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A B S T R A C T

Many real-world dynamical systems are characterized by different temporal phases, with sudden changes in
the values of the system’s parameters in correspondence to variations from one phase to another. Identifying
the system’s parameters and these switching instants from potentially noisy measurements of the system’s
states is a relevant problem in several applications. We here propose a novel approach for estimating the
time-varying parameters of a broad class of nonlinear dynamical systems from noisy state measurements. We
formulate the problem as a mixed-integer quadratic program (MIQP) including a sparsity constraint to enforce
the piecewise constant nature of the parameters. Then, we develop a convex relaxation of the problem in the
form of a quadratic program (QP). The solution of the relaxed convex QP and/or the sub-optimal solutions
of the MIQP returned by the MIQP solvers provide us with computationally-efficient approximations that can
be used effectively in those large-dimensional cases in which the solution of the original MIQP is difficult
to obtain. After validating our approach in a controlled experiment, we demonstrate its potential on two
real-world case studies regarding marketing and epidemiological applications.
1. Introduction

Identifying the parameters of a dynamical system is a problem of
paramount importance in many real-world applicative fields, span-
ning from engineering to physics, from economics and social science
to epidemiology (Ljung, 2010). The field of system identification is
mature and well-developed, especially in the context of linear sys-
tems, see, e.g., classical references such as Åström and Eykhoff (1971),
Ljung (1998), Ljung, Hjalmarsson, and Ohlsson (2011), Söderström
and Stoica (1989), which developed upon earlier approaches on least-
squares methods for identifying the parameters of linear time-invariant
systems (Strejc, 1980), and on design of techniques based on maximum-
likelihood estimation for stochastic linear systems (Kashyap, 1970).
In more recent times, optimization methods – in particular convex
optimization – emerged as powerful tools for effective parameter iden-
tification, see, e.g., Vandenberghe (2012).

These classical approaches focus primarily on the scenario in which
the dynamics involved are linear and the parameters do not change
with time. However, many important applications do not fit in such
context, and hence classical identification methods have limited appli-
cability in these cases. In fact, the majority of real-world phenomena
are characterized by inherent nonlinearities and non-stationary pa-
rameters’ behavior. In this paper we focus in particular on the case
where the parameters change abruptly, rather than smoothly with
time. This happens often in systems that exhibit different temporal
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phases, with sudden changes in the values of the parameters between
phases, due to sudden changes in the environment. An example that,
sadly, became very popular in the past few years comes from the
mathematical modeling of epidemics, whereby the contagion mecha-
nism is typically modeled by nonlinear dynamics (Paré, Beck, & Başar,
2020), and the implementation of nonpharmaceutical interventions,
vaccination campaigns, as well as the appearance of new variants of the
disease may yield abrupt changes in the value of the model parameters,
see, e.g., Alisic, Paré, and Sandberg (2023), Calafiore, Novara, and
Possieri (2020). This example illustrates the importance of developing
algorithms that are able to identify piece-wise constant parameters for
nonlinear dynamical systems from available noisy measurements, and
thus to detect the key phases of the phenomenon under investigation.

Several methods have been developed for nonlinear system iden-
tification, including the use of maximum-likelihood methods (Voss,
Timmer, & Kurths, 2004), particle swarm optimization (Schwaab, Bis-
caia, Monteiro, & Pinto, 2008), machine learning (Chiuso & Pillonetto,
2019), and neural networks (Forgione & Piga, 2021; Norgaard, Ravn,
Poulsen, & Hansen, 2000); for more details, see, e.g., the surveys
in Noël and Kerschen (2017), Schoukens and Ljung (2019). Also the
problem of identifying time-varying parameters for linear dynami-
cal systems has been addressed in several studies, which include ap-
proaches that are applicable to the piece-wise constant case. Efforts
have been made to extend existing methods for constant parameters,
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including the use of least-squares and wavelet functions (Goel & Bern-
stein, 2018; Li, Wei, & Billings, 2011; Paleologu, Benesty, & Ciochina,
2008; Tsatsanis & Giannakis, 1993), maximum-likelihood (Esfandiari &
Narendra, 2022), generalization of the Extended Kalman filters (Wan &
Van Der Merwe, 2000), and semidefinite programming methods (Liu &
Vandenberghe, 2009). However, these methods do not enforce bounds
n the number of changing points (switching instants) of the parame-
ers, and typically yield a smooth continuously-changing estimation of
he parameters. Other methods that enforce piecewise-constant varia-
ions often rely on the critical assumption that the switching instants of
he parameters are known a priori (Esfandiari & Narendra, 2022); this

assumption can be rather unrealistic and it is a key hypothesis that we
lift in our approach. Approaches for linear regression with time-varying
arameters include (Beck, 1983; Glushchenko & Lastochkin, 2023). Of

particular interest in this context is the use of hybrid systems theory
to address the problem of estimating piecewise-constant parameters
of linear (or affine) dynamical systems, by framing it as a parameter
dentification problem for piecewise affine switched systems, assuming
n underlying autoregressive model (Bemporad, Garulli, Paoletti, &

Vicino, 2005; Roll, Bemporad, & Ljung, 2004).
Quite surprisingly, little material is available for the case of nonlin-

ear dynamical systems with piecewise constant parameters and noisy
measurements, which is relevant for many applications. Assuming un-
derlying nonlinear autoregressive exogenous models, parameter identi-
fication algorithms for piecewise nonlinear switched systems have been
developed by means of different approaches, including maximum likeli-
hood frameworks, iterative filter-based techniques, and residual-based
methods (Bako, Boukharouba, & Lecoeuche, 2010; Bianchi, Prandini, &
Piroddi, 2020; Lauer, Bloch, & Vidal, 2011; Willsky, 2005). Most of the
existing methods used to identify parameters in the presence of such
abrupt changes assume an underlying Markov model that captures the
changes in the parameters, and rely on the use of iterative filtering
or bayesian inference (Fearnhead, 2006; Ljung & Gunnarsson, 1990).
However, these methods based on hybrid systems are designed for
ystems that switch repeatedly between different modes according to

purely stochastic rules, each one characterized by a set of parameters.
Hence, these methods are unfit for the scenario of interest in this
paper, in which parameters switch asynchronously and modes are
in general not repeated and regulated by rules that are not purely
stochastic, and for which one cannot assume absence of memory as
in classical Markov chains. Moreover, these methods do not typically
allow one to set a priori the total number of switches of the parameters.
This limits the possibility of using them to identify and characterize
a predetermined number of key switches, which could be useful in
many real-world applications, including social and economic systems.
Finally, ad-hoc methods have been developed to deal with specific real-
world problems. For instance, in Calafiore and Fracastoro (2022) the
authors deal with the problem of identifying epidemic parameters from
publicly available data, and they propose the use of an 𝓁1-type penalty
function to enforce sparsity in the discrete derivatives of the time-
varying parameters. However, a general and flexible formalization of
n optimization framework to address this important problem is still

missing.
In this paper, we aim at filling this gap by presenting a novel

methodological framework for the identification of piecewise constant
parameters from noisy observations for a broad class of nonlinear
dynamical systems. Technically, our goal is to identify a sequence of
arameters that: (i) minimizes the error between the predicted states
nd the observed states, (ii) controls the impact of noise in the mea-
urements, while (iii) keeping small the number of times the parame-
ers vary during the entire time-window, thus enforcing a piecewise-
onstant nature for such parameters. To this aim, we formulate the
dentification problem as an optimization problem with a quadratic
bjective function that encapsulates the prediction error and the impact
f the noise, while the third goal is introduced as a sparsity constraint
n the parameters’ discrete-time derivatives. Using suitable algebraic
2 
developments, we demonstrate that the latter can be conveniently
re-cast as a linear constraint for a set of binary variables. Hence,
the proposed parameter identification algorithm ultimately reduces to
a mixed-integer quadratic program (MIQP), whose solution can be
computed or approximated via state-of-the-art optimization solvers in
small-to-medium size scenarios, see, e.g., Andersen, Roos, and Ter-
laky (2003). The computational complexity of the proposed method,
however, remains NP-complete (Pia, Dey, & Molinaro, 2016), which
may hinder its applicability in large-scale systems and/or when the
parameters change several times in the observation time-window. To
address these limitations, we further develop a convex relaxation of
the proposed MIQP into a computationally efficient quadratic program
(QP), which is then demonstrated to be a practically useful proxy of
the original MIQP.

