typically occurs at three levels, that are related to (i) intrin-
sically digital data, (ii) experimental data from high-throughput
setups, and (iii) complex and integrated datasets. Approaches
based on intrinsically digital data, such as those originating
from virtual systems, digital twins, computational modelling,
HPC, edge computing, and Internet of Things, can, in principle,
be directly integrated within data-centric frameworks. As we
will see later on, however, the issues related to data integration
are also relevant in this case. The analysis and elaboration of
data obtained from high-throughput experimental techniques,
such as signals and images, have been greatly enhanced by
digital technologies, enabling researchers to extract valuable
insights and drive materials development [12]. High-through-
put experimental methods generate vast amounts of data, which
require efficient analysis techniques to uncover meaningful
patterns and relationships. Digital technologies provide ad-
vanced algorithms and tools to process and interpret these data,
enabling researchers to extract quantitative and qualitative
information [3,11,46,47]. The integration of data from high-
throughput experiments with computational modelling and
simulation further enhances the understanding of materials
properties and behavior. By combining experimental and
computational data, researchers can validate and refine models,
improving their accuracy and predictive power [48]. The analy-
sis and elaboration of complex and integrated datasets that com-
bine simulation data with data flows from experiments and
measurements have been significantly enhanced by digital tech-
nologies. These datasets offer a comprehensive and holistic
perspective on materials behavior, enabling researchers to gain
deeper insights and make informed decisions. Through the inte-
gration of simulation data with experimental measurements, re-
searchers can validate and refine computational models, im-
proving their accuracy and reliability. Advanced data analysis

techniques, such as statistical analysis, machine learning, and
data fusion methods, enable the integration and interpretation of
diverse datasets. By applying these techniques, researchers can
uncover correlations, extract meaningful features, and reveal
hidden patterns within these complex datasets. Additionally,
digital technologies facilitate the visualization and interactive
exploration of integrated datasets, allowing researchers to visu-
alize and comprehend intricate relationships between different
variables and parameters [24]. This integrated data analysis ap-
proach fosters cross-disciplinary collaboration, facilitates know-
ledge transfer, and enhances the overall understanding of mate-
rials properties and behavior. By leveraging the power of digital
technologies, researchers can accelerate materials research,
streamline materials design processes and foster scientific
breakthroughs. A depiction of the interplay between this differ-
ent technologies and a potential resulting workflow is depicted
in Figure 2.

The implementation of digital strategies for materials/nanoma-
terials development faces several key challenges that must be
addressed for successful integration. One of the main issues is
the availability and quality of data. Digital strategies heavily
rely on data from various sources, including experimental mea-
surements, simulations, and literature databases. However,
ensuring the accessibility, reliability, and interoperability of
data remains a significant hurdle. Standardization efforts and
data sharing platforms are essential to promote cohesive inte-
gration and enable effective collaboration among researchers
[14,50]. Additionally, the computational infrastructure required
to support digital strategies poses a challenge. Accessing and
maintaining HPC resources and advanced software tools can be
costly and may require specialized expertise. Efforts to enhance
the accessibility and affordability of HPC resources, along with
user-friendly software interfaces, can help overcome these chal-
lenges [19,42,43]. Moreover, the integration of experimental
and computational data presents a significant hurdle. Aligning
experimental protocols and data formats with computational
frameworks is crucial for effective integration and accurate
prediction of materials properties. Data security and privacy
are also important considerations, requiring robust security
measures and adherence to data privacy regulations. Estab-
lishing secure data management practices and implementing
encryption techniques can help safeguard intellectual property
and confidential information [51,52]. Furthermore, the skills
and training needed to leverage digital strategies are crucial. Re-
searchers and practitioners need to acquire expertise in compu-
tational modelling, data analytics, and relevant software tools.
Investing in education and training programs can empower the
workforce with the necessary skills to effectively utilize digital
strategies in their research endeavors. By addressing these main
issues, the implementation of digital strategies can unlock new



Beilstein J. Nanotechnol. 2024, 15, 1498–1521.

1502

Figure 2: Merging ML with HPC infrastructures can be done in three different ways: ML-in-HPC uses AI/ML surrogate models to replace simulations,
ML-about-HPC complements and potentially directs traditional computational tasks, and ML-out-HPC employs high-level AI/ML algorithms, such as
active learning or reinforcement learning, to dynamically control the overall workflow. ML-in and ML-about directly produce output for analysis, while
ML-out drives this production. This figure was reprinted from [49] by Jha, S.; Pascuzzi, V.; Turilli, M., "AI-coupled HPC Workflows" in "Artificial Intelli-
gence for Science: A Deep Learning Revolution", Choudhary, A.; Fox, G.; Hey, T. Eds. p. 515–534, Copyright 2023 World Scientific Publishing. It is
used with permission from World Science. This content is not subject to CC BY 4.0.

opportunities and drive advancements in materials and nanoma-
terials development.

One of the challenges in implementing digital strategies for ma-
terials/nanomaterials development lies in translating high-end
technologies into specific and narrow research domains. While
digital technologies offer tremendous potential, their applica-
tion in specific research domains requires careful adaptation and
customization. Each research domain has its unique require-
ments, experimental techniques, and data formats, which may
not readily align with existing digital tools and frameworks.
Translating high-end technologies to these specific domains
involves developing domain-specific models, algorithms, and
data processing pipelines that cater to the specific needs and
constraints of the research area. This requires interdisciplinary
collaboration between materials scientists, domain experts, and
computational researchers to identify the most relevant and
impactful digital technologies, adapt them to the specific
research domain, and validate their applicability. Additionally,
effective communication and knowledge exchange between dif-
ferent research communities are crucial to ensure a logical inte-
gration of digital technologies into specific research domains.
By addressing the challenge of translating high-end technolo-
gies into narrow research domains, the full potential of digital

strategies can be harnessed to accelerate materials discovery
and development in targeted areas. For an example of the
process that lead from horizontal technologies to a vertical inte-
gration to the materials science domain see Figure 3.

The successful implementation of digital strategies for materi-
als/nanomaterials development relies on the crucial role of
“translators” who bridge the gap between domain-specific re-
searchers and digital technology experts. Translators should
ideally possess a deep understanding of both the research
domain and the capabilities of digital technologies, acting as
intermediaries, facilitating effective communication, collabora-
tion, and knowledge exchange between the two groups. Transla-
tors potentially play a pivotal role in identifying the specific
needs and challenges of the research domain and articulating
them to digital technology experts, supporting the translation of
domain-specific requirements into technical specifications, and
enabling the development of tailored digital solutions. Like-
wise, translators interpret the capabilities and potential of digital
technologies to domain experts, showcasing how these technol-
ogies can address their research questions and enhance their
workflows. By serving as a liaison, translators ensure that
digital strategies are effectively applied in materials/nanomate-
rials development, leading to more informed decision-making,
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Figure 3: The funnel for the convergence of a manifold of digital technologies towards the materials domain. The included icons are accredited as
follows: The HPC icon is from https://www.svgrepo.com/svg/484996/server-network-part-2 under the CC0 License; the machine learning icon is from
https://www.svgrepo.com/svg/447866/ai-mi-algorithm under the Public Domain License or CC0 License; the data workflows icon is from https://
www.svgrepo.com/svg/7371/data-flow-chart under the CC0 License; the infrastructure icon is from https://uxwing.com/web-service-icon/. This content
is not subject to CC BY 4.0; the integration icon is from https://www.svgrepo.com/svg/439194/integration-testing under the MIT License (see https://
www.svgrepo.com/page/licensing/#MIT), by Andreas Mehlsen. This content is not subject to CC BY 4.0; the simulation icon is from https://
www.svgrepo.com/svg/165724/science-symbols-on-computer-screen under the CC0 License; the nanomaterials technologies icon is from https://
www.svgrepo.com/svg/304458/cells-molecule-science-biology-microscope-lab under the CC0 License.

accelerated discovery, and innovation. Figure 4 summarizes the
key point of this sections through a SWOT (“Strengths, Weak-
nesses, Opportunities, Threats”) analysis.

