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Abstract
The purpose of the paper is to study how to predict the future failure times in a
sample from the early failures (type II censored data). We consider both the case of
independent and dependent lifetimes. In both cases we assume identically distributed
random variables. To predict the future failures we use quantile regression techniques
that also provide prediction regions for them. Some illustrative examples show how
to apply the theoretical results to simulated and real data sets.

Keywords Order statistics · Copula · Distorted distributions · Quantile regression ·
Type II censoring

1 Introduction

When in a study one works with a sample of several lifetimes, it is usual to have
censored data. Thus, we might have just the exact values of the first r failures (or
survival times). The other values are censored (type II censored data). This approach
is of interest both in survival and reliability studies. An excellent review of the different
situations about ordered and censored data was made in Cramer (2021).

Several tools have beendeveloped to use these censoreddata.Also, someprocedures
have been studied to predict the unknown future failure times by using the exact values
of the first r early failures. The main results can be seen in Basiri et al. (2016), Barakat
et al. (2011), El-Adll (2011), Lawless and Fredette (2005) and in the references therein.
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544 J. Navarro, F. Buono

Recently, Barakat et al. (2022) and Bdair and Raqab (2022) proposed two solu-
tions based on different pivotal quantities for samples of independent and identically
distributed (IID) lifetimes with a common mixture of two exponential distributions.
The results obtained in the second paper were based on a beta distribution (see next
section).

The purpose of this paper is to extend these results in two ways. One way is to
consider the IID case with the more general Proportional Hazard Rate (PHR) Cox
model. To this end we will use the pivotal quantity proposed by Bdair and Raqab
(2022). The other way is to consider also the case of dependent samples. We assume
ID lifetimes but the general procedure can be applied to the general case as well (with
more complicated expressions). In both cases, to provide such predictions we will use
quantile regression (QR) techniques that can also be used to get prediction bands for
them, see Koenker (2005) and Navarro et al. (2022). This approach allows us to get
an accurate representation of the uncertainty associated to that predictions (especially
when we estimate the upper extreme values). Some examples illustrate how to apply
the theoretical findings.

The rest of the paper is organized as follows. The main results for the case of
independent data are given in Sect. 2 while that for dependent data are in Sect. 3 The
examples are placed inSect. 4. Section 5 contains a simulation study about the coverage
probabilities when we estimate the parameter of the PHRmodel. The conclusions and
the main tasks for future research projects are explained in Sect. 6.

2 Independent data

Let X1, . . . , Xn be a sample of independent and identically distributed (IID) random
variables with a common absolutely continuous distribution function F and with a
probability density function (PDF) f = F ′ (a.e.). Let F̄ = 1 − F be the reliability
(or survival) function and let X1:n < · · · < Xn:n be the associated ordered data (order
statistics). The basic properties for them can be seen in Arnold et al. (2008) and David
and Nagaraja (2003).

In many cases X1, . . . , Xn are lifetimes (or survival times) of some items. So, in
practice, sometimes we just have the first r early failure times X1:n, . . . , Xr :n for some
r < n. Then what we want is to predict the remaining lifetimes Xr+1:n, . . . , Xn:n from
the early failures.

The results obtained in this section will be based on the following result extracted
from Bdair and Raqab (2022) and the well known Markov property of the order
statistics, see Arnold et al. (2008). For completeness, we include the proof here.

Proposition 2.1 (Bdair and Raqab 2022) Let Wr ,s:n = F̄(Xs:n)/F̄(Xr :n) for 1 ≤ r <

s ≤ n. Then the distributions of the conditional random variables (Wr ,s:n | X1:n =
x1, . . . , Xr :n = xr ) and (Wr ,s:n | Xr :n = xr ) coincide with a beta distribution of
parameters n − s + 1 and s − r .
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Predicting future failure times by using quantile regression 545

Proof The distributions coincide from Theorem 2.4.3 in Arnold et al. (2008). From
expression (2.4.3) in that book (p. 23), the PDF of (Xs:n | Xr :n = xr ) is

fs|r :n(xs | xr ) = c

(
F̄(xr ) − F̄(xs)

F̄(xr )

)s−r−1 (
F̄(xs)

F̄(xr )

)n−s
f (xs)

F̄(xr )

for 1 ≤ r < s ≤ n and xr < xs , where c is the normalizing constant. On the other
hand, if Ḡ is the reliability function of (Wr ,s:n | Xr :n = xr ), we get

Ḡ

(
F̄(xs)

F̄(xr )

)
= Pr

(
Wr ,s:n >

F̄(xs)

F̄(xr )
| Xr :n = xr

)

= Pr

(
F̄(Xs:n)
F̄(Xr :n)

>
F̄(xs)

F̄(xr )
| Xr :n = xr

)

= Pr (Xs:n < xs | Xr :n = xr ) .

Therefore, its PDF g = −Ḡ ′ satisfies

g

(
F̄(xs)

F̄(xr )

)
f (xs)

F̄(xr )
= fs|r :n(xs | xr )

and so, by using the preceding expression for fs|r :n , we obtain

g(w) = c(1 − w)s−r+1wn−s

for 0 < w < 1. Therefore, (Wr ,s:n | Xr :n = xr ) has a beta distributionwith parameters
n − s + 1 and s − r . ��

Thepreceding proposition can be used to get themedian regression curve to estimate
Xs:n from Xr :n = x (or from X1:n = x1, . . . , Xr :n = xr ). It can be stated as follows.

Proposition 2.2 The median regression curve to estimate Xs:n from Xr :n = x is

m(x) = F̄−1 (
q0.5 F̄(x)

)
, (2.1)

where q0.5 is the median of a beta distribution with parameters n − s + 1 and s − r .

Proof From the expressions obtained in the proof of the preceding proposition we get
that

Pr (Xs:n < xs | Xr :n = xr ) = 0.5

is equivalent to

Ḡ

(
F̄(xs)

F̄(xr )

)
= 0.5,
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546 J. Navarro, F. Buono

where Ḡ is the reliability function of a beta distribution with parameters n − s + 1
and s− r . This expression leads to F̄(xs) = q0.5 F̄(xr ). Therefore, the first expression
is equivalent to xs = F̄−1(q0.5 F̄(xr )) which gives the expression for the median
regression curve. ��
Remark 2.1 Themedian q0.5 of the beta distributionwith parametersα = n−s+1 > 1
and β = s − r > 1 can be approximated by

q0.5 ≈ α − 1/3

α + β − 2/3
= n − s + 2/3

n − r + 1/3
.

Byusing this approximation, themean regression curve obtained in (2.1) can bewritten
as

m(x) = F̄−1
(
n − s + 2/3

n − r + 1/3
F̄(x)

)

for r + 1 < s < n. If we prefer to use the exact value of the median, we can use
any statistical program to compute q0.5. For example, the code in R to compute it is
qbeta(0.5,n-s+1,s-r).

Remark 2.2 Instead of the median approach, we could use the mean or the mode of
the conditional random variable (Wr ,s:n | Xr :n = xr ) in Proposition 2.1. To use the
mean, as it has a beta distribution, we get

E(Wr ,s:n | Xr :n = xr ) = n − s + 1

n − r + 1
,

that is,

E(F̄(Xs:n) | Xr :n = xr ) = n − s + 1

n − r + 1
F̄(xr ).

Therefore, Xs:n can be predicted from Xr :n = x with the curve

mmean(x) = F̄−1
(
n − s + 1

n − r + 1
F̄(x)

)
.

Note that this curve can be different to the classical regression curve E(Xs:n | Xr :n =
xr ). Analogously, if we use the mode of the beta distribution (i.e. the maximum
likelihood estimator for Wr ,s:n) we get

Mode(Wr ,s:n | Xr :n = xr ) = n − s

n − r − 1

for s < n and s > r +1 (see p. 219, Johnson et al. 1995), that is, Xs:n can be predicted
from Xr :n = x with the curve

mmode(x) = F̄−1
(

n − s

n − r − 1
F̄(x)

)
.
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Predicting future failure times by using quantile regression 547

In the case s = r + 1 with r < n − 1, the mode is obtained in the boundary and we
can use this predictor with mmode(x) = x . In the case r + 1 < s = n, the predictor
mmode(x) = F̄−1(0) coincides with the right-end point of the support (we could
use it when it is finite). Finally, in the case r + 1 = s = n the mode is not unique
since (Wr ,s:n | Xr :n = xr ) has a uniform distribution in (0, 1) and we can replace this
predictorwithmmode(x) = F̄−1(0.5F̄(x)) (which coincideswith themean estimator).

The same approach canbe used to determine prediction bands for these future failure
times from the quantiles of a beta distribution. Thus, if we want to get a prediction
interval of size γ = β − α, where α, β, γ ∈ (0, 1) and qα and qβ are the respective
quantiles of the above beta distribution, then we use that

Pr
(
F̄−1 (

qβ F̄(x)
) ≤ Xs:n ≤ F̄−1 (

qα F̄(x)
) | Xr :n = x

)
= γ. (2.2)

For example, the centered 90% prediction band is obtained with β = 0.95 and α =
0.05 as

C90 =
[
F̄−1 (

q0.95 F̄(x)
)
, F̄−1 (

q0.05 F̄(x)
)]

.

Sometimes one needs bottom (or lower) prediction bands starting at Xr :n = x . For
example, the bottom 90% prediction band is obtained with β → 1 and α = 0.1 as

B90 =
[
x, F̄−1 (

q0.1 F̄(x)
)]

.