After a validation on a synthetic dataset, we test the proposed
ramework on two real-world case studies. First, we consider a market-

ing scenario in which the temporal evolution of the market shares of
three competing brands is modeled using a generalized Lotka–Volterra
model, based on Marasco, Picucci, and Romano (2016b), and we cali-
brate it on the Japanese beer market, using data from Marasco, Picucci,
and Romano (2016a). This case study demonstrates the potentiality of
our optimization-based approach, which is able to correctly identify the
ifferent phases of the market and the key switching instants discussed
n the literature (Alexander, 2014). Moreover, the moderate size of

the dataset allows us to perform a comparison between the MIQP and
the relaxed QP. Such a comparison shows that sub-optimal solutions
of the MIQP are good proxies of the exact solutions, but their com-
utation becomes computationally challenging when the parameters
ave several changes over the time-window. In this scenarios, the QP
s fast to be solved and its solution is a quite reliable proxy of the
olution of the MIQP and can thus be used when solving the MIQP – or
ven computing good approximations of the solution – becomes practi-
ally infeasible. Second, we discuss a case study based on the spread
f COVID-19 in Italy, using a susceptible-infected-removed-deceased
SIRD) model, similar to Calafiore et al. (2020). Here, we utilize a

longer dataset spanning more than 2 years, which makes the solution
of the MIQP computationally unfeasible (and also the computation of
reliable sub-optimal solutions is challenging), highlighting the impor-
ance and effectiveness of the computationally-efficient QP relaxation.
ur results allow us to gain interesting insight into the different phases

hat characterized the temporal evolution of the COVID-19 pandemic
n Italy.

The rest of the paper is organized as follows. In Section 2, we
present the setting and the considered model class. In Section 3, we
introduce our optimization-based approach for identification, and in
Section 4 we discuss in depth two application case studies. Section 5
concludes the paper.

2. Problem setup

2.1. Notation

We denote the set of real, nonnegative real, nonnegative integer,
nd strictly positive integer numbers as R, R+, N, and N+, respectively.
iven a positive integer 𝑛 ∈ N+, a (column) vector 𝒙 ∈ R𝑛 is denoted
ith bold lowercase font, with 𝑖th entry 𝑥𝑖. Given two positive integers

𝑛, 𝑚 ∈ N+, a matrix 𝑨 ∈ R𝑛×𝑚 is denoted with bold capital font, with
𝐴𝑖𝑗 denoting the generic 𝑗th entry of the 𝑖th row and 𝒂𝒋 denoting its
𝑗th column vector. Given a vector 𝒙 or a matrix 𝑨, 𝒙⊤ and 𝑨⊤ are the
transpose vector and matrix, respectively. Given a vector 𝒙, we denote
by diag(𝒙) the square matrix with the elements of 𝒙 on the diagonal and
0 on off-diagonal entries. The vector 𝒆𝑖 denotes a vector of all zeros,
except for a 1 in the 𝑖th entry. Given a matrix 𝑨, we denote by tr(𝑨) its
trace. The matrix of all ones is denoted by 𝟏, the matrix of all zeros is 𝟎,
and the identity matrix is 𝑰 . When needed, dimensions are denoted as
one positive integer index (for vectors) and two positive integer indices
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(for matrices), which are the number of rows and columns, respectively.
The set of 𝑛-dimensional symmetric positive semi-definite matrices is
denoted by 𝑛. The sign operator sgn() and inequalities applied to a
vector or a matrix are intended entrywise (i.e., 𝒙 ≥ 0 ⟺ 𝑥𝑖 ≥ 0, for
all entries 𝑖).

2.2. Model class

We consider a class of discrete-time nonlinear dynamical systems of
he form

𝒙(𝑡 + 1) = 𝒇 (𝒙(𝑡), 𝒖(𝑡);𝜽(𝑡)), (1)

where 𝒙(𝑡) ∈ R𝑛 is the 𝑛-dimensional state variable of the system at
ime 𝑡 ∈ N, 𝒖(𝑡) ∈ R𝑝 is the 𝑝-dimensional input vector, 𝜽(𝑡) ∈ R𝑚 is a
ector containing the 𝑚 possibly time-varying parameters of the model,
nd 𝒇 ∶ R𝑛 × R𝑝 × R𝑚 → R𝑛 is the state-transition map, on which we

make the following assumption.

Assumption 1. The map 𝒇 (𝒙, 𝒖;𝜽) ∶ R𝑛×R𝑝×R𝑚 → R𝑛 is differentiable
ith respect to 𝒙 and affine in the parameter vector 𝜽, i.e., we can write

𝒇 (𝒙, 𝒖;𝜽) = 𝒇 𝟎(𝒙, 𝒖) + 𝑭 (𝒙, 𝒖)𝜽, (2)

with vector 𝒇 𝟎(𝒙, 𝒖) ∈ R𝑛 and matrix 𝑭 (𝒙, 𝒖) ∈ R𝑛×𝑚, for all 𝒙 ∈ R𝑛 and
∈ R𝑝.

At each time 𝑡 ∈ N, there is available an observation of the state
f the system 𝒙(𝑡), denoted as 𝒙̄(𝑡) ∈ R𝑛, which may be subject to
oise and errors in the measurement. Specifically, we assume that the

measurement is in the form

𝒙̄(𝑡) = 𝒙(𝑡) + 𝝃(𝑡), (3)

where 𝝃(𝑡) ∈ R𝑛 is a vector that accounts for errors in the measurement
of 𝒙(𝑡). We observe that we can write the evolution of the measured
state 𝒙̄(𝑡) via the following recursion:
𝒙̄(𝑡 + 1) = 𝒇 (𝒙(𝑡), 𝒖(𝑡);𝜽(𝑡)) + 𝝃(𝑡 + 1)

= 𝒇 (𝒙̄(𝑡) − 𝝃(𝑡), 𝒖(𝑡);𝜽(𝑡)) + 𝝃(𝑡 + 1)
= 𝒇 (𝒙̄(𝑡), 𝒖(𝑡);𝜽(𝑡)) − 𝑱𝒇 (𝒙̄(𝑡)) 𝝃(𝑡) + 𝝃(𝑡 + 1) + 𝑜(‖𝝃(𝑡)‖2),

(4)

where 𝑱𝒇 (𝒙̄(𝒕)) denotes the Jacobian matrix of 𝒇 with respect to 𝒙,
valuated in 𝒙 = 𝒙̄(𝑡). Hence, assuming that the error size ‖𝝃(𝑡)‖2
s sufficiently small, we can approximate 𝒙̄(𝑡 + 1) by neglecting the

higher-order terms, obtaining the approximate recursion:

𝒙̄(𝑡 + 1) ≃ 𝒇 (𝒙̄(𝑡), 𝒖(𝑡);𝜽(𝑡)) − 𝑱𝒇 (𝒙̄(𝑡)) 𝝃(𝑡) + 𝝃(𝑡 + 1). (5)

As a consequence of Assumption 1, the Jacobian matrix 𝑱𝒇 (𝒙̄(𝑡)) takes
he form

𝑱𝒇 (𝒙̄(𝑡)) = 𝑱𝒇𝟎
(𝒙̄(𝑡)) +

𝑚
∑

𝑖=1
𝜃𝑖𝑱𝒇 𝒊

(𝒙̄(𝑡)), (6)

where 𝑱𝒇𝟎
is the Jacobian matrix of 𝒇 𝟎 and 𝑱𝒇 𝒊

is the Jacobian matrix
f the 𝑖th column of matrix 𝑭 (𝒙, 𝒖), denoted as 𝒇 𝒊(𝒙, 𝒖). Therefore,

the approximate recursion in (5), neglecting the higher-order terms,
becomes
𝒙̄(𝑡 + 1) ≃ 𝒇 𝟎(𝒙̄(𝑡), 𝒖(𝑡)) + 𝑭 (𝒙̄(𝑡), 𝒖(𝒕))𝜽(𝑡) − 𝑱𝒇𝟎

(𝒙̄(𝑡))𝝃(𝒕)

−
𝑚
∑

𝑖=1
𝜃𝑖(𝑡)𝑱𝒇 𝒊

(𝒙̄(𝑡))𝝃(𝑡) + 𝝃(𝑡 + 1). (7)