Towards a digital twin of nanomaterials
Enabling a “digital twin” of nanomaterials is a critical aspect of
digital strategies for materials/nanomaterials development [16].
A digital twin represents a virtual replica of a physical material,
capturing its properties, behavior, and performance in a digital
form. Creating a digital twin involves integrating various types
of data, such as experimental measurements, simulation results,
and materials databases, into a unified model. This digital repre-
sentation enables researchers to explore and analyze materials
in a virtual environment, providing insights that would other-
wise require extensive and time-consuming experimental testing
[53,54]. The digital twin serves as a powerful tool for predic-

Figure 4: SWOT analysis of data-centric approaches in materials
science.
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tive modelling, optimization, and design of materials, allowing
researchers to assess performance under different conditions,
predict degradation mechanisms, and optimize material proper-
ties. It also facilitates virtual experimentation, reducing the need
for costly and resource-intensive physical trials. The develop-
ment of digital twin frameworks requires interdisciplinary
collaboration between materials scientists, data scientists, and
computational experts to ensure accurate representation and
reliable predictions. By enabling a digital twin of materials,
digital strategies offer a transformative approach to materials
development, unlocking new avenues for innovation and accel-
erating the design and optimization of advanced materials.

The concept of a digital twin within the materials domain
encompasses the integration of both models and data-driven ap-
proaches. It involves linking physical and statistical models to
data-driven techniques to create a comprehensive digital repre-
sentation of materials. This integration enables researchers to
benefit from the strengths of each approach, combining the
fundamental understanding provided by models with the rich-
ness and complexity of real-world data. By linking models with
data-driven approaches, the digital twin concept offers a power-
ful framework for advancing materials research, accelerating
materials design, and enabling more informed decision-making
in the materials domain. Models provide a mathematical or
computational description of the behavior of materials, cap-
turing physical, chemical, and mechanical properties. Data-
driven approaches leverage large datasets, including experimen-
tal measurements, to extract patterns, correlations, and trends in
materials behavior. By combining both model-based and data-
driven approaches, a digital twin can encompass the complete
picture of the performance of materials under different condi-
tions. This mutual positive feedback between model-based
simulations and data-driven methods is depicted in Figure 5.

In the context of nanomaterials, the digital twin concept
involves utilizing models to represent the underlying physics or
chemistry of the system, while incorporating data-driven ap-
proaches to enhance the accuracy and predictive power of these
models. Data-driven techniques provide valuable insights into
the complex relationships and interactions within the material,
capturing real-world behavior and enabling better calibration
and validation of the models. This integration allows research-
ers to refine and improve the models, making them more accu-
rate and reliable in predicting material properties, performance,
and behavior under different scenarios. Physics-based models
are built upon fundamental principles and equations, capturing
the underlying physics or chemistry of materials. These models
describe the interactions between atoms, molecules, or particles,
allowing researchers to simulate and predict material properties
and behavior at different scales. Physics-based models provide

Figure 5: Main building blocks for a workflow comprising data collec-
tion, ML model training, and deployment on cloud and HPC cluster.
This is a virtuous cycle where each step leads to the next one and then
back to first. This figure was published on Future Generation Comput-
er Systems, vol. 134, by J. Ejarque, R. M. Badia, L. Albertin, G. Aloisio,
E. Baglione, Y. Becerra, S. Boschert, J. R. Berlin, A. D'Anca, D. Elia, F.
Exertier, S. Fiore, J. Flich, A. Folch, S. J. Gibbons, N. Koldunov, F.
Lordan, S. Lorito, F. Løvholt, J. Macías, M. Volpe, ”Enabling dynamic
and intelligent workflows for HPC, data analytics, and AI convergence”,
p. 414–429, Copyright Elsevier (2022) [55]. It is used with permission
from Elsevier. This content is not subject to CC BY 4.0.

insights into the fundamental mechanisms governing materials
phenomena, such as structural changes, phase transitions, and
mechanical responses. Empirical models, in contrast, are
derived from experimental observations and statistical analyses.
These models rely on data collected from experiments and mea-
surements to establish relationships between input variables and
desired outputs. Empirical models are often used when the
underlying physics or chemistry is not fully understood or when
experimental data is abundant. They offer a practical and effi-
cient approach to predict material properties and behavior based
on empirical correlations and trends. Data-driven models
leverage machine learning and statistical techniques to extract
patterns and relationships from large datasets. These models
learn from existing data to make predictions or classifications
without explicit knowledge of the underlying physical princi-
ples. Data-driven models can be trained on diverse datasets, in-
cluding experimental data, simulation data, and literature data,
enabling the discovery of complex relationships and the identi-
fication of new material properties or behaviors. The integra-
tion of these different types of models is crucial for digital
strategies in the development of materials and nanomaterials.
Combining physics-based models with empirical or data-driven
models allows researchers to benefit from both the under-
standing provided by fundamental principles and the predictive
power of data-driven approaches. The synergy between models
enables more accurate predictions, enhances the exploration of
materials design space, and accelerates the discovery of novel
materials with desired properties. A SWOT analysis of DT ap-
plications in the materials development domain is shown in
Figure 6.
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Figure 6: SWOT analysis of digital twin applications for the materials
science domain.

Key Enabling Digital Technologies for
Materials Development
New paths for materials design and development leverage on
digital technologies, merging multiscale physical modelling,
data-driven modelling, artificial intelligence, and innovative
hardware and software technologies and infrastructures [41,56].
Multiscale modelling constitutes one of the crucial ingredients
for linking a physical description of materials to new digital and
data-intensive technologies. Accordingly, multiscale modelling
has recently gained popularity as the approach of choice in
several application domains where the properties of advanced
and complex materials are exploited [5,18]. Methods applied in
multiscale materials modelling address a broad range of phe-
nomena from the electronic/atomistic to the macroscopic scale.
However, the application of comprehensive multiscale models
to relevant application scenarios requires a significant amount
of computational power at hand, which translates into the need
for efficient hardware and software infrastructures and technol-
ogies. These requirements often call for the application of HPC
and large-scale infrastructures, which require considerable
efforts in terms of implementation, management, resources, and
power. These strong constraints on infrastructures, compe-
tences, and resources constitute a significant barrier for non-
specialists or non-academic institutions, for example technolog-
ical SMEs. Current multiscale approaches also lack a high
degree of automation and are more similar to a custom, tailor-
made process. The overall modelling workflows can therefore
be very time-consuming, in terms of human power required,
especially when a broad range of interlinked multiscale models
is involved. The lack of consolidated automation workflows
turns into a relatively low throughput of multiscale modelling
approaches in current scenarios. In recent years, however, we
have begun to witness the success of AI and ML for materials
development [7,13]. This is particularly evident, for example, in