As we will see in the examples provided in Sect. 4, these prediction bands represent
better the uncertainty in the prediction of Xs:n from Xr :n . In particular the area of these
bandswill increase with s−r (as expected). It is worthmentioning that the quantiles qz
of a beta distribution (including the median) are available in many statistical programs
(for example, in R, qz is obtained with the code qbeta(z,a,b), with a = n− s+1
and b = s− r in our case). These quantiles could also be obtained from the procedure
given in Van Dorp and Mazzuchi (2000). Moreover, in the following proposition we
show that the exponential distribution is characterized in termsof its quantile regression
curve. It is the unique distribution with quantile regression curves that are lines with
slope equal to one.

Proposition 2.3 Let X be a random variable with support (0,∞), with absolutely
continuous reliability function F̄ and with quantile regression curve of order α

mα(x) = F̄−1(qα F̄(x)). Then,

mα(x) = x + cα (2.3)

for all x > 0 and all α ∈ (0, 1), where cα is a positive constant depending on α if,
and only if, X is exponentially distributed.
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548 J. Navarro, F. Buono

Proof Suppose X is exponentially distributed with parameter θ > 0. Then, F̄(x) =
e−θx and F̄−1(x) = − 1

θ
log x . Therefore, the quantile regression curve of order α is

given by

mα(x) = F̄−1(qα F̄(x)) = F̄−1 (
qαe

−θx) = x − 1

θ
log qα.

Conversely, suppose Eq. (2.3) holds. By choosing x = 0, we get F̄−1(qα) = cα , or,
equivalently, qα = F̄(cα). By applying F̄ to both sides of (2.3), it readily follows

F̄(x) = F̄(x + cα)

qα

,

that is,

Pr(X > x) = Pr(X > x + cα)

Pr(X > cα)
= Pr(X > x + cα | X > cα),

for all x > 0 and all cα > 0 satisfying cα = F̄−1(qα) for α ∈ (0, 1). As F̄ is contin-
uous, cα can be any value in the support (0,∞). Hence, X satisfies the memoryless
property which characterizes the exponential distribution. ��

In practice, the common reliability function F̄ is unknown. In some cases, it can be
estimated from historical and complete data sets by using non-parametric estimators
(e.g. we could use empirical or kernel estimators). In those cases, we just replace in the
preceding expressions the exact unknown reliability function F̄ with its estimation.

In other cases, we have a model for it. Say F̄ is F̄θ with an unknown parameter θ .
In those cases, we can use X1:n = x1, . . . , Xr :n = xr to estimate θ . The associated
likelihood function is

�(θ) = n!
(n − r)! F̄

n−r
θ (xr )

r∏
i=1

fθ (xi )

(see, e.g., Arnold et al. 2008 or (5) in Bdair and Raqab 2022). By maximizing this
function we get a good estimator for θ .

For example, we can assume the useful Proportional Hazard Rate (PHR)Coxmodel
with F̄θ = F̄θ

0 , where F̄0 is a known baseline reliability function and θ > 0 is an
unknown risk parameter. In this case,

�(θ) = n!
(n − r)!θ

r F̄ (n−r)θ
0 (xr )

r∏
i=1

F̄θ−1
0 (xi )

r∏
i=1

f0(xi )

and so L(θ) = log �(θ) can be written as

L(θ) = K + r log θ + (n − r)θ log F̄0(xr ) + (θ − 1)
r∑

i=1

log F̄0(xi ),
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Predicting future failure times by using quantile regression 549

where K is a term that does not depend on θ . Hence, its derivative is

L ′(θ) = r

θ
+ (n − r) log F̄0(xr ) +

r∑
i=1

log F̄0(xi )

and the maximum likelihood estimator (MLE) for θ is

θ̂ = r

−(n − r + 1) log F̄0(xr ) − ∑r−1
i=1 log F̄0(xi )

. (2.4)

Thus, to get the point predictions and the prediction bands for Xs:n , we just replace
in the preceding expressions F̄θ with F̄θ̂ . In the simulation study developed in Sect. 5,
we will see the real coverage probabilities for the prediction bands obtained in this
way.

Some well known distributions are included in the wide PHR model. For example,
if F̄0(t) = e−t for t ≥ 0 (exponential model), then (2.4) leads to

θ̂ = r

(n − r + 1)xr + ∑r−1
i=1 xi

. (2.5)

Analogously, the mean μ = 1/θ can be estimated with

μ̂ = 1

θ̂
= n − r + 1

r
xr + 1

r

r−1∑
i=1

xi (2.6)

(a well known result, see e.g. Balakrishnan et al. 2007 or Cramer 2021). It can be
written as μ̂ = Sr/r , where

Sr = (n − r)xr + x1 + · · · + xr

is known as the total time on test (TTT), see e.g. Khaminsky and Rhodin (1985) or
David and Nagaraja (2003, p. 209).

The estimator obtained in that reference forμ by using the maximum (mode) of the
joint likelihood function of μ and Xs:n at Xr :n is μ̃ = Sr/(r + 1). Thus the prediction
obtained in Khaminsky and Rhodin (1985) for Xs:n is

m̃(x1, . . . , xr ) = xr + Sr
r + 1

log

(
n − r

n − s + 1

)
.

Note that if s = r + 1, then m̃(x1, . . . , xr ) = xr (i.e. the maximum is obtained in
the boundary). Note that this prediction does not belong to the centered prediction
intervals.
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550 J. Navarro, F. Buono

From (2.6) and Remark 2.2, we get the following (estimated) median regression
curve to predict Xs:n in the exponential distribution with unknown mean

m̂(x1, . . . , xr ) = xr − Sr
r

log(q0.5) ≈ xr + Sr
r

log

(
n − r + 1/3

n − s + 2/3

)

for r + 1 ≤ s ≤ n in the first expression and r + 1 < s < n in the second. Similar
curves can be obtained from Remark 2.2 by using the mean

m̂mean(x1, . . . , xr ) = xr + Sr
r

log

(
n − r + 1

n − s + 1

)
(2.7)

for r < s ≤ n or the mode

m̂mode(x1, . . . , xr ) = xr + Sr
r

log

(
n − r − 1

n − s

)
(2.8)

for r < s < n. Another classical point predictor for Xs:n in the one parameter
exponential family is the Best Linear Unbiased (BLU) predictor given by

m̂BLU (x1, . . . , xr ) = xr + Sr
r

n−r∑
i=n−s+1

1

i
,

see, e.g.,David andNagaraja (2003, p. 209). These predictors are compared inExample
1.

Analogously, F̄0(t) = 1/(1 + t) for t ≥ 0 (Pareto type II model), leads to

θ̂ = r

(n − r + 1) log(1 + xr ) + ∑r−1
i=1 log(1 + xi )

. (2.9)

We can use this estimator for θ to get the different regression curves as in the expo-
nential case (see the examples in Sect. 4).

Finally, we note that the prediction regions obtained from different quantiles can
be used to get bivariate box plots and goodness-of-fit tests for the assumed reliability
function F̄ (or F̄θ ), see Navarro (2020). For example, to get equal expected values as
recommended in Greenwood and Nikulin (1996), we could consider the regions:

R1 =
[
x, F̄−1 (

q0.75 F̄(x)
)]

,

R2 =
[
F̄−1 (

q0.75 F̄(x)
)
, F̄−1 (

q0.50 F̄(x)
)]

,

R3 =
[
F̄−1 (

q0.50 F̄(x)
)
, F̄−1 (

q0.25 F̄(x)
)]

,

and

R4 =
[
F̄−1 (

q0.25 F̄(x)
)
,∞

]
.
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Predicting future failure times by using quantile regression 551

Note that if F̄ is correctly specified, then Pr(Xs:n ∈ Ri | Xr :n = x) = 1/4 for
i = 1, 2, 3, 4.

If we have many values for Xr :n and Xs:n we could consider these regions for these
fixed values of r , s and n. If we just have some values from a sample of size n, we
could consider the regions for different values of r and s (see Sect. 4). Resampling
methods could be used as well. In all these cases we use the Pearson statistic

T =
4∑

i=1

(Oi − Ei )
2

Ei
,

where Oi and Ei are the observed and expected data in each region, respectively,
with Ei = N/4 if we have N observations and we assume that F̄ is correct (null
hypothesis). Under this assumption, the asymptotic distribution of T as N → ∞ is
a chi-squared distribution with 3 degrees of freedom (2 if we use the MLE of the
parameter θ ). Under this null hypothesis, the associated P-value will be Pr(χ2

3 > T ).
Some illustrative examples will be provided later.

3 Dependent data

In this case we assume that we have a sample X1, . . . , Xn of ID random variables
with a common distribution function F but now we also assume that the data might
have some kind of dependency. In many cases, this dependency is due to the fact that
they share the same environment (for example, when they are components of the same
system). The dependency will be modeled with a copula function C that is used to
write their joint distribution as

F(x1, . . . , xn) = Pr(X1 ≤ x1, . . . , Xn ≤ xn) = C(F(x1), . . . , F(xn))

for all x1, . . . , xn .
We assume that F is absolutely continuous and we again consider the ordered data

X1:n < · · · < Xn:n obtained from X1, . . . , Xn . However, in practice, we just have the
first r values X1:n < · · · < Xr :n and we want to predict Xs:n for s > r .

