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Abstract

In this paper, some properties of the order dependent time-homogeneous
load-sharing model are obtained, including an algorithmic procedure
to simulate samples from this model. Then, the problem of how to
get predictions of the future failure times is analysed in a sample
from censored data (early failures). Punctual predictions based on
the median, the mean and the convolutions of exponential distribu-
tions are proposed and prediction bands are obtained. Some illustrative
examples show how to apply the theoretical results. An application
in the study of lifetimes of coherent systems is proposed as well.

Keywords: Hazard rate function, Load-sharing model, Quantile regression,
Simulation, Predictions.

1 Introduction

The hazard rate function is an efficient tool to describe and characterize dis-
tributions. It is widely used and applied in several fields of probability and
statistics, especially in reliability theory and survival analysis, in order to study
aging properties and make comparisons among distributions. This function
is commonly considered for univariate distributions, but the interest towards
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more concrete and realistic models brought to ponder the possibility of defining
a corresponding multivariate version.

An appropriate formulation of a multivariate version of hazard rate should
result an efficient tool to describe stochastic dependence among failure-times,
under a scheme of longitudinal observations. This requirement led to the for-
mulation of the concept of multivariate hazard rates. The first steps in the
study of such a concept were made by Cox [2] for bivariate distributions and
since then this problem has been extensively studied and generalized by many
other researchers, see e.g. [10, 15, 16] and the references therein.

When the description of stochastic dependence among failure-times is based
on the multivariate conditional hazard rates, the interesting class of time-
homogeneous load sharing models emerges in a natural way. These models
form a subclass of the load-sharing models and their interest is based on some
shared properties with the exponential distributions. A wide and still devel-
oping literature has been devoted to this topic. As classical references one can
refer to [3, 12, 14]. In the time-homogeneous model the load shared by the
components in a system (or the systemic risk in an economic situation) does
not depend on time and it only changes when a component fails (or e.g. a bank
goes bankrupt). In several practical situations this is a reasonable assumption
since when a component fails, the other components have to cover the load
assigned to the failed component. This assumption allows us to estimate the
parameters (constant hazard rates) of the models in practice. Load-sharing
models have been extensively studied in [18, 19] in the case of parallel systems
with two components. There the components start operating by sharing the
total load L with load proportions α and 1 − α; then, when one component
fails, the other one continue working with the total load L.

In this paper, some properties of and time-homogeneous load-sharing mod-
els are considered for a new generalized version of this model recently proposed
in [5, 6] and called the order dependent version. Then, two objectives are pur-
sued. Firstly, a method for simulate samples from these models is discussed
and an algorithmic procedure to do so is proposed. Secondly, a study on the
predictions of future failure values under these models is performed. The sta-
tistical analysis about predictions is carried out by assuming different levels of
knowledge about the sample. Predictions intervals are obtained as well by using
convolutions of exponential distributions. Finally, it is explored the problem of
predicting the lifetime of a coherent system whose components are distributed
according to an order dependent time-homogeneous load-sharing model.

The rest of the paper is organized as follows. In Section 2, the formal defini-
tion of multivariate conditional hazard rate functions and the order dependent
time-homogeneous load-sharing model are given and some properties of this
model are explored. The study about predictions of future values is performed
in Section 3 where different ways of obtaining predictions are presented. In
Section 4, a procedure has been proposed to generate a sample from an order
dependent time-homogeneous load-sharing model and an example is provided.
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In Section 5, several examples about predictions are discussed and an appli-
cation to the analysis systems is provided. Finally, Section 6 contains the
conclusions and summarizes the results of the paper.

2 The models

Let X1, . . . , Xn be non-negative random variables with an absolutely continu-
ous joint distribution. For a fixed index j ∈ [n] = {1, . . . , n} and i1, . . . , ik ∈ [n]
with j /∈ I = {i1, . . . , ik}, and an ordered sequence 0 ≤ t1 ≤ · · · ≤ tk, the mul-
tivariate conditional hazard rate (MCHR) function λj(t|i1, . . . , ik; t1, . . . , tk)
is defined as follows [16]:

λj(t|i1, . . . , ik; t1, . . . , tk)

= lim
∆t→0+

1

∆t
P
(
Xj ≤ t+∆t

∣∣∣∣Xi1 = t1, . . . , Xik = tk,min
h/∈I

Xh > t

)
. (1)

Furthermore, we use the following notation for the MCHR functions with no
failures

λj(t|∅) = lim
∆t→0+

1

∆t
P (Xj ≤ t+∆t |X1:n > t ) , (2)

where X1:n = min(X1, . . . , Xn).
From Equation (1), it readily follows that the function

λj(t|i1, . . . , ik; t1, . . . , tk) describes the hazard rate of Xj at time t given an
observed history, from 0 to t, in which the failure of components Xi1 , . . . , Xik

have been observed at times t1, . . . , tk, respectively. Moreover, the function
λj(t|∅) in Equation (2) describes the hazard rate of Xj at time t, conditional
on the observation (X1:n > t) (i.e., no failures in [0, t]) and is sometimes called
in the literature risk-specific, or initial, failure rate (see [16]).

If the random variables X1, . . . , Xn are independent, then the mul-
tivariate conditional hazard rate functions degenerate into the classical
marginal hazard rate functions, in the sense that, for j /∈ {i1, . . . , ik},
λj(t|i1, . . . , ik; t1, . . . , tk) = rj(t) for all t > 0 regardless of i1, . . . , ik and
failure times t1, . . . , tk, where rj(·) is the hazard rate function of Xj . Fur-
thermore, if the random variables are exchangeable, i.e., (X1, . . . , Xn) =ST

(Xπ(1), . . . , Xπ(n)) for any permutation π of [n], where =ST denotes the equal-
ity in law, then the multivariate conditional hazard rate functions do not
depend on j and i1, . . . , ik but only on k and the failure times t1, . . . , tk. Then,
in the exchangeable case, the quantities defined by Equations (1) and (2)
respectively become

λj(t|i1, . . . , ik; t1, . . . , tk) = λ(k)(t|t1, . . . , tk), λj(t|∅) = λ(0)(t),

for k ∈ {1, 2, . . . , n− 1} and 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ t.
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The joint probability density function f of (X1, . . . , Xn) can be determined
and computed in terms of the multivariate conditional hazard rate functions.
The result can be stated as follows.