Letting

𝑮(𝜽(𝑡)) = 𝑮(𝜽(𝑡); 𝒙̄(𝑡), 𝒖(𝑡)) ∶= 𝑱𝒇𝟎
(𝒙̄(𝑡)) +

𝑚
∑

𝑖=1
𝜃𝑖(𝑡)𝑱𝒇 𝒊

(𝒙̄(𝑡)), (8)

we rewrite (7) more compactly as

𝒙̄(𝑡 + 1) ≃ 𝒇 𝟎(𝑡) + 𝑭 (𝑡)𝜽(𝑡) −𝑮(𝜽(𝑡))𝝃(𝑡) + 𝝃(𝑡 + 1), (9)

where 𝒇 (𝑡) ∶= 𝒇 (𝒙̄(𝑡), 𝒖(𝑡)) and 𝑭 (𝑡) ∶= 𝑭 (𝒙̄(𝑡), 𝒖(𝑡)).
𝟎 𝟎

3 
2.3. Objectives

Our objective is to estimate the time-varying parameter vector 𝜽(𝑡)
from a given time sequence of noisy observations of the state variables
𝒙̄(0),… , 𝒙̄(𝑇 − 1), over a time-window of duration 𝑇 ∈ N+. In particular,
in our parameter identification, we aim at achieving the following three
objectives:

1. Minimize the error between the predicted state of the system and
the observations through the entire time-window;

2. Keep the impact of the measurement noise under control; and
3. Limit the number of times the parameters vary during the entire

time-window.

3. A mixed-integer optimization approach

We next illustrate how to synthesize the identification objectives
stated in Section 2.3 via a suitable mixed-integer optimization problem.
Preliminarily, we make the following further assumptions on the noise
sequence and on the parameter vector.

Assumption 2. The noise sequence 𝝃(𝑡) ∈ R𝑛, 𝑡 = 0, 1,…, is a
equence of independent random variables with mean equal to 𝟎 and
iven sequence of covariance matrices 𝑸(𝑡) ∈ 𝑛, 𝑡 = 0, 1,… , known a
riori.

Assumption 3. Bounds on the amplitude of 𝜽(𝑡) are known a priori.
That is, there exists a given constant 𝐶 > 0 such that ‖𝜽(𝑡)‖∞ ≤ 𝐶, for
all 𝑡 ∈ N.

We consider a given time horizon 𝑇 ∈ N+, for which we have
collected measured data 𝒙̄(0),… , 𝒙̄(𝑇 − 1). At each 𝑡, we recognize in (9)
two independent error contributions to 𝒙̄(𝑡+ 1): the direct measurement
rror 𝝃(𝑡 + 1), and the indirect term 𝑮(𝜽(𝑡))𝝃(𝑡) which quantifies the
ynamic effect of the error in 𝒙̄(𝑡) on 𝒙̄(𝑡 + 1), up to the first order
pproximation. From Assumption 2, the covariance matrix of this error

term is 𝑮(𝜽(𝑡))𝑸(𝑡)𝑮(𝜽(𝑡))⊤.
As discussed in Section 2.3, the goal of this paper is to determine an

estimate of the parameter vector 𝜽(𝑡) from the noisy sequence of data
̄ (1),… , 𝒙̄(𝑇 ) with the objective of minimizing the sum of two terms.
he first objective is the total (weighted) squared prediction error

 ∶=
𝑇−1
∑

𝑡=0
‖𝑾 (𝑡)(𝒙̄(𝑡 + 1) − 𝒇 𝟎(𝑡) − 𝑭 (𝑡)𝜽(𝑡))‖22, (10)

where 𝑾 (𝑡) = diag(𝒘(𝑡)), with 𝒘(𝑡) > 0, 𝑡 = 0,… , 𝑇 − 1 is a (possibly
time-varying) diagonal weight matrix. The weights in 𝒘(𝑡) re-scale the
ontribution of each component of the state vector 𝒙 to the total predic-

tion error, giving flexibility to the identification approach for dealing
ith several issues, including (i) different orders of magnitude between

he variables, (ii) different reliabilities of different state measurements,
and (iii) focus of the identification process on fitting the parameters
better on a limited time-interval.

The second objective is to control the total indirect measurement
errors, by keeping small the sum of the traces of their covariance
matrices:

 ∶=
𝑇−1
∑

𝑡=0
tr(𝑮(𝜽(𝑡))𝑸(𝑡)𝑮⊤(𝜽(𝑡))) = ‖𝐺(𝜽(𝑡))𝑸1∕2(𝑡)‖2𝐹 . (11)

Observe that the weighted prediction error in (10) is convex in 𝜽(𝑡),
and also the error cost in (11) is convex, since 𝑮 is affine in 𝜽(𝑡). The
parameter identification problem is next formalized as a minimization
problem with respect to the parameter vector 𝜽(𝑡), with a cost function
equal to a positive linear combination of  and  , which is convex, and
a constraint which encodes the third objective in our identification ap-
proach, that is the requirement that the time evolution of the parameter

is piece-wise constant.
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To this end, we let 𝛥𝜽(𝑡) denote the first-order difference operator,
i.e., 𝛥𝜽(𝑡) = 𝜽(𝑡) − 𝜽(𝑡 − 1), for 𝑡 = 1,… , 𝑇 − 1. Stacking all the
𝑇 parameter vectors 𝜽(0),… ,𝜽(𝑇 − 1) in the 𝑇 𝑚-dimensional vector
𝜣 ∶= [𝜽(0)⊤,… ,𝜽(𝑇 − 1)⊤]⊤ and all the 𝑇 − 1 first-order differences
𝛥𝜽(1),… , 𝛥𝜽(𝑇 − 1) in the (𝑇 − 1)𝑚-dimensional vector

𝛥𝜣 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

𝛥𝜽(1)
𝛥𝜽(2)
⋮

𝛥𝜽(𝑇 − 1)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝜽(1) − 𝜽(0)
𝜽(2) − 𝜽(1)

⋮
𝜽(𝑇 − 1) − 𝜽(𝑇 − 2)

⎤

⎥

⎥

⎥

⎥

⎦

(12)

we have that 𝛥𝜣 = 𝑫 𝜣, where the matrix

𝑫 ∶=

⎡

⎢

⎢

⎢

⎢

⎣

−𝑰𝑚,𝑚 𝑰𝑚,𝑚 𝟎𝑚,𝑚 𝟎𝑚,𝑚 ⋯ 𝟎𝑚,𝑚
𝟎𝑚,𝑚 −𝑰𝑚,𝑚 𝑰𝑚,𝑚 𝟎𝑚,𝑚 ⋯ 𝟎𝑚,𝑚
⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝟎𝑚,𝑚 𝟎𝑚,𝑚 ⋯ 𝟎𝑚,𝑚 −𝑰𝑚,𝑚 𝑰𝑚,𝑚

⎤

⎥

⎥

⎥

⎥

⎦

(13)

is a block-circulant matrix of dimension (𝑇 − 1)𝑚 × 𝑇 𝑚. It is clear that
he number of jumps, or switching instants, in the time evolution of the

parameters in 𝜽(𝒕) is given by the number of nonzero entries in vector
𝛥𝜣. The number of nonzero entries of a vector 𝒙 is called the cardinality,
denoted as ‖𝒙‖0, and can be given a ‘‘variational’’ characterization, as
specified in the following.

Lemma 1. For any given vector 𝒙 ∈ R𝑛, the cardinality (i.e., the
number of nonzero entries) of 𝒙, denoted by the 0-norm of 𝒙, ‖𝒙‖0, can
e characterized through the following identities:

1. ‖𝒙‖0 = min𝒛∈[0,1]𝑛
∑𝑛

𝑖=1 𝑧𝑖, subject to 𝒙 = diag(𝒛)𝒙.
2. ‖𝒙‖0 = min𝒛∈[0,1]𝑛

∑𝑛
𝑖=1 𝑧𝑖, subject to 𝒙⊤𝒙 ≤ 𝒙⊤diag(𝒛)𝒙.

