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Abstract: The purpose of the paper is to introduce the Jensen–inaccuracy measure and examine its
properties. Furthermore, some results on the connections between the inaccuracy and Jensen–inaccuracy
measures and some other well-known information measures are provided. Moreover, in three different
optimization problems, the arithmetic mixture distribution provides optimal information based on
the inaccuracy information measure. Finally, two real examples from image processing are studied
and some numerical results in terms of the inaccuracy and Jensen–inaccuracy information measures
are obtained.
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1. Introduction

In recent decades, several researchers have studied information theory and its appli-
cations in various fields such as statistics, physics, economics, and engineering. Shannon
entropy [1] is a fundamental quantity in information theory and it is defined for a continuous
random variable X having probability density function (PDF) f on support X as

H(X) = −
∫
X

f (x) log f (x)dx, (1)

where log denotes the natural logarithm. Throughout the paper, the support will be omitted
in all the integrals. Several extensions of Shannon entropy have been considered by many
researchers (see, for instance, Rényi and Tsallis entropies [2,3]) by providing one-parameter
families of entropy measures.

Moreover, several divergence measures based on entropy have been defined in order
to measure similarity and dissimilarity between two density functions. Among them, chi-
square, Kullback–Leibler, Rényi divergences, and their extensions have been introduced;
for further details, see Nielsen and Nock [4], Di Crescenzo and Longobardi [5], and Van
Erven and Harremos [6].

Let X and Y be two random variables with density functions f and g, respectively.
Then, the Kullback–Leibler divergence [7] is defined as

KL( f , g) =
∫

f (x) log
f (x)
g(x)

dx, (2)

provided the integral exists. Because of some limitations of Shannon entropy,
Kerridge [8] proposed a measure, known as the inaccuracy measure (or the Kerridge
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measure). Consider f and g as two probability density functions. Then, the inaccuracy
measure between f and g is given by

K( f , g) = H( f ) + KL( f , g) = −
∫

f (x) log g(x)dx.

Several extensions of the inaccuracy measure have been developed, as well as Shannon
entropy. For more details, see Kayal and Sunoj [9] and the references therein.

In the literature, the class of Jensen divergences has been studied in an extensive way as a
general technique in developing information measures. Recently, other information measures
such as the Jensen–Shannon, Jensen–Fisher, and Jensen–Gini measures have been studied as
generalizations of well-known quantities. For further details, see Lin [10], Sánchez-Moreno
et al. [11], and Mehrali et al. [12].

However, the link between the inaccuracy measure and the Jensen concept has re-
mained unknown so far. Therefore, the main motivation in this paper is to present the
Jensen–inaccuracy information (JII) measure and its properties. Let us remark that the
introduction of JII measure is motivated by the fact that it can be expressed as mixture of
well-known divergence measures, and it is close to the arithmetic–geometric divergence
measure. Nevertheless, our new measure obtains better results when studying the similar-
ity between elements in the field of image quality assessment. Furthermore, we establish
some results associated with the connection between inaccuracy and Jensen–inaccuracy
information measures and some other measures of discrimination such as Rényi entropy,
average entropy, and Rényi divergence. Next, we show that the arithmetic mixture distri-
bution provides optimal information under three different optimization problems based
on the inaccuracy information measure. In the following, some well-known and useful
information measures are recalled.

An extended version of the Shannon entropy measure for α > 0 and α 6= 1, is defined
by Rényi [2] as

Rα( f ) =
log
( ∫
X f α(x)dx

)
1− α

. (3)

Several applications of Rényi entropy have been discussed in the literature.
Furthermore, the Rényi divergence of order α > 0 and α 6= 1 between density functions

f and g is defined by

Dα( f , g) =
log
( ∫

f α(x)g1−α(x)dx
)

α− 1
. (4)

The information measures in (3) and (4) become Shannon entropy and Kullback–
Leibler divergence measures, respectively, when α tends to 1.