Proposition 1 The joint probability density function f of (X1, . . . , Xn) can be
obtained for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn as

f(t1, . . . , tn) = λ1(t1|∅) exp

− ∫ t1

0

 n∑
j=1

λj(u|∅)

 du


· λ2(t2|1; t1) exp

−∫ t2

t1

 n∑
j=2

λj(u|1; t1)

 du


· · ·λk+1(tk|1, . . . , k; t1, . . . , tk) exp

− ∫ tk+1

tk

 n∑
j=k+1

λj(u|1, . . . , k; t1, . . . , tk)

 du


· · ·λn(tn|1, . . . , n− 1; t1, . . . , tn−1) exp

[
−
∫ tn

tn−1

λn(u|1, . . . , n− 1; t1, . . . , tn−1)du

]
.

(3)

Similar expressions hold when t1, . . . , tn are such that 0 ≤ tπ(1) ≤ · · · ≤ tπ(n) for
some permutation π of the set [n].

For details on the proof of this proposition, one may refer to [15].
The multivariate conditional hazard rate functions are, in particular, a use-

ful tool to study the minimum among dependent random variables as showed
in [4]. In that paper, the authors proved that, for any vector of dependent
random variables, the probabilities of the events related to the behavior of
the minimum are equal to the probabilities of the same events for a vector of
independent random variables.

The multivariate conditional hazard rate functions are efficient tools to
describe the joint distribution of lifetimes subject to load-sharing situations,
see [11, 12, 14] for some applications. If the MCHR functions do not depend
on the failure times of the components, t1, . . . , tk, then we have a load-sharing
model. In this case, the current hazard of a working component only depends
on the calendar time t and on the set of working components. Moreover, if
in addition the MCHR functions do not depend on the calendar time t, then,
they are constant functions and we talk about time-homogeneous load-sharing
models. In particular, they can be seen as a natural generalization of the joint
distribution of a vector of independent and exponentially distributed random
variables.

For a review on general properties of load-sharing (LS) models and
time-homogeneous load-sharing (THLS) models see [12, 14, 17]. The formal
definitions of LS and THLS models can be stated as follows.
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Definition 1 Let (X1, . . . , Xn) be a random vector with absolutely continuous joint
distribution. It is distributed according to a load-sharing model (LS) if, for any
i1, . . . , ik ∈ [n] and j /∈ I = {i1, . . . , ik}, there exist functions µj(t|I) such that, for
all 0 ≤ t1 ≤ · · · ≤ tk ≤ t,

λj(t|i1, . . . , ik; t1, . . . , tk) = µj(t|I).

Furthermore, a load-sharing model is time-homogeneous (THLS) when there exist
non-negative numbers µj(I) and µj(∅) such that, for any t > 0 and any j /∈ I,

µj(t|I) = µj(I),

λj(t|∅) = µj(∅).

In this paper, we will consider a more general class of models introduced in
[6] which contains LS and THLS models as particular cases. This is the formal
definition.

Definition 2 Let (X1, . . . , Xn) be a random vector with absolutely continuous
joint distribution. It is distributed according to an order dependent load-sharing
(ODLS) model if, for any i1, . . . , ik ∈ [n] and j /∈ {i1, . . . , ik}, there exist functions
µj(t|i1, . . . , ik) such that, for all 0 ≤ t1 ≤ · · · ≤ tk ≤ t,

λj(t|i1, . . . , ik; t1, . . . , tk) = µj(t|i1, . . . , ik).

Furthermore, an order dependent load-sharing model is time-homogeneous (shortly
written as ODTHLS) when there exist non-negative numbers µj(i1, . . . , ik) and µj(∅)
such that, for any t > 0 and any j /∈ I,

µj(t|i1, . . . , ik) = µj(i1, . . . , ik),

λj(t|∅) = µj(∅).

In the rest of the paper, by requiring that the vector (X1, . . . , Xn) follows
an ODTHLS model, we will implicitly assume that the parameters of the model
are given as µj(∅), with j ∈ [n], and µj(i1, . . . , ik), with I = {i1, . . . , ik} ⊂ [n]
and j /∈ I.

Remark 1 If for any non-empty set I ⊂ [n] and any j /∈ I, the function µj(t|i1, . . . , ik)
is invariant under permutations of i1, . . . , ik, then the ODLS model reduces to a LS
model. In the same way, if for any non-empty set I ⊂ [n] and any j /∈ I the number
µj(i1, . . . , ik) is invariant under permutations of i1, . . . , ik, then the ODTHLS model
reduces to a THLS model. Note that this model includes a kind of weak exchange-
ability property since the multivariate conditional hazard rate functions just depend
on the set of broken components I = {i1, . . . , ik} instead of the vector of ordered
failures (i1, . . . , ik) used in the ODLS model.

Under the assumption of a ODTHLS model, the expression of the joint
probability density function given in Equation (3) simplifies considerably as
can be seen in the following proposition.
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Proposition 2 The joint probability density function f of (X1, . . . , Xn) under the
ODTHLS model can be obtained for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn as

f(t1, . . . , tn) = µ1(∅) exp

−t1

n∑
j=1

µj(∅)

 · µ2(1) exp

−(t2 − t1)

n∑
j=2

µj(1)

 ·

. . . · µk+1(1, . . . , k) exp

−(tk+1 − tk)

n∑
j=k+1

µj(1, . . . , k)

 · . . .

· µn(1, . . . , n− 1) exp [−(tn − tn−1)µn(1, . . . , n− 1)] ,

for 0 ≤ t1 ≤ t2 ≤ · · · ≤ tn. Similar expressions hold when t1, . . . , tn are such that
tπ(1) ≤ · · · ≤ tπ(n) for some permutation π of the set [n].

Dealing with an ODTHLS model, the following quantities are of great
interest

M(i1, . . . , ik) =
∑

h/∈{i1,...,ik}

µh(i1, . . . , ik); (4)

ρj(i1, . . . , ik) =
µj(i1, . . . , ik)

M(i1, . . . , ik)
. (5)

They are very useful in the study of the order statistics of (X1, . . . , Xn) as
stated in the following proposition extracted from [17] and adapted here to
the more general ODTHLS model (see also Section 3 of [5]).