3. ‖𝒙‖0 = min𝒛∈[−1,1]𝑛 ‖𝒛‖1, subject to ‖𝒙‖1 ≤ 𝒛⊤𝒙.
4. If ‖𝒙‖∞ ≤ 𝐶, it further holds that

‖𝒙‖0 = min
𝒛∈{0,1}𝑛

𝑛
∑

𝑖=1
𝑧𝑖, subject to − 𝐶𝒛 ≤ 𝒙 ≤ 𝐶𝒛. (14)

Proof. First, we observe that, for any 𝒛 ∈ [0, 1]𝑛 such that 𝒙 = diag(𝒛)𝒙
t necessarily holds true that 𝑥𝑖 ≠ 0 ⟹ 𝑧𝑖 = 1. Hence, we can

immediately conclude that ‖𝒙‖0 ≤
∑𝑛

𝑖=1 𝑧𝑖. Then, we observe that the
equality is attained for 𝒛∗ defined entrywise as 𝑧∗𝑖 = 1 if 𝑥𝑖 ≠ 0 and
∗
𝑖 = 0 otherwise. This yields the first identity. Identities 2. and 3. are
btained following a similar argument, with the unique difference that,
n case 3., the equality is attained for 𝒛∗ = sgn(𝒙). For 4, observe that
or any 𝒛 ∈ {0, 1}𝑛 such that −𝐶𝒛 ≤ 𝒙 ≤ 𝐶𝒛 it necessarily holds true
hat 𝑥𝑖 ≠ 0 ⟹ 𝑧𝑖 = 1. Hence, we can immediately conclude that
𝒙‖0 ≤

∑𝑛
𝑖=1 𝑧𝑖. Then, we observe again that the equality is attained

or 𝒛∗ defined entry-wise as 𝑧∗𝑖 = 1 if 𝑥𝑖 ≠ 0 and 𝑧∗𝑖 = 0 otherwise,
here the constraint −𝐶 𝑧𝑖 ≤ 𝑥𝑖 ≤ 𝐶 𝑧𝑖 holds true, since −𝐶 ≤ 𝑥𝑖 ≤ 𝐶,
ielding the claim. □

From item 4 of Lemma 1, we also obtain the following equivalent
conditions

‖𝒙‖0 ≤ 𝑘 ⟺ ∃ 𝒛 ∈ {0, 1}𝑛 ∶
𝑛
∑

𝑖=1
𝑧𝑖 ≤ 𝑘, −𝐶𝒛 ≤ 𝒙 ≤ 𝐶𝒛. (15)

Let now 𝒆𝒊 ∈ R𝑚 denote the 𝑖th standard basis vector of R𝑚, and let
s define the following block-circulant matrix:

𝑬𝒊 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝒆⊤𝒊 𝟎⊤𝑚 𝟎⊤𝑚 … 𝟎⊤𝑚
𝟎⊤𝑚 𝒆⊤𝒊 𝟎⊤𝑚 … 𝟎⊤𝑚
⋮ ⋮ ⋮ ⋱ ⋮

𝟎⊤𝑚 𝟎⊤𝑚 𝟎⊤𝑚 … 𝒆⊤𝒊

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (16)

which is a block-diagonal matrix with 𝑇 − 1 rows and (𝑇 − 1)𝑚 columns.
Then, we say that the 𝑖th parameter sequence [𝜃𝑖(0),… , 𝜃𝑖(𝑇 − 1)] is
𝑘-piecewise constant if the vector [𝛥𝜃𝑖(1),…𝛥𝜃𝑖(𝑇 − 1)] is 𝑘-sparse,
i.e., if its cardinality is 𝑘. Using the matrix 𝑬𝒊, we have that the 𝑖th
parameter sequence [𝜃𝑖(0),… , 𝜃𝑖(𝑇 − 1)] is 𝑘-piecewise constant if and
only if ‖𝑬 𝑫 𝜣‖ ≤ 𝑘.
𝒊 0
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Under Assumptions 1–3, we can finally formulate our parameter
identification problem as an optimization problem where we aim to
minimize a linear combination of the two terms  and  , weighted by a
nonnegative coefficient 𝛾 ≥ 0, while requiring the parameter sequences
to be piecewise constant.

Problem 1. We formulate the following mixed-integer quadratic
program (MIQP).

min
𝜣∈R𝑇 𝑚 ,𝒁∈{0,1}(𝑇−1)×𝑚

𝑇−1
∑

𝑡=0
‖𝑾 (𝑡)(𝒙̄(𝑡 + 1) − 𝒇 𝟎(𝑡) − 𝑭 (𝑡)𝜽(𝑡))‖22

+𝛾
𝑇−1
∑

𝑡=0
‖𝑮(𝜽(𝑡))𝑸1∕2(𝑡)‖2𝐹

s.t.: 𝟏⊤𝒛𝑖 ≤ 𝑘𝑖, 𝑖 = 1,… , 𝑚,
−𝐶𝒛𝑖 ≤ 𝑬𝑖𝑫 𝜣 ≤ 𝐶𝒛𝑖, 𝑖 = 1,… , 𝑚,
‖𝜣‖∞ ≤ 𝐶 ,

(17)

where 𝑘𝑖, 𝑖 = 1,… , 𝑚, are given upper bounds on the sparsity of
[𝛥𝜃𝑖(1),… , 𝛥𝜃𝑖(𝑇 − 1)], and 𝛾 ≥ 0 is a tradeoff parameter controlling
the penalty on the induced error term.

The cost function to be minimized in Problem 1 comes from the
explicit expressions for  and  derived in (10) and (11). The constraint
‖𝜣‖∞ ≤ 𝐶 comes from Assumption 3, while the other constraints in
Problem 1 are derived from the 𝑘-sparsity constraints ‖𝑬𝒊𝑫 𝜣‖0 ≤ 𝑘𝑖,
or all 𝑖 = 1,… , 𝑚 by using (15). The 𝑚(𝑇 − 1) additional binary
ariables are collected in the matrix 𝒁 ∈ {0, 1}(𝑇−1)×𝑚, with columns
𝑖, 𝑖 = 1,… , 𝑚, thus obtaining the MIQP in (17).

3.1. Validation

Before further discussing our parameter identification method, pre-
senting a convex relaxation, and illustrating their practical use through
some case study, we report a validation on a simple example. Here,
we assume that the ground truth is known a priori, and we show that
the proposed method is able to correctly identify piecewise constant
parameters of a nonlinear dynamical system from noisy measurements.

To this aim, we generate a time-series from a bi-dimensional gen-
ralized Lotka–Volterra model with no spontaneous growth (Brauer &

Castillo-Chavez, 2012), which is characterized by the dynamical system
𝑥1(𝑡 + 1) = 𝑥1(𝑡) + 𝜃1(𝑡)𝑥1(𝑡)𝑥2(𝑡)
𝑥2(𝑡 + 1) = 𝑥2(𝑡) + 𝜃2(𝑡)𝑥1(𝑡)𝑥2(𝑡),

(18)

with initial condition 𝒙(0) = [0.2, 0.2] and time-varying parameters
equal to

𝜃1(𝑡) =
⎧

⎪

⎨

⎪

⎩

0.2, 0 ≤ 𝑡 ≤ 11,
−0.1, 12 ≤ 𝑡 ≤ 19,
0.05, 20 ≤ 𝑡 ≤ 29,

𝜃2(𝑡) =
⎧

⎪

⎨

⎪

⎩

−0.12, 0 ≤ 𝑡 ≤ 6,
0.07, 7 ≤ 𝑡 ≤ 21,
0.15, 22 ≤ 𝑡 ≤ 29.