Another important diversity measure between two continuous density functions f
and g is the chi-square divergence, defined as

χ2( f , g) =
∫ (

f (x)− g(x)
)2

f (x)
dx. (5)

In a similar manner, we can define χ2(g, f ).
The rest of this paper is organized as follows. In Section 2, we first introduce the

Jensen–inaccuracy information (JII) measure. Then, we show that JII can be expressed as a
mixture of the Kullback–Leibler divergence measures. We show that the Jensen–inaccuracy
information measure has a close connection with the arithmetic–geometric divergence
measure. Furthermore, we present an upper bound for the JII measure in terms of chi-
square divergence measures. The (w, α)-Jensen–inaccuracy measure is also introduced in
this section as an extended version of JII. We study the inaccuracy information measure for
the escort and generalized escort distributions in Section 3. In Section 4, we consider the
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average entropy and define the average inaccuracy measure. Furthermore, some results
are given in this regard. In Section 5, we show that the arithmetic mixture distribution
involves optimal information under three different optimization problems in terms of the
inaccuracy measure. Then, in Section 6, a real example is presented in order to study a
problem in image processing, and some numerical results are presented in terms of the
inaccuracy and Jensen–inaccuracy information measures. More precisely, our measure is
useful for detection of similarity between images. Finally, in Section 7, concluding remarks
are provided.

2. The Jensen–Inaccuracy Measure

In this section, we introduce the Jensen–inaccuracy measure and then provide a
representation for this information measure in terms of Kullback–Leibler divergence mea-
sure. Furthermore, we explore the possible connection between Jensen–inaccuracy and
arithmetic–geometric divergence measures. We also provide an upper bound for the Jensen–
inaccuracy measure based on chi-square divergence measure. At the end of this section, we
introduce (w, α)-Jensen–inaccuracy and establish a result for this extended measure.

Definition 1. Let f , f0, and f1 be three density functions. Then, the Jensen–inaccuracy measure
between f0 and f1 with respect to f is defined by

JK( f , f0, f1) =
1
2
K( f , f0) +

1
2
K( f , f1)−K

(
f ,

f0 + f1

2

)
. (6)

Theorem 1. The JK( f , f0, f1) inaccuracy measure in (6) is non-negative.

Proof. From the convexity properties of − log x, x > 0, function we have

− log
(

f0(x) + f1(x)
2

)
≤ −1

2
log f0(x)− 1

2
log f1(x). (7)

Now, by multiplying both sides of (7) by f (x) and then integrating with respect to x,
we obtain

−
∫

f (x) log
(

f0(x) + f1(x)
2

)
dx ≤ −

∫
f (x)

1
2

log f0(x)dx−
∫

f (x)
1
2

log f1(x)dx,

as required.

2.1. The Jensen–Inaccuracy Measure and its Connection to Kullback–Leibler Divergence

Here, we provide a representation for the Jensen–inaccuracy measure in terms of
Kullback–Leibler divergence measure.

Theorem 2. A representation for the Jensen–inaccuracy measure in (6) based on mixture of
Kullback–Liebler divergence measures is given by

JK( f , f0, f1) =
1
2

KL( f , f0) +
1
2

KL( f , f1)− KL
(

f ,
f0 + f1

2

)
. (8)

Proof. According to the definition of the Jensen–inaccuracy measure and the relations

K( f , f0) = KL( f , f0) + H( f ),

K( f , f1) = KL( f , f1) + H( f ),
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K
(

f ,
f0 + f1

2

)
= KL

(
f ,

f0 + f1

2

)
+ H( f ),

we have

JK( f , f0, f1) =
1
2
K( f , f0) +

1
2
K( f , f1)−K

(
f ,

f0 + f1

2

)
=

KL( f , f0) + H( f )
2

+
KL( f , f1) + H( f )

2
− KL

(
f ,

f0 + f1

2

)
− H( f )

=
1
2

KL( f , f0) +
1
2

KL( f , f1)− KL
(

f ,
f0 + f1

2

)
,

as required.

Next, we extend the definition of the Jensen–inaccuracy measure based on n + 1
density functions.