Proposition 3 Let (X1, . . . , Xn) be distributed according to an ODTHLS model and
let π be a fixed permutation of [n]. Then, for r = 1, 2, . . . , n− 1

P(X1:n = Xπ(1), . . . , Xr:n = Xπ(r)) =

ρπ(1)(∅)ρπ(2)(π(1))ρπ(3)(π(1), π(2)) · . . . · ρπ(r)(π(1), . . . , π(r − 1))

and

P(X1:n = Xπ(1), . . . , Xn:n = Xπ(n)) =

ρπ(1)(∅)ρπ(2)(π(1))ρπ(3)(π(1), π(2)) · . . . · ρπ(n−1)(π(1), . . . , π(n− 2)). (6)

In order to state the following result, let us denote by Λ(r) a vector
(λ1, . . . , λr) ∈ Rr

+ and by GΛ(r)(t) the survival function of the random vari-
able Sr =

∑r
s=1 Γs, where Γ1, . . . ,Γr are independent random variables with

exponential distributions of parameters (hazard rates) λ1, . . . , λr, respectively.
Moreover, for a permutation π of [n] and r ∈ [n], we place

Λ(r)(π) = (M(∅),M(π(1)), . . . ,M(π(1), . . . , π(r − 1))).

Then, we have the following proposition. It is the adapted version to the
ODTHLS model of a result in [17] for the THLS model.
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Proposition 4 Let (X1, . . . , Xn) be distributed according to an ODTHLS model.
Then, for any t > 0 and j ∈ [n],

P(X1:n > t|X1:n = Xj) = exp(−tM(∅)),

and for any permutation π of [n] and k ∈ {2, . . . , n},

P(Xk:n > t|X1:n = Xπ(1), . . . , Xk−1:n = Xπ(k−1), Xk:n = Xπ(k)) = GΛ(k)(π)(t).

(7)

To prove Proposition 4, an important property of interarrival times of
ODTHLS models follows. In fact, in [17] it is observed that conditioning on the
event (X1:n = Xπ(1), . . . , Xk:n = Xπ(k)), the interarrival times X1:n, X2:n −
X1:n, . . . , Xk:n−Xk−1:n can be seen as independent random variables, exponen-
tially distributed with parameters M(∅),M(π(1)), . . . , M(π(1), . . . , π(k− 1)),
respectively. Two simple consequences of this fact, which will reveal to be key
tools for our predictions and simulations, are presented in the following two
remarks.

Remark 2 From Proposition 4, the independence between the events (X1:n > t) and
(X1:n = Xj) readily follows. In fact

P(X1:n > t) =

n∑
j=1

P(X1:n = Xj)P(X1:n > t|X1:n = Xj)

= exp(−tM(∅))
n∑

j=1

P(X1:n = Xj)

= exp(−tM(∅)).

Remark 3 We note that M(∅),M(π(1)), . . . , M(π(1), . . . , π(k − 1)) do not depend
on π(k) and then the interarrival times (or spacings) X1:n, X2:n −X1:n, . . . , Xk:n −
Xk−1:n, can be seen as independent random variables, exponentially distributed with
parameters M(∅),M(π(1)), . . . , M(π(1), . . . , π(k − 1)), respectively, given (X1:n =
Xπ(1), . . . , Xk−1:n = Xπ(k−1)). Hence, under this conditioning event, from (7), the
distribution of Xk:n is a convolution of k independent exponential distributions.

3 Predictions

In this section, we consider the problem of predicting future failure times in
the ODTHLS model. More precisely, we analyze different scenarios given by
different levels of knowledge. We start by giving the prediction of Xk+1:n given
the observed history

Hk = {X1:n = Xπ(1) = t1, X2:n = Xπ(2) = t2, . . . , Xk:n = Xπ(k) = tk} (8)

for k < n, where π is a permutation of [n].
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Proposition 5 Let (X1, . . . , Xn) follow an ODTHLS model. Given the history Hk

in (8) for k < n, the median prediction of the next failure time Xk+1:n is given by

X̂k+1:n = m(tk) = tk +
log 2

M(π(1), . . . , π(k))
, (9)

where tk is the value taken by the k-th order statistic, and the mean prediction of
Xk+1:n is given by

X̃k+1:n = tk +
1

M(π(1), . . . , π(k))
.

Moreover, a prediction band of size γ = β − α, with α, β, γ ∈ (0, 1), is given by
[tk + qα, tk + qβ ], where qα and qβ are the respective quantiles of the exponential
distribution with parameter M(π(1), . . . , π(k)).

Proof We start by recalling that for the ODTHLS models the dependence on the val-
ues taken by the variables is lost under conditioning with respect to the past history,
so that the relevant information contained in Hk is the same as the one contained
in (X1:n = Xπ(1), X2:n = Xπ(2), . . . , Xk:n = Xπ(k)). As observed above under this
model, given (X1:n = Xπ(1), X2:n = Xπ(2), . . . , Xk:n = Xπ(k)), the interarrival times
X1:n, X2:n − X1:n, . . . , Xk:n − Xk−1:n, Xk+1:n − Xk:n can be seen as independent
random variables, exponentially distributed with parameters M(∅), M(π(1)), . . . ,
M(π(1), . . . , π(k − 1)),M(π(1), . . . , π(k)), respectively. Hence, conditioning on the
given history, the interarrival time Zk+1 = Xk+1:n−Xk:n is exponential with param-
eter M(π(1), . . . , π(k)) and its value can be estimated by its median. If we denote by

mM(π(1),...,π(k)) = log 2
M(π(1),...,π(k))

the median of an exponential distribution with

parameter M(π(1), . . . , π(k)), then the median prediction of Xk+1:n is given by

X̂k+1:n = m(tk) = tk +mM(π(1),...,π(k)) = tk +
log 2

M(π(1), . . . , π(k))
,

which proves (9).
An alternative way of predicting Xk+1:n is based on the mean of the exponential

distribution with parameter M(π(1), . . . , π(k)) and in this framework the prediction
is

X̃k+1:n= tk + E(Xk+1:n −Xk:n|Hk) = tk +
1

M(π(1), . . . , π(k))
.

If we want to get a confidence γ = β − α, where α, β, γ ∈ (0, 1) and qα
and qβ are the respective quantiles of the exponential distribution with parameter
M(π(1), . . . , π(k)), then we use that

P
(
tk + qα ≤ Xk+1:n ≤ tk + qβ |X1:n = Xπ(1), . . . , Xk:n = Xπ(k) = tk

)
= γ,

where we have omitted t1, . . . , tk−1 in the conditioning event since they are not
relevant for our purposes. This concludes the proof. □

For example, in the above proposition, the centered 90% prediction band
is obtained with β = 0.95 and α = 0.05 as

C90 = [tk + q0.05, tk + q0.95]

=

[
tk − log(0.95)

M(π(1), . . . , π(k))
, tk − log(0.05)

M(π(1), . . . , π(k))

]
.
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Here, we prefer to use the predictions given by the median m(tk), instead of
the ones based on the mean, since they are obtained by using quantiles as well
as the prediction bands.