(19)

We can check that the map in (18) satisfies Assumption 1. In fact, we
can write it as 𝒇 (𝒙,𝜽) = 𝒇 𝟎(𝒙) + 𝑭 (𝒙)𝜽, with

𝒇 𝟎(𝒙) = 𝒙, 𝑭 (𝒙) =
[

𝑥1𝑥2 0
0 𝑥1𝑥2

]

, (20)

where we have omitted the time-dependencies of the variables and of
the parameters for brevity. We can write the Jacobian of the map in
(18) as

𝑱 𝑓 (𝒙,𝜽) =
[

1 + 𝜃1𝑥2 𝜃1𝑥1
𝜃2𝑥2 1 + 𝜃2𝑥1

]

(21)

and, following our approach, we define

𝑮(𝜽) = 𝑰2,2 +
[

𝑥2 𝑥1
0 0

]

𝜃1 +
[

0 0
𝑥2 𝑥1

]

𝜃2. (22)

Using (18), we generate a sample path 𝒙(0),… ,𝒙(𝑇 ), and we generate
the measurements 𝒙̄(0),… , 𝒙̄(𝑇 ), with 𝑇 = 30, by adding to each
entry 𝒙(𝑡) a noise with covariance matrix 𝑸(𝒕) = 𝜎 𝐼 , for all 𝑡. In our
xperiments, we test different values of 𝜎, and we set the weight matrix

equal to the identity, i.e., 𝑾 (𝑡) = 𝑰 for all 𝑡 = 0,… , 𝑇 − 1, since the
2,2
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Fig. 1. Validation on synthetic data with different levels of noise 𝜎, with 𝑘1 = 𝑘2 = 2, 𝐶 = 0.25, and 𝛾 = 1. The dashed curves illustrate the real profile of the two parameters.
Fig. 2. Parameter estimation replicating scenarios in Figs. 1(a) and 1(b), using an extended Kalman filter. The dashed curves illustrate the real profile of the two parameters.
H

two variables have the same order of magnitude. Then, we solved the
IQP on a 4.7 GHz 10-Core Intel Core i7 using Mosek (Andersen et al.,

2003) implemented in MatLab R2022b with CVX (Grant & Boyd, 2008,
2014), which took just few seconds to reach a solution.

The results, reported in Fig. 1, validate our method. In fact, in the
absence of noise (i.e., 𝜎 = 0), our method is able to identify the exact
value of the parameters in (19); see Fig. 1(a). For small to moderate
values of the noise (signal-to-noise ratios1 of approximately 60 and 15 in
Figs. 1(b) and 1(c), respectively), we observe that the MIQP is still very
ffective in detecting the correct switching instants of the parameters
nd provides very accurate estimates of their values, as one can see
n Figs. 1(b) and 1(c), with a relative 𝓁2-norm error averaged over
00 realization of the noise equal to 3.15% and 9.74%, respectively.
redictably, the accuracy decreases as the noise reaches an order of
agnitude comparable with the measurements (signal-to-noise ratio of

pproximately 4), as in Fig. 1(d), where the mean relative 𝓁2-norm error
is larger than 40%.

Finally, we compare our novel technique with a classical method
or estimating time-varying parameters. Specifically, we replicate the

scenarios with no noise and small noise (i.e., 𝜎 = 0 and 𝜎 = 0.005), and
we estimate the time-varying parameters using an extended Kalman
filter (Wan & Van Der Merwe, 2000). The results, illustrated in Fig. 2,
suggest that the constraint on the number of parameter switches, and
the ensuing mixed-integer approach, is key to obtain piecewise-linear
estimates for the parameters. In fact, even in the absence of noise, meth-
ods based on extended Kalman filters tend to enforce a smooth evolu-
tion of the parameters and hence generally fail in correctly detecting
abrupt discontinuous changes.

3.2. Convex relaxation of Problem 1

While Problem 1 can be solved numerically in moderate-sized in-
stances using state-of-the art solvers for MIQP (Andersen et al., 2003),
it is known that MIQPs are computational challenging in general, due
o the presence of binary variables which make them NP-Complete (Pia

et al., 2016). It is therefore of interest to consider, along with the origi-
nal MIQP formulation, also a tractable convex relaxation of Problem 1.

1 The signal-to-noise ratio is the ratio between the mean square value of
he state and the mean square value of the noise.
 t
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While different methods can be used to achieve this goal (Tillmann,
Bienstock, Lodi, & Schwartz, 2024), one such relaxation is readily
obtained from the characterization in (14) by relaxing the domain of
𝒛 ∈ {0, 1}𝑛 to the (convex) domain 𝒛 ∈ [0, 1]𝑛. The following lemma
holds.

Lemma 2. For any 𝒙 ∈ R𝑛 with ‖𝒙‖∞ ≤ 𝐶 it holds that

‖𝒙‖0 ≥
1
𝐶
‖𝒙‖1 = min

𝒛∈[0,1]𝑛

𝑛
∑

𝑖=1
𝑧𝑖, subject to − 𝐶𝒛 ≤ 𝒙 ≤ 𝐶𝒛. (23)

Proof. Since enlarging the feasible set can only improve the optimiza-
tion objective, we have from (14) that

‖𝒙‖0 ≥ min
𝒛∈[0,1]𝑛

𝑛
∑

𝑖=1
𝑧𝑖, subject to − 𝐶𝒛 ≤ 𝒙 ≤ 𝐶𝒛. (24)

Further, it is straightforward to check that the optimal 𝑧 for the
optimization problem in (24) is 𝑧∗𝑖 = |𝑥𝑖|∕𝐶, for all 𝑖, from which it
follows that the optimal value of this problem is ‖𝒙‖1∕𝐶. □

From Lemma 2 we easily obtain the implications

‖𝒙‖0 ≤ 𝑘 ⟹
1
𝐶
‖𝒙‖1 ≤ 𝑘 ⟺ ∃ 𝒛 ∈ [0, 1]𝑛 ∶

𝑛
∑

𝑖=1
𝑧𝑖 ≤ 𝑘, −𝐶𝒛 ≤ 𝒙 ≤ 𝐶𝒛,

(25)

which are used to obtain the following convex relaxed version of
Problem 1.

Problem 2. A convex relaxation of the MIQP in 1 is given by the QP:

min
𝜣∈R𝑇 𝑚 ,𝒁∈[0,1](𝑇−1)×𝑚

𝑇−1
∑

𝑡=0
‖𝑾 (𝑡)(𝒙̄(𝑡 + 1) − 𝒇 𝟎(𝑡) − 𝑭 (𝑡)𝜽(𝑡))‖22

+𝛾
𝑇−1
∑

𝑡=0
‖𝑮(𝜽(𝑡))𝑸1∕2(𝑡)‖2𝐹

s.t.: 𝟏⊤𝒛𝒊 ≤ 𝑘𝑖, 𝑖 = 1,… , 𝑚,
−𝐶𝒛𝒊 ≤ 𝑬𝒊𝑫 𝜣 ≤ 𝐶𝒛𝒊, 𝑖 = 1,… , 𝑚,
‖𝜣‖∞ ≤ 𝐶 .

(26)

The QP in Problem 2 can be easily solved in polynomial time using
standard and efficient tools, see, e.g., Mosek (Andersen et al., 2003).

owever, it is worth noticing that this relaxation comes at a cost. In
fact, the solution of the QP in Problem 2 may, in general, not satisfy
he bound imposed on the number of switch instants 𝑘 .
𝑖
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Fig. 3. Temporal evolution of the market shares of Asahi (red), Kirin (blue), and Sapporo (cyan) from 1963 to 2001. Data from Marasco et al. (2016a).
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Remark 1 (Use of the Estimated Model). It is worth to briefly discuss
about the possible uses of a model identified via the proposed approach.
Once we solved Problem 1, we find ourselves with the estimated time
rofiles of the model parameters 𝜽(𝑡) over the horizon [0, 𝑇 − 1]. It is
mportant to observe that these estimated parameters are determined
o to ‘‘explain’’ the observations over the considered horizon, and shall
ot be used, in general, for extrapolating in time (i.e., for forward
redicting) the system behavior. In fact, no hypotheses are made on the

dynamic behavior of the parameter 𝜽(𝑡) itself, so that we do not know
how the parameters will evolve from 𝑇 onward. A forward prediction
can only be made by making further assumptions on the future behavior
of 𝜽(𝑡); e.g., one may assume that 𝜽(𝑡) will stay constant at its last
estimated value 𝜽(𝑇 − 1) for a certain number of forward periods.
Besides this specific case, the main use of the estimated model is for
analyzing the observed dynamic phenomenon inside the estimation
horizon [0, 𝑇 − 1], and extracting useful information from the values
of the parameters and their switching instants.

4. Case studies

We next present two case studies in which we use the proposed
approach for calibrating nonlinear models based on real-world data.

he first case study, discussed in Section 4.1, presents the competition
among different brands in the Japanese beer market and is focused on
unveiling their interactions; the second one, reported in Section 4.2, is
an epidemiological case study, which focused on the estimation of the
parameters of a COVID-19 SIRD model based on Italy epidemiological
data covering the entire duration of the pandemic.

4.1. Japanese beer market

In the first case study, we consider the competition among the
three main brands of beer in the Japanese market – namely, Asahi,
irin, and Sapporo – for which data are available with a one-year

emporal granularity from 1963 to 2000. The dataset, publicly available
n Marasco et al. (2016a), comprises thus 38 data points consisting in

the relative shares of the three brands in the market, as illustrated in
Fig. 3.