Definition 2. Let X1, . . . , Xn, and Y be random variables with density functions f1, . . . , fn, and
f , respectively, and α1, . . . , αn be non-negative real numbers such that ∑n

i=1 αi = 1. Then, the
Jensen–inaccuracy measure is defined as

JKα( f , f1, . . . , fn) =
n

∑
i=1

αiK
(

f , fi
)
−K

(
f ,

n

∑
i=1

αi fi

)
. (9)

Theorem 3. The JKα( f , f1, . . . , fn) information measure in (9) can be written in terms of
Kullback–Leibler divergence as

JKα( f , f1, . . . , fn) =
n

∑
i=1

αiKL
(

f , fi
)
− KL

(
f ,

n

∑
i=1

αi fi

)
. (10)

Proof. From the definition of JKα( f , f1, . . . , fn) in (9), we have

JKα( f , f1, ..., fn) =
n

∑
i=1

αiK
(

f , fi
)
−K

(
f ,

n

∑
i=1

αi fi

)
=

n

∑
i=1

αi

(
KL
(

f , fi
)
+ H( f )

)
− KL

(
f ,

n

∑
i=1

αi fi

)
− H( f )

=
n

∑
i=1

αiKL
(

f , fi
)
− KL

(
f ,

n

∑
i=1

αi fi

)
,

as required.

2.2. Connection between Jensen–Inaccuracy and Arithmetic–Geometric Divergence Measures

Now, we explore the connection between the Jensen–inaccuracy and arithmetic–
geometric divergence measures. Then, we provide an upper bound for the Jensen–inaccuracy
measure based on chi-square divergence measure.

Let f0 and f1 be two density functions. Then, the arithmetic–geometric divergence
measure is defined as

T( f0, f1) =
∫ ( f0(x) + f1(x)

2

)
log
(

f0(x) + f1(x)
2
√

f0(x) f1(x)

)
dx. (11)

For more details, see Taneja [13].
In the following definition, we provide an extension of the arithmetic–geometric

divergence measure to n-density functions.
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Definition 3. Let X1, . . . , Xn be random variables with density functions f1, . . . , fn, respectively,
and α1, . . . , αn be non-negative real numbers such that ∑n

i=1 αi = 1. Then, the extended arithmetic–
geometric divergence measure is defined as

T( f1, ..., fn; α) =
∫

fT(x) log
(

fT(x)
∏n

i=1 f αi
i (x)

)
dx, (12)

where fT(x) = ∑n
i=1 αi fi(x) and α is a brief notation to denote α1, . . . , αn.

In the following, we explore the connection between the Jensen–inaccuracy measure
in (9) and the arithmetic–geometric divergence measure in (12).

Theorem 4. If f = fT , then, we have

JKα( f , f1, . . . , fn) = T( f1, . . . , fn; α), (13)

where T( f1, . . . , fn; α) is the extended arithmetic–geometric divergence measure defined in (12) and
α is a brief notation to denote α1, . . . , αn.

Proof. From the assumption f = fT and Theorem 3, we have

JKα( fT , f1, ..., fn) =
n

∑
i=1

αiKL
(

fT , fi
)

=
n

∑
i=1

αi

∫
fT(x) log

(
fT(x)
fi(x)

)
dx

=
∫

fT(x) log

[
n

∏
i=1

(
fT(x)
fi(x)

)αi
]

dx

=
∫

fT(x) log
(

fT(x)
∏n

i=1 f αi
i (x)

)
dx

= T( f1, ..., fn; α).

as required.

Remark 1. From the inequality log x ≤ x− 1 for x > 0, it is easy to obtain an upper bound for
JKα( fT , f1, . . . , fn) based on the chi-square divergence measure:

JKα( fT , f1, ..., fn) =
n

∑
i=1

αiKL
(

fT , fi
)
≤

n

∑
i=1

αiχ
2( fi, fT).

2.3. The (w, α)-Jensen–Inaccuracy Measure

Here, (p, w)−Jensen–inaccuracy is defined. Moreover, we establish a result for this
extended measure.

Definition 4. Let f , f0 and f1 be three density functions. Then, the (w, α)-Jensen–inaccuracy
measure between f0 and f1 with respect to f is defined by

JKw,α( f , f0, f1) = wK
(

f , (1− p) f0 + p f1
)
+ (1− w)K

(
f , p f0 + (1− p) f1

)
−K

(
f , (1− p̄) f0 + p̄ f1

)
,

where p̄ = wp + (1− w)(1− p).