We now turn to consider another scenario concerning a different observed
history. We suppose to know how the realizations of the variables are ordered
up to a certain index, for instance k, without knowing the values taken. Hence,
we have information just about π(1), . . . , π(k) but not on t1, . . . , tk and our
purpose is to predict Xk+1:n.

Proposition 6 Let (X1, . . . , Xn) follow an ODTHLS model. Let us suppose to know
the history X1:n = Xπ(1), X2:n = Xπ(2), . . . , Xk:n = Xπ(k), for k < n. The median
and the mean prediction of the next failure time Xk+1:n are respectively given by

X̂k+1:n = mM(∅) +mM(π(1)) + · · ·+mM(π(1),...,π(k)), (10)

X̃k+1:n =
1

M(∅) +
1

M(π(1))
+ · · ·+ 1

M(π(1), . . . , π(k))
. (11)

Furthermore, the prediction for Xk+1:n can be obtained by the median of the
convolution of k + 1 independent exponential distributions with parameters M(∅),
M(π(1)), . . . ,M(π(1), . . . , π(k)).

Proof Two reasonable ways of predicting Xk+1:n are given by estimating each inter-
arrival time through the median or the mean and then provide the estimate ofXk+1:n

as

X̂k+1:n = mM(∅) +mM(π(1)) + · · ·+mM(π(1),...,π(k)),

X̃k+1:n =
1

M(∅) +
1

M(π(1))
+ · · ·+ 1

M(π(1), . . . , π(k))
,

where the first is the prediction based on the median and the second on the mean.
Moreover, by observing that

Xk+1:n = X1:n + (X2:n −X1:n) + · · ·+ (Xk+1:n −Xk:n),

another option to predict Xk+1:n is to obtain the median of the convolution given
above, i.e., the convolution of k+1 independent exponential distributions with param-
eters M(∅), M(π(1)), . . . ,M(π(1), . . . , π(k)). Note that the mean of that convolution
coincides with (11). □

Now, let us suppose k < n− 1 and that our purpose is to predict Xk+2:n.
By the assumptions of the model, the value of Xk+2:n will depend on which
path will be traversed to move from Xk:n to Xk+2:, i.e., on which of the n− k
available alternatives will be assumed for Xk+1:n. Thus we obtain the following
result.
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Proposition 7 Let (X1, . . . , Xn) follow an ODTHLS model. Given the history Hk

in (8) for k < n− 1, the prediction of Xk+2:n is given by

X̂k+2:n = X̂k+1:n +
∑

j /∈{π(1),...,π(k)}
ρj(π(1), . . . , π(k))

log 2

M(π(1), . . . , π(k), j)
,

where X̂k+1:n is the median prediction of Xk+1:n obtained as in Proposition 5.

Proof Let j /∈ {π(1), . . . , π(k)}. We have

P(Xk+1:n = Xj |X1:n = Xπ(1), . . . , Xk:n = Xπ(k)) = ρj(π(1), . . . , π(k)), (12)

where the dependence on t1, t2, . . . , tk in the conditioning event is lost due to the
properties of the model. Proceeding as above, we can predict the value of Xk+1:n,

namely X̂k+1:n. Then, by using this value and the median regression, we can predict
the value of Xk+2:n in n−k different ways depending on which variable is the (k+1)-
th order statistic. Hence, for each j /∈ {π(1), . . . , π(k)}, we obtain a prediction of

Xk+2:n, namely X̂
(j)
k+2:n. Finally, based on (12), the final prediction of Xk+2:n is

obtained by the weighted mean of all n− k predictions as

X̂k+2:n =
∑

j /∈{π(1),...,π(k)}
ρj(π(1), . . . , π(k))X̂

(j)
k+2:n,

or, equivalently, since the values ρj(π(1), . . . , π(k)) sum to one,

X̂k+2:n = X̂k+1:n +
∑

j /∈{π(1),...,π(k)}
ρj(π(1), . . . , π(k))mM(π(1),...,π(k),j)

= X̂k+1:n +
∑

j /∈{π(1),...,π(k)}
ρj(π(1), . . . , π(k))

log 2

M(π(1), . . . , π(k), j)
.

□

Again, we remark that the above prediction can be done also in terms of
the mean instead of the median. In order to set a different prediction and to
obtain the related prediction bands, we state the following result.

Proposition 8 Let (X1, . . . , Xn) follow an ODTHLS model. Let π be a fixed
permutation of [n] and k < n− 1. Then,

P(Xk+2:n −Xk:n > t|Hk) =
∑

j ̸=π(1),...,π(k)

ρj(π(1), . . . , π(k))GΥ
(k)
j (π)

(t), (13)

where Hk is the history in (8), G
Υ

(k)
j (π)

(t) is the survival function of the random vari-

able Y1+Y2, where Y1 and Y2 are independent random variables with exponential dis-
tributions of parameters (hazard rates) M(π(1), . . . , π(k)) and M(π(1), . . . , π(k), j),
respectively.

Proof The result follows by the law of total probability and by Proposition 4 observ-
ing that Xk+2:n−Xk:n can be seen as the sum of two independent interarrival times,
Xk+2:n −Xk:n = (Xk+2:n −Xk+1:n) + (Xk+1:n −Xk:n) with exponential distribu-
tions. □
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Conditioning on the observed history, the interarrival time Xk+2:n −Xk:n

is a mixture of n − k distributions which are sums of two independent expo-
nential distributions, not necessarily with the same parameters. We refer for
example to (4.8) and (4.9) in [9] for the analytical expressions of the survival
functions of such distributions, see also [13] p. 299. In particular, it is nec-
essary to distinguish between the case in which the exponential distributions
have the same parameter or not. If Y1 and Y2 are independent and exponen-
tially distributed with parameters λ and µ, λ ̸= µ, then the survival function
of Y = Y1 + Y2 is

F̄Y (t) =
µ

µ− λ
e−λt − λ

µ− λ
e−µt, (14)

for t ≥ 0. In the case λ = µ, the survival function of Y is given, for t ≥ 0, as

F̄Y (t) = (1 + λt)e−λt. (15)

The median of such distributions can also be a good prediction for Xk+2:n.
Numerical methods should be used to get that median from (13), (14) and
(15). Then, if we want to get a confidence γ = β−α, where α, β, γ ∈ (0, 1) and
qα and qβ are the respective quantiles of the distribution given in Proposition
8, we use that

P (tk + qα ≤ Xk+2:n ≤ tk + qβ |Hk) = γ.

