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Abstract—Manufacturing tolerances are becoming one of the
major limitations to achieving high data rates in modern in-
tegrated circuits. Polynomial chaos expansion (PCE) recently
became a popular alternative to classical Monte Carlo for efficient
uncertainty quantification (UQ). Statistical moments and sensitiv-
ity information are analytically derived from the PCE coefficients.
However, computing the model coefficients typically requires a
large amount of data samples from possibly expensive design
simulations. On the other hand, kernel-based machine learning
methods were recently employed to create efficient surrogate
models with a limited amount of training data. In this paper, we
combine the kernel Gaussian process regression (GPR) method
and the PCE. The former is used to surrogate the expensive
simulator in the calculation of PCE coefficients via numerical
integration. The use of GPR also allows obtaining confidence
levels of the estimated PCE coefficients and the relative statistical
information. The proposed hybrid PCE-GPR method is applied
to UQ of maximum crosstalk in a PCB interconnect, for which
higher accuracy with a very limited amount of data is obtained
compared to state-of-the-art approaches.

Index Terms—Crosstalk, Gaussian process, Kriging, machine
learning, polynomial chaos, regression, signal integrity, surrogate
modeling, training, transmission lines, uncertainty quantification.

I. INTRODUCTION

As technology is pushing towards increased miniaturization
and higher bitrates, manufacturing tolerances are becoming a
critical limitation to high-speed signaling over PCB lines. In
this scenario, signal integrity analysis must unavoidably take
process variability into account, which is usually accomplished
by means of Monte Carlo methods.

More efficient alternatives based on the polynomial chaos
expansion (PCE) framework were recently proposed [1]. The
PCE leverages expansions of special orthogonal polynomials
that are specifically tailored towards uncertainty quantification
(UQ). Statistical information such as moments and sensitivity
indices are analytically derived from the model coefficients [2].
However, the calculation of such coefficients may be ineffi-
cient in terms of data samples required. In this regard, kernel
machine learning methods, such as those based on Gaussian
process regression (GPR), are more parsimonious in terms of
data [3], yet they lack interpretability in an UQ scenario.

In this paper, we propose a hybrid PCE-GPR method that
combines the advantages of both PCE (i.e., model inter-
pretability) and GPR (i.e., efficient training). The advocated
method is applied to the UQ of crosstalk in a PCB line.

II. PCE

Let us introduce a target quantity of interest (QoI) y that
depends on a set of d uncertain design parameters x ∈ Rd as

y = M(x), (1)

where M generically denotes the computational model or code
that is run in order to obtain y for a given configuration of the
design parameters x.

The PCE approximates the QoI in (1) by means of the
expansion of suitable orthogonal polynomials, i.e., [2]

y ≈ ŷ = MPCE(x) =
∑
k∈K

ckψk(x), (2)

where ψk are multivariate basis functions constructed as the
product of univariate polynomials, ck are the corresponding
coefficients, and K ⊂ Nd is a set of multi-indices k defining
the degree of the basis function in each dimension. Special
orthogonal polynomials exist depending on the distribution
of the parameters x, e.g., Hermite polynomials for Gaussian
variability. A popular definition for K is based on the so-
called total degree truncation, meaning that the 1-norm of
the multi-indices is bounded by a maximum order p (i.e.,
∥k∥1 ≤ p,∀k ∈ K), leading to |K| = (p+ d)!/(p!d!) terms.

A peculiar property of PCEs is that statistical moments
and sensitivity indices are analytically derived from the model
coefficients. Indeed, the expectation and the variance of the
QoI are given by

µy = E(y) ≈ E (ŷ) = c0 (3)

and
σ2
y = Var (y) ≈ Var (ŷ) =

∑
k∈K\0

c2k, (4)



respectively. The total Sobol’ sensitivity indices, describing
the individual impact of each random input on the variance of
the QoI, are instead given by [2]

Sj =
1

σ2
y

∑
k∈Kj

c2k, (5)

for j = 1, . . . , d, where Kj ⊂ K = {k : kj ̸= 0} is the subset
of multi-indices with a non-zero j-th component.

Two important classes of methods are available to estimate
the PCE coefficients and are discussed in the next sections.