Note that

(1− p̄) f0(x) + p̄ f1(x) = w
(
(1− p) f0(x) + p f1(x)

)
+ (1− w)

(
p f0(x) + (1− p) f1(x)

)
.
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Theorem 5. A representation for (w, α)-Jensen–inaccuracy measure based on Kullback–Leibler
divergence is given by

JKw,α( f , f0, f1) = wKL
(

f , (1− p) f0 + p f1
)
+ (1− w)KL

(
f , p f0 + (1− p) f1

)
−KL

(
f , (1− p̄) f0 + p̄ f1

)
,

Proof. It can be proven in the same manner as Theorem 2.

3. Inaccuracy Information Measure of the Escort and Generalized Escort Distributions

The escort distribution is a baseline definition in non-extensive statistical mechanics
and coding theory; it is closely related to Tsallis and Rényi entropies. For more details,
see Bercher [14]. We show that the inaccuracy measure between an arbitrary density and
its corresponding escort density can be expressed as a mixture of Shannon and Rényi
entropies. Furthermore, another finding associated with the inaccuracy measure between
a generalized escort distribution and each of its components reveals some interesting
connections in terms of Kullback–Leibler and Rényi divergences.

Let f be a density function. Then, the escort density with order α > 0 associated with
f is defined as

fα(x) =
f α(x)∫
f α(x)dx

. (14)

Theorem 6. Let f be a density function and fα be an escort density corresponding to f . Then, for
α > 0, we obtain:

(i) K( f , fα) = αH( f ) + (1− α)Rα( f );
(ii) K( fα, f ) = 1

α H( fα) +
α−1

α Rα( f ),

where Rα( f ) is Rényi entropy in (3).

Proof. From the definition of inaccuracy measure between f and fα, we have

K( f , fα) = −
∫

f (x) log fα(x)dx = −
∫

f (x) log
(

f α(x)∫
f α(x)dx

)
dx

= −α
∫

f (x) log f (x)dx +
∫

f (x) log
( ∫

f α(x)dx
)

dx

= αH( f ) + log
( ∫

f α(x)dx
)

= αH( f ) + (1− α)Rα( f ),

which proves (i). Next

K( fα, f ) = −
∫

fα(x) log f (x)dx = −
∫ ( f α(x)∫

f α(x)dx

)
log f (x)dx

= − 1
α

∫ ( f α(x)∫
f α(x)dx

)
log f α(x)dx

= − 1
α

∫ ( f α(x)∫
f α(x)dx

)
log
(

f α(x)∫
f α(x)dx

)
dx

− 1
α

∫ ( f α(x)∫
f α(x)dx

)
log
( ∫

f α(x)dx
)

dx

=
1
α

H( fα) +
α− 1

α
Rα( f ),

which proves (ii).
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Let f and g be two probability density functions. Then, the generalized escort density
for α ∈ (0, 1) is defined as

hα(x) =
f α(x)g1−α(x)∫
f α(x)g1−α(x)dx

. (15)

Theorem 7. The inaccuracy information measure between f and the generalized escort density hα

is given by

K( f , hα) = (α− 1)Dα( f , g)− αKL( f , g)−K( f , g), (16)

where Dα( f , g) is the relative Rényi entropy defined by

Dα( f , g) =
log
( ∫

f α(x)g1−α(x)dx
)

α− 1
. (17)

Proof. From the definition of K( f , hα), we derive

K( f , hα) = −
∫

f (x) log hα(x)dx = −
∫

f (x) log
(

f α(x)g1−α(x)∫
f α(x)g1−α(x)dx

)
dx

= −
∫

f (x) log
(

f (x)
g(x)

)α

dx +
∫

f (x) log
( ∫

f α(x)g1−α(x)dx
)

dx−K( f , g)

= −α
∫

f (x) log
f (x)
g(x)

dx + log
( ∫

f α(x)g1−α(x)dx
)
−K( f , g)

= (α− 1)Dα( f , g)− αKL( f , g)−K( f , g),

as required.

Theorem 8. Let f0 and f1 be two density functions and consider the arithmetic and geometric

mixture densities, respectively, as fa(x) = p f0(x) + (1− p) f1(x) and fg(x) = f p
0 (x) f 1−p

1 (x)∫
f p
0 (x) f 1−p

1 (x)dx
.

