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Abstract: Tsallis introduced a non-logarithmic generalization of Shannon entropy, namely Tsallis
entropy, which is non-extensive. Sati and Gupta proposed cumulative residual information based
on this non-extensive entropy measure, namely cumulative residual Tsallis entropy (CRTE), and
its dynamic version, namely dynamic cumulative residual Tsallis entropy (DCRTE). In the present
paper, we propose non-parametric kernel type estimators for CRTE and DCRTE where the considered
observations exhibit an ρ-mixing dependence condition. Asymptotic properties of the estimators
were established under suitable regularity conditions. A numerical evaluation of the proposed
estimator is exhibited and a Monte Carlo simulation study was carried out.

Keywords: cumulative residual Tsallis entropy; dynamic cumulative residual Tsallis entropy; kernel
estimator; ρ-mixing; simulation

MSC: 62B10; 62G20; 94A17

1. Introduction

Shannon [1] made his signature in statistics by introducing the concept of entropy,
a measure of disorder in probability distribution. Associated with an absolutely continuous
random variable X with probability density function (pdf) f (x), cumulative distribution
function (cdf) F(x) and survival function (sf) F(x) = 1− F(x), Shannon entropy is defined
as

ζ(X) = −
+∞∫
0

f (x) log f (x)dx, (1)

where log(·) is the natural logarithm with standard convention 0 log 0 = 0. Nowadays,
this measure has gained a peculiar place in sciences such as physics, chemistry, computer
sciences, wavelet analysis, image recognition and fuzzy sets. Following the pioneering
work of Shannon, the available literature has generated a significant amount of papers
related to it, obtained by incorporating some additional parameters which make these
entropies sensitive to different the shapes of probability distributions.

A vital generalization of Shannon entropy is Tsallis entropy, which was first introduced
by Havrda and Charvát [2] in the status of cybernetics theory. Then, Tsallis [3] exploited
its non-extensive features and described its paramount importance in physics. In parallel
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to Shannon entropy, it measures the disorder in macroscopic systems. For an absolutely
continuous random variable X with pdf f (x), the Tsallis entropy of order α is defined as

τα(X) =
1

α− 1

(
1− E[( f (X))α−1]

)
=

1
α− 1

1−
+∞∫
0

( f (x))αdx

, α 6= 1, α > 0. (2)

when α → 1, τα(X) → ζ(X). Tsallis’s idea was to bestow a new formula instead of a
classical logarithm used in Shannon entropy. Tsallis entropy is relevant in various fields
of science; it is used in a broad range of contexts in physics science such as: statistical
physics [4]; astrophysics [5]; turbulence [6]; inverse problems [7]; or quantum physics [8].
Tsallis entropy is applied in the description of the fluctuation of magnetic field in solar
wind, in mammograms and in the analysis of magnetic resonance imaging (MRI) (as can be
seen in Cartwright [9]). In recent years, this entropy has prompted many authors to define
new discrimination measures as well as dual versions of entropy measures (see [10]).

Rao et al. [11] proposed another measure of uncertainty, called cumulative residual
entropy (CRE), which is obtained by writing a survival function in place of pdf in (1) and
is given by

ν(X) = −
+∞∫
0

F(x) log F(x)dx. (3)

The basic idea in this choice is that, in many situations, we prefer cumulative distribution
function (cdf) over pdf. Moreover, a cdf exists in situations in which density does not exist
such as in the case of a mixture density, combination of Gaussians and delta functions.
The CRE is specifically applicable to describe the information in problems related to aging
properties in reliability theory based on the mean residual life function. For other variants
of CRE, one may refer to Rao [12], Psarrakos and Toomaj [13] and the references therein.

As in the scenario of introducing the concept of CRE, Sati and Gupta [14] introduced
cumulative residual Tsallis entropy (CRTE) of order α, which is defined as

ηα(X) =
1

α− 1

1−
+∞∫
0

(F(x))αdx

, α 6= 1, α > 0. (4)

when α → 1, ηα(X) → ν(X). Since ηα(X) is not applicable to a system that has survived
for some units of time t, Sati and Gupta [14] proposed a dynamic version of CRTE based
on the random variable Xt = [X− t|X > t] whose definition is given below.