the application of AI-related methods for the prediction of
structure–property relationships in materials [6]. Despite these
successes in delivering accurate and reliable property predic-
tions based on training datasets, several other extremely power-
ful applications of AI still need to be fully unraveled. For exam-
ple, efficient routes for translating the methodologies borrowed
from the impressive progress of natural language technologies
to the materials domain are just at their early stage. In other
words, the application of ML to materials development is
largely still at the “empirical” level, that is, supporting the
prediction of materials properties within a relatively simple,
though numerically very intensive, methodological framework
[57]. Largely relying on the property prediction and design
sides, data-driven approaches seem to be still quite distant from
the concept of a working, comprehensive digital twin of materi-
als. This unstructured approach results in an evident lack of
standardization (for example, in the definition of features for
materials data across multiscale domains), poor links with spe-
cific application domains, and a consequent narrowing of poten-
tially interested communities. Overall, the limitations in the in-
tegration between multiscale modelling, AI, and related infra-
structures described above, constitute a major obstacle to the
implementation of efficient technology transfer pathways for
materials development to boost the impact of innovative digital
tools to broad socioeconomic sectors. The transfer of know-
ledge and technology from basic research to applications indeed
requires consolidated practices and a sort of robustness of the
approaches undertaken. Moreover, the research in the field is
still at a lower technology readiness level (TRL) with respect to
what is needed for transferring knowledge to real-life applica-
tions and scenarios. As stated above, even low-TRL basic
research lacks most of the requirements to initiate a path
towards standardization and industrial validation. The technical
limitations outlined above result in significant issues for tech-
nology transfer in the field. These include the lack of industry-
grade standards, which results in the adoption of case-by-case
approaches and, consequently, in significant requirements in
terms of resources. Most application fields and domains also
lack consolidated approaches to deal with uncertainties, thus
hampering the overall impact of digital tools for materials.

A fully digital data-centric approach
Integration technologies try to tackle the issues outlined above
by exploiting the efficiency of digital and data-centric ap-
proaches within a specific domain [48,58,59]. In this respect,
integration merges tools and technologies within a customized
framework and toward a specific goal, thus differentiating from
typical consumer-side applications. This approach to integra-
tion can therefore be considered at the intersection of know-
ledge acquired on the domain and data-science specific tools
(Figure 7).
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Figure 8: The general architecture of a workflow-oriented data-driven framework for materials development. The components of the framework imple-
ment different levels of abstraction depending on their function.

Figure 7: The integration paradigm between knowledge and specific
technologies for fully digital data-centric approaches. The included
icons are accredited as follows: The molecule icon is from https://
www.svgrepo.com/svg/197776/molecule-molecular under the CC0
License. The data science icon is from https://www.svgrepo.com/svg/
424587/graph-analytics-business under the CC0 License.

Integration frameworks are implemented as data-centric work-
flows, where data and information link the components at dif-
ferent abstraction levels [60]. The practical implementation of
this kind of integration strategy requires a strong low-level inte-
gration technology involving a broad range of components [11].
Robust and efficient software infrastructures are at the core of
integration frameworks and should feature a good mix of highly
specialized and general purpose tools. Software tools must be
paralleled by high-performance hardware infrastructures. These
must be able to deal with extremely CPU-intensive and
memory-intensive tasks (for example, for dealing with multi-
scale physical models) and support GPU computing (for deep
learning but also for advanced visualization) [61]. The large
amount of materials data involved in typical development pro-

cesses often requires high-performance and high-end storage
systems (>100 TB) and high-performance networks and inter-
connections (100 Gbps and 10 Gbps for local and geographical
connections, respectively). On the basis of these conceptual and
technical requirements, we can define the generic architecture
of a workflow-oriented data-driven high-throughput framework
that can be applied to implement a digital multiscale materials
development pipeline (Figure 8).

The general structure of this framework is based on a set of
interfaces and different abstraction layers. General user queries,
related to use cases, are translated into tasks and workflows,
returning advice and support to decision making [60]. The reali-
zation of the framework is based on the interplay between the
different levels of abstraction and the corresponding implemen-
tation. At the higher abstraction level, semantic technologies
constitute a very powerful approach to represent knowledge.
This level of abstraction connects high-level information across
the framework, guaranteeing consistency from the formulation
of queries to the definition of tasks. Ontologies, in particular,
constitute an efficient and common way to formally represent
knowledge. Accordingly, recent collaborative work has focused
on the development of materials ontologies, aiming at devel-
oping a shared framework for representing knowledge in the
domain [14,50,60,62,63]. The scenarios depicted above require
the definition of semantic assets tailored to specific applica-

https://www.svgrepo.com/svg/197776/molecule-molecular
https://www.svgrepo.com/svg/197776/molecule-molecular
https://www.svgrepo.com/svg/424587/graph-analytics-business
https://www.svgrepo.com/svg/424587/graph-analytics-business
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tions of multiscale materials and nanomaterials, thus covering
concepts and terms covering both very general purpose domain
semantics, typical even in mid-level ontologies, and specific ap-
plications. In the ideal scenario, the development of ontologies
is therefore driven by workflows designed by end users. A
SWOT analysis about the use of semantic technologies in mate-
rials science is shown in Figure 9.

Figure 9: SWOT analysis of semantic technologies in materials
science.

With these criteria in mind, we recently worked at the develop-
ment of MAMBO, the “Materials and Molecules Basic Ontolo-
gy”.

MAMBO - the Materials and Molecules
Basic Ontology
In the context of the applications of semantic technologies, a
solid ontology is the ground of a robust infrastructure. In real-
world applications, access to the so-called mid-level domain on-
tologies is particularly relevant. These are ontologies that
enforce more abstract assets defined in higher-level ontologies
to formalize knowledge about a more specialized domain (for
example, workflows and real-world scenarios). These ontolo-
gies serve as the link between general principles and very spe-
cific applications. This was the main reason behind the develop-
ment of an ontology dedicated to molecular materials, that is,
MAMBO (the Materials And Molecules Basic Ontology)
[64,65]. MAMBO aims to cover areas of knowledge in particu-
lar in the domain of molecular materials and nanomaterials.
Despite the large amount of work already carried out in the field
of ontologies for generic materials and chemical entities, several
essential concepts required to deal with the peculiar aspects of
molecular materials and nanomaterials are still largely missing.

The development of MAMBO followed an hybrid approach
mixing top-down and bottom-up processes. To accurately

capture the distinct characteristics of concepts integral to the
formulation of the MAMBO ontology (both the more general
concepts and the more specific ones), we initially constructed a
set of qualitative relationships among the identified main terms
(such as the concept of “material”, or the concepts of “experi-
ment” and “simulation”). We then refined these concepts,
mainly through the results of interviews with domain experts,
which have been asked to describe many specific aspects of
their research work and activities. Throughout this process, we
established the actual classes of the ontology, further enhancing
and clarifying their interconnections; with regard to the
concepts discussed before, we formally defined classes like Ma-
terial, Experiment and Simulation for the core of the ontology,
and we started to add concepts that are specific to molecular
materials, nanomaterials and related domains, such as Molecu-
larAggregate. The main core of the ontology can be seen in
Figure 10.

Figure 10: MAMBO main core classes and relationships: the ontology
revolves around the concepts of Material, Simulation and Experiment.
An object (Material) is represented by its structural features (Structure)
and properties (Property), while computational (Simulation) and experi-
mental (Experiment) workflows are connected through a common inter-
face to Property and to Structure.