Remark 4 By proceeding in this way, it is possible to estimate each Xs:n for s > k.
As seen above, with the increase of s there will be more terms in the convolutions.
In particular, by supposing to know the history Hk in (8), the estimation of Xs:n

will be based on the sum of
(n−k)!

(n−s+1)!
terms. Moreover, it is also possible to construct

prediction bands by giving a result similar to Proposition 8. In this case, we will need
distributions constructed as the sum of s− k independent exponential distributions.
Such distributions have been studied in [1, 7].

Remark 5 The prediction techniques described in this section can be applied also
to the residual lifetimes of an ODTHLS model. Suppose to know the observed his-
tory Hk in (8) for k < n, and that the remaining variables Xj1 , . . . , Xjn−k

are
greater than a time t (t > tk). Then, the joint distribution of the residual life-
times Xj1 − t, . . . , Xjn−k

− t is still an ODTHLS model and its parameters are
given in terms of the ones of (X1, . . . , Xn) (see [4]). For instance, we simply have
µ̃jl(∅) = µjl(π(1), . . . , π(k)), for l ∈ {1, . . . , n− k} and the minimum of the residual
lifetimes, Xπ(k+1) − t, can be estimated by the median of the exponential distribu-

tion with parameter M(π(1), . . . , π(k)) giving t + log 2
M(π(1),...,π(k))

as prediction for

Xπ(k+1).
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4 Simulated samples from the ODTHLS model

Let (X1, . . . , Xn) be a random vector satisfying the ODTHLS model with
parameters µj(∅) and µj(i1, . . . , ik), I = {i1, . . . , ik} ⊂ [n] and j /∈ I. There
are n! ways to order the variables X1, . . . , Xn and, for each one, the probabil-
ity that such an order corresponds to the sequence given by the order statistics
is given in Proposition 3. These probabilities depend on the parameters of the
model, hence, once they are fixed, it is possible to choose one of the permu-
tations by a random generation. For instance, it is possible to simulate the
random choice between all the permutations by generating a uniform number
in (0, 1).

Suppose that the permutation π is randomly selected in the set of all the
permutations of [n] according to the probabilities given in (6) and the fixed
parameters of the model. Hence, we have X1:n = Xπ(1), . . . , Xn:n = Xπ(n).
By Proposition 4 and Remark 2, the minimum is distributed as an exponen-
tial random variable with parameter M(∅), and it is not affected by which is
the random variable in which it is assumed. Then, it is possible to simulate
the minimum by a random generator of an exponential random variable with
parameter (hazard rate) M(∅).

Let k be a natural number between 2 and n and suppose we have already
simulated X1:n, . . . , Xk−1:n. Now, by using that conditioning on the event
(X1:n = Xπ(1), . . . , Xk−1:n = Xπ(k−1)), the interarrival times X1:n, X2:n −
X1:n, . . . , Xk:n−Xk−1:n can be seen as independent random variables, exponen-
tially distributed with parameters M(∅),M(π(1)), . . . , M(π(1), . . . , π(k− 1)),
respectively, the interarrival time Xk:n −Xk−1:n can be simulated by generat-
ing an exponential number with parameter M(π(1), . . . , π(k − 1)). Then, the
simulation of Xk:n is obtained by summing this exponential number with the
simulation of Xk−1:n obtained in the previous step.

We want to emphasize that, once the permutation is fixed, the interarrival
times can be generated all at the same time. If we denote by Zj , j ∈ [n], the j-
th interarrival time, i.e., Z1 = X1:n, Z2 = X2:n−X1:n, . . . , Zn = Xn:n−Xn−1:n

obtained for the permutation π, then the simulation of the k-th order statistic
is given as Xk:n =

∑k
j=1 Zj . Finally, by using the permutation π, the simulated

values for X1, . . . , Xn are obtained as Xπ(1) = X1:n, . . . , Xπ(n) = Xn:n.
The algorithm procedure can be summarized as follows.

Step 1. Choose π according to the probabilities given in Proposition 3.
Step 2. Simulate n independent exponential distributions Z1, . . . , Zn with respective

parameters M(∅),M(π(1)), . . . , M(π(1), . . . , π(n− 1)).
Step 3. Compute Xk:n = Z1 + · · ·+ Zk, for k = 1, . . . , n.
Step 4. Compute Xπ(k) = Xk:n, for k = 1, . . . , n.

Note that this algorithm can also be applied to simulate samples from
THLS models since they are particular models of ODTHLS ones.
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Let us see an example.

Example 1 Let (X1, X2, X3) be distributed according to an ODTHLS model with
parameters defined as follows

µ1(∅) = 1, µ1(2) = 2, µ1(3) = 1, µ1(2, 3) = µ1(3, 2) = 3,

µ2(∅) = 2, µ2(1) = 1, µ2(3) = 3, µ2(1, 3) = µ2(3, 1) = 2,

µ3(∅) = 2, µ3(1) = 2, µ3(2) = 1, µ3(1, 2) = µ3(2, 1) = 2.

We note that it is also a THLS model since µi(j, k) = µi(k, j) for all distinct i, j and
k. Hence, from (4) and (5) we have

M(∅) = 5, M(1) = 3, M(2) = 3, M(3) = 4,

M(1, 2) = M(2, 1) = 2, M(1, 3) = M(3, 1) = 2, M(2, 3) = M(3, 2) = 3,

from which

ρ1(∅) =
1

5
, ρ2(∅) =

2

5
, ρ3(∅) =

2

5
,

ρ2(1) =
1

3
, ρ3(1) =

2

3
,

ρ1(2) =
2

3
, ρ3(2) =

1

3
,

ρ1(3) =
1

4
, ρ2(3) =

3

4
,

and, naturally,

ρ1(2, 3) = ρ1(3, 2) = ρ2(1, 3) = ρ2(3, 1) = ρ3(1, 2) = ρ3(2, 1) = 1.

For n = 3 there are six possible permutations and from Proposition 3 the
corresponding probabilities are given as follows

P(X1:3 = X1, X2:3 = X2, X3:3 = X3) =
1

15
,

P(X1:3 = X1, X2:3 = X3, X3:3 = X2) =
2

15
,

P(X1:3 = X2, X2:3 = X1, X3:3 = X3) =
4

15
,

P(X1:3 = X2, X2:3 = X3, X3:3 = X1) =
2

15
,

P(X1:3 = X3, X2:3 = X1, X3:3 = X2) =
1

10
,

P(X1:3 = X3, X2:3 = X2, X3:3 = X1) =
3

10
.