Under dependency, the order statistics do not satisfy the Markov property, that is,
the distributions of (Xs:n | X1:n = x1, . . . , Xr :n = xr ) and (Xs:n | Xr :n = xr ) do not
coincide. To get bivariate plots, we shall use the second one, that is, we will predict
Xs:n from Xr :n = x for r < s. The other data can just be used to estimate the unknown
parameters in the model. In this case, we might have unknown parameters both in F
and in C . Also note that, we can obtain and compare different predictions for Xs:n by
using X1:n, . . . , Xr :n .

To get these predictions, we will use a distortion representation for the joint distri-
bution of the randomvector (Xr :n, Xs:n) as proposed inNavarro et al. (2022). Actually,
the results for the case n = 2, r = 1 and s = 2 (paired ordered data) were already
obtained there. Similar results were obtained in Navarro (2022b) for record values.
The procedure is similar but, the expressions obtained here for n = 4 will be more
complicated. They are based on the following two facts.

123



552 J. Navarro, F. Buono

The first one is that there exists a distortion function D (which depends on r , s, n
and C), such that the joint distribution Gr ,s:n of (Xr :n, Xs:n) can be written as

Gr ,s:n(x, y) = Pr(Xr :n ≤ x, Xs:n ≤ y) = Dr ,s:n(F(x), F(y))

for all x, y. The distortion function Dr ,s:n is a continuous bivariate distribution function
with support included in the set [0, 1]2. Note that this representation is similar to the
classical copula representation but that here Dr ,s:n is not a copula and that F does not
coincide with the marginal distributions (i.e. the distributions of Xr :n and Xs:n).

The second fact is that, from the results obtained in Navarro et al. (2022), we can
obtain the median regression curve and the associated prediction bands to predict
Xs:n from Xr :n . The result can be stated as follows. It is Proposition 7 in Navarro
et al. (2022). Throughout the paper we use the notation ∂i G for the partial derivative
of function G with respect to its i th variable. Similarly, ∂i, j G represents the partial
derivatives of G with respect to its i th and j th variables, and so on.

Proposition 3.1 If we assume that both F and Dr ,s:n are absolutely continuous, then
the conditional distribution of Xs:n given Xr :n = x is

Gs|r :n(y | x) = ∂1Dr ,s:n(F(x), F(y))

∂1Dr ,s:n(F(x), 1)
(3.1)

for x < y such that ∂1Dr ,s:n(F(x), v) > 0 and limv→0+ ∂1Dr ,s:n(F(x), v) = 0.

Sometimes, it is better to use the reliability functions instead of the distribution
functions (see examples). We have similar results for them. For example, the joint
reliability function of X1, . . . , Xn can be written as

F̄(x1, . . . , xn) = Pr(X1 > x1, . . . , Xn > xn) = C̄(F̄(x1), . . . , F̄(xn))

for all x1, . . . , xn , where F̄ = 1 − F and C̄ is another copula called survival copula.
C̄ can be obtained from C (and vice versa).

Analogously, the joint reliability function of Ḡr ,s:n of (Xr :n, Xs:n) can be written
as

Ḡr ,s:n(x, y) = Pr(Xr :n > x, Xs:n > y) = D̄r ,s:n(F̄(x), F̄(y)) (3.2)

for all x, y. The distortion function D̄r ,s:n is also a continuous bivariate distribution
function with support included in the set [0, 1]2. It depends on r , s, n and C (or C̄).
From this expression, the conditional reliability function can be obtained as follows.

Proposition 3.2 If we assume that both F̄ and D̄r ,s:n are absolutely continuous, then
the conditional reliability function of Xs:n given Xr :n = x is

Ḡs|r :n(y | x) = ∂1 D̄r ,s:n(F̄(x), F̄(y))

∂1 D̄r ,s:n(F̄(x), 1)
(3.3)

for x < y such that ∂1 D̄r ,s:n(F̄(x), v) > 0 and limv→0+ ∂1 D̄r ,s:n(F̄(x), v) = 0.
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Predicting future failure times by using quantile regression 553

The preceding expressions can be used to solve the general case in which we want
to predict Xs:n from Xr :n for 1 ≤ r < s ≤ n. To show the procedure, we choose
different cases for n = 4. In all these cases we assume that the joint distribution
of (X1, X2, X3, X4) is exchangeable (EXC), that is, it does not change when we
permute them. This is equivalent to the assumption that they are ID and C (or C̄) is
exchangeable.

In the first case, we choose r = 1 and s = 2. The result can be stated as follows.

Proposition 3.3 If both F̄ and C̄ are absolutely continuous and C̄ is EXC, then the
conditional reliability function of X2:4 given X1:4 = x is

Ḡ2|1:4(y | x) = ∂1C̄(F̄(x), F̄(y), F̄(y), F̄(y))

∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x))
(3.4)

for all x < y such that ∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x)) > 0 and limv→0+ ∂1C̄(F̄(x),
v, v, v) = 0.

Proof The joint reliability function Ḡ1,2:4 of (X1:4, X2:4) satisfies

Ḡ1,2:4(x, y) = Pr(X1:4 > x, X2:4 > y) = Pr(X1:4 > x)

for all x ≥ y, where

Pr(X1:4 > x) = Pr(X1 > x, X2 > x, X3 > x, X4 > x)

= C̄(F̄(x), F̄(x), F̄(x), F̄(x)).

Analogously, for x < y, we get

Ḡ1,2:4(x, y) = Pr(X1:4 > x, X2:4 > y)

= Pr(X1:4 > x, max
i=1,...,r

X Pi > y)

= Pr
(∪r

i=1({XPi > y} ∩ {X1:4 > x})) ,

where XPi = min j∈Pi X j and P1, . . . , Pr are all the minimal path sets of X2:4 (see,
e.g., Navarro 2022a, p. 23). In this case they are all the subsets of {1, 2, 3, 4} with
cardinality 3. So r = (4

3

) = 4. Hence, by applying the inclusion-exclusion formula
and by using the exchangeable assumption we get

Ḡ1,2:4(x, y) =
4∑

i=1

Pr
(
XPi > y, X1:4 > x

) −
∑
i< j

Pr
(
XPi∪Pj > y, X1:4 > x

)

+
∑

i< j<k

Pr
(
XPi∪Pj∪Pk > y, X1:4 > x

)

− Pr
(
XP1∪P2∪P3∪P4 > y, X1:4 > x

)
= 4 Pr (X1 > x, X2 > y, X3 > y, X4 > y)
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− 3 Pr (X1 > y, X2 > y, X3 > y, X4 > y)

= 4C̄
(
F̄(x), F̄(y), F̄(y), F̄(y)

) − 3C̄
(
F̄(y), F̄(y), F̄(y), F̄(y)

)

for x < y. Therefore, (3.2) holds for

D̄1,2:4(u, v) =
{

C̄(u, u, u, u) for 0 ≤ u ≤ v ≤ 1;
4C̄(u, v, v, v) − 3C̄(v, v, v, v) for 0 ≤ v < u ≤ 1.

Hence

∂1 D̄1,2:4(u, v) =
{
4∂1C̄(u, u, u, u) for 0 ≤ u ≤ v ≤ 1;
4∂1C̄(u, v, v, v) for 0 ≤ v < u ≤ 1.

Finally, we use (3.3) to get (3.4). ��
In Example 4 we show how to apply this result to a specific case. In the following

propositions we provide the expressions for the other cases. As the proofs are similar,
they are omitted. Note that in Proposition 3.7 we use (3.1) instead of (3.3).

Proposition 3.4 If both F̄ and C̄ are absolutely continuous and C̄ is EXC, then the
conditional reliability function of X3:4 given X1:4 = x is

Ḡ3|1:4(y | x) = 3∂1C̄(F̄(x), F̄(x), F̄(y), F̄(y)) − 2∂1C̄(F̄(x), F̄(y), F̄(y), F̄(y))

∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x))
(3.5)

for all x < y such that ∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x)) > 0 and limv→0+ 3∂1C̄(F̄(x),
F̄(x), v, v) − 2∂1C̄(F̄(x), v, v, v) = 0.

Proposition 3.5 If both F̄ and C̄ are absolutely continuous and C̄ is EXC, then the
conditional reliability function of X4:4 given X1:4 = x is

Ḡ4|1:4(y | x) = A4|1:4(x, y)
∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x))

, (3.6)

for all x < y such that ∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x)) > 0and limy→∞ A4|1:4(x, y) =
0, where

A4|1:4(x, y) = 3∂1C̄(F̄(x), F̄(x), F̄(x), F̄(y)) − 3∂1C̄(F̄(x), F̄(x), F̄(y), F̄(y))

+ ∂1C̄(F̄(x), F̄(y), F̄(y), F̄(y)).

Proposition 3.6 If both F̄ and C̄ are absolutely continuous and C̄ is EXC, then the
conditional reliability function of X4:4 given X2:4 = x is

Ḡ4|2:4(y | x) = A4|2:4(x, y)
∂1C̄(F̄(x), F̄(x), F̄(x), 1) − ∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x))

(3.7)
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for all x < y such that ∂1C̄(F̄(x), F̄(x), F̄(x), 1)−∂1C̄(F̄(x), F̄(x), F̄(x), F̄(x)) >

0 and limy→∞ A4|2:4(x, y) = 0, where

A4|2:4(x, y) = 2∂1C̄(F̄(x), F̄(x), F̄(y), 1) − 2∂1C̄(F̄(x), F̄(x), F̄(x), F̄(y))

− ∂1C̄(F̄(x), F̄(y), F̄(y), 1) + ∂1C̄(F̄(x), F̄(x), F̄(y), F̄(y)).