The dynamic cumulative residual Tsallis entropy (DCRTE) of order α is defined as

ηα(X; t) =
1

α− 1

1−
+∞∫
t

(
F(x)
F(t)

)α

dx

, α 6= 1, α > 0, (5)

where F(·) is the sf of X. Khammar and Jahanshahi [15] developed a weighted form
of CRTE and DCRTE and discussed many of its reliability properties. Sunoj et al. [16]
discussed a quantile-based study of CRTE and certain characterization results using order
statistics. Mohamed [17] studied the CRTE and DCRTE of concomitants of generalized
order statistics. Recently, Toomaj and Atabay [18] elaborately elucidated certain new results
based on CRTE. The huge increase in the number of articles on CRTE and DCRTE shows the
remarkable importance of both these measures from a theoretical and applied perspective
especially in the physical context. As far as statistical inferential aspects are concerned,
to the best of our knowledge, not even a single work has been performed to date in the
available literature. Hence, in this work, our main objective is to propose non-parametric
estimators for CRTE and DCRTE using kernel type estimation where the observations
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under considerations are exhibiting some mode of dependence. Practically, it seems more
realistic to replace the independence with some mode of dependence.

The study of non-parametric density estimation in the case of dependent data was
started decades back. Bradley [19] discussed the weak consistency and asymptotic nor-
mality of the kernel density estimator fn under ρ-mixing. Masry [20] established a non-
parametric recursive density estimator in the α-mixing context and studied some of its
properties. Masry and Györfi [21] established the strong consistency of recursive den-
sity estimator under ρ-mixing. Boente [22] discussed the strong consistency of the non-
parametric density estimator under φ-mixing and α-mixing processes. The mixing coeffi-
cients α-mixing, φ-mixing and ρ-mixing are defined by Rosenblatt [23], Ibragimov [24] and
Kolmogorov and Rozanov [25], respectively. For more properties of the different mixing
coefficients, see Bradley [26].

Rajesh et al. [27] discussed the local linear estimation of the residual entropy function
of conditional distributions where underlying observations are assumed to be ρ-mixing.
The kernel estimation of the Mathai–Haubold entropy function under α-mixing dependence
conditions were studied by Maya and Irshad [28]. Recently, non-parametric estimation
using kernel type estimation under α-mixing dependence conditions of residual extropy,
past extropy and negative cumulative residual extropy functions were studied by Maya
and Irshad [29], Irshad and Maya [30] and Maya et al. [31], respectively. Compared to
the α-mixing, ρ-mixing is stronger, as can be seen in Kolmogorov and Rozanov [25]. In
this work, we propose non-parametric estimators of CRTE and DCRTE using kernel type
estimation based on the assumption that underlying lifetimes are assumed to be ρ-mixing.

Definition 1. Let (Ω,F, P) be a probability space and Fk
i be the σ-algebra of events obtained by

the random variables {Xj; i ≤ j ≤ k}. The stationary process {Xj} is said to be asymptotically
uncorrelated if

sup
U∈L2(Fi

−∞)
V∈L2(F+∞

i+k )

|cov(U, V)|√
var(U)

√
var(V)

= ρ(k) ↓ 0 (6)

as k→ +∞, where L2

(
Fb

a

)
denotes the collection of all second-order random variables measurable

with respect to Fb
a, ρ(k) is called the maximal correlation coefficient or ρ-mixing coefficient (as can

be seen in Kolmogorov and Rozanov [25]).

The rest of the paper is structured as follows. In Section 2, we propose non-parametric
kernel type estimators for CRTE and DCRTE. Section 3 contains the expression for the
bias and variances of the estimators proposed for CRTE and DCRTE and examines its
consistency property. The mean consistently integrated in the quadratic mean and asymp-
totic normality of the proposed estimators are also discussed here in the form of several
theorems. A numerical study on the asymptotic normality of the proposed estimators is
given in Section 4.

2. Estimation

In this section, we propose non-parametric estimators for CRTE and DCRTE functions.
Let {Xi} be a strictly stationary process with univariate probability density function f (x).
Note that Xi’s need not be mutually independent, that is, the lifetimes are assumed to
be ρ-mixing. Wegman and Davies [32] introduced a recursive density estimator of f (x)
given by

f ∗n (x) =
1

n
√

bn

n

∑
j=1

b−
1
2

j K

(
x− Xj

bj

)
, (7)
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where K(x) satisfies the following conditions:

sup |K(x)| < +∞,
+∞∫
−∞

|K(x)|dx < +∞,

lim
|x|→+∞

|xK(x)| = 0,
+∞∫
−∞

K(x)dx = 1.