A. Quadrature-Based Approaches

In these approaches, the projection integral that defines the
rigorous calculation of the coefficients is approximated by
means of a suitable quadrature rule, leading to

ck =

∫
Rd

M(x)ψk(x)w(x)dx ≈
NQ∑
q=1

yqψk(xq)wq, (6)

where xq are the quadrature nodes and wq the corresponding
weights, whereas yq = M(xq) are the samples of the QoI
(i.e., the model responses) evaluated at the quadrature nodes.

A tensor-product Gauss quadrature rule requires
NQ = (p+ 1)d nodes. Sparse grid quadratures, such as
the one based on Smolyak’ rule, are more parsimonious at
the price of a reduced accuracy. In either case, the number
of simulations required is much greater than the number of
coefficients to be estimated, i.e., NQ ≫ |K|, which makes
these approaches inefficient when the underlying model (1) is
expensive to simulate.

B. Regression-Based Approaches

These methods fit the model (2) in the least-square sense,
i.e., they solve

{ck}k∈K = argmin
ck∈K

E

(M(x)−
∑
k∈K

ckψk(x)

)2
 (7)

based on a set of data samples {(xl, yl)}NL

l=1. For the ordinary
regression, it must hold NL > |K| in order for the regression
problem to be overdetermined. This approach is typically more
parsimonious compared to quadrature-based ones, but also less
rigorous and more prone to larger errors due to its sensitivity
to the specific choice of regression samples.

Least-angle regression (LAR) is a more efficient alternative
to the ordinary least-square regression [2]. It identifies a
sparse subset A ⊆ K of basis functions, based on which it
solves a modified version of the minimization problem (7)
with a penalty proportional to the 1-norm of the coefficients.
The penalty acts as a regularization term that favors low-
rank solutions. This relaxes the requirement of having more
regression samples than the (total) number of PCE coefficients.
However, the number of estimated coefficients is still bounded
by the number of regression samples (i.e., |A| < NL).

III. GPR

The fundamental assumption of GPR, also known as Krig-
ing, is that the QoI y is a realization of a given prior Gaussian
process with mean function (or trend) µ(x) and covariance
function (or kernel) k(x,x′) [4]. Without loss of generality,
we adopt the common assumption of a constant trend, i.e.,
µ(x) = β0.

Based on a given set of NL training data, the GPR identifies
the prior realization that is the most consistent with the
observation. The result is a posterior process, whose mean
function provides the prediction at an arbitrary point:

y ≈ ŷ = MGPR(x) = β0 + k(x)TK−1(y − β0)

= β0 +

NL∑
l=1

αlk(x,xl) (8)

where
• y = (y1, . . . , yNL

)T is the vector of the observations;
• k(x) = (k(x,x1), . . . , k(x,xNL

))T is a vector of kernel
functions centered at the training samples;

• K is the covariance matrix of the training samples, with
entries Klm = k(xl,xm), for l,m = 1, . . . , NL.

The vector of the α-coefficients is readily found as α =
K−1(y − β0).

Typically, GPR is able to achieve accurate predictions with
a limited amount of training data [3]. Moreover, one of the
peculiar and attractive features of GPR is that an estimate
of the prediction uncertainty, due to the limited amount of
observed data, is assigned to model predictions. Specifically,
the covariance between two predictions ŷi and ŷj , at points
xi and xj respectively, is given by

cov (ŷi, ŷj) = k(xi,xj)− k(xi)
TK−1k(xj). (9)

For a single point xi = xj , (9) yields the variance of the
prediction. Hence, the GPR prediction is in fact a Gaussian
random variable with mean and variance provided by (8) and
(9), respectively, which allows estimating its confidence level.
This contrasts with the classical PCE method, which provides
a deterministic model with no associated uncertainty.

IV. COMBINED GPR AND PCE FRAMEWORK

The main limitation of the PCE method is that it requires
a large number of data samples to (accurately) estimate the
model coefficients. On the other hand, the GPR method is
typically more parsimonious, yet it lacks interpretability in an
UQ scenario. Statistical moments and their confidence levels
can be obtained numerically by using GPR as a surrogate of
the actual model (1) in a MC-like analysis [3]. However, this
requires to evaluate the covariance (9) at a potentially large
number of MC samples, which may become computationally
prohibitive.