By generating a uniform number in (0, 1) and accordingly to the probabilities given
above, the permutation (2, 1, 3) is chosen. Hence, three exponential numbers are
generated with parameters M(∅) = 5, M(2) = 3, and M(2, 1) = 2, respectively. In
this way, the simulated interarrival times obtained are 0.17166, 0.14498, 0.25606
and then the simulated values of the order statistics of our model are, respectively,
0.17166, 0.31663 = 0.17166 + 0.14498, 0.57270 = 0.31663 + 0.25606. Furthermore,
since we have fixed the permutation (2, 1, 3), the values 0.17166, 0.31663 and 0.57270
represent a simulation of X2, X1 and X3, respectively.
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5 Examples

In this section, we will give some examples to apply the results given in Section
3. In order to do this, we will use the simulation procedure studied in Section
4 to obtain samples. Finally, in the last part of the section, we will consider
the problem of predicting the lifetime of a coherent system whose components
are distributed according to an ODTHLS model.

5.1 Predictions for ODTHLS models

In this section, we consider the ODTHLS model given in Example 1 and sup-
pose that the realization of the sample is the one that we have simulated there,
i.e., X1 = 0.31663, X2 = 0.17166 and X3 = 0.57270. Suppose we just know
X1:3 = X2 = 0.17166 and that our purpose is to predict X2:3 and X3:3. Pro-
ceeding as described in Proposition 5, the mean and the median predictions
of X2:3 = 0.31663 are given by

X̃2:3 = X1:3 +
1

M(2)
= 0.50499

and

X̂2:3 = m(X1:3) = X1:3 +
log 2

M(2)
= 0.40270,

respectively. Furthermore, we can obtain the centered 90% and 50% prediction
bands that are given as

C90 =

[
X1:3 −

log(0.95)

M(2)
, X1:3 −

log(0.05)

M(2)

]
= [0.18875, 1.17023]

and C50 = [0.26755, 0.63375]. In this case, the true value of X2:3 belongs
to both regions. Once X2:3 has been predicted, proceeding as described in
Proposition 7, also X3:3 can be predicted. In this case the prediction of X3:3 =
0.57270 is given by

X̂3:3 = X̂2:3 + ρ1(2)
log 2

M(2, 1)
+ ρ3(2)

log 2

M(2, 3)

= 0.40270 +
2

3
· log 2

2
+

1

3
· log 2

3
= 0.71077.

From Proposition 8 we can get a different prediction for X3:3. We have

Ḡ3|1(t) = P(X3:3 −X1:3 > t|X1:3 = X2 = 0.17166)

= ρ1(2)GY1,1+Y1,2(t) + ρ3(2)GY2,1+Y2,2(t),

where Y1,1 and Y1,2 are independent and exponentially distributed with
parameters M(2) = 3 and M(2, 1) = 2, respectively, and Y2,1 and Y2,2 are
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Fig. 1 Predictions (red) for Xs:3 from X1:3 for s = 2, 3 jointly with the exact values (black
points) for a simulated sample from an ODTHLS model (see Section 5.1). The blue lines
represent the limits for the 50% (continuous lines) and the 90% (dashed lines) prediction
intervals (left). Scatterplots of a simulated sample from (X1:3, X2:3), for the case X1:3 = X2,
for the ODTHLS model in Section 5.1 jointly with the theoretical median regression curves
(red) and 50% (dark grey) and 90% (light grey) prediction bands (right).

independent and exponentially distributed with parameters M(2) = 3 and
M(2, 3) = 3, respectively. Hence, by referring to the analytical expressions
given in (14) and (15), we obtain

Ḡ3|1(t) = ρ1(2)
M(2)e−M(2,1)t −M(2, 1)e−M(2)t

M(2)−M(2, 1)
+ ρ3(2)(1 +M(2)t)e−M(2)t,

where the second term is related to the sum of two independent exponential
distributions with the same parameter M(2) = M(2, 3) = 3. Hence, by resolv-
ing Ḡ3|1(t) = 0.5 we obtain a prediction for the difference X3:3 −X1:3 that is
0.64409, from which

X̂3:3 = t1 + 0.64409 = 0.81575.

By resolving Ḡ3|1(t) = α, for α = 0.05, 0.25, 0.75, 0.95, we obtain the 90%
and 50% centered prediction bands as C90 = [0.30639, 2.04858] and C50 =
[0.53811, 1.21520]. We observe that X3:3 = 0.57270 belongs to both regions. In
Figure 1, left, we plot these predictions (red) for X2:3, X3:3 from X1:3 jointly
with the exact values (black points) and the prediction bands.

Analysis by using more samples

To see better what happens with these predictions we simulate N = 300
predictions of this kind, that is, 300 samples of size 3. Let us consider the
case in which we predict X2:3 from X1:3. In order to give the results in a
more readable way, we group them in three classes based on which is the
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Fig. 2 Scatterplots of a simulated sample from (X1:3, X2:3) for the ODTHLS model in
Section 5.1 jointly with the theoretical median regression curves (red) and 50% (dark grey)
and 90% (light grey) prediction bands for the case X1:3 = X1 (left) and X1:3 = X3 (right).

component corresponding to the minimum order statistic. The data are plotted
in Figures 1 and 2. There we can see that the prediction bands represent very
well the dispersion of the majority of data (except some extreme values). In
these samples, the minimum is assumed in X1, X2 and X3 for 52, 122 and 126
times, respectively. These values are consistent with the expected values given
by ρ1(∅) · 300 = 60, ρ2(∅) · 300 = 120 and ρ3(∅) · 300 = 120. If the minimum
is assumed in X1, C50 contains 24 data and C90 contains 45 while 4 data
are above the upper limit and 3 are below the bottom limit. If the minimum
is assumed in X2, C50 contains 69 data and C90 contains 109 while 6 data
are above the upper limit and 7 are below the bottom limit. If the minimum
is assumed in X3, C50 contains 58 data and C90 contains 112 while 7 data
are above the upper limit and 7 are below the bottom limit. Note that the
prediction bands depend on which component fails first.

Predictions without knowing the times

Now, suppose we know the minimum is assumed by X2 and we have no infor-
mation about its value. Then, as described in (10) and (11), predictions for the
first and the second order statistics based on the median (left) and the mean
(right) are given by

X̂1:3 =
log 2

M(∅)
= 0.13863, X̃1:3 =

1

M(∅)
= 0.2,

X̂2:3 =
log 2

M(∅)
+

log 2

M(2)
= 0.36968, X̃2:3 =

1

M(∅)
+

1

M(2)
= 0.53333.