We focus our analysis on unveiling the relations among the three
rands. To this aim, inspired by Marasco et al. (2016b), we represent

the dynamics through a generalized Lotka–Volterra model, neglecting
spontaneous growths and focusing on the interaction effects. This yields
he following three-dimensional nonlinear dynamical system:
𝑥1(𝑡 + 1) = 𝑥1(𝑡) + 𝜃1(𝑡)𝑥1(𝑡)𝑥2(𝑡) + 𝜃2(𝑡)𝑥1(𝑡)𝑥3(𝑡)
𝑥2(𝑡 + 1) = 𝑥2(𝑡) + 𝜃3(𝑡)𝑥1(𝑡)𝑥2(𝑡) + 𝜃4(𝑡)𝑥2(𝑡)𝑥3(𝑡)
𝑥3(𝑡 + 1) = 𝑥3(𝑡) + 𝜃5(𝑡)𝑥1(𝑡)𝑥3(𝑡) + 𝜃6(𝑡)𝑥2(𝑡)𝑥3(𝑡),

(27)

where 𝒙(𝑡) = [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)]⊤ are the shares of Asahi, Kirin, and
Sapporo in the Japanese beer market at time 𝑡, respectively. The sys-
tem is characterized by a six-dimensional parameter vector 𝜽(𝑡) =
[𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡), 𝜃4(𝑡), 𝜃5(𝑡), 𝜃6(𝑡)]⊤, where each entry captures the inter-
action effect between two brands. Specifically, 𝜃1(𝑡) and 𝜃2(𝑡) capture

the effect on the temporal evolution of the shares of Asahi caused by

6 
its interaction with Kirin and Sapporo, respectively. Similarly, 𝜃3(𝑡) and
𝜃4(𝑡) capture the effect on Kirin of its interaction with Asahi and Sapporo,
respectively; and 𝜃5(𝑡) and 𝜃6(𝑡) the effect on Sapporo of its interaction
with Asahi and Kirin, respectively. Similar to (18), we can check that
he map in (27) satisfies Assumption 1 and we can write the matrices

and 𝑮 following similar arguments, obtaining

𝑭 (𝒙) =
⎡

⎢

⎢

⎣

𝑥1𝑥2 𝑥1𝑥3 0 0 0 0
0 0 𝑥1𝑥2 𝑥2𝑥3 0 0
0 0 0 0 𝑥1𝑥3 𝑥2𝑥3

⎤

⎥

⎥

⎦

, (28)

and

𝑮(𝜽) = 𝑰3,3 +
⎡

⎢

⎢

⎣

𝑥2 𝑥1 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

𝜃1 +
⎡

⎢

⎢

⎣

𝑥3 0 𝑥1
0 0 0
0 0 0

⎤

⎥

⎥

⎦

𝜃2 +
⎡

⎢

⎢

⎣

0 0 0
𝑥2 𝑥1 0
0 0 0

⎤

⎥

⎥

⎦

𝜃3

+
⎡

⎢

⎢

⎣

0 0 0
0 𝑥3 𝑥2
0 0 0

⎤

⎥

⎥

⎦

𝜃4 +
⎡

⎢

⎢

⎣

0 0 0
0 0 0
𝑥3 0 𝑥1

⎤

⎥

⎥

⎦

𝜃5 +
⎡

⎢

⎢

⎣

0 0 0
0 0 0
0 𝑥3 𝑥2

⎤

⎥

⎥

⎦

𝜃6.

(29)

We performed the parameter identification using both the original
MIQP in Problem 1 and the QP in Problem 2, in order to compare their
outcome and the computational complexity. After re-formulating some
constraints through the addition of slack variables, the MIQP involves
1875 variables (222 of which are binary) and 1122 scalar constraints.
Again, we solved both problems using Mosek implemented in MatLab
R2022b with CVX.

In our numerical experiments, we set the weight matrix equal to
the identity, i.e., 𝑾 (𝑡) = 𝑰3,3 for all 𝑡 = 0,… , 𝑇 − 1, since the three
ariables have the same order of magnitude and comparable data
uality. Moreover, since we had no information on the measurement
rror, but the three variables are bounded and slowly-changing over the
ntire time-window, we estimated the covariance matrix 𝑸(𝑡) using the

data 𝒙(0),… ,𝒙(𝑇 ), by setting 𝑸(𝑡) = diag([𝜎1, 𝜎2, 𝜎3]) as a time-invariant
diagonal matrix with 𝑖th diagonal entry equal to the sample variance
of the 𝑖th variable, i.e., 𝜎𝑖 ∶= 1

𝑇−1
∑𝑇

𝑡=1(𝑥𝑖(𝑡) − 1
𝑇
∑𝑇

𝑡=1 𝑥𝑖(𝑡))
2. In this

scenario, the objective function of our optimization problems reduces
to
𝑇−1
∑

𝑡=0
‖𝒙̄(𝑡 + 1) − 𝒙(𝑡) − 𝑭 (𝒙(𝑡))𝜽(𝑡)‖22 + 𝛾‖diag([𝜎1, 𝜎2, 𝜎3])𝐺(𝜽(𝑡))‖2𝐹 , (30)

with 𝑭 (𝒙) from (28) and 𝑮(𝜽) from (29).
First, we used the MIQP problem formulation to identify the param-

eters of (27), setting 𝑘𝑖 = 2, for all 𝑖 = 1,… , 6, 𝐶 = 0.25, and 𝛾 = 2. The
utput of our parameter identification algorithms are reported in panels
a–c) of Fig. 4. The results provide interesting insight into the system
nalyzed. In fact, they allow not only to shed light on the interactions
etween the three different brands, but also to identify the key switch-
ng instants in the Japanese beer market. In fact, following Marasco

et al. (2016b), the signs of the parameters determine the (competitive
or mutualistic) role between two brands: if both negative they are in
pure competition; if both positive they are mutualistic; while if one
is positive and the other negative, they have a prey–predator type of
interaction. For instance, Fig. 4(c) shows two interesting turning points
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Fig. 4. Comparison of the six time-varying parameters estimated using the MIQP (a–c) and using the QP relaxation (d–f) for the Japanese beer market case study, with 𝑘𝑖 = 2, for
ll 𝑖 = 1,… , 6, 𝐶 = 0.25, and 𝛾 = 2.
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in the interactions between Kirin and Sapporo. Until the second part of
the 1970s, the two brands display a prey–predator type of interaction
beneficial to Kirin (in fact, 𝜃4 is positive and 𝜃6 is negative). Then, the
sign of such interaction is reverted in 1977 in favor of Sapporo. This
coincides with the year in which Sapporo introduced its first draft beer,
named ‘‘Black Label’’ (Alexander, 2014). Then, this period lasts until
the end of the 1980s, when the interactions started becoming purely
competitive. Indeed, it is known that this last period was characterized
by an intense competition between the brands over dry beers, which
goes under the name of ‘‘dry war’’ (Alexander, 2014). In fact, in 1987
Asahi launched Super Dry gaining momentum over the other brands,
which started a strong competition, as we observed in panel (c). This is
reflected in the parameters in Fig. 4. In fact, we observe an increase in
oth red curves at the end of the 1980s in panels (a) and (b), while the

interaction between Kirin and Sapporo becomes purely competitive, as
observed in the above. Hence, this simple case study elucidates how our
lgorithm can be used to understand the impact of historical events on
he market and detect key phases and turning points.

Second, we performed the same parameter identification using the
QP relaxation in Problem 2. The results are reported in panels (d–f)
of Fig. 4. A comparison of these panels with the previous ones (a–c)
suggests that the outcome of the QP relaxation was a good proxy for the
MIQP in the case of interest. In fact, the solution of the QP approximates
with sufficiently good accuracy not only the value of the majority of the
parameters (the sign of the parameter, which determines whether the
brands have a positive or negative interaction, coincides in more that
6% of the instances), but also their main switching instants (relative
2-norm error of about 10%). Only minor differences are observed. In

particular, since the solution of the QP is allowed to change value more
than 𝑘𝑖 times, some abrupt changes of parameters in the solutions of the
MIQP are split into two smaller steps—see, for instance, the evolution
of the parameter 𝜃4 (blue curve) in panels (c) and (f). Even for 𝜃4,
however, the signs coincide in all instants, except for one, in which
they are both close to 0. It is worth noticing that, while the QP took
less than one second to be solved, the computation of the exact solution
of the MIQP required approximately 5.5 h.