Then, a lower bound for K( fa, fg) is given by

K( fa, fg) ≥ H( fa) + (1− p)Dp( f0, f1). (18)

Proof. From the definition K( fa, fg), by using the arithmetic mean–geometric mean in-
equality, we have

K( fa, fg) = −
∫

fa(x) log fg(x)dx = −
∫ (

p f0(x) + (1− p) f1(x)
)

log
(

f p
0 (x) f 1−p

1 (x)∫
f p
0 (x) f 1−p

1 (x)dx

)
dx

= −
∫ (

p f0(x) + (1− p) f1(x)
)

log
(

f p
0 (x) f 1−p

1 (x)
)
dx− log

( ∫
f p
0 (x) f 1−p

1 (x)dx
)

≥ −
∫ (

p f0(x) + (1− p) f1(x)
)

log
(

p f0(x) + (1− p) f1(x)
)
dx− log

( ∫
f p
0 (x) f 1−p

1 (x)dx
)

= H
(

p f0 + (1− p) f1
)
+ (1− p)Dp( f0, f1)

= H( fa) + (1− p)Dp( f0, f1),

as required.

4. Inaccuracy Measure Based on Average Entropy

Let X be a random variable with PDF f . Then, the average entropy associated with f
is defined as

AE( f ) = −
∫

f (x) log
(

f (x)∫
f 2(x)dx

)
dx (19)

For pertinent details, see Kittaneh et al. [15].
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Theorem 9. Let f be a density function. Then, an upper bound for the Shannon entropy based on
inaccuracy measure is given by

H( f ) ≤ K( f , f2), (20)

where f2 is the corresponding escort distribution of the density f with order 2.

Proof. From the definition of average entropy, we have

AE( f ) = −
∫

f (x) log
(

f (x)∫
f 2(x)dx

)
dx

= −
∫

f (x) log
(

f 2(x)∫
f 2(x)dx

)
dx +

∫
f (x) log f (x)dx

= K( f , f2)− H( f ).

Now, because AE( f ) is non-negative (see Theorem 1 of Kittaneh et al. [15]), we have

K( f , f2) ≥ H( f ), (21)

as required.

Definition 5. Let X be a random variable with density f . Then, the average inaccuracy measure is
defined as

AK( f , g) = −
∫

f (x) log
(

g(x)∫
g2(x)dx

)
dx. (22)

Theorem 10. Let f and g be two PDFs. Then, the average inaccuracy measure between f and g,
AK( f , g), can be expressed as

AK( f , g) = K( f , g)− R2(g). (23)

Proof. From the definition of the average inaccuracy measure, we have

AK( f , g) = −
∫

f (x) log
(

g(x)∫
g2(x)dx

)
dx

= −
∫

f (x) log g(x)dx + log
( ∫

g2(x)dx
)

= K( f , g)− R2(g),

as required.

5. Optimal Information Model under Inaccuracy Information Measure

In this section, we prove that the arithmetic mixture distribution provides optimal
information under three different optimization problems associated with inaccuracy infor-
mation measures. For more details on optimal information properties of some statistical
distributions, one may refer to Kharazmi et al. [16] and the references therein.

Theorem 11. Let f , f0, and f1 be three density functions. Then, the solution to the optimization prob-
lem

min
f
K( f0, f ) subject to K( f1, f ) = η,

∫
f (x)dx = 1, (24)

is the arithmetic mixture density with mixing parameter p = 1
1+λ0

, λ0 > 0 is the Lagrangian
multiplier, and η is a constraint associated with the optimization problem.
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Proof. We use the Lagrangian multiplier technique in order to solve the optimization
problem in (24). Thus, we have

L( f , λ0, λ1) = −
∫

f0(x) log f (x)dx− λ0

∫
f1(x) log f (x)dx + λ1

∫
f (x)dx.

Now, differentiating with respect to f , we obtain

∂

∂ f
L( f , λ0, λ1) = −

f0(x)
f (x)

− λ0
f1(x)
f (x)

+ λ1. (25)

By setting (25) to zero, we derive the optimal density function as

f (x) = p f0(x) + (1− p) f1(x),

where p = 1
1+λ0

, as required. In fact, we obtain the solution based on f (x) as

f (x) =
f0(x) + λ0 f1(x)

λ1
.