As shown in Figure 10, one of the main design choices we
made for MAMBO is the representation of both the modelling/
simulation activities and the experimental ones using separated
classes and hierarchies. This choice allows us to address large
parts of the same knowledge base from two different perspec-
tives. From this core, we developed deeper and more special-
ized hierarchies, which are functional to talk about more
specialized concepts such as Molecule, Atom, and so on. The
role of these more specific classes is to give us the possibility to
talk about the specific entities and concepts required to describe
our research activities and to better define real-world work-
flows that enforce those concepts in order to link our scientific
questions to the final results we need.
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Figure 11: A visual description of the workflow discussed. The first block contains the input files, which are representable as MolecularSystem
instances as individuals; the second block consists of all the files and software needed to perform the actual simulation; finally, the third block repre-
sents the output obtained from the simulation, with information about the structure of the molecular aggregate and the resulting computed density.

Although still in the early development stages, MAMBO
proved to be expressive enough to let us represent the know-
ledge related to computational workflows, using concepts
defined in the ontology. This is a first step towards a formal
definition of each step of more complex research workflows
and for enabling more powerful semantic technologies, where
data and the metadata are all encoded using the semantic assets
defined in the ontology. This approach leads to a more efficient
data processing, as a result of the logical consistency of the
definitions used. Data then can act as the glue that make inter-
connections between different steps of the workflow possible
and easier. Moreover, with this kind of representation, we can
use as data not only the main information related to a specific
workflow, but we can enrich the general knowledge with
several other information concerning for example the use of
resources or provenance.

Case-study application of MAMBO
The applicability of MAMBO in the organization of knowledge
in the target domain was assessed by analyzing simple typical
workflows related to R&D for materials and in particular mo-
lecular materials. In this section, we will discuss a case study
related to the implementation of simulation workflows for in-
vestigations of the properties of molecular materials and nano-
scale molecular aggregates. To this end, we will use MAMBO
classes and relationships that, for the sake of brevity, we cannot
introduce here. Interested readers can find more details in
[64,65]. The analysis of a case study focusing on simulation
workflows, in particular, allows us to define technical require-
ments and possibly tune the expressiveness of MAMBO in
addressing the specific knowledge involved in the description of
materials at different scales (from particles to aggregates). Our
approach is based on analyzing a general workflow that
connects initial information and conditions (pre-requisites) and
the final output (post-requisites) of the problem under investiga-

tion, further decomposing the problem into tasks and subtasks.
The definition of tasks and subtasks and the domain knowledge
is organized in terms of the structure provided by MAMBO. Let
us first consider a simulation workflow for the evaluation of the
physicochemical properties of a molecular aggregate made of
identical molecules based on force-field molecular dynamics
(MD). While simple, this workflow exhibits the main features
of more complex simulations. The consistent representation of
this workflow within MAMBO can therefore be instructive of
the approach pursued and gives possible hints of the ability to
formalize more complex cases. This macrotask can be decom-
posed into several interconnected computational subtasks,
which involve different operations on structured data. From the
practical point of view, the overall workflow is generally real-
ized by applying specialized simulation software, which imple-
ments specific computational methods, operating on structured
input files and producing output files as results. Other opera-
tions may require the manipulation of files and data structures.
In the case of the considered workflow, we need, for example,
input files containing information about the structure of the
molecule under study. This information is further processed by
specialized software, implementing computational methods,
which provide an output in terms of molecular properties. These
methods can include, for example, structure manipulation tools
(such as simulation box builders) and MD-specific algorithms
for equilibrating molecular aggregates under different condi-
tions [66,67]. The workflow produces structured information
containing, for example, a snapshot of the structure of the simu-
lated aggregate under the considered conditions and/or derived
properties (for example, the computed equilibrium density of
the aggregate in kg·m−3). A sketch of this workflow is shown in
Figure 11.

The decomposition of the workflow sketched in Figure 11 high-
lights the parallelism between the involved knowledge and
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Figure 12: An excerpt of a real-world input file containing structural information about a molecule encoded in the standard xyz format. In particular,
the file contains information on the Cartesian coordinates and symbols of all the atoms in the molecule and the total number of atoms. Some of the
involved MAMBO instances and class attributes are highlighted in different colors. Black: Structure instance, blue: MolecularSystem instance, orange:
Atom instance and attributes, and red: CartesianCoordinates instance and attributes.

Figure 13: An excerpt of a real-world configuration file containing information about a simulation. This example shows possible encoding in formats
used by common software packages for MD simulations (here, a syntax borrowed from the Gromacs [35] format is considered). In particular, the file
contains information about the type of Integrator, the definition of the interaction potential used in MD simulations (for example, parameters for bonded
potential terms, collected by an instance of BondedPotential). Involved MAMBO instances and class attributes are highlighted in different colors.
Black: ComputationalMethod instance, green: BondedPotential instance, blue: ThreeBody instance, red: TwoBody instance and attributes and yellow:
Integrator instance and attributes.

instances of MAMBO classes. For example, we can identify the
following: (i) The initial information about the molecular
system considered is an instance of the Structure class, which is
linked to the Material class via the has_structure relationship.
In particular, the information pertains to the MolecularSystem
subclass. (ii) More detailed knowledge on the molecular system
considered can be structured in terms of instances of the Atom
class, which contains information about individual atoms of the
molecule. In turn, the position of individual atoms corresponds
to instances of the CartesianCoordinates class. (iii) Informa-
tion on the tools for the manipulation of data structure and on
MD algorithms can be represented as instances of the Computa-
tionalMethod class. (iv) In analogy with the input data, part of

the information provided by the workflow can be represented as
an instance of the Structure class. In particular, the simulated
structure of the molecular aggregate is an instance of the Molec-
ularAggregate class. (v) The computed property of the molecu-
lar aggregate (for example, the computed density) is an instance
of the Property class.

An example of the parallelism between the structural informa-
tion on a molecule stored as a file and encoded in a standard
format in the context of molecular simulations (xyz format) and
corresponding attributes of MAMBO classes is shown in
Figure 12. A similar example for attributes of classes pertaining
to the ComputationalMethod class is shown in Figure 13.
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The link between the structure provided by MAMBO and the
data defining a specific computational workflow can be provi-
ded by metadata and/or annotations, which can be implemented
in a variety of standard formats [68]. The applicability of
MAMBO in the definition of the workflow considered above
and defined by exploiting problem-solving methods [69]
(competences - input/output, operational specifications and
requirements) shows the potential of the proposed approach in
the context of specific applications in the materials develop-
ment pipeline. This approach can be easily extended to more
complex systems and processes. The semantic interoperability
ground provided by MAMBO in the materials science domain
provides the basic components to represent complex workflows
in terms of basic and reusable building blocks enabling high-
throughput and automated data processing.

IATA Frameworks
Integrated Approaches to Testing and Assessment (IATA)
frameworks constitute another key set of technologies in the
context of materials digitalization. IATA tools combine various
testing and assessment methods to provide a comprehensive
evaluation of materials, including nanomaterials. In particular,
IATA frameworks leverage computational models, experimen-
tal data, and ML techniques to predict properties and behavior
of materials, thus facilitating the integration of diverse data
sources and tools to develop predictive models under a struc-
tured assessment strategy. Among the broad range of tools
available for supporting the development of digital twins of ma-
terials and the evaluation of molecular descriptors within an
IATA framework, there are the following:

VMD (Visual Molecular Dynamics) is a molecular visualiza-
tion program that provides a platform for the modelling, visuali-
zation, and analysis of molecular and biological systems. It is
widely used for the development of materials’ digital twins and
the calculation of molecular descriptors that can be integrated
into ML models [70].