Proposition 3.7 If both F and C are absolutely continuous and C is EXC, then the
conditional distribution function of X4:4 given X3:4 = x is

G4|3:4(y | x) = ∂1C(F(x), F(x), F(x), F(y)) − ∂1C(F(x), F(x), F(x), F(x))

∂1C(F(x), F(x), F(x), 1) − ∂1C(F(x), F(x), F(x), F(x))
,

for all x < y such that ∂1C(F(x), F(x), F(x), 1)−∂1C(F(x), F(x), F(x), F(x)) >

0.

We conclude this section by showing how to get predictions from more than one
early failures. For example, if we want to predict X3:4 from X1:4 = x and X2:4 = y,
we need a distortion representation for their joint reliability function as

Ḡ1,2,3(x, y, t) = Pr(X1:4 > x, X2:4 > y, X3:4 > t) = D̄(F̄(x), F̄(y), F̄(t)),

where F̄ is the common reliability function of X1, X2, X3, X4. Then their joint PDF
is

g1,2,3(x, y, t) = f (x) f (y) f (t) ∂1,2,3 D̄(F̄(x), F̄(y), F̄(t)),

where f = −F̄ ′. Analogously, the joint reliability function of X1:4 and X2:4 is

Ḡ1,2(x, y) = Pr(X1:4 > x, X2:4 > y) = D̄(F̄(x), F̄(y), 1)

and their joint PDF

g1,2(x, y) = f (x) f (y) ∂1,2 D̄(F̄(x), F̄(y), 1).

Hence, the PDF of (X3:4 | X1:4 = x, X2:4 = y) is

g3|1,2(t | x, y) = g1,2,3(x, y, t)

g1,2(x, y)
= f (t)

∂1,2,3 D̄(F̄(x), F̄(y), F̄(t))

∂1,2 D̄(F̄(x), F̄(y), 1)

and the reliability function is

Ḡ3|1,2(t | x, y) = ∂1,2 D̄(F̄(x), F̄(y), F̄(t))

∂1,2 D̄(F̄(x), F̄(y), 1)

for x < y < t , whenever ∂1,2 D̄(F̄(x), F̄(y), 1) > 0 and limv→0+ ∂1,2 D̄(F̄(x), F̄(y),
v) = 0.
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A straightforward calculation shows that if the survival copula C̄ is EXC, then

D̄(u, v, w) = 12C̄(u, v, w,w) − 12C̄(u, w,w,w)

−6C̄(v, v,w,w) + 7C̄(w,w,w,w)

and

∂1,2 D̄(u, v, w) = 12C̄(u, v, w,w)

for 1 > u > v > w > 0. Analogously,

D̄(u, v, 1) = 4C̄(u, v, v, v) − 3C̄(v, v, v, v)

and

∂1,2 D̄(u, v, 1) = 12C̄(u, v, v, v)

for 1 > u > v > 0. Hence

Ḡ3|1,2(t | x, y) = ∂1,2C̄(F̄(x), F̄(y), F̄(t), F̄(t))

∂1,2C̄(F̄(x), F̄(y), F̄(y), F̄(y))
(3.8)

for x < y < t such that ∂1,2C̄(F̄(x), F̄(y), F̄(y), F̄(y)) > 0 and

lim
t→∞ ∂1,2C̄(F̄(x), F̄(y), F̄(t), F̄(t)) = 0.

The prediction is obtained by solving (numerically) Ḡ3|1,2(t | x, y) = 0.5 for given
values of x and y. The prediction intervals are obtained in a similar way.

Proceeding as abovewe can also obtain the expression to predict X4:4 from X1:4 = x
and X2:4 = y as

Ḡ4|1,2(t | x, y) = 2∂1,2C̄(F̄(x), F̄(y), F̄(y), F̄(t)) − ∂1,2C̄(F̄(x), F̄(y), F̄(t), F̄(t))

∂1,2C̄(F̄(x), F̄(y), F̄(y), F̄(y))

(3.9)

for x < y < t such that ∂1,2C̄(F̄(x), F̄(y), F̄(y), F̄(y)) > 0 and

lim
t→∞ 2∂1,2C̄(F̄(x), F̄(y), F̄(y), F̄(t)) − ∂1,2C̄(F̄(x), F̄(y), F̄(t), F̄(t)) = 0.

4 Examples

First we illustrate the IID case with simulated samples. In the first one we assume an
exponential baseline distribution.
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Example 1 We simulate a sample of size n = 20 from a standard exponential distri-
bution. The ordered (rounded) sample values obtained are

0.00599 0.02454 0.04600 0.07663 0.08168 0.14609 0.24391 0.72400

1.30312 1.37244 1.37962 1.54357 1.71278 2.22949 2.24561 2.56783

2.61441 2.80786 3.90280 7.68743

If we want to predict X2:20 from X1:20 by assuming that F̄ is known (or that it is
estimated from a preceding sample), we use the quantile regression curve given in
(2.1)

m(x) = F̄−1(q0.5 F̄(x)) = x − log(q0.5) = x + 0.03648

where q0.5 = 0.96418 is the median of a beta distribution with parameters n−s+1 =
19 and s − r = 1. Thus, we get the prediction for X2:20 as

X̂2:20 = m(X1:20) = m(0.00599) = 0.00599 + 0.03648 = 0.04247.

The real value is X2:20 = 0.02454. The 90% and 50% prediction intervals for
this prediction are obtained from (2.2) as C90 = [0.00869, 0.16366] and C50 =
[0.02113, 0.07895]. The real value belongs to both intervals.

To see better what happens with these predictions we simulate N = 100 predictions
of this kind, that is, 100 samples of size 20. The data are plotted in Fig. 1, left. There
we can see that the prediction bands represent very well the dispersion of the majority
of data (except some extreme values). In this sample, C50 contains 51 values and C90
contains 90 while 5 values are above the upper limit and 5 are below the bottom limit.
Of course, if we test H0 : F̄ is correct vs H0 : F̄ is not correct, by using the four
regions R1, R2, R3, R4 considered in Sect. 2, we get the observed values: 25, 30, 21,
24 and the T statistic value is

T = (25 − 25)2

25
+ (30 − 25)2

25
+ (21 − 25)2

25
+ (24 − 25)2

25
= 1.68.

Thus, the P-value P = Pr(χ2
3 > 1.68) = 0.64139 leads to the acceptance of the

exponential distribution (as expected). Note that, in practice, it is not easy to perform
this test becausewe need the first two values of several sampleswith the same size (n =
20 in this example). In this case, we could also use the standard quantile regression
techniques (see Koenker 2005).

We do the same in Fig. 1, right, but for n = 20, r = 12 and s = 13. If we just
use the initial sample, the prediction for X13:20 = 1.71278 from X12:20 = 1.54357
obtained with the median curve

m(x) = F̄−1(q0.5 F̄(x)) = x − log(q0.5) = x + 0.08664
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Fig. 1 Scatterplots of a simulated sample from (Xr :n , Xs:n) for n = 20, r = 1 and s = 2 (left) and
r = 12 and s = 13 (right) for the exponential distribution in Example 1 jointly with the theoretical median
regression curves (red) and 50% (dark grey) and 90% (light grey) prediction bands (colour figure online)

is m(1.54357) = 1.63021, where q0.5 = 0.91700 is the median of a beta distribution
with parameters n − s + 1 = 8 and s − r = 1. The prediction intervals for this
prediction are C90 = [1.549986, 1.918041] and C50 = [1.579534, 1.716861]. Both
intervals contain the associated order statistic. The 100 repetitions of this case plotted
in Fig. 1, right, show the underlying uncertainty for that predictions. We remind that
for the exponential distribution all the curves are lines with slope one (see Proposition
2.3). In this case, we have 92 values in C90, 56 in C50 and 8 values out of C90 (4 above
and 4 below). The T statistic is 2.24 and its associated P-value 0.52411 leads again to
accept the (true) distribution F .

The predictions will be worse for more distant future values (i.e., the dispersion will
be greater). To show this fact, in Fig. 2 we plot the prediction bands for r = 12, s = 14
(left) and s = 20 (right). However, of course, the coverage probabilities of these
regions will be the same. The predictions obtained in the initial sample are X̂14:20 =
1.76813 and X̂20:20 = 4.03254, with prediction intervals C90 = [1.59107, 2.17974]
and C90 = [2.70722, 6.59642], respectively. The real values are X14:20 = 2.22949
and X20:20 = 7.68743. Both values are out of the interval C90. This situation is
unexpected because, in this simulation, we get two of two failures in the prediction
intervals. However, note that these events are not independent and that this is not the
case in the other simulations.

In Fig. 3 we plot the predictions for Xs:20 (red line) jointly with the limits of the
90% (dashed blue lines) and 50% (continuous blue line) prediction intervals in the
initial simulated sample from X12:20 (left) for s = 13, . . . , 20 and from the preceding
data Xs−1:20 (right) for s = 2, . . . , 20. In the left plot 2-out-of-8 exact points do not
belong to the 90% prediction intervals while 5 are out of the 50% prediction intervals
(the expected values are 8 · 0.1 = 0.8 and 8 · 0.5 = 4, respectively). In the right plot
4-out-of-19 points do not belong to 90% prediction intervals while 11 do not belong
to the 50% prediction intervals (we expect 1.9 and 9.5, respectively).