In this section, we propose an effective combination of the
PCE and GPR methods. Basically, we use the GPR model
to surrogate observations in the quadrature-based approach
(6), i.e., we replace yq with predictions ŷq at the quadrature
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Fig. 1. Illustration of the PCB interconnect for the proposed application.

nodes obtained from (8). Since the GPR typically achieves an
accurate model with a limited number of training data, this
replacement incurs negligible accuracy loss, while evaluating
(8) is inexpensive even for a large number of quadrature nodes.
This leads to

c0 = β0 +

NQ∑
q=1

NL∑
l=1

αlk(xq,xl)wq (10)

for the first coefficient (since ψ0 = 1), and

ck =

NQ∑
q=1

NL∑
l=1

αlk(xq,xl)ψk(xq)wq (11)

for k ≻ 0.
Moreover, since (6) is in fact a linear combination of model

predictions, the covariance (9) is readily propagated to obtain
the covariance of the estimated PCE coefficients. This allows
obtaining confidence levels for the estimated coefficients, and
in turn also for the moments and sensitivity indices. Details
are deferred to a future report.

Indeed, an important outcome of the outlined framework is
that the abovementioned confidence information provides an
indication of the accuracy of the estimated PCE coefficients
due to the lack of data, which is missing in state-of-the-art
PCE implementations. It should be noted the confidence level
does not account for the error introduced by the quadrature.
It is however reasonable to assume that this error is small
compared to the overall model error.

V. APPLICATION EXAMPLE AND NUMERICAL RESULTS

The proposed framework is applied to the statistical analysis
of the far-end crosstalk in the PCB interconnect of Fig. 1.
The uncertainty is provided by d = 6 geometrical parameters,
namely the width of the traces and their height above the
ground plane in each of the three transmission line sections.
The distribution is Gaussian with the nominal values w1 =
150 µm, w2 = 130 µm, w3 = 170 µm, d1 = 100 µm,
d2 = 140 µm, d3 = 70 µm and a relative standard deviation of
10%. In particular, the QoI is taken as the maximum crosstalk
occurring over time for a voltage pulse excitation with an
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Fig. 2. PCE coefficients estimated with a quadrature-based approach (purple
circles), LAR (red diamonds), and the proposed PCE-GPR method (green
asterisks with confidence bars).

amplitude of 5 V, rise/fall times of 100 ps, and a duration of
1 ns. The structure is implemented in HSPICE and a transient
simulation is performed to obtain the maximum of the absolute
value of the far-end crosstalk over time, i.e.,

y = M(x) = max
t

(|vFEXT (t;x)|) . (12)

We compare four different methods:
1) A second-order PCE with coefficients computed by

means of an accurate tensor-product Gauss quadrature,
requiring simulations at NQ = 729 nodes. The model
has |K| = 28 terms based on a total degree truncation.

2) An analogous PCE model with coefficients computed
via the LAR. For this method, we use NL = 10 training
data, sampled from a Latin hypercube scheme.

3) A GPR model with a squared-exponential kernel func-
tion, trained with the same dataset as used for LAR.

4) The proposed hybrid PCE-GPR method, in which the
GPR model of method 3) is combined with the quadra-
ture rule of method 1) to obtain the PCE coefficients.

We use the UQLab toolbox [5] for methods 1) and 2) and the
Statistics and Machine Learning ToolboxTM [6] in MATLAB®

to train the GPR models in methods 3) and 4).
Figure 2 shows the PCE coefficients obtained via the accu-

rate Gauss quadrature (purple circles) as well as with the LAR
and the hybrid PCE-GPR method (red diamonds and green
asterisks, respectively), both trained with the same 10 samples.
The first coefficient (corresponding to the crosstalk mean) is
dominant and is therefore omitted, but it is estimated with good
accuracy by all methods. The 2-sigma confidence interval of
the coefficients estimated with PCE-GPR is indicated by the
green error bars.

This first comparison shows that the PCE-GPR method
achieves good accuracy with 10 observations only. In partic-
ular, the estimate is generally better than LAR (cfr., e.g., the
estimate of coefficients 2 to 6) using the same amount of data,
and in good agreement with the quadrature-based approach,
which however requires way more data samples. It is also
interesting to note that the reference quadrature coefficients
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Fig. 3. Non-normalized Sobol’ sensitivity indices describing the relative
impact of each of the six uncertain parameters.

are mostly within the confidence interval of the PCE-GPR
prediction, which therefore provides a good indication of the
estimate uncertainty due to the limited amount of data.