Based on this observation, we performed an additional study to
nvestigate the computational effort required to solve the MIQP. Specif-
cally, we computed the time needed to compute sub-optimal solutions2

2 A solution with 1% tolerance is obtained by allowing the objective
function to be 1% larger than its optimal value.
7 
Table 1
Time needed (measured in seconds) to compute a optimal and sub-optimal solutions
f the MIQP for the Japanese beer market case study, for increasing values of 𝑘 and
ifferent relative optimality tolerance employed by the mixed-integer optimizer (5%,

1%, or 0.5%), compared to the time needed to solve the QP (last row).
𝑘 = 1 𝑘 = 2 𝑘 = 3 𝑘 = 4 𝑘 = 5 𝑘 = 6

Optimal 43.67 19,645.12 >1 day >1 day >1 day >1 day
0.5% 1.28 23.66 445.00 2,261.47 6,784.81 16,467.30
1% 0.23 1.33 2.73 11.75 22.58 41.72
5% 0.11 0.13 0.17 0.25 0.45 1.28

QP 0.81 0.78 0.95 0.82 1.09 1.04

of the MIQP for increasing values of 𝑘𝑖, by setting 𝑘𝑖 = 𝑘, for all
= 1,… , 6, and testing values of 𝑘 from 1 to 6. The results are reported
n Table 1, and they also show that sub-optimal solutions of the MIQP

with low relative optimality tolerance can be efficiently computed.
Importantly, while sub-optimal solutions with larger tolerance show
noticeable differences with respect to the exact solution of the MIQP
eported in Fig. 4 (relative 𝓁2-norm error greater than 25% when
olerance is 1%), the one obtained with 0.5% tolerance for 𝑘 = 2
computed in less than 24 s) is a good proxy of the optimal one (relative
2-norm error smaller than 10%). To summarize, the analysis of this
ase study suggests that the MIQP approach developed in this paper
ould be useful to identify the parameters of low-dimensional systems,
ossibly using sub-optimal solutions. Furthermore, the solution of the
onvex relaxation in Problem 2 is in general a good proxy of MIQP
olution and its use is suggested when dealing with higher dimensional
ystems, as we shall see in the next case study. In fact, our convex
elaxation has performances that are comparable with a sub-optimal
olutions of the MIQP with 0.5% tolerance (no more than 10% relative
2-norm error), but its computational time does not grow with 𝑘𝑖. This
uggests that, among the two approximations, the convex relaxation
ould be preferred when the parameters have many changing points,
hile for 𝑘𝑖 ≤ 3, sub-optimal solutions of the MIQP with at most 0.5%

olerance can be computed in a reasonable time and may have better
erformances.

4.2. COVID-19 in Italy

In the second case study, we calibrate an epidemic model using data
on the COVID-19 pandemic in Italy, from its inception (February 24,
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Fig. 5. COVID-19 weekly figures from February 24, 2020 to July 12, 2022 in Italy, as reported in the official dataset available from Dipartimento della Protezione Civile (2020).
Fig. 6. Parameters estimated for the COVID-19 case study obtained as (a) a sub-optimal solution of the MIQP (40% tolerance) and (b) the solution of the QP relaxation for
𝑘1 = 𝑘2 = 𝑘3 = 3 with 𝐶 = 0.5 and 𝛾 = 0.2.
t
i
l

2020) till July 12, 2022. Specifically, we use publicly available data
reported by the Civil Protection Department of the Italian Government
on the number of reported cases, recoveries, and deaths (Dipartimento
della Protezione Civile, 2020). We aggregated data on a weekly basis
o account for the natural oscillations in the number of tests performed
uring the different days of the week. Hence, our dataset comprises 124
eekly data points for reported cases, total recovered people, and total
eaths, as shown in Fig. 5.

We formulate the epidemic model as a discrete-time SIRD model
with time-varying parameters, similar to the one proposed in Calafiore
t al. (2020), with time unit equal to one week. Such a temporal
ranularity allows for neglecting the delay between contagion and in-
ectiousness, since the duration of the latency period is shorter than one
eek in the large majority of the cases (Xin et al., 2021). We observe

hat the SIRD model can be written in the form of (1), with affine
apping with respect to the parameters. Let us define the state variable

ector 𝒙(𝑡) ∶= [𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡)]⊤, whose entries are respectively the
total number of infected, recovered, and deceased individuals in the
population at time 𝑡, with the number of susceptible individuals equal
to 𝑛−𝑥𝑖(𝑡) −𝑥2(𝑡) −𝑥3(𝑡), where 𝑛 is the total population size. Let us fur-
ther define the time-varying parameter vector 𝜽(𝑡) = [𝜃1(𝑡), 𝜃2(𝑡), 𝜃3(𝑡)]⊤
to contain the infection rate, recovery rate, and death rate at time 𝑡,
respectively. Then, we can write the following dynamical system:

𝑥1(𝑡 + 1) = 𝑥1(𝑡) + 1
𝑛
𝜃1(𝑡)(𝑛 − 𝑥1(𝑡) − 𝑥2(𝑡) − 𝑥3(𝑡))𝑥1(𝑡) − (𝜃2(𝑡) + 𝜃3(𝑡))𝑥1(𝑡)

𝑥2(𝑡 + 1) = 𝑥2(𝑡) + 𝜃2(𝑡)𝑥1(𝑡)

𝑥3(𝑡 + 1) = 𝑥3(𝑡) + 𝜃3(𝑡)𝑥1(𝑡),

(31)

where we note that the system is autonomous, i.e., 𝒖(𝑡) = 𝟎, for
ll 𝑡 ∈ N. Note that the second and third equations are linear and
f straightforward interpretation: each week, a fraction 𝜃2(𝑡) of the
ndividuals who were infected the previous week have recovered and
 fraction 𝜃 (𝑡) of them have died. The first equation, instead, besides
3

8 
having a negative contribution equal to the two terms described in the
above, has a positive nonlinear term that accounts for new infections.
In particular, the number of newly infected individuals is equal to
the product between susceptible individuals, 𝑛 − 𝑥1(𝑡) − 𝑥2(𝑡) − 𝑥3(𝑡),
he fraction of infected individuals in the population 1

𝑛𝑥1(𝑡), and the
nfection rate 𝜃1(𝑡). This nonlinear term is typical from the epidemic
iterature, see, e.g., Brauer and Castillo-Chavez (2012) for more details.

We can check that the map in (31) satisfies Assumption 1. In fact,
we can write it as 𝒇 (𝒙,𝜽) = 𝒇 𝟎(𝒙) + 𝑭 (𝒙)𝜽, with

𝒇 𝟎(𝒙) = 𝒙, 𝑭 (𝒙) =
⎡

⎢

⎢

⎣

1
𝑛𝑥1(𝑛 − 𝑥1 − 𝑥2 − 𝑥3) −𝑥1 −𝑥1

0 𝑥1 0
0 0 𝑥1

⎤

⎥

⎥

⎦

, (32)

where we have omitted the time-dependencies of the variables and
parameters for brevity. Note that we can write the Jacobian of the map
in (32) as

𝑱 𝑓 (𝒙,𝜽) =
⎡

⎢

⎢

⎣

1 + 1
𝑛 𝜃1(𝑛 − 2𝑥1 − 𝑥2 − 𝑥3) − 𝜃2 − 𝜃3 0 0

𝜃2 1 0
𝜃3 0 1

⎤

⎥

⎥

⎦

(33)

and

𝑮(𝜽) = 𝑰3,3 +
⎡

⎢

⎢

⎣

1
𝑛 (𝑛 − 2𝑥1 − 𝑥2 − 𝑥3) 0 0

0 0 0
0 0 0

⎤

⎥

⎥

⎦

𝜃1 +
⎡

⎢

⎢

⎣

−1 0 0
1 0 0
0 0 0

⎤

⎥

⎥

⎦

𝜃2 +
⎡

⎢

⎢

⎣

−1 0 0
0 0 0
1 0 0

⎤

⎥

⎥

⎦

𝜃3.