Enalos NanoInformatics Cloud Platform is a web-based plat-
form that allows users to design and build nanomaterials. It
supports the calculation of molecular descriptors and the inte-
gration of these descriptors into ML models for predictive anal-
ysis [71]. Moreover, it is tailored to the safe-by-design para-
digm, making it an essential tool for future researches [72].

ASCOT (an acronym derived from Ag-Silver, Copper Oxide,
Titanium Oxide) is a tool for the automated construction and
optimization of molecular structures for, as the name suggests,
silver, copper oxide, and titanium oxide [73]. ASCOT assists in
the generation of high-quality digital twins of materials and the
computation of relevant molecular descriptors.

Nanotube Modeler is a software tool designed to create three-
dimensional coordinates for various nanoscale carbon struc-
tures, including nanotubes, nanocones, and fullerenes. The soft-
ware generates precise xyz coordinates for these molecular
models. Users can visualize the resulting structures using either
the built-in viewer or by exporting the data to their preferred vi-
sualization software [74,75].

Infrastructures for Data
To fortify the foundation given by the robust data structures and
metadata that derive from the usage of ontologies, it must be
noted how the ability to easily upload and share the resulting
data plays a pivotal role. In the realm of contemporary data
management, the advent of cloud technologies has emerged as a
pivotal catalyst, revolutionizing the infrastructures for data [28].
Cloud technologies represent the most efficient and dynamic
means to facilitate the seamless sharing of knowledge across
diverse platforms. The inherent scalability, flexibility, and
accessibility of cloud-based systems provide researchers and
organizations with unprecedented capabilities to store, process,
and retrieve vast volumes of data [17]. However, harnessing the
full potential of cloud technologies demands a conscientious
commitment to deep structuring and restructuring of data. This
intricate process involves the precise organization and optimiza-
tion of information repositories to ensure optimal performance
and resource utilization. Consequently, the synergy between
cloud technologies and meticulous data structuring heralds a
new era in scientific inquiry, empowering researchers to navi-
gate the complex landscape of information with unprecedented
efficiency and agility.

Development tools
In the realm of computational research, the use of local devel-
opment tools (both on workstations and on HPC facilities) plays
a pivotal role in facilitating research, enabling scientists to
smoothly transition from theoretical concepts to practical work-
flows and results. In this section, we are going to highlight
some of these tools.

The Jupyter ecosystem
In recent years, we have seen the rise of the Jupyter ecosystem,
a set of tools developed to make scientific programming easier
(even for novices), interactive, and reproducible, while giving
the possibility to mix actual code with a markdown text and dif-
ferent media, an approach very akin to that of literate program-
ming [76]. The main component of the Jupyter ecosystem is the
Jupyter Notebook. The Jupyter Notebook provides an interac-
tive computing environment that combines code execution, rich
text, and multimedia elements into a single document [77].
Scientists can leverage Jupyter notebooks to develop, docu-
ment, and share computational workflows. These notebooks
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serve as an interface where theoretical concepts are trans-
formed into executable code, enhancing collaboration and
reproducibility in research. We can use notebooks to turn the
general concepts and the usual scripts, files, software configura-
tions, and the documents containing technical and scientific ex-
planations into a series of unified files that serve as both the
actual executables and the explanatory file. Thanks to the possi-
bility offered by Jupyter notebooks to integrate code with
explanatory text (with the rich text rendering capabilities of
markdown documents), images, plots, and visualizations in
general, researchers can create comprehensive narratives around
their computational experiments. This integration fosters a
seamless transition from theoretical concepts to practical work-
flows. Researchers can articulate their thought processes,
present results visually, and iterate on their code, fostering
a dynamic and iterative research environment. Moreover,
thanks to the different media we can integrate inside a note-
book and thanks to the possibility to use notebooks for a
growing number of programming languages [78], even new re-
searchers with no prior experience with computational tools and
HPC as a whole can start to develop their workflows and
computational experiments through a friendly, powerful, and
intuitive environment.

To make notebooks even more powerful, the Jupyter project
introduced a new editor called Jupyter Lab. Jupyter Lab repre-
sents the next-generation interface for Jupyter notebooks,
offering an actual integrated development environment (IDE)
with enhanced features [79]. Its modular architecture allows
users to arrange and organize components to suit their work-
flow preferences, providing a more versatile and customizable
experience compared to traditional Jupyter notebooks. Other
than the familiar notebook file format and interface, Jupyter Lab
offers better filesystem navigation and better visualization capa-
bilities; it also offers the possibility to edit standard text files
together with notebooks. Moreover, Jupyter Lab offers real-
time collaboration editing capabilities [80], allowing research-
ers to collaboratively edit their notebooks, meaning that the
code, the explanatory text, images, and the visualization of
results can be turned into a fully collaborative effort. In addi-
tion, Jupyter Lab offers a very powerful plugin and extensions
system and an application programming interface (API) [81]
that allows developers and researchers to add new functionali-
ties to the notebook IDE, making it even more powerful. Partic-
ularly relevant to the scope of this paper are extensions meant to
make Jupyter Notebooks integrated with classical HPC facili-
ties [82]. At the same time, it is worth highlighting that there are
other ways to use notebook in standard HPC settings, like using
SLURM [83] interactive sessions and start a Jupyter kernel
inside one of them. Thanks to this kind of integrations or solu-
tions, researchers can ensure that resource-intensive calcula-

tions can be executed efficiently, expanding the scope of
research possibilities while preserving the advantages of using
the Jupyter notebook interface.

The final piece of the puzzle is finding a way to share and store
Jupyter notebooks within the team and the research community
in general. However, simply saving them is not a sufficient
target since we also want to preserve the possibility to execute
the notebooks. In a nutshell, we want to integrate the Jupyter
notebooks with the cloud architecture, while preserving their
interactive nature. To this very end, Jupyter Hub was intro-
duced in the Jupyter ecosystem. Jupyter Hub serves as a central-
ized platform for managing and deploying Jupyter notebooks
[84]. It enables multiple users to access shared resources,
fostering collaborative research efforts. Jupyter Hub can be par-
ticularly advantageous in educational settings, research groups,
or institutions where researchers need a centralized hub for their
computational chemistry endeavors.

Leveraging all these software products, we can obtain a unified
platform for saving and sharing an interactive and multimedia
coding environment, which also allows researchers to docu-
ment and explain their code and research questions. Thanks to
the cloud nature of this platform, researchers can save and share
their work, and all the editing activity is immediately visible to
other researchers. This editing can also be a real-time collabora-
tion between different researchers, further accelerating their ac-
tivities and the process of getting results. Also, the platform can
be developed and deployed following the FAIR principles [85],
meaning that all the results and the respective workflows are
shared between different teams and are, more generally, freely
accessible through the platform. This way, different teams can
start from where previous work ended, making it easier to
reproduce results but also to re-use previous pieces of research
as the starting point of new discoveries. Jupyter has also been
used as a tool for sharing computational tasks and workflows
[86] to make it easier for researchers to co-operate during the
development through a uniform interface [87] and also to build
interactive training resources and textbooks [88].

Workflow management
While Jupyter notebooks are very useful to write and explain
the reasoning behind it, they are still far from being a full work-
flow management solution. Other than being hard to orches-
trate and use together in complex pipelines, they still require
that researchers write code in order to be built and that they
open and read notebooks in order to see if a specific notebook is
useful for them. In recent years, low-code approaches are
emerging also in the context of research and HPC applications
[89]. This approach is particularly appealing as it allows re-
searchers to build even complex workflows and pipelines only



Beilstein J. Nanotechnol. 2024, 15, 1498–1521.