Moreover, as described in Proposition 6, the prediction of X2:3 can be obtained
also by the median of the convolution X1:3 + (X2:3 − X1:3). In fact, given
that X1:3 = X2, these interarrival times are independent and exponential
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with parameters M(∅) = 5 and M(2) = 3 and the survival function of their
convolution is obtained by (14). The median of such a distribution can be
numerically computed and gives another prediction for X2:3 as 0.44139. Of
course, if we use the mean of the convolution we get 0.53333 as above.

Furthermore, if we know that the first and the second order statistics are
assumed in X2 and X1, respectively, the maximum X3:3 can be predicted by
the median and the mean, respectively, as

X̂3:3 =
log 2

M(∅)
+

log 2

M(2)
+

log 2

M(2, 1)
= 0.71625,

and

X̃3:3 =
1

M(∅)
+

1

M(2)
+

1

M(2, 1)
= 1.03333.

In addition, we can obtain the prediction of X3:3 based on the convolution
Y = X1:3 + (X2:3 −X1:3) + (X3:3 −X2:3), given that X1:3 = X2, X2:3 = X1.
The interarrival times are independent and have exponential distributions with
parameters M(∅) = 5, M(2) = 3 and M(2, 1) = 2. The survival function of
this convolution can be obtained by specializing the result of [1] to the case of
three exponential distributions with different parameters and it is expressed,
for t ≥ 0, as

ḠY (t) =
M(2)M(2, 1)

(M(2)−M(∅))(M(2, 1)−M(∅))
e−M(∅)t

+
M(∅)M(2, 1)

(M(∅)−M(2))(M(2, 1)−M(2))
e−M(2)t

+
M(∅)M(2)

(M(∅)−M(2, 1))(M(2)−M(2, 1))
e−M(2,1)t. (16)

The median of such a distribution can be numerically computed and gives
another prediction for X3:3 as X∗

3:3 = 0.90225. Note that ḠY can also be used
to get the prediction intervals for X3:3. We have C90 = [0.26708, 2.24684] and
C50 = [0.57337, 1.35021]. The exact value 0.57270 belongs to C90 but does not
belong to C50.

Predictions based only on the knowledge of the group of
failed variables

Now, suppose we have even less information and we just know that the first
and the second order statistics are assumed by X1 and X2 but we have not
the possibility to establish which one is X1:3 or X2:3. There are two possible
scenarios corresponding to the permutations (1, 2, 3) and (2, 1, 3). Conditioning
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on the information X3:3 = X3, it follows

P(X1:3 = X1, X2:3 = X2|X3:3 = X3) =
1

5
,

P(X1:3 = X2, X2:3 = X1|X3:3 = X3) =
4

5
.

Thus, the predictions for the first, second and third order statistics are obtained
as

X̂1:3 =
log 2

M(∅)
= 0.13863,

X̂2:3 =
log 2

M(∅)
+

1

5
· log 2

M(1)
+

4

5
· log 2

M(2)
= 0.36968,

X̂3:3 =
log 2

M(∅)
+

1

5

(
log 2

M(1)
+

log 2

M(1, 2)

)
+

4

5

(
log 2

M(2)
+

log 2

M(2, 1)

)
= 0.71625.

In this particular case, we have obtained the same predictions of the case in
which we know that X1:3 = X2 and X2:3 = X1, but this is only due to the
assumptions M(1) = M(2) and M(1, 2) = M(2, 1) and the same holds for the
predictions based on the mean or on the convolutions. Now, if we consider the
same model except for µ3(1, 2) = 3, and then M(1, 2) = 3 ̸= M(2, 1) = 2,
the median prediction of X3:3 knowing that X1:3 = X2 and X2:3 = X1 is still
0.71625, but without knowing which one between X1 and X2 is the minimum
and which one the second order statistic, the prediction ofX3:3 becomes X̂3:3 =
0.69315. Under these assumptions, the mean prediction of X3:3 is X̃3:3 = 1.

Finally, we obtain a prediction based on convolutions by giving a weight
of 0.2 and 0.8, respectively, to the medians of the convolutions of inde-
pendent and exponential distributions with parameters M(∅) = 5,M(1) =
3,M(1, 2) = 3 and M(∅) = 5,M(2) = 3,M(2, 1) = 2. The survival func-
tion of the latter is equal to the one given in (16), whereas the former has a
different expression since two of the three parameters coincide. In particular,
the convolution of three independent exponential distributions of parameters
M(∅),M(1),M(1)(= M(1, 2)) has the following survival function, which can
be derived from [1], for t ≥ 0,

Ḡ(t) =
M(1)2

(M(1)−M(∅))2
e−M(∅)t − M(∅)M(1)

(M(∅)−M(1))2
e−M(1)t

+
M(∅)M(1)

M(∅)−M(1)
te−M(1)t +

M(∅)
M(∅)−M(1)

e−M(1)t, (17)

and its median is 0.76649. Hence, the prediction for X3:3 based on the
convolutions is given as

X∗
3:3 =

1

5
· 0.76649 + 4

5
· 0.90225 = 0.87510.
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Moreover, a different prediction for X3:3 can be obtained by using the median
of the mixture of the survival functions given in (16) and (17) with 0.8
and 0.2 as weights, respectively. The prediction obtained numerically in this
way is X∗

3:3 = 0.87229 and its advantage is that we can give the prediction
regions. The centered 90% and 50% prediction bands are [0.25848, 2.17710] and
[0.55452, 1.30560], respectively. Observe that the exact value X3:3 = 0.57270
belongs to both the regions.

5.2 The case of unknown parameters

In this section, we analyze the problem of the predictions dealing with an
ODTHLS model for which we do not know the values of the parameters. Hence,
in the first part of the analysis, we obtain estimation for the parameters used
in the predictions.

The estimation of the parameters

Let (X1, X2, X3) be distributed according to an ODTHLS model with
parameters defined as follows

µ1(∅) = 1, µ1(2) = 2, µ1(3) = 1, µ1(2, 3) = 3, µ1(3, 2) = 1,

µ2(∅) = 2, µ2(1) = 1, µ2(3) = 3, µ2(1, 3) = 2, µ2(3, 1) = 1,

µ3(∅) = 2, µ3(1) = 2, µ3(2) = 1, µ3(1, 2) = 2, µ3(2, 1) = 1.

Hence, we have

M(∅) = 5, M(1) = 3, M(2) = 3, M(3) = 4, M(1, 2) = 2,

M(2, 1) = 1, M(1, 3) = 2, M(3, 1) = 1, M(2, 3) = 3, M(3, 2) = 1.