The bandwidth parameter bn satisfies bn → 0 and nbn → +∞ as n→ +∞. Let x be a point
of continuity of f . Suppose f is (r + 1) times continuously differentiable at the point x such
that:

sup
u
| f (r+1)(u)| = M < +∞.

Assume that:
+∞∫
−∞

|u|j|K(u)|du < +∞, j = 1, 2, . . . , r + 1,

and the bandwidth parameter bn satisfies:

1
n

n

∑
j=1

( bj

bn

)l+ 1
2

→ βl+ 1
2
< +∞, as n→ +∞, l = 0, 1, 2, . . . , r + 1.

Then. the mean and variance of f ∗n (x) are given by (see, Masry [20])

E ( f ∗n (x)) w β0.5

(
f (x) +

b2
nc2

2β0.5
f (2)(x)β2.5

)
(8)

and:

Var ( f ∗n (x)) w
f (x)
nbn

CK, (9)

where c2 =
+∞∫
−∞

u2K(u) du and CK =
+∞∫
−∞

K2(u) du. Equation (8) implies that f ∗n (x) is not an

asymptotically unbiased estimator of f (x). By simple scaling, we can find an asymptotically
unbiased estimator of f (x) given by

f̂n(x) =
f ∗n (x)
β0.5

.

The bias and variance of f̂n(x) are given by (see, Masry [20])

Bias
(

f̂n(x)
)
w

b2
nc2

2β0.5
f (2)(x)β2.5 (10)

and:

Var ( f̂n(x)) w
f (x)

nbnβ0.5
2 CK. (11)

We propose kernel estimators for CRTE and DCRTE functions that are, respectively,
given by

η̂α(X) =
1

α− 1

1−
+∞∫
0

F̂
α

n(x)dx

 (12)
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and:

η̂α(X; t) =
1

α− 1

1−

+∞∫
t

F̂
α

n(x)dx

F̂
α

n(t)

, (13)

where:

F̂n(t) =
+∞∫
t

f̂n(x)dx.

is the non-parametric estimator of survival function F(t).

3. Asymptotic Results

Here, we propose the expression for bias, variance and certain asymptotic results of
the proposed estimators.

Theorem 1. Let K(x) be a kernel satisfying the assumptions given in Section 2. Under ρ-mixing
dependence conditions, we have:

Bias
(

F̂n(t)
)
w

β2.5

2β0.5
b2

nc2

+∞∫
t

f (2)(x) dx, (14)

and:

Var(F̂n(t)) w
1

nbnβ2
0.5

CK

+∞∫
t

f (x) dx. (15)

Proof. The proof of the theorem is similar to the proof of bias and variance of f̂n(x) given
in Masry [20] and hence omitted.

Theorem 2. Suppose η̂α(X) is a non-parametric estimator of CRTE defined in (12) and η̂α(X; t)
is a non-parametric estimator of DCRTE defined in (13). Then, for α > 1

2 and α 6= 1:

1. η̂α(X) is a consistent estimator of ηα(X);
2. η̂α(X; t) is a consistent estimator of ηα(X; t).

Proof. 1. By using the Taylor’s series expansion, we obtain:

+∞∫
0

F̂
α

n(x)dx w

+∞∫
0

Fα
(x)dx + α

+∞∫
0

Fα−1
(x)
(

F̂n(x)− F(x)
)

dx.

Using the above equation, the bias and the variance of
+∞∫
0

F̂
α

n(x)dx are given by

Bias

 +∞∫
0

F̂
α

n(x)dx

 w
αβ2.5

2β0.5
b2

nc2

+∞∫
0

 +∞∫
x

f (2)(y) dy

Fα−1
(x)dx (16)

and:

Var

 +∞∫
0

F̂
α

n(x)dx

 w
α2

nbnβ2
0.5

CK

∞∫
0

F2α−1
(x)dx. (17)
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The corresponding MSE is given by

MSE

 +∞∫
0

F̂
α

n(x)dx

 w

αβ2.5

2β0.5
b2

nc2

+∞∫
0

 +∞∫
x

f (2)(y) dy

Fα−1
(x)dx

2

+
α2

nbnβ2
0.5

CK

+∞∫
0

F2α−1
(x)dx.

(18)

From (18), as n→ +∞:

MSE

 +∞∫
0

F̂
α

n(x)dx

→ 0.

Therefore:

η̂α(X) =
1

α− 1

1−
+∞∫
0

F̂
α

n(x)dx

 p→ 1
α− 1

1−
+∞∫
0

Fα
(x)dx

 = ηα(X).