1512

using visual tools and connecting functional blocks with logic
and temporal order relations.

Wireframe sketching
To enhance clarity and structure within computational experi-
ments, the use of wireframe sketches can be invaluable. Wire-
frames can serve as templates, guiding researchers to structure
the workflow of activities systematically. A well-designed wire-
frame sketch might include sections for input parameters, code
execution, visualizations, and textual explanations, promoting
consistency and clarity in workflow organization. Wireframes
are already a standard tool in software development [90-92],
and they are meant to help developers to define the data-flow
and execution logic of the software using abstract building
blocks and links. Accordingly, wireframes can identify flaws in
the general reasoning and improve the logic of the development
roadmap. This set of tools can provide computational scientist
with systematic ways to better plan the research activities,
leaving the implementation work to a later stage. Moreover, this
step can benefit from the availability of semantic assets that
describe the entities and operations related to research work-
flows. The actual implementation of a workflow usually follows
the complete definition of the generic features in terms of a
wireframe sketch. This is when software that is specifically de-
veloped in order to give the possibility to implement real-world
pipelines with a low-code approach comes to play since it
allows to implement a working research flow with a syntax and
visual features that are very similar to those of the wireframes.

Workflow building tools
Workflow building tools and platforms can assist development
and implementation steps starting from wireframe sketches.
Workflow builders usually enable the representation of a com-
plex workflow as a sequence of operations connected by
sequential and/or logical relationships. The operations are
usually represented as blocks or modules, connected to previous
blocks via a chain of input/output data structures. The relation-
ships that links these inputs and outputs can be as simple as
“after this, do that” or can be more involved and include logical
conditions (like: “if this is the output, then do this, or if this is
the output, do this instead”). Several general-purpose workflow
building platforms have recently gained interest for imple-
menting computational and modelling workflows.

KNIME (Konstanz Information Miner) is an open-source data
analytics, reporting, and integration platform [93]. KNIME
allows users to visually create data workflows, ranging from
simple data preprocessing to complex machine learning and
data mining tasks. KNIME provides a graphical interface where
users can drag and drop nodes to design and execute data analy-
sis workflows. KNIME employs a node-based workflow design,

where each node corresponds to a specific operation or task.
Users establish connections between nodes to construct a work-
flow, allowing data to flow between nodes for diverse opera-
tions. The platform boasts an extensive node repository that
includes pre-built nodes for tasks like data cleaning, transfor-
mation, analysis, and machine learning, giving users the possi-
bility to create custom nodes, thereby expanding the flexibility
and the functionality of the platform. Also, KNIME supports
the incorporation of data from diverse sources, such as data-
bases, flat files, and web services, providing specific connec-
tors and nodes to ensure smooth data integration and manipula-
tion. Offering high flexibility and extensibility, KNIME allows
users to integrate external tools and scripts into workflows,
facilitating the inclusion of custom functionalities and algo-
rithms. Moreover, interactive data exploration is facilitated
through the provision of interactive views and visualization
tools, empowering users to scrutinize and analyze data at
various workflow stages. KNIME has also been developed to
allow for consistent integration with external tools and
languages (with particular focus on popular scientific languages
like R and Python), enabling users to harness the capabilities of
these tools within the KNIME environment. All these features
are further empowered by the community, which developed
several extensions and integrations. All these qualities contrib-
ute to make KNIME a powerful and user-accessible instrument
for the orchestration of workflows and for data analytics in
general and to make it widely embraced in both academic and
industrial spheres for a diverse spectrum of tasks associated
with data manipulation and analysis. KNIME has been used in
various nanomaterials research projects for data analysis and
workflow automation. For instance, it has been used to develop
workflows for the analysis of nanomaterials and nanoparticles
toxicity [94] and to aggregate data about biological activities of
compounds coming from different sources [95].

The Galaxy Project is an open-source platform designed for
accessible and reproducible data-intensive research [96]. While
it was conceived for biomedical applications, it is now a more
general purpose tool for research workflow automation. Galaxy
provides a user-friendly interface facilitating data analysis for
scientists, researchers, and analysts. Through a series of inte-
grated tools and workflows, it offers features such as a web-
based platform. This web-based interface allows users to access
and perform data analysis tasks using a standard web browser,
promoting collaboration and ensuring ease of use. Akin to
KNIME, Galaxy supports the creation and execution of data
analysis workflows. Users can design workflows visually by
connecting tools and processes, making it intuitive for research-
ers with varying levels of expertise. Also, Galaxy incorporates a
diverse range of bioinformatics and data analysis tools, consis-
tently integrating them into the platform. Galaxy is designed
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from the ground up in order to be compatible with various
bioinformatics file formats, allowing users to integrate their
custom tools, workflows, and results into the platform. Users
can then access and execute this plethora of tools within their
analysis workflows [97]. By putting strong emphasis on repro-
ducibility in scientific research, Galaxy enables easy sharing of
workflows. This feature allows others to reproduce analyses and
verify results, fostering transparency and collaboration in scien-
tific endeavors. The Galaxy Project leverages an active commu-
nity of users and developers and, in general, follows a commu-
nity-driven approach in order to foster improvement, support,
and the development of new features and tools. In addition,
Galaxy provides educational resources, tutorials, and training
materials to assist users, especially those new to bioinformatics,
in getting started with the platform and enhancing their analyti-
cal skills. The Galaxy Project is widely utilized in the field of
bioinformatics and computational biology, offering a collabora-
tive and user-friendly environment for researchers to conduct
data analysis and share their findings with the scientific
community.

A SWOT analysis related to the technologies discussed in this
section is shown in Figure 14.

Figure 14: SWOT analysis of the main rising digital technologies and
their applications to the materials science domain.

Deployment
APIs in materials informatics
APIs are standardized sets of protocols and tools that allow dif-
ferent software applications to communicate with each other.
They serve as intermediaries, enabling interactions between
various systems, applications, and databases. APIs are essential
in modern software development, providing the building blocks
for creating robust, scalable, and interoperable applications and
defining clear methods for requesting and exchanging data,
facilitating integration and automation, which are crucial for
efficient workflow management. In the context of materials

informatics, APIs are gaining increasing importance as they
facilitate streamlined data exchange. Thanks to APIs, research-
ers can automate workflows, access updated datasets, and
utilize computational tools without the need for manual data
management. This interoperability is crucial for accelerating
research by enabling efficient integration of experimental and
computational resources. Furthermore, by providing standard-
ized interfaces, APIs ensure that various components of the ma-
terials informatics ecosystem can operate together harmo-
niously, thereby improving the efficiency, reproducibility, and
scalability of research processes. In the work of Hu et al. [98], a
multialgorithm-based mapping methodology called ChemProps,
implemented through RESTful APIs, was proposed to address
the inconsistency of polymer indexing due to the lack of unifor-
mity in polymer name expression. Another interesting ap-
proach can be found in the work of Hu et al. [99], which
proposes the development of MaterialsAtlas.org, a web-based
materials informatics toolbox, to address the limited adoption of
materials informatics tools due to the lack of user-friendly web
servers. This platform includes essential tools for materials
discovery, such as composition and structure validity checks,
property prediction, hypothetical material searches, and utility
tools. MaterialsAtlas.org aims to facilitate exploratory materi-
als discovery by providing accessible and user-friendly tools for
materials scientists, thereby accelerating the materials discovery
process. The tools are freely available at , and the authors advo-
cate for the widespread development of similar materials infor-
matics applications within the community.