From the normalization condition, we have∫
f (x)dx =

∫ ( f0(x) + λ0 f1(x)
λ1

)
dx = 1,

and then λ1 = 1 + λ0.

Theorem 12. Let f , f0, and f1 be three density functions. Then, the solution to the
optimization problem,

min
f
{wK( f0, f ) + (1− w)K( f1, f )} subject to

∫
f (x)dx = 1, 0 ≤ w ≤ 1, (26)

is the arithmetic mixture density with mixing parameter p = w.

Proof. Making use of the Lagrangian multiplier technique as in Theorem 11, the
result follows.

Theorem 13. Let f , f0, and f1 be three density functions and Tα(X) = f0(X)
f 2(X)

. Then, the solution
to the optimization problem,

min
f
K( f0, f ) subject to E f (Tα(X)) = η,

∫
f (x)dx = 1, (27)

is the arithmetic mixture density with mixing parameter p = 1
1+λ0

, λ0 > 0 is the Lagrangian
multiplier, E f (·) is the expectation with respect to f and η is a constraint associated with the
optimization problem.

Proof. The result follows analogously with the proof of Theorem 11.

6. Application

In this section, we first consider the definition of histogram for a given image in the
context of image quality assessment. Then, we illustrate two applications by using the
inaccuracy and Jensen–inaccuracy measures.

6.1. Image and Histogram

A digital image is defined as a discrete set of small surface elements (pixel). One such
digital image is a grayscale image in which each pixel only contains one value (its intensity).
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These values are in the set {0, . . . , L− 1}, where L represents the number of intensity values.
Suppose that nk is the number of times in which the kth intensity appears in the image.
Furthermore, the corresponding histogram of a digital image refers to a histogram of the
pixel intensity values in the set {0, . . . , L− 1} (one may refer to Gonzalez [17]).

6.2. Non-Parametric Jensen–Inaccuracy Estimation

We now show an application of the inaccuracy and Jensen–inaccuracy measures
defined in (6) to image processing. Let X1, . . . , Xn be a random sample with probability
density function f . Then, the kernel estimate of density f based on kernel function K with
bandwidth hX > 0 at a fixed point x is given by

f̂ (x) =
1

nhX

n

∑
i=1

K
(

x− Xi
hX

)
. (28)

Similarly, the non-parametric estimate of density g with bandwidth hY > 0, based on
random sample Y1, . . . , Yn, is expressed as

ĝ(x) =
1

nhY

n

∑
i=1

K
(

x−Yi
hY

)
. (29)

For more details, see Duong et al. [18]. Upon making use of (28) and (29), the
integrated non-parametric estimate of the inaccuracy and Jensen–inaccuracy measures are
given, respectively, by

K̂( f , g) = −
∫

f̂ (x) log ĝ(x)dx

= −
∫ 1

nhX

n

∑
i=1

K
(

x− Xi
hX

)
log
(

1
nhY

n

∑
i=1

K
(

x−Yi
hY

))
dx

and

Ĵ K( f , f0, f1) =
1
2
K( f̂ , f̂0) +

1
2
K( f̂ , f̂1)−K

(
f̂ ,

f̂0 + f̂1

2

)
= −

∫ 1
nh

n

∑
i=1

K
(

x− Xi

h

)
log
(

1
nh0

n

∑
i=1

K
(

x−Yi

h0

))
dx

−
∫ 1

nh

n

∑
i=1

K
(

x− Xi

h

)
log
(

1
nh1

n

∑
i=1

K
(

x−Yi

h1

))
dx

+
∫ 1

nh

n

∑
i=1

K
(

x− Xi

h

)
log
( 1

nh0
∑n

i=1 K
( x−Yi

h0

)
+ 1

nh1
∑n

i=1 K
( x−Yi

h1

)
2

)
dx,

where h0, h1 and h are the corresponding bandwidths for the kernel estimations of the

densities f0, f1 and f , respectively. Here we use Gaussian kernel K(u) = 1√
2π

e−
u2
2 .

Next, we present two examples of image processing (two reference images including
grayscale cameraman and lake images) and compute the inaccuracy and Jensen–inaccuracy
information measures between the original picture and each of its adjusted versions for
both cases.