(34)

Before formalizing the parameter identification problem, we observe
from Fig. 5 that the three components of the state variable vector 𝒙(𝑡)
have different orders of magnitude across them and large variations
in time, due to different testing policies and accumulation of recovered
and total deaths. This calls for the definition of a non-trivial sequence of
weight matrices 𝑾 (𝑡) to re-scale the components of 𝒙(𝑡) to comparable
quantities, and thus avoid the objective function to be dominated by
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Fig. 7. Parameters estimated for the COVID-19 case study using the QP relaxation for different values of 𝑘1 and 𝑘2. Common parameters are 𝑘3 = 3, 𝐶 = 0.5 and 𝛾 = 0.2.
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just the few entries with larger order of magnitude. In particular, we
set 𝑾 (𝑡) = diag(𝒙̄(𝑡)−1), so that each the term in the first summand of
the objective function measures the relative error of the predicted state
with respect to the measured one. Then, similar to the previous case
study, we set 𝑸(𝑡) as a time-invariant diagonal matrix with 𝑖th diagonal
entry equal to the sample variance of the 𝑖th variable.

In the 124 weeks considered in the dataset, several events occurred,
ncluding two major lockdown periods (Spring 2020 and Winter–Spring

2021), the vaccination and booster campaigns (Spring–Summer 2021
and Fall 2021–Winter 2022, respectively), and several epidemic waves
due to the diffusion of new variants. Hence, we expect the presence
of several switching instants in the values of the piecewise constant
parameters 𝜃1, 𝜃2, and 𝜃3. We verify this conjecture by showing in Fig. 6
that the parameters estimated by setting too small values of 𝑘𝑖 are
not particularly informative on the different phases of the pandemic,
since they cannot capture, e.g., the key changes that occurred in the
infection rate when lockdown measures are imposed at mid March
020. However, increasing 𝑘𝑖 makes the solution of the MIQP hard to

compute in practice. Indeed, computing a sub-optimal solution of the
MIQP with 𝑘1 = 𝑘2 = 𝑘3 = 3 at 20% sub-optimality tolerance takes
almost 4 h, and for 𝑘1 = 𝑘2 = 𝑘3 = 6 after 1 day of optimization the sub-
optimality tolerance is still larger than 40%. This example highlights
the importance of our computationally-efficient QP relaxation, which
runs in few seconds even in this more complex case study, and provides
a good proxy of the MIQP solution (see the results in Section 4.1, and
ompare the two panels in Fig. 6). Hence, in the following we focus on
olving the QP, for which we use again Mosek implemented in MatLab
2022b with CVX. After the addition of suitable slack variables for
btaining a standard QP formulation, we get 4009 scalar variables and
338 constraints.

We solved the QP in Problem 2 with different values of 𝑘𝑖 and we
ompared the results obtained. After a preliminary analysis, we observe
hat the parameter 𝜃3(𝑡) associated with the mortality of the disease
ends to have few changes with respect the other parameters with a
hree-step decrease, corresponding with (i) the start of the decrease of
he first wave (mid April 2020), (ii) the diffusion of antigenic tests,
hich increased the number of detected mild cases (end of summer
020), and (iii) the peak of the second-dose vaccination campaign
summer 2021). Differently, the value of the parameter associated to
he contagion and recovery rates show more switching instants. This
ay be due to the fact that these parameters are not only affected by
 e
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the characteristics of the disease and on the state of the vaccination
campaign, but are also strongly impacted by human behavior. In view
of these preliminary observations, we decided to fix the value of 𝑘3 = 3,
and vary the value of 𝑘1 = 𝑘2 in the range 𝑘1 = 𝑘2 ∈ {4, 5, 6, 10}.

The results are reported in Fig. 7. Unsurprisingly, we observe that,
as we increase 𝑘1 = 𝑘2, the parameter identification method becomes
ble to detect an increasing number of key switching instants for the
odel parameters. More interestingly, we also observe that the effect

of increasing 𝑘 seems to be incremental: first, the algorithm detects
the most crucial changes; then, as 𝑘 grows large, smaller changes are
added to those already detected. For 𝑘1 = 𝑘2 ≥ 5, we observe that the
lgorithm identifies the key phases of the first pandemic wave, with a

steep decrease of the infection rate and increase of the recovery rate in
correspondence of the first lock down, which is then reverted at the end
f the summer, slowly leading to the second wave in fall-winter 2020.

Then, the infection rate 𝜃1(𝑡) show a rapid decrease in correspondence
o the start of the second lockdown, followed by another decrease,
uring the peak of the vaccination campaign; while the recovery rate
hows an opposite, but less pronounced, behavior. Besides capturing
arameter changes due to human behavior, our algorithm identifies
lso key natural events, such as the diffusion of new variants. For
nstance, the diffusion of the Omicron variant can be seen in the steep
ncrease in 𝜃1 around week 90 (mid November 2021).

Finally, we would like to remark that, in this case study, we used
 simple SIRD model to describe the evolution of COVID-19. Such a
hoice has been done for the sake of simplicity. More complex and real-

istic epidemic models that include, e.g., further health states (Giordano
et al., 2020) or spatially-distributed populations (Rossa et al., 2020;
Parino, Zino, Porfiri, & Rizzo, 2021), may be embedded within our
ramework, and our parameter identification method can be used to
hed light on further important aspects, such as estimating the fraction
f non-detected infected individuals or evaluating the impact of spatial
eterogeneity.

5. Conclusion

In this paper we presented an optimization-based system identifica-
tion approach that can be effectively used for estimating time-varying
ut piecewise constant parameters in a broad class of nonlinear dy-

namical models. The proposed method, which is based on casting the
stimation problem as a MIQP, has several advantages, including the
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possibility to set the number of changes in the model parameters and
incorporating additional information available on the data quality,
without relaying on assumptions on the switching rule or on knowledge
of the switching instants. The proposed optimization technique can
be conveniently approximated via sub-optimal solutions of the MIQP
as well as relaxed into a computationally-efficient QP, whose solution
is shown to be in practice a good proxy of the original one. After
validation on a synthetic case study, the practical use of our method
and its approximations was finally demonstrated on two case studies.

The results presented in this paper, besides demonstrating the ef-
ectiveness of the proposed method, arise a few points for discus-

sion, which pave the way for directions of future research. First, our
lgorithm requires the knowledge (or, at least, an estimate) of the

covariance matrix of the measurement errors. In our case studies,
we have assumed it to be constant and we have estimated it using
the covariance of the measured data. However, more refined methods
to estimate such a matrix should be designed in order to adopt our

ethod in real-world scenarios, especially when measurement errors
change over time. Second, our case studies suggest that the parameter
𝑘𝑖 that determines the number of times the parameter varies during
the entire time-window is crucial. In order to tune such a parameter,
ne should use the information available on the system, and combine it
ith heuristics. A simple heuristic could be to re-iterate the procedure,

tarting with 𝑘𝑖 large, and then decrease it until the solution remains
uite stable. Future work should focus on testing such heuristic and
esign more refined ones. Third, despite the empirical observation that

the solution of the QP is often a sufficiently good proxy of the MIQP
olution, more refined approximations methods should be designed,

possibly leveraging finer regularization techniques for the cardinality
bound (Tillmann et al., 2024), and rigorous theoretical guarantees on
heir performance must be derived. Fourth, an extensive comparison of
he performance of different methods to estimate time-varying parame-

ters with abrupt changes (e.g., comparing our method with algorithms
based on recursive least-squares with forgetting factors (Goel & Bern-
tein, 2018; Paleologu et al., 2008) or switching systems (Bianchi et al.,

2020)) is an important direction of future investigation in order to
etermine key advantages and disadvantages of each of these methods.

Despite its generality and flexibility, our parameter identification
approach is not exempt from limitations. First, we assumed that the
entire state of the system is observable, up to some level of uncertainty.
n many realistic scenarios, however, only some of the variables of
he systems can be observed (e.g., the number of detected infected

individuals in an epidemiological application), while it is not possible
o have information on other variables (e.g., the undetected infected
ndividuals). Future extensions of the approach shall be developed to
ccount for cases in which only part of the state is observable. Second,
ur method relies on a first-order expansion of the system’s dynamics.

While this is a standard practice and it is admissible in many real-
world applications such as those considered in our case studies, further
nalysis in needed to deal with highly nonlinear dynamics, where
igh-order terms may not be neglected.
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