Virtualization and containers
Generally, both containerization and virtualization are two of
the most widely used techniques when hosting an application on
a computer system. Virtualization relies on virtual machines as
its essential element, while the fundamental unit of container-
ization is the container. Clearly, both approaches have advan-
tages and disadvantages. Virtualization involves running an en-
tire guest operating system on a virtual machine, sharing the
hardware resources of the physical machine. This introduces a
certain overhead, as it is necessary to duplicate the operating
system and allocate dedicated resources to each virtual machine.
In contrast, containerization can be defined as OS-level virtual-
ization that allows running applications in isolated environ-
ments known as containers, sharing the host operating system
kernel. Containers are lighter than virtual machines; typically,
the startup time of a container is very low, comparable to that of
a native application [100,101]. Frequently, containers can run
inside virtual machines, and this is one of the most common
scenarios encountered when discussing cloud computing. In
recent years, multiple containerization technologies have
emerged, with Docker [102], Apptainer (formerly called Singu-
larity) [100], and Linux Containers [103] standing out as some
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of the most utilized and well-known. Docker, in particular, has
often become the preferred solution in cloud computing. Singu-
larity was developed with the specific aim of facilitating
containerization in the field of HPC. It offers several advan-
tages, notably in terms of use, as it operates without the need for
root privileges and lacks daemon processes. Additionally,
Singularity provides native support for HPC architectures such
as GPUs and Infiniband, enabling simplified communication
between different computing nodes. Docker has been already
used extensively for making research activities and workflows
more easy to reproduce, as shown by recent work [104-106].

Orchestration
Container orchestration is the process of automating the
majority of operations required to run containerized workloads
and services. Specifically, orchestration automates develop-
ment, management, scaling, and networking of containers. Key
orchestration tools, such as Apache Mesos, Docker Swarm, and
Kubernetes, provide frameworks for container management. In
a typical orchestration tool like Kubernetes, the configuration of
an application is described using standard files like YAML or
JSON. Once the application specification is planned, the orches-
trator assumes various tasks. Primarily, it plans and distributes
container resources, makes decisions based on available hard-
ware resources (e.g., CPU, RAM, and storage), and dynami-
cally manages containers in response to workload demands.
Network management is crucial, involving the creation of
virtual networks for container communication internally
and externally through port management. Notably, container
orchestration also plays a vital role in data persistence, ensuring
storage operations even when a container is recreated. Contain-
er orchestration is an essential component for advanced and
efficient management of containerized applications in distribut-
ed environments. Through orchestration, which coordinates
resource distribution, supports horizontal scalability, and
manages critical aspects such as network and data persistence,
a complex and reliable management system is achieved.
Recently, Zhou et al. [107] discussed a novel framework that
integrates a resource management layer powered by Kuber-
netes, demonstrating its application in the field of materials
science. This framework leverages Kubernetes for efficient
management and orchestration of computational resources. By
ensuring dynamic scaling and optimal allocation of both CPU
and GPU resources, Kubernetes facilitates job scheduling and
execution across heterogeneous computing nodes, significantly
enhancing computational efficiency and resource utilization in
materials science research.

Virtualization and containerization in HPC
Given the significant rise of containers in the development of
most common applications, there is a growing consideration for

the applicability of containers for HPC. The majority of current
containerization implementations rely on Docker and Docker-
file manifests for building container images. However, the
direct adoption of container technologies like Docker in an HPC
environment proves to be a non-trivial and impractical task,
presenting a set of challenges in terms of security and usability
that are not easily surmountable. While the use of containers
offers an advantage by creating an abstraction layer that simpli-
fies software distribution and management, this abstraction can,
in many cases, lead to an increase in required resources and
computational effort. A direct consequence of the aforemen-
tioned is the emergence of a trade-off within the system soft-
ware, emphasizing the need for a meticulous and rigorous per-
formance evaluation to identify and quantify the compromises
associated with the use of these new container abstractions.
HPC clusters are commonly employed for applications
demanding low latency and high throughput. However, these
clusters are often not inherently equipped to accommodate com-
plex AI workflows along with their specific requirements.
Consequently, deploying new packages on such clusters can
be challenging for end users. Because of these challenges,
containerizing workflows, including intricate simulations inte-
grated with predictive workflows, emerges as an excellent solu-
tion. Containerization provides end users with a high degree of
customization for their working environment, offering a consis-
tent approach to managing and deploying AI workflows on
HPC clusters [108,109].

One of the primary challenges when utilizing conventional HPC
infrastructures lies in the fact that jobs are typically managed by
a workload manager, which often encompasses diverse respon-
sibilities, including managing the hardware resource limits of
the computer cluster, scheduling jobs, ensuring no interference
with concurrently running jobs from other users, determining
the priority of the different jobs and distributing jobs to avail-
able nodes in the most efficient way. As of now, orchestrators
such as Kubernetes and others do not possess the capability to
fulfill all of these requirements. Consequently, relying solely on
containers for cluster utilization proves to be complex. Various
works documented in the literature aim to address and over-
come these challenges, striving to effectively integrate contain-
ers within the HPC environment. Efforts in the literature, such
as the study conducted by Keller et al. [110], emphasize specif-
ic criteria for HPC container implementations. These criteria
include ensuring a secure implementation to safeguard the oper-
ating system in multitenant systems, guaranteeing minimal per-
formance overhead, and facilitating optimal system perfor-
mance through access to vendor-provided libraries and tools
tailored for specific HPC hardware. Noteworthy works, includ-
ing those by Ruiz et al. [111] and Torrez et al. [112], concen-
trate on the performance analysis within HPC. These studies
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highlight the gradual improvement in performance over time to
cater to the increasing demand for software flexibility in HPC.
Through experiments comparing container and bare-metal per-
formance using standard benchmarks, they contribute valuable
insights into the evolving landscape of HPC technologies. The
extensive efforts documented in the literature to address the
challenges of enabling containerized HPC applications, coupled
with studies on the integration between orchestrators and work-
load managers [113,114], underscore the promising trajectory
of this technology for HPC configurations. These collective
endeavors signify a significant step forward in achieving greater
flexibility and efficiency in HPC environments through
containerization. A particularly interesting use of containers,
especially Docker, can be found in the work of Franco-Ulloa et
al. [115], which discusses the development and capabilities of
NanoModeler, introducing it as the first webserver designed to
automate the construction and parametrization of nanoparticles
for molecular dynamics simulations. The NanoModeler
Webserver features a frontend built with Angular 6 and Boot-
strap for an enhanced, multidevice user experience. The
backend utilizes Docker containers, with NodeJS for the orches-
trator and data persistence layer.

To close this chapter, Figure 15 shows a SWOT analysis
applied to the infrastructural technologies.

Figure 15: SWOT analysis of infrastructural technologies applied to
materials science.

Workflows for Property Predictions
If put together, all the techniques and technologies highlighted
above can be used to build a general framework that is able to
represent and to execute entire research workflows that lead
from scientific questions to their answers. Moreover, the work-
flow and its corresponding results will be semantically linked,
improving the reproducibility of the workflow itself and helping
in assessing the soundness of the entire pipeline. In addition, the
underlying semantics enables us to transform the workflow, the

files that we need to perform it, and the final results into actual
data that can be stored and retrieved from a database technolo-
gy and, consequently, used to perform any kind of analysis on
them or to train ML models. In the next section, we will analyze
a specific case study related to computational workflows in ma-
terials and nanomaterials development and illustrate how we
envision the future of this approach through the integration of
digital technologies.