The PCE-GPR method predicts a mean crosstalk of µy =
0.479 V with a 2-sigma confidence interval of [0.476, 0.481] V
and a standard deviation of σy = 0.0572 V with a confidence
interval of [0.0535, 0.0607] V. The reference results from a
Monte Carlo analysis with 5000 runs are µy = 0.476 V
and σy = 0.0549 V. These values lie within the confidence
intervals of the PCE-GPR prediction.

Figure 3 shows the Sobol’ sensitivity indices describing the
relative impact of the six uncertain inputs on the variability
of crosstalk. The purple and red bars refer to the results of
the quadrature- and LAR-based methods in UQLab. The light
and dark shades of green indicate instead the upper and lower
2-sigma bounds of the PCE-GPR prediction, respectively. For
an easier propagation of the prediction uncertainty, the indices
are not normalized by the variance of y. This does not alter
the relative magnitude of the indices, since σ2

y is a common
denominator for all.

The sensitivity analysis indicates that the trace-to-ground
distance of the third transmission line section has the largest
impact on the crosstalk, followed by the trace-to-ground
distance of the first section. It is also reasonable that the
parameters of the second section (w2 and d2), which lies in the
opposite (upper) propagation branch, have negligible impact
on the crosstalk in the lower branch.

Concerning the accuracy of the various methods, it is
observed that the PCE-GPR method achieves both a good
accuracy and a good estimation of the prediction confidence.
Indeed, the reference result from the quadrature method always
lies within the confidence interval, i.e., between the lighter and
darker green bar. The confidence interval shrinks by increasing
the number of training samples, yet the result is omitted due
to the lack of space.

Finally, Table I reports the accuracy of the considered
methods in terms of root-mean-square error (RMSE) between
the model predictions and the reference results from the Monte
Carlo analysis. We report results also for the GPR method

TABLE I
RMSE FOR THE VARIOUS CONSIDERED METHODS.

Method N run #1 run #2 run #3
PCE-quad 729 2.533×10−3

PCE-LAR
10

1.260×10−2 2.985×10−2 2.346×10−2

GPR alone 7.055×10−3 7.768×10−3 6.583×10−3

PCE-GPR 7.026×10−3 7.696×10−3 6.474×10−3

PCE-LAR
20

6.317×10−3 6.628×10−3 4.574×10−3

GPR alone 5.756×10−3 5.515×10−3 3.870×10−3

PCE-GPR 5.723×10−3 5.499×10−3 3.796×10−3

PCE-LAR
30

4.769×10−3 4.317×10−3 4.003×10−3

GPR alone 4.088×10−3 4.493×10−3 3.157×10−3

PCE-GPR 4.063×10−3 4.462×10−3 3.101×10−3

alone. Furthermore, for the LAR and GPR-based methods,
we consider training datasets of increasing size, i.e., with
NL = {10, 20, 30} samples, and three independent runs for
each dataset size.

The above analysis allows drawing some interesting conclu-
sions. As expected, the quadrature-based approach is the most
accurate and achieves the lowest RMSE. However, it requires a
number of data samples that is almost two orders of magnitude
larger. The hybrid GPR-PCE method achieves almost always
a lower RMSE compared to LAR (the only exception being
run #2 for the dataset with NL = 30 samples).

In terms of computational times, the surrogate models are
trained within a few seconds, while most time is consumed
during the acquisition of the data samples. This step takes
44 s for 30 samples (LAR and GPR), 799 s for 729 samples
(quadrature), and 7690 s for 5000 samples (Monte Carlo).

VI. CONCLUSIONS

This paper proposed a hybrid PCE-GPR method. While the
PCE formulation analytically provides statistical information
such as moments and sensitivity indices, the GPR framework
allows for an efficient training with limited data and provides
confidence levels for the predicted statistics. The proposed
method was successfully applied to the statistical investigation
of crosstalk in a PCB interconnect, for which accurate results
were achieved with 10 training simulations only.
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