Hence, η̂α(X) is a consistent estimator (in the probability sense) of ηα(X).

2. By using Taylor’s series expansion, the expressions for the bias of
+∞∫
t

F̂
α

n(x)dx and

F̂
α

n(t) are given by

Bias

 +∞∫
t

F̂
α

n(x)dx

 w
αβ2.5

2β0.5
b2

nc2

+∞∫
t

 +∞∫
x

f (2)(y) dy

Fα−1
(x)dx, (19)

Bias
(

F̂
α

n(t)
)

w
αβ2.5

2β0.5
b2

nc2Fα−1
(t)

+∞∫
t

f (2)(y) dy, (20)

whereas the variances are given by

Var

 +∞∫
t

F̂
α

n(x)dx

 w
α2

nbnβ2
0.5

CK

+∞∫
t

F2α−1
(x)dx, (21)

Var
(

F̂
α

n(t)
)

w
α2

nbnβ2
0.5

CKF2α−1
(t). (22)

The corresponding MSE’s are given by

MSE

 +∞∫
t

F̂
α

n(x)dx

 w

αβ2.5

2β0.5
b2

nc2

+∞∫
t

 +∞∫
x

f (2)(y) dy

Fα−1
(x)dx

2

+
α2

nbnβ2
0.5

CK

+∞∫
t

F2α−1
(x)dx

(23)

and:

MSE
(

F̂
α

n(t)
)
w

αβ2.5

2β0.5
b2

nc2Fα−1
(t)

+∞∫
t

f (2)(y) dy

2

+
α2

nbnβ2
0.5

CKF2α−1
(t).

(24)
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From (23) and (24), as n→ +∞:

MSE

 +∞∫
t

F̂
α

n(x)dx

→ 0,

and:
MSE

(
F̂

α

n(t)
)
→ 0.

Therefore:

η̂α(X; t) =
1

α− 1

1−

+∞∫
t

F̂
α

n(x)dx

F̂
α

n(t)


p→ 1

α− 1

1−

+∞∫
t

Fα
(x)dx

Fα
(t)

 = ηα(X; t).

Hence, η̂α(X; t) is a consistent estimator (in the probability sense) of ηα(X; t).

Proposition 1. Let K(x) be a kernel satisfying the conditions given in Section 2. Then, the estima-
tion error for DCRTE defined in (13) is given by

η̂α(X; t)− ηα(X; t) w
−1

(α− 1)Aα(t)

(
M̂α(t)− Âα(t)

Mα(t)
Aα(t)

)
, (25)

where M̂α(t) =
+∞∫
t

F̂
α

n(x)dx, Mα(t) =
+∞∫
t

Fα
(x)dx, Âα(t) = F̂

α

n(t) and Aα(t) = Fα
(t).

Proof. We have:

M̂α(t)
Âα(t)

− Mα(t)
Aα(t)

=
1

Aα(t)

(
M̂α(t)− Âα(t)

Mα(t)
Aα(t)

)(
Aα(t)
Âα(t)

− 1

)
+

1
Aα(t)

(
M̂α(t)− Âα(t)

Mα(t)
Aα(t)

)
=

1
Aα(t)

(
M̂α(t)− Âα(t)

Mα(t)
Aα(t)

)(
1 + Op(1)

)
(26)

with
(

Aα(t)
Âα(t)

− 1
)
= Op(1), since Âα(t)

p→ Aα(t).

Therefore:

M̂α(t)
Âα(t)

− Mα(t)
Aα(t)

w
1

Aα(t)

(
M̂α(t)− Âα(t)

Mα(t)
Aα(t)

)
. (27)

We have:

η̂α(X; t)− ηα(X; t) w
−1

(α− 1)

(
M̂α(t)
Âα(t)

− Mα(t)
Aα(t)

)
. (28)

By substituting (27) in (28), we obtain (25).
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Theorem 3. Suppose η̂α(X) is a non-parametric estimator of CRTE defined in (12) and η̂α(X; t)
is a non-parametric estimator of DCRTE defined in (13). Then, the biases of η̂α(X) and η̂α(X; t)
are given as

Bias(η̂α(X)) w
−α

(α− 1)
b2

nc2β2.5

2β0.5


+∞∫
0

Fα−1
(x)

 +∞∫
x

f (2)(y) dy

dx

, (29)

Bias(η̂α(X; t)) w
α

(α− 1)
β2.5

2β0.5

b2
nc2

Fα
(t)


+∞∫
t

Fα
(x)dx

F(t)