Predicting bulk properties of nanomaterials
from molecular properties by integrating
physical models and ML
In this section, we consider a specific workflow as an example
of implementation of the design schemes outlined above. The
use case considered consists in the computational modelling of
charge transport properties of bulk amorphous molecular mate-
rials. Namely, this application represents a typical scenario of
multiscale modelling of nanomaterials [116]. This example is
partially related to the use case introduced previously when
discussing possible applications of the MAMBO ontology. The
computational workflow uses the knowledge about the struc-
ture of the molecule and a set of procedures to compute the
properties of the resulting bulk. The standard workflow consid-
ered here is based on the evaluation of the electronic properties
of pairs of molecules in aggregates, which are subsequently
used in the evaluation of charge transport properties through
kinetic Monte Carlo simulations for the whole aggregate.
Further details on this approach are given in [117-119].

The whole computational experiment is structured as follows:
(i) We start from the information about the structure of a single
molecule (for example, a coordinate file in the standard xyz
format, with Cartesian coordinates and types of atoms). (ii) We
perform a set of molecular dynamics simulations on a set of
replica of the same molecule within a simulation box. The set of
simulations aims at reproducing the amorphous aggregation of
molecules within the bulk [2]. At the end of this process, we
obtain the morphology of a bulk aggregate. (iii) We extract
pairs of molecules from the morphology of the bulk aggregate.
To ensure a significant statistical coverage of intermolecular
pair configurations, the selection algorithm is biased towards
the extraction of pairs with a broad distribution of mutual dis-
tance and orientation. (iv) We perform DFT calculations on
each molecular pair extracted to compute the electronic cou-
pling. (v) We use the result of the DFT calculations to calculate
the charge transfer inside the bulk using kinetic Monte Carlo
methods.

As this list clearly shows, this experiment is built using many
different computational techniques and requires different infor-
mation, data structures, and knowledge across different domains
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and scales. The approach outlined in the previous sections can,
therefore, be used to achieve a higher degree of integration
across the whole workflow. The resulting integration should
lead to significant improvements both in efficiency and in the
realization of robust databases and infrastructures. One of the
main steps to be undertaken for the implementation of inte-
grated architectures concerns the definition of a shared and
unique way to represent all the different tasks of a given work-
flow in a uniform way. The definition and representation of
modular workflow tasks can also support interoperability and
the link between different stages of a complex workflow. The
development of an ontology, such as MAMBO, can be consid-
ered as an ingredient to support the consistent definition of
terms and relationships needed to describe a workflow. The ex-
ample shown in Figure 13 is an example of a possible represen-
tation of the content of files containing information on atom po-
sitions, encoding the structure of a molecule using different
concepts formalized within the reference ontology. Similarly,
we can also represent the workflow steps and simulations using
the corresponding concepts, thus semantically linking the indi-
vidual entities and steps to each other. The use of semantic
assets to define objects and relationships within the workflow
improves efficiency and interoperability and, at the same time,
enables modularity. We can then consider to use a workflow
building tool to automate the generation of a single executable
pipeline. In the example considered, we implemented the work-
flow within a local instance of the Galaxy platform. Namely, we
used both pre-defined blocks made available by the Galaxy
community and locally implemented modules. Once the work-
flow is defined, we can execute resource-intensive tasks on
HPC facilities. In the case of Galaxy implementation, we
connected the general workflow framework with the under-
lying HPC infrastructure by using a containerized (Docker)
deployment.

In principle, the implementation steps defined above could
connect the execution of workflows to centralized databases,
enabling the execution of queries. This is where the cloud tech-
nologies, if merged with actual database technologies, could
give an invaluable contribution to the field. Moreover, these
databases can be also realized to enforce the semantic assets
defined inside the chosen ontologies to make the queries even
more expressive.

The computational workflow defined above, however, exhibits
some significant computational bottlenecks. While the genera-
tion of the morphology of the bulk molecular aggregate is a rel-
atively quick computation, calculating the electronic coupling
for a substantial number of molecular pairs is rather expensive
and time-consuming since this computation can require several
minutes on a reasonably big HPC infrastructure. Therefore, we

also considered the connection of this workflow to ML plat-
forms to increase the overall time-to-solution efficiency.
Namely, we computed the electronic coupling only for a limited
number of pairs and then used those results to train a ML model
for predicting the coupling on the basis of the pair configura-
tion only. Once trained, the ML model is able to predict inter-
molecular couplings in a few milliseconds on a standard laptop,
enabling us to actually compute the electronic coupling for a
very large amount of molecules in few minutes. The ML-pre-
dicted electronic properties of molecular pairs can then be used
to compute the charge transfer in the bulk. We implemented the
corresponding tasks within the Galaxy workflow, leading to an
efficient and interoperable calculation pipeline. At the end of
the entire process, we have a fully automated pipeline, repre-
sented as a series of computation blocks and the sequential rela-
tions between them, that is able to calculate the charge transfer
of a bulk of a molecular materials in a few hours, while having
a standardized and logically consistent vocabulary to describe
workflow procedures and a unique access point for data.

Conclusion
In this article, we have explored the profound impact of digital
technologies on the realm of materials and nanomaterials,
encompassing both experimental and computational research.
Specifically, we analyzed the synergies among HPC infrastruc-
tures, ML, and data management technologies, elucidating how
these interactions empower materials scientists, enhancing the
efficiency and reproducibility of their workflows. Additionally,
we highlighted the ongoing research into advanced visualiza-
tion technologies, such as AR and VR, aimed at supporting de-
velopment in materials science. These technologies offer a
promising avenue for designing novel materials and devices by
providing intuitive visualizations. The semantic structuring of
data emerges as a pivotal capability, facilitating the creation of
expansive and comprehensive databases through integrated
semantic assets. Leveraging cloud technologies, these datasets
become globally accessible, fostering collaboration and facili-
tating the training of data-intensive neural networks. This, in
turn, accelerates investigations into materials properties and
expedites the discovery of new materials through enhanced
automation. The interconnected nature of these technologies
forms a virtuous cycle, each reinforcing and augmenting the
capabilities of the others. We showcased our in-house ontology,
MAMBO, as an illustrative example of the successful applica-
tion of such research activities. Notably, software tools such as
Jupyter notebooks, KNIME, and the Galaxy Project have signif-
icantly eased the interaction with computational infrastructures,
lowering entry barriers for researchers and innovators and
promoting the reproducibility of research across different areas.
Furthermore, the development of tools for building, deploying,
and maintaining diverse software components within an HPC
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facility is crucial. Virtualization and containerization technolo-
gies, exemplified by Docker and Apptainer, present promising
architectures for managing these intricate systems.

To provide a practical perspective, we introduced a research
workflow incorporating various digital technologies, including
ML, multiscale simulations, and workflow management. This
exemplifies a foundation for the realization of data-driven inte-
gration infrastructures, enhancing the efficiency and usability of
computational tools. This comprehensive approach has the
potential to establish consolidated and shared practices, leading
to robust standardization. Ultimately, it enables the implementa-
tion of technology transfer pathways for digitalization in nano-
materials development, fostering industrial uptake and paving
the way for the future of materials science.
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