Cameraman image

Figure 1 shows the original cameraman picture denoted by X and three adjusted versions
of this original picture considered as Y(= X + 0.3) (increasing brightness), Z(= 2× X)
(increasing contrast), and W(= 0.5×X + 0.5) (increasing brightness and decreasing contrast).
The cameraman image includes 512× 512 cells and the gray level of each cell has a value
between 0 (black) and 1 (white).
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Lake image

Figure 2 shows the original lake image that includes 512× 512 cells and the level of
the color gray of each cell assumes a value in the interval [0, 1] (0 for black and 1 for white).
This image labeled as X and three adjusted versions of it labeled as Y(= X + 0.3) (increasing
brightness), Z(= 2× X) (increasing contrast) and W(=

√
X) (gamma corrected).

Figure 1. The cameraman image with its three adjusted versions. First row (left panel) original X; first
row (right panel) Y (increasing brightness); second row (left panel) Z (increasing contrast); second
row (right panel) W (increasing brightness and decreasing contrast).

Figure 2. The lake image with its three adjusted versions. First row (left panel) original X; first row
(right panel) Y (increasing brightness); second row (left panel) Z (increasing contrast); second row
(right panel) W (gamma corrected).

Now, we first compute the inaccuracy between the original image and each of its
adjusted versions. Then, we obtain the amount of the dissimilarity between each pair of
the interference images with respect to original image based on the Jensen–inaccuracy
information measure. For both images, we consider three interferences of the original
images, as described above. For more details, see the EBImage package in R software [19].

The extracted histograms are plotted in Figures 3 and 4, with the corresponding
empirical densities for pictures X, Y, Z, and W for the cameraman and lake images,
respectively.

We can see from Figures 1 and 3 that the similarity has the highest degree related to W
and then to Y, whereas Z has a divergence of the highest degree with respect to X that is
the original picture. Moreover, from Figures 2 and 4, the same observation is also found
for the lake image and its three adjusted versions. We have presented the inaccuracy and
Jensen–inaccuracy information measures (for both cameraman and lake images) for all
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pictures in Table 1. Therefore, the inaccuracy and Jensen–inaccuracy information measures
can be considered as efficient criteria for comparing the similarity between an original
picture and its adjusted versions.

Figure 3. The histograms and the corresponding empirical densities for cameraman image and its
three adjusted versions.

Figure 4. The histograms and the corresponding empirical densities for lake image and its three
adjusted versions.

Table 1. Inaccuracy measures for the cameraman and lake images.

Cameraman Image Lake Image

Inaccuracy Jensen–Inaccuracy Inaccuracy Jensen–Inaccuracy

X ↔ Y 8.6142
(
Y, Z ‖ X

)
0.9674 X ↔ Y 10.7143

(
Y, Z ‖ X

)
1.9235

X ↔ Z 7.3654
(
Y, W ‖ X

)
0.5707 X ↔ Z 6.5744

(
Y, W ‖ X

)
1.2558

X ↔W 9.2097
(
Z, W ‖ X

)
1.4315 X ↔W 7.4086

(
Z, W ‖ X

)
0.5131

According to Fan et al. [20], we have tried to observantly follow axioms 1 and 2 of
axiomatic design theory, which has been proposed in recent decades; axiom 1 is about
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verification of the validity of designs, and according to axiom 2, one must choose the best
design among several options.

7. Conclusions

In this paper, by considering the inaccuracy measure, we have proposed Jensen–
inaccuracy and (w, α)-Jensen–inaccuracy information measures. We have specifically
shown that Jensen–inaccuracy is connected to the arithmetic–geometric divergence mea-
sure. Then, we have studied the inaccuracy measure between the escort distribution and
its underling density. Furthermore, we have examined the inaccuracy measure between
the generalized escort distribution and its components. It has been shown that these in-
accuracy measures are closely connected with Rényi entropy, average entropy, and Rényi
divergence. Interestingly, we have shown that the arithmetic mixture distribution pro-
vides optimal information under three different optimization problems associated with the
inaccuracy measure. Finally, we have described two applications of the inaccuracy and
Jensen–inaccuracy measures to image processing. We have considered three adjusted ver-
sions of the original cameraman and lake images and then have examined the dissimilarity
between the original image and each of its adjusted versions for both cases.
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