+∞∫
t

f (2)(y) dy (30)

−
+∞∫
t

Fα−1
(x)

 +∞∫
x

f (2)(y) dy

dx

,

and the variances are given for α > 1
2 as

Var(η̂α(X)) w
α2

(α− 1)2nbnβ2
0.5

CK


+∞∫
0

F2α−1
(x)dx

, (31)

Var(η̂α(X; t)) w
α2

(α− 1)2nbnβ2
0.5F2α

(t)
CK


+∞∫
t

F2α−1
(x)dx +

(
+∞∫
t

Fα
(x)dx

)2

F(t)


.(32)

Proof. By using Equations (16) and (17), we obtain the bias and variance of η̂α(X) and by
using Proposition 1 and Equations (19)–(22), we obtain the bias and variance of η̂α(X; t).

Theorem 4. Suppose η̂α(X) is a non-parametric estimator of CRTE as defined in (12) and η̂α(X; t)
is a non-parametric estimator of DCRTE as defined in (13). Then, for α > 1

2 and α 6= 1:

1. η̂α(X) is integratedly uniformly consistent in the quadratic mean estimator of ηα(X);
2. η̂α(X; t) is integratedly uniformly consistent in the quadratic mean estimator of ηα(X; t).

Proof. 1. Consider the mean integrated squared error (MISE) of the estimator η̂α(X).
That is:

MISE(η̂α(X)) = E
+∞∫
0

[η̂α(X)− ηα(X)]2dx

=

+∞∫
0

E[η̂α(X)− ηα(X)]2dx

=

+∞∫
0

[
Var(η̂α(X)) + [Bias(η̂α(X))]2

]
dx

=

+∞∫
0

MSE(η̂α(X))dx.

(33)
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Using (29) and (31), we obtain:

MSE(η̂α(X)) w

 −α

(α− 1)
b2

nc2β2.5

2β0.5


+∞∫
0

Fα−1
(x)

 +∞∫
x

f (2)(y) dy

dx


2

+
α2

(α− 1)2nbnβ2
0.5

CK


+∞∫
0

F2α−1
(x)dx

. (34)

From (34), as n→ +∞:
MSE(η̂α(X))→ 0.

Therefore, from (33), we have:

MISE(η̂α(X))→ 0, as n→ +∞. (35)

From (35), we can say that η̂α(X) is integratedly uniformly consistent in quadratic mean
estimator of ηα(X) (as can be seen in Wegman [33]).

2. Consider the MISE of the estimator η̂α(X; t)—that is:

MISE(η̂α(X; t)) = E
+∞∫
0

[η̂α(X; t)− ηα(X; t)]2dx

=

+∞∫
0

E[η̂α(X; t)− ηα(X; t)]2dx

=

+∞∫
0

[
Var(η̂α(X; t)) + [Bias(η̂α(X; t))]2

]
dx

=

+∞∫
0

MSE(η̂α(X; t))dx.

(36)

Using (30) and (32), we obtain:

MSE(η̂α(X; t)) w

 α

(α− 1)
β2.5

2β0.5

b2
nc2

Fα
(t)


+∞∫
t

Fα
(x)dx

F(t)

+∞∫
t

f (2)(y) dy

−
+∞∫
t

Fα−1
(x)

 +∞∫
x

f (2)(y) dy

dx


2

+

α2

(α− 1)2nbnβ2
0.5F2α

(t)
CK


+∞∫
t

F2α−1
(x)dx +

(
+∞∫
t

Fα
(x)dx

)2

F(t)


.(37)

From (37), as n→ +∞:
MSE(η̂α(X; t))→ 0.

Therefore, from (36), we have:

MISE(η̂α(X; t))→ 0, as n→ +∞. (38)
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From (38), we can say that η̂α(X; t) is integratedly uniformly consistent in the quadratic
mean estimator of ηα(X; t) (as can be seen in Wegman [33]).

Theorem 5. Suppose that η̂α(X) is a non-parametric estimator of CRTE defined in (12) with
α > 1

2 . Then, as n→ +∞:

(nbn)
1
2

{
η̂α(X)− ηα(X)

ση

}
(39)

has a standard normal distribution where:

σ2
η w

α2

(α− 1)2β2
0.5

CK


+∞∫
0

F2α−1
(x)dx

. (40)

Proof.