Now, let us compare our method with the one based on the maximum likelihood
predictions (MLP) proposed in Khaminsky and Rhodin (1985). If we know the exact
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Fig. 2 Scatterplots of a simulated sample from (Xr :n , Xs:n) for n = 20, r = 12 and s = 14 (left) and
s = 20 (right) for the exponential distribution in Example 1 jointly with the theoretical median regression
curves (red) and 50% (dark grey) and 90% (light grey) prediction bands (colour figure online)
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Fig. 3 Predictions (red) for Xs:n from Xr :n for n = 20, r = 12 and s = 13, . . . , 20 (left) and r = 1, . . . , 19
and s = r +1 (right) for the exponential distribution in Example 1. The black points are the observed values
and the blue lines are the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction
intervals (colour figure online)

distribution F , with pdf f , of the sample and the ordered values up to the index r , the
MLP method suggests to predict the value of Xs:n = xs, s > r , by resolving

f ′(xs)
f 2(xs)

+ s − r − 1

F(xs) − F(xr )
− n − s

1 − F(xs)
= 0.

In particular, for an exponential distribution this method leads to the prediction

X̂s:n = xr + μ log

(
n − r

n − s + 1

)

for Xs:n at Xr :n = xr when the mean μ is known. We can readily observe that if
s = r + 1, the MLP method suggests to predict Xr+1:n with the value assumed by the
r -th order statistic.
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For illustrative purposes, we consider again the cases r = 12 and s = 14 or s = 20.
By using the MLP method with μ = 1 the predictions are

X̂13:20 = X12:20 = 1.54357,

X̂14:20 = X12:20 + log
8

7
= 1.67710,

X̂20:20 = X12:20 + log 8 = 3.62301,

which are allworse than the ones obtainedbyusing themethodproposedhere (1.63021,
1.76813 and 4.03254, respectively). The same conclusion holds in the other points,
that is, for s = 15, . . . , 19. However, in this case, the curve provided by the mean

m̂mean(xr ) = xr + μ log

(
n − r + 1

n − s + 1

)

gives better predictions for s = 13, . . . , 16 (and worse for s = 17, . . . , 20).
In practice, we do not know the exact reliability function. If we just assume the

exponential model F̄(t) = e−θ t for t ≥ 0, with an unknown parameter θ > 0, we can
use (2.5) to estimate θ . With the above sample and r = 12 we get

θ̂12 = 12

9X12:20 + ∑11
i=1 Xi :20

= 0.62188.

The exact value is θ = 1. The estimation for the mean is μ̂ = 1/θ̂12 = 1.608017,
Replacing the exact reliability function F̄(t) = e−t with F̄θ̂ (t) = e−0.62188·t , we can
obtain similar predictions for Xs:20 from X12:20 as that obtained above. For example,
for s = 13we get the prediction X̂13:20 = 1.6829 for X13:20 = 1.71278. The estimated
prediction intervals for this prediction are Ĉ90 = [1.55388, 2.14572] and Ĉ50 =
[1.60140, 1.82222]. Both intervals contain the exact value. However, in this case, as
we estimate the parameter, we do not know the exact coverage probabilities for these
intervals (see Sect. 5). The predictions from X12:20 for Xs:20 and s = 13, . . . , 20 are
plotted in Fig. 4, left. The predictions for s = 14 and s = 20 are X̂14:20 = 1.904668
and X̂20:20 = 5.545868. The blue lines represent the prediction intervals. Note that
all the exact values belong to the 90% intervals (dashed blue lines) and that three of
them do not belong to the 50% intervals (blue lines).

We can compare these predictionswith the ones obtained from themethod proposed
in Khaminsky and Rhodin (1985) or that obtained from the mean, the mode or the
BLU (see Remark 2.2). In the first case we obtain the predictions

X̂13:20 = X12:20 = 1.54357,

X̂14:20 = X12:20 + 9X12:20 + ∑11
i=1 Xi :20

13
log

8

7
= 1.74178,

X̂20:20 = X12:20 + 9X12:20 + ∑11
i=1 Xi :20

13
log 8 = 4.63014.
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Fig. 4 Predictions (red) for Xs:n from Xr :n forn = 20, r = 12 and s = 13, . . . , 20 (left) and r = 12, . . . , 19
and s = r + 1 (right) for the exponential distribution in Example 1 with estimated θ at Xr :20. The black
points are the exact values and the blue lines are the limits for the 50% (continuous lines) and the 90%
(dashed lines) prediction intervals (colour figure online)

These predictions are worse than that obtained with themedian. However, for the other
values, now the predictions for s = 17 and s = 18 are better (and that for s = 15, 16
and s = 19 are worse). In the second case, the predictions obtained with the mean
by using (2.7) are better than that obtained with the median for s = 13, . . . , 20 and
better to that obtained with the method proposed in Khaminsky and Rhodin (1985) for
s = 13, 14, 15, 16, 19, 20. If we use the curve based on the mode given in (2.8) for
s = 13, . . . , 19 we obtain worse predictions than those obtained with the preceding
cases. Finally, if we use the BLU predictor, we get better results in the cases s =
14, 15, 16, 20.

In Fig. 4, right, we provide the predictions for Xr+1:20 from all the preceding values
X1:20, . . . , Xr :20 for r = 12, . . . , 19 which are used to estimate θ . The estimations θ̂r
obtained for θ at Xr :20 and the predictions for Xs:20 are given in Table 1. Note that the
estimations for θ are similar. The MLE for θ from the complete sample (which is not
available under our assumptions) is θ̂20 = 20/(X1+· · ·+X20) = 0.6113249 which is
very similar to our estimations for r ≥ 12 (remember that the exact value is θ = 1). In
practice, when we work with real data, the stability of these predictions might confirm
the assumed parametric model. Also note that all the exact values belong to the 90%
prediction intervals but that 4 of them do not belong to the 50% prediction intervals
(as expected). Surprisingly, in this case, the estimations obtained from X12:20 seem to
be better than that obtained from the preceding values but note that the lengths of the
intervals in the first case are greater than the ones obtained in the second.

In the following example we perform a similar study by assuming a Pareto type II
baseline distribution in the PHR model.

Example 2 We simulate a sample of size n = 20 from a Pareto type II distribution with
parameter 2, i.e., with reliability function F̄(t) = 1/(1 + t)2 for t ≥ 0. The ordered
(rounded) sample values obtained are

0.01352 0.04743 0.05927 0.07542 0.16497 0.17561 0.22626 0.25210
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Table 1 Predicted values X̂r+1:n and estimated centered prediction intervals Ĉ50 = [lr , ur ] and Ĉ90 =
[Ln ,Un ] for Xr+1:n from Xr :n in a standard exponential distribution; θ̂r is the estimate of θ based on
X1:n , . . . , Xr :n for r = 12, . . . , 19

r θ̂r Lr lr X̂r+1:n Xr+1:n ur Ur

12 0.62188 1.55388 1.60140 1.68290 1.71278 1.82222 2.14572

13 0.62954 1.72442 1.77807 1.87007 2.22949 2.02736 2.39258

14 0.57692 2.24431 2.31260 2.42974 2.24561 2.62998 3.09493

15 0.61567 2.26227 2.33906 2.47078 2.56783 2.69595 3.21877

16 0.61599 2.58865 2.68459 2.84915 2.61441 3.13047 3.78366

17 0.64982 2.640723 2.76198 2.96997 2.80786 3.32553 4.15110

18 0.67312 2.845958 3.02155 3.32274 3.90280 3.83762 5.03313

19 0.65673 3.980903 4.34085 4.95825 7.68743 6.01370 8.46438

0.28100 0.32301 0.45214 0.46332 0.59333 0.80563 0.80966 0.86476

1.77393 2.43810 2.96807 6.05006

If we want to predict X2:20 from X1:20 by assuming that F̄ is known, we use the
quantile regression curve given in (2.1) to obtain

m(x) = F̄−1(q0.5 F̄(x)) = 1 + x√
q0.5

− 1 = 1.01841x + 0.01841,

where q0.5 = 0.96418 is the median of a beta distribution with parameters n−s+1 =
19 and s − r = 1. Thus, we get the prediction

m(X1:20) = m(0.01352) = 0.03218

while the real value is X2:20 = 0.04743. The associated 90% and 50% predic-
tion intervals are obtained from (2.2) as C90 = [0.01490, 0.09666] and C50 =
[0.02123, 0.05118]. The real value belongs to both intervals.

To see better what happens with these predictions we simulate N = 100 predictions
of this kind. The data are plotted in Fig. 5, left. There we can see that the prediction
bands represent very well the dispersion of the majority of data points (except some
extreme values). In this sample, C50 contains 44 values and C90 contains 92 while 6
values are above the upper limit and 2 are below the bottom limit. Of course, if we test
H0 : F̄ is correct by using the four regions considered in Sect. 2, we get the observed
values: 25, 24, 20, 31 and the T statistic value

T = (31 − 25)2

25
+ (20 − 25)2

25
+ (24 − 25)2

25
+ (25 − 25)2

25
= 2.48.

Thus, the P-value P = Pr(χ2
3 > 2.48) = 0.47892 leads to the acceptance of the

Pareto type II distribution (as expected).
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Fig. 5 Scatterplots of a simulated sample from (Xr :n , Xs:n) for n = 20, r = 1 and s = 2 (left) and r = 12
and s = 13 (right) for the Pareto distribution in Example 2 jointly with the theoretical median regression
curves (red) and 50% (dark grey) and 90% (light grey) prediction bands (colour figure online)

We do the same in Fig. 5, right, but for n = 20, r = 12 and s = 13. Now the
prediction for X13:20 = 0.59333 from X12:20 = 0.46332 obtained with the median
curve is 0.52811, where q0.5 = 0.91700 is the median of a beta distribution with
parameters n−s+1 = 8 and s−r = 1. The prediction intervals for this prediction are
C90 = [0.46802, 0.76464] and C50 = [0.48988, 0.59577]. Both intervals contain the
real value. The 100 repetitions of this case plotted in Fig. 5, right, show the underlying
uncertainty for our predictions. In this case, we have 93 values in C90, 55 in C50 and
7 values out of C90 (1 above and 6 below). The T statistic is 3.6 and its associated
P-value 0.30802 leads again to accept the (real) distribution F .

The predictions will be worse for other future values. In Fig. 6 we plot the pre-
diction bands for r = 12 s = 14 (left) and s = 20 (right). However, of course, the
coverage probabilities of these regions will be the same. The predictions obtained
are X̂14:20 = 0.63721 and X̂20:20 = 4.07940, with 90% prediction intervals C90 =
[0.49850, 1.01132] and C90 = [1.61833, 17.30424], respectively. The real values are
X14:20 = 0.80563 and X20:20 = 6.05006. Both values belong to the corresponding
interval but the second interval is really wide.

In Fig. 7 we plot the predictions for Xs:20 (red line) jointly with the limits of the
90% (dashed blue lines) and 50% (continuous blue line) prediction intervals in the
initial simulated sample from X12:20 for s = 13, . . . , 20 (left) and from the preceding
value Xs−1:20 (right) for s = 2, . . . , 20. In the left plot all the 8 exact points are in the
90% prediction intervals while 3 are out of the 50% prediction intervals (the expected
values are 0.8 and 4, respectively). In the right plot 2-out-of-19 points do not belong
to the 90% prediction intervals while 7 do not belong to the 50% (we expect 1.9 and
9.5, respectively).

Now, let us consider a more realistic scenario by just assuming the Pareto type II
model F̄(t) = 1/(1 + t)θ for t ≥ 0, with an unknown parameter θ > 0. We can use
(2.9) to estimate θ and, with the above sample and r = 12, we get
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Fig. 6 Scatterplots of a simulated sample from (Xr :n , Xs:n) for n = 20, r = 12 and s = 14 (left) and
s = 20 (right) for the Pareto distribution in Example 2 jointly with the theoretical median regression curves
(red) and 50% (dark grey) and 90% (light grey) prediction bands (colour figure online)
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Fig. 7 Predictions (red) for Xs:n from Xr :n for n = 20, r = 12 and s = 13, . . . , 20 (left) and r = 1, . . . , 19
and s = r + 1 (right) for the Pareto distribution in Example 2. The black points are the exact values and
the blue lines are the limits for the 50% (continuous blue lines) and the 90% (dashed blue lines) prediction
intervals (colour figure online)

θ̂12 = 12

9 log(1 + X12:20) + ∑11
i=1 log(1 + Xi :20)

= 2.28120.

The exact value is θ = 2. Replacing the exact survival function F̄(t) = 1/(1+t)2 with
F̄θ̂ (t) = 1/(1+ t)2.28120 we can obtain similar predictions for Xs:20 from X12:20 as the
ones obtained above. For example, for s = 13 we get the prediction X̂13:20 = 0.51997
for X13:20 = 0.59333. The estimated prediction intervals for this prediction are Ĉ90 =
[0.46744, 0.72438] and Ĉ50 = [0.48658, 0.57882]. The exact value belongs to Ĉ90
and it is out of Ĉ50. However, in this case, as we estimate the parameter, we do not
know the exact coverage probabilities for these intervals. In order to estimate them, we
will perform a simulation study in Sect. 5. The predictions from X12:20 for Xs:20 and
s = 13, . . . , 20 are plotted in Fig. 8, left, where the blue lines represent the prediction

123



Predicting future failure times by using quantile regression 565

5 10 15 20

0
2

4
6

8
10

i

Xi
:n

5 10 15 20

0
2

4
6

8
10

12

i

Xi
:n

Fig. 8 Predictions (red) for Xs:n from Xr :n for n = 20, r = 12 and s = 13, . . . , 20 (left) and r = 12, . . . , 19
and s = r + 1 (right) for the Pareto distribution in Example 2 with estimated θ . The black points are the
exact values and the blue lines are the limits for the 50% (continuous blue lines) and the 90% (dashed blue
lines) prediction intervals (colour figure online)

Table 2 Predicted values X̂r+1:n and centered prediction intervals Ĉ50 = [lr , ur ] and Ĉ90 = [Lr ,Ur ] for
Xr+1:n from Xr :n in a Pareto type II distribution; θ̂r is the estimate of θ at Xr :n for r = 12, . . . , 19

r θ̂r Lr lr X̂r+1:n Xr+1:n ur Ur

12 2.28120 0.46744 0.48658 0.51997 0.59333 0.57882 0.72438

13 2.18807 0.59868 0.62354 0.66709 0.80563 0.74427 0.93753

14 2.05372 0.81316 0.84828 0.91011 0.80967 1.02064 1.30257

15 2.19610 0.81814 0.85771 0.92758 0.86477 1.05319 1.37730

16 2.29218 0.87523 0.92420 1.01121 1.77394 1.16914 1.58537

17 1.98395 1.79795 1.91131 2.11655 2.43811 2.50148 3.58870

18 1.95382 2.48354 2.70077 3.10540 2.96807 3.90221 6.40057

19 2.00012 3.07115 3.58190 4.61159 6.05006 6.93582 16.74422

intervals. Note that all the exact values belong to the 90% intervals (dashed blue lines)
and that six of them do not belong to the 50% intervals (continuous blue lines).

We do the same in Fig. 8, right, but, in this case, Xr+1:20 is estimated from the pre-
ceding value Xr :20 by using all the preceding data values X1:20, . . . , Xr :20 to estimate
θ . The estimations θ̂r for θ at Xr :20 and the predictions for Xr+1:20 with r = 12, . . . , 19
are given in Table 2. Note that the estimations obtained for θ are similar. The MLE
for θ from the complete sample (which is not available under our assumptions) is
θ̂20 = 1.98527 (remember that the exact value is θ = 2). In practice, when we work
with real data, the stability of these predictions might confirm the assumed paramet-
ric model. Also note that 2 of the exact values do not belong to the 90% prediction
intervals and that 4 of them do not belong to the 50% prediction intervals (we expect
0.1 and 4).

In the following example we analyze a real data set by assuming that the original
(not ordered) data values are independent (the ordered values are always dependent).
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Example 3 Let us study the real data set considered in Bdair and Raqab (2022). They
represent ordered lifetimes of 20 electronic components. The complete sample is

0.03 0.12 0.22 0.35 0.73 0.79 1.25 1.41 1.52 1.79

1.80 1.94 2.38 2.40 2.87 2.99 3.14 3.17 4.72 5.09

Let us assume that we just know the first 12 failure times and that we want to predict
the future failures.

If we assume an exponential distribution with unknown failure rate θ , then we
estimate it from (2.5) at X12:20 as

θ̂12 = r

(n − r + 1)xr + ∑r−1
i=1 xi

= 12

9 · 1.94 + 0.03 + · · · + 1.8
= 0.43684.

From this value we obtain the point predictions and prediction intervals given in
Fig. 9, left. For example, the prediction for X13:20 = 2.38 is X̂13:20 = 2.13834 with
prediction intervals C90 = [1.95468, 2.797216] and C50 = [2.02232, 2.33668]. The
exact value belongs to C90 but not to C50. As we can see, the predictions for the last
values are not very good. However, all the exact values belong to the 90% prediction
intervals and only 4-out-of-8 of them do not belong to the 50% prediction intervals
(as expected). Note that this plot is similar to the plot obtained in Fig. 3, left, with a
sample of size 20 from an exponential distribution. If we count the data in the four
regions R1, R2, R3, R4 defined in Sect. 2, we get the observed data 3, 3, 1, 1 and the
Pearson T statistic value is

T = (3 − 2)2

2
+ (3 − 2)2

2
+ (1 − 2)2

2
+ (1 − 2)2

2
= 2.

We can approximate its distribution with a chi-squared distribution with 2 degrees of
freedom (since we estimate a parameter), and then its associated P-value is Pr(χ2

2 >

2) = 0.36788. So the exponential model cannot be rejected with the complete sample
(by using this test).