(nbn)
1
2 (η̂n(X)− η(X)) =

−(nbn)
1
2

(α− 1)


+∞∫
0

F̂
α

n(x)dx−
+∞∫
0

Fα
(x)dx


w
−α(nbn)

1
2

(α− 1)


+∞∫
0

Fα−1
(x)

 +∞∫
x

( f̂n(y)− f (y))dy

dx

.

(41)

By using the asymptotic normality of f̂n(x) given in Masry [20], it is immediate that:

(nbn)
1
2

{
η̂α(X)− ηα(X)

ση

}
is asymptotically normal with a mean of zero, variance of 1 and σ2

η given in (40).

Theorem 6. Suppose that η̂α(X; t) is a non-parametric estimator of DCRTE ηα(X; t) defined in (
13) with α > 1

2 and α 6= 1. Then, as n→ +∞:

(nbn)
1
2

{
η̂α(X; t)− ηα(X; t)

σηx

}
(42)

has a standard normal distribution where:

σ2
ηx w

α2

(α− 1)2β2
0.5F2α

(t)
CK


+∞∫
t

F2α−1
(x)dx +

(
+∞∫
t

Fα
(x)dx

)2

F(t)


. (43)

Proof.

(nbn)
1
2 (η̂n(X; t)− η(X; t)) =

−(nbn)
1
2

(α− 1)


+∞∫
t

F̂
α

n(x)dx

F̂
α

n(t)
−

+∞∫
t

Fα
(x)dx

Fα
(t)


w
−α(nbn)

1
2

(α− 1)Fα
(t)

+∞∫
t

Fα−1
(x)(F̂

α

n(x)− Fα
(x))dx

=
−α(nbn)

1
2

(α− 1)Fα
(t)


+∞∫
t

Fα−1
(x)

 +∞∫
x

( f̂n(y)− f (y))dy

dx

.

(44)
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By using the asymptotic normality of f̂n(x) given in Masry [20], it is immediate that:

(nbn)
1
2

{
η̂α(X; t)− ηα(X; t)

σηx

}
is asymptotically normal with a mean of zero, variance of 1 and σ2

ηx given in (43).

4. Numerical Evaluation of η̂α(X) and Monte Carlo Simulation

In this section, a numerical evaluation of η̂α(X) is given and a Monte Carlo simulation
is carried out to support the asymptotic normality of the estimator given in (39). Let X be
exponentially distributed with parameter λ (mean 1/λ). Then, the CRTE of order α of X is
given by

ηα(X) =
λα− 1

λα(α− 1)
. (45)

In order to obtain the desired estimator, it is necessary to fix a function K and a sequence
{bn}n∈N which satisfy the assumptions given in Section 2. Here, we consider:

K(x) =
1√
2π

exp
(
− x2

2

)
, x ∈ R (46)

bn =
1√
n

, n ∈ N. (47)

By using these assumptions, it readily follows that:

β0.5 =
4
3

, (48)

CK =
1

2
√

π
(49)

σ2
η =

α2CK

(α− 1)2β2
0.5λ(2α− 1)

=
9α2

32
√

π(α− 1)2λ(2α− 1)
, (50)

where α > 1
2 and α 6= 1.

To fix the ideas, consider n = 50 and λ = 1. Our goal is to check that:

(nbn)
1
2

{
η̂α(X)− ηα(X)

ση

}
has a standard normal distribution. By using the function exprnd of MATLAB, 500 samples
of size n, whose parent distribution is exponential with parameter 1, are generated. These
data satisfy the assumption in (6). Hence, by using the fixed parameters, the functions f̂n

and F̂n are obtained for each sample and finally the kernel estimator of CRTE is computed.
This procedure is repeated by choosing α = 1.5, 2 and 3. Then, in order to check the
asymptotic normality of the estimator in (39), the histogram in Figure 1 is displayed.
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(a) α = 1.5 (b) α = 2

(c) α = 3

Figure 1. Histogram of (39) with parameters given in Section 4 and different choices of α.

5. Conclusions

In this paper, non-parametric kernel type estimators for CRTE and DCRTE were
proposed for observations which exhibit ρ-mixing dependence. The bias and the vari-
ance of the proposed estimators were evaluated. Moreover, it was proven that those
estimators are consistent and a Monte Carlo simulation was carried out to show their
asymptotic normality.
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Abbreviations
The following abbreviations are used in this manuscript:

cdf cumulative distribution function
CRE cumulative residual entropy
CRTE cumulative residual Tsallis entropy
DCRTE dynamic cumulative residual Tsallis entropy
MISE mean integrated squared error
MSE mean squared error
pdf probability density function
sf survival function
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