To check the model with the first 12 values we could estimate θ and predict Xr+1:20
from Xr :20 for r = 1, . . . , 11. The predictions can be seen in Fig. 9, right. The
estimations θ̂r for θ at Xr :20 for r = 1, . . . , 12 are

1.66667 0.86580 0.72993 0.63291 0.40323 0.45113

0.35461 0.36664 0.38894 0.38300 0.41969 0.43684

These estimations for θ are stable from r = 5 to r = 12. The MLE estimation with
the complete sample is θ̂ = 0.51666. As we can see in that figure the predictions
are accurate. Two and six exact points do not belong to the 90% and 50% prediction
intervals, respectively. These numbers are close to the expected values (0.1 · 11 = 1.1
and 0.5 · 11 = 5.5). So the exponential model cannot be rejected by using these first
12 values (the P-value obtained with the four regions in Sect. 2 is 0.20374).
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Fig. 9 Predictions (red) for Xs:n from Xr :n for n = 20, r = 12 and s = 13, . . . , 20 (left) and s = r + 1
and r = 1, . . . , 11 (right) for the real data set in Example 3 with estimated θ under an exponential model.
The black points are the exact values and the blue lines are the limits for the 50% (continuous lines) and
the 90% (dashed lines) prediction intervals (colour figure online)

In the same framework, if we assume a Pareto type II distribution with unknown
parameter θ , then we estimate it from (2.9) as

θ̂ = r

(n − r + 1) log(1 + xr ) + ∑r−1
i=1 log(1 + xi )

= 0.74311.

From this value we obtain the predictions and prediction intervals given in Fig. 10, left.
The prediction obtained with the Pareto model for X13:20 = 2.38 is X̂13:20 = 2.30358.
However, the predictions for the last values are very bad. In fact, 4 of the exact values
do not belong to the 90% prediction interval and only 1 of them belongs to the 50%
prediction interval. If we count the data in the four regions R1, R2, R3, R4 defined in
Sect. 2, we get the observed data 7, 0, 1, 0 and the Pearson T statistic value is

T = (7 − 2)2

2
+ (0 − 2)2

2
+ (1 − 2)2

2
+ (0 − 2)2

2
= 17.

By using again a chi-squared distribution with 2 degrees of freedom, its associated
P-value is Pr(χ2

2 > 17) = 0.00020 and so the Pareto type II model is rejected with
the complete sample. Let us see what happens if we check the model with the first
12 values by estimating θ and predicting Xr+1:20 from Xr :20 for r = 1, . . . , 11. The
predictions can be seen in Fig. 10, right. The estimations θ̂r obtained for θ at Xr :20 for
r = 1, . . . , 12 are

1.61099 0.91625 0.80597 0.73482 0.53125 0.60464

0.53333 0.57068 0.61839 0.63802 0.70023 0.74311

In the figure, we can see that one and seven observed points do not belong to the 90%
and 50% prediction intervals, respectively. In this case, the P-value obtained with the
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Fig. 10 Predictions (red) for Xs:n from Xr :n for n = 20, r = 12 and s = 13, . . . , 20 (left) and s = r + 1
and r = 1, . . . , 11 (right) for the real data set in Example 3 with estimated θ under a Pareto type II model.
The black points are the exact values and the blue lines are the limits for the 50% (continuous lines) and
the 90% (dashed lines) prediction intervals (colour figure online)

four regions is 0.06843 and the Pareto type II model could be rejected by using these
12 values.

We conclude this section with an example of four dependent data values. They can
represent the values in a small sample but they could also be the lifetimes of the four
engines in a plane. In the last case, it is very important to predict the future failure
times!

Example 4 First we consider the case r = 1, s = 2 and n = 4, that is, we want to
predict X2:4 from X1:4 = x . Let us assume that (X1, X2, X3, X4) has the following
Farlie-Gumbel-Morgenstern (FGM) survival copula

C̄(u1, u2, u3, u4) = u1u2u3u4 + θu1u2u3u4(1 − u1)(1 − u2)(1 − u3)(1 − u4)

(4.1)

for u1, u2, u3, u4 ∈ [0, 1] and θ ∈ [−1, 1]. The independent case is obtained when
θ = 0. Then

∂1C̄(u1, u2, u3, u4) = u2u3u4 + θu2u3u4(1 − 2u1)(1 − u2)(1 − u3)(1 − u4)

and

lim
v→0+ ∂1C̄(F̄(x), v, v, v) = lim

v→0+ v3 + θ(1 − 2F̄(x))v3(1 − v)3 = 0

for all x . Hence, from (3.4), we get

Ḡ2|1:4(y | x) = F̄3(y) + θ F̄3(y)F3(y)(1 − 2F̄(x))

F̄3(x) + θ F̄3(x)F3(x)(1 − 2F̄(x))

for all x ≤ y such that F̄3(x) + θ F̄3(x)F3(x)(1 − 2F̄(x)) > 0.
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Fig. 11 Predictions (red) for Xs:n from Xr :n for n = 4, r = 1 and s = 2 for θ = −1, 0, 1 (left) jointly with
the values (black point) from 100 simulated samples from a standard exponential distribution and an FGM
survival copula with θ = 1 (see Example 4). The blue lines represent the limits for the 50% (continuous
lines) and the 90% (dashed lines) prediction intervals. The green lines are the curves for the independent
case. In the right plot we have the curves when the mean of the exponential distribution is estimated from
the minimum X1:4 in the first sample (colour figure online)

Unfortunately, we cannot obtain an explicit expression for its inverse. However, we
can plot the level curves of this function to get the plots of the median regression curve
(level 0.5) and the limits of the centered prediction regions C90 (levels 0.05, 0.95) and
C50 (levels 0.25, 0.75). They are plotted in Fig. 11, left, jointly with the values obtained
from 100 samples of size n = 4 from a standard exponential distribution and an FGM
survival copula with θ = 1. The (rounded) ordered values obtained in the first sample
are

0.07086 0.32313 0.88360 1.66760.

The method used to generate these sample values is explained in the Appendix. Note
that the data values are perfectly represented by these prediction regions. In the right
plot we also provide the curves for θ = 0 (green lines) and θ = −1. As we can see
the changes are really minor. This is due to the fact that the FGM copula gives a weak
dependence relation. The curves might be more different in other dependence models
(copulas).

If we assume that the parameters in themodel are unknown,wemight try to estimate
them. Taking into account the preceding comments, instead of estimate θ , we could
just plot the curves for the extremes values θ = −1, 1. The exact curves will be
between them. So we just need to estimate the parameter λ = 1 of the exponential
distribution. For this purpose, in practice, we have just the sample minimum X1:4. Its
reliability function is

F̄1:4(t) = C̄(F̄(t), F̄(t), F̄(t), F̄(t)) = F̄4(t) + θ F̄4(t)F4(t)
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for t ≥ 0. Hence, if F̄(t) = exp(−t/μ) with μ = 1/λ, then the mean of X1:4 is

E(X1:4) =
∫ ∞

0
(e−4t/μ + θe−4t/μ(1 − e−t/μ)4)dt

=
∫ ∞

0
(1 + θ)e−4t/μ − 4θe−5t/μ + 6θe−6t/μ − 4θe−7t/μ + θe−8t/μdt

= μ

(
1 + θ

4
− 4θ

5
+ θ − 4θ

7
+ θ

8

)
.

Therefore, μ can be estimated with

μ̂ = X1:4
θ + 1+θ

4 − 4θ
5 − 4θ

7 + θ
8

.

For θ = 1, we get μ̂ = 3.94366X1:4 and for θ = −1, μ̂ = 4.05797X1:4. In our first
simulated sample,weobtain the value X1:4 = 0.07086 and so μ̂ ∈ [0.27945, 0.28755].
As we are assuming that θ is unknown, we can use the average of these two estimations
to approximateμwith 0.2835. By using this value, we get the curves plotted in Fig. 11,
right. Although the estimation forμ = 1 is very bad (since we just have one data point)
and the curves are far from the observed sample values (plotted in Fig. 11, left), note
that the value X2:4 belongs to the 90% prediction interval obtained from X1:4.

Along the same lines and by using the same copula, we can consider other cases.
If we want to predict X3:4 from X1:4 = x , by using (3.5), we get

Ḡ3|1:4(y | x) = A3|1:4(x, y)
F̄3(x) + θ F̄3(x)F3(x)(1 − 2F̄(x))

for all x ≤ y such that F̄3(x) + θ F̄3(x)F3(x)(1 − 2F̄(x)) > 0, where

A3|1:4(x, y) = 3F̄(x)F̄2(y) + 3θ F̄(x)F̄2(y)F(x)F2(y)(1 − 2F̄(x))

− 2F̄3(y) − 2θ F̄3(y)F3(y)(1 − 2F̄(x)).

As in the preceding case, we plot the level curves of this function to get the plots of the
median regression curve (level 0.5) and the limits of the centered prediction regions
C90 (levels 0.05, 0.95) and C50 (levels 0.25, 0.75). They are plotted in Fig. 12, left,
jointly with the values from 100 samples of size n = 4 from a standard exponential
distribution and an FGM survival copula with θ = 1. In this case we do not plot also
the curves for θ = 0 and θ = −1 since the changes are again really minor.

Furthermore, if we want to predict X4:4 from X1:4 = x , by using (3.6), we get

Ḡ4|1:4(y | x) = A4|1:4(x, y)
F̄3(x) + θ F̄3(x)F3(x)(1 − 2F̄(x))
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Fig. 12 Predictions (red) for Xs:n from Xr :n for n = 4, r = 1, s = 3 (left) and s = 4 (right) for θ = 1
jointly with the values (black point) from 100 simulated samples from a standard exponential distribution
and an FGM survival copula with θ = 1 (see Example 4). The blue lines represent the limits for the 50%
(continuous lines) and the 90% (dashed lines) prediction intervals (colour figure online)

for all x ≤ y such that F̄3(x) + θ F̄3(x)F3(x)(1 − 2F̄(x)) > 0, where

A4|1:4(x, y) = 3F̄2(x)F̄(y) + 3θ F̄2(x)F̄(y)F2(x)F(y)(1 − 2F̄(x))

− 3F̄(x)F̄2(y) − 3θ F̄(x)F̄2(y)F(x)F2(y)(1 − 2F̄(x))

+ F̄3(y) + θ F̄3(y)F3(y)(1 − 2F̄(x)).

We plot the level curves of this function to get the plots of the median regression
curve (level 0.5) and the limits of the centered prediction regions C90 (levels 0.05,
0.95) and C50 (levels 0.25, 0.75). They are plotted in Fig. 12, right, jointly with the
values from 100 samples of size n = 4 from a standard exponential distribution and
an FGM survival copula with θ = 1. Again, we do not plot the curves for θ = 0 and
θ = −1 since the changes are again really minor.

Proceeding as above, we can predict X2:4, X3:4 and X4:4 by using the median
regression curve and we can obtain the limits of the centered prediction regions
C90 and C50. For example, in the first sample, the prediction obtained for X2:4 =
0.32313 from X1:4 = 0.70086 is X̂2:4 = 0.29708 with prediction intervals C50 =
[0.16582, 0.51384] and C90 = [0.08788, 0.98928]. Analogously, the prediction for
X3:4 = 0.88360 from X1:4 = 0.70086 is X̂3:4 = 0.79118 with prediction intervals
C50 = [0.48511, 1.21566] and C90 = [0.22238, 2.07476]. Finally, the prediction for
X4:4 = 1.6676 from X1:4 = 0.70086 is X̂4:4 = 1.64681 with prediction intervals
C50 = [1.05428, 2.46201] and C90 = [0.50708, 4.14529]. In Fig. 13, left, we plot
these predictions (red) for X2:4, X3:4, X4:4 from X1:4 jointly with the exact values
(black points) in the first simulated sample from a standard exponential distribution
and an FGM survival copula with θ = 1.

Finally, we can use more that one data point to predict future failures. For example,
we can predict X3:4 from X1:4 = 0.07086 and X2:4 = 0.32313 by using (3.8). With
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Fig. 13 Predictions (red) for Xs:n from Xr :n for n = 4, r = 1 and s = 2, 3, 4 (left) jointly with the
exact values (black points) from a simulated samples from a standard exponential distribution and an FGM
survival copula with θ = 1 (see Example 4). The blue lines represent the limits for the 50% (continuous
lines) and the 90% (dashed lines) prediction intervals. In the right plot we can see the predictions for X3:4
and X4:4 from X1:4 and X2:4 (colour figure online)

the FGM copula we get

Ḡ3|1,2(t | x, y) = 1 + θ(1 − 2F̄(x))(1 − 2F̄(y))F2(t)

1 + θ(1 − 2F̄(x))(1 − 2F̄(y))F2(y)
· F̄2(t)

F̄2(y)

for x < y ≤ t . By solving Ḡ3|1,2(t | x, y) = 0.5 we get the prediction X̂3:4 =
0.70208 for X3:4 = 0.8836. Analogously, we obtain the prediction intervals C50 =
[0.47975, 1.07961] and C90 = [0.3509, 1.93089]. In a similar way, we can predict
X4:4 = 1.58455 from X1:4 = 0.07086 and X2:4 = 0.32313 by using (3.9) obtaining
X̂4:4 = 1.58455,C50 = [1.02971, 2.38660] and C90 = [0.57592, 4.06791]. The
predictions are plotted in Fig. 13, right.

5 Simulation study

In this section we show a simulation study to estimate the coverage probabilities of
the prediction regions when we estimate the parameter in the PHR model for samples
of IID random variables.

First, let us assume the exponential model with parameter θ = 1, F̄(t) = e−t for
t ≥ 0. We generate N samples of size 20 and, by supposing that the parameter θ > 0
is unknown, we use X12:20 to predict Xs:20, s = 13, 14, 20. For each sample we
use (2.5) with r = 12 to estimate θ , and we obtain θ̂ j , j = 1, . . . , N . Replacing

the exact survival function F̄(t) = e−t with F̄θ̂ j
(t) = e−θ̂ j , j = 1, . . . , N , we can

obtain predictions for Xs:20 from X12:20 for each simulated sample. Our purpose is to
estimate the coverage probabilities for the estimated prediction intervals Ĉ90 and Ĉ50
varying s and N . The results are listed in Table 3.

Furthermore, we perform the same study by choosing as baseline distribution for
the PHR model the Pareto type II distribution, that is, F̄(t) = 1/(1 + t)θ for t ≥ 0.
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Table 3 Number of observed
values of Xs:20 in Ĉ90 and Ĉ50
for varying s (13, 14 and 20) and
N (500, 1000 and 10000) for the
exponential model

Ĉ90 Ĉ50

N N

s 500 1000 10000 500 1000 10000

13 446 890 8869 259 512 4875

14 449 890 8705 233 483 4665

20 426 853 8309 210 441 4236

Table 4 Number of observed
values of Xs:20 in Ĉ90 and Ĉ50
for varying s (13, 14 and 20) and
N (500, 1000 and 10000) for the
Pareto type II model

Ĉ90 Ĉ50

N N

s 500 1000 10000 500 1000 10000

13 439 880 8812 247 472 4841

14 435 858 8711 251 491 4787

20 414 838 8373 202 416 4260

We choose θ = 2. For each sample we use (2.9) with r = 12 to estimate θ , and we
obtain θ̂ j , j = 1, . . . , N . Replacing the exact reliability function F̄(t) = 1/(1 + t)2

with F̄θ̂ j
(t) = 1/(1+ t)θ̂ j , j = 1, . . . , N , we obtain predictions for Xs:20 from X12:20

for each simulated sample.
The results about the coverage probabilities of the estimated prediction intervals

are given in Table 4. As we can see, in both cases, the coverage probabilities are a little
bit below of the expected values (for the exact model), especially when we predict the
last value X20:20 from X12:20. Note that in both models (exponential and Pareto), we
have some extreme upper values (especially in the Pareto model).

6 Conclusions

We have proved that quantile regression techniques can capture the underlying uncer-
tainty in the prediction of future sample values. We consider both the cases of IID and
DID samples. In both cases, if we know the underlying model (or it can be estimated
from preceding right censored samples), the predictions are accurate. Even more, we
can perform fit tests to confirm the model. If the model contains unknown parameters,
then they should be estimated from the available values. In those cases, the predictions
are not so accurate. However, the coverage probabilities obtained in the simulation
study when the parameters are estimated are close to the expected ones. In the IID case
we also provide some point predictors based on the median, the mean or the mode,
that are compared with classical estimators. However, we recommend to use predic-
tion intervals instead of point predictions since they represent better the uncertainty
in the future failure times.

There are several tasks for future research. The main one could be the estimation of
the unknown parameters in other parametric models (different to the PHR model) or
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other dependencemodels (copulas). The expressions for the dependence case for n > 4
and/or for non-exchangeable joint distributions (copulas) should also be obtained
following a procedure similar to the one proposed here. In this case, the estimation
of the parameters in the model (both in the distribution and in the copula) is a more
complex (but important) task.
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Appendix A: Sample from an FGM copula

Let us see how to generate a sample (U1,U2,U3,U4) from the survival copula C̄ .
Then the sample from (X1, X2, X3, X4) with a common reliability F̄ is obtained as
(F̄(U1), F̄(U2), F̄(U3), F̄(U4)).

The joint distribution function of (U1,U2,U3,U4) is given in (4.1). Then, its joint
PDF is

c̄(u1, u2, u3, u4) = 1 + θ(1 − 2u1)(1 − 2u2)(1 − 2u3)(1 − 2u4)

for u1, u2, u3, u4 ∈ (0, 1). The joint distribution function of (U1,U2,U3) is

C̄1,2,3(u1, u2, u3) = C̄(u1, u2, u3, 1) = u1u2u3

and so its joint PDF is c̄1,2,3(u1, u2, u3) = 1 for u1, u2, u3 ∈ (0, 1). So they are IID
and can be simulated just as independent uniform random variables.

The conditional PDF of U4 given U1 = u1,U2 = u2,U3 = u3 is obtained as

c̄4|1,2,3(u4 | u1, u2, u3) = c̄(u1, u2, u3, u4)
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for u1, u2, u3, u4 ∈ (0, 1). Therefore, its distribution function is

C̄4|1,2,3(u4 | u1, u2, u3) =
∫ u4

0
c̄(u1, u2, u3, z)dz

=
∫ u4

0
(1 + θ(1 − 2u1)(1 − 2u2)(1 − 2u3)(1 − 2z))dz

= u4 + θ(1 − 2u1)(1 − 2u2)(1 − 2u3)(u4 − u24)

for u4 ∈ [0, 1]. To get its inverse function we must solve

C̄4|1,2,3(u4 | u1, u2, u3) = q

for 0 < q < 1, which leads to

C̄−1
4|1,2,3(q | u1, u2, u3) = 1 + A − √

A2 + 1 + 2A(1 − 2q)

2A

when A �= 0, where A = θ(1 − 2u1)(1 − 2u2)(1 − 2u3) (the other solution of
the quadratic equation does not belong to the interval [0, 1]). In the simulation, as
U1,U2,U3 are independent random numbers in (0, 1), then the event A = 0 has
probability zero.
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