Suppose we do not know the parameters of the model and we have historical
data related to N = 300 samples. For those samples we know how X1, X2

and X3 are ordered and their values. Then, we can estimate the parameters
of the model through the values of interarrival times. Since the minimum is
distributed as an exponential distribution with parameter M(∅), it can be
estimated as

M̂(∅) = N∑N
i=1 X

(i)
1:3

= 5.19128,

where X
(i)
1:3 is the minimum in the i-th sample.

In order to estimate the other parameters, we need to group the data with
the corresponding permutation. Let π1 = (1, 2, 3), π2 = (1, 3, 2), π3 = (2, 1, 3),
π4 = (2, 3, 1), π5 = (3, 1, 2) and π6 = (3, 2, 1) and define Pj as the set of the
observed samples ordered according to πj , j = 1, 2, . . . , 6.
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Then, by recalling Z2 = X2:3 − X1:3, the estimations of M(1), M(2) and
M(3) are obtained as

M̂(1) =
|P1 ∪ P2|∑
i∈P1∪P2

Z
(i)
2

= 2.48951,

M̂(2) =
|P3 ∪ P4|∑
i∈P3∪P4

Z
(i)
2

= 3.34077,

M̂(3) =
|P5 ∪ P6|∑
i∈P5∪P6

Z
(i)
2

= 4.10161.

Finally, about the parameters M(h, k), h, k = 1, 2, 3, h ̸= k, by using Z3 =
X3:3 −X2:3, we have

M̂(1, 2) =
|P1|∑

i∈P1
Z

(i)
3

= 2.67262, M̂(1, 3) =
|P2|∑

i∈P2
Z

(i)
3

= 2.11041,

M̂(2, 1) =
|P3|∑

i∈P3
Z

(i)
3

= 0.96048, M̂(2, 3) =
|P4|∑

i∈P4
Z

(i)
3

= 3.89834,

M̂(3, 1) =
|P5|∑

i∈P5
Z

(i)
3

= 0.91519, M̂(3, 2) =
|P6|∑

i∈P6
Z

(i)
3

= 0.82732.

Predictions based on the estimated parameters

Assume fully knowledge about the first and second order statistics, i.e., the
value and the corresponding component, and we want to predict the maximum
order statistic. Then, we can predict the interarrival time by using the quantile
regression with the estimated parameters M̂(h, k). We repeat this procedure
for the 300 samples and the results are presented in Figure 3 where they are
grouped by the different permutations. In order to compare with the predic-
tions based on the fully knowledge of the model, in the figures we also plot
the theoretical median regression lines (green), whereas the theoretical pre-
diction bands are omitted for the readability of the plots. Moreover, since the
parameters have been estimated, here the theoretical coverage percentage of
the prediction bands is not exactly 50% or 90% and we refer to them as Ĉ

πj

50

and Ĉ
πj

90 , j ∈ {1, . . . , 6}. The number of elements in these regions are reported
in Table 1.

5.3 Reliability of systems

In this section, we consider a coherent system whose components are dis-
tributed according to an ODTHLS model and, by using the observed hystory,
we obtain predictions for the lifetime of the system.
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Fig. 3 Scatterplots of a simulated sample from (X2:3, X3:3) for the ODTHLS model in
Section 5.2 jointly with the median regression curves (red) and 50% (dark grey) and 90%
(light grey) prediction bands obtained by estimating the parameters and with the theoretical
median regression curve (green).
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Real coverage in πj Ĉ
πj

90 Ĉ
πj

50
j = 1 88.23% 64.70%
j = 2 97.14% 51.43%
j = 3 89.77% 54.54%
j = 4 97.06% 32.35%
j = 5 85.71% 45.71%
j = 6 90.11% 47.25%
Weighted average 91.00% 49.00%

Table 1 Percentage of exact data in Ĉ
πj

90 and Ĉ
πj

50 , j ∈ {1, . . . , 6}, and weighted average
in Section 5.2.

1

2

3

4

Fig. 4 The structure of the system in Example 2.

Example 2 Let us consider a coherent system formed by four components
X1, X2, X3, X4 and whose lifetime T is described as

T = min{max{X1, X2},max{X3, X4}},

and whose structure is displayed in Figure 4. Let us suppose that (X1, X2, X3, X4) is
distributed according to an ODTHLS model and that X1:4 = X1 = t1. Our purpose
is to predict the lifetime of the system. The parameters of the model are (we give
just the ones interesting for our purposes)

µ1(∅) = 4, µ2(∅) = 1, µ3(∅) = 1, µ4(∅) = 2,

µ2(1) = 1, µ2(1, 3) = 2, µ2(1, 4) = 2, µ2(1, 3, 4) = 2, µ2(1, 4, 3) = 3,

µ3(1) = 3, µ3(1, 2) = 3, µ3(1, 4) = 3, µ3(1, 2, 4) = 1, µ3(1, 4, 2) = 2,

µ4(1) = 2, µ4(1, 2) = 3, µ4(1, 3) = 1, µ4(1, 2, 3) = 3, µ4(1, 3, 2) = 2.

By knowing the first failure and the structure of the system, we deduce that T
will be equal to the second order statistic if it is assumed by X2 whereas it will be the
third order statistic if the second failure is assumed by X3 or X4. Hence, we obtain
a prediction for the lifetime of the system by using the predictions of the second and
third order statistics appropriately weighted. More precisely, from Proposition 3, the
weight for the prediction of the second order statistic will be

P(X2:4 = X2|X1:4 = X1) = ρ2(1) =
µ2(1)

µ2(1) + µ3(1) + µ4(1)
=

1

6
.

About the third order statistic, we have to consider two different predictions, one for
the case X2:4 = X3 and one for X2:4 = X4. The corresponding weights are given by

P(X2:4 = X3|X1:4 = X1) = ρ3(1) =
1

2
,

P(X2:4 = X4|X1:4 = X1) = ρ4(1) =
1

3
.
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Hence, the prediction for the lifetime of the system is obtained as

T̂ = ρ2(1) · X̂2:4 + ρ3(1) · X̂
(3)
3:4 + ρ4(1) · X̂

(4)
3:4 ,

where X̂
(j)
3:4 , j = 3, 4, denotes the prediction of the third order statistic given (X1:4 =

X1 = t1, X2:4 = Xj).
Consider the following (simulated) realization of the sample

X1:4 = X1 = 0.10728, X2:4 = X3 = 0.17977,

X3:4 = X2 = 0.35048, X4:4 = X4 = 0.99044.

Then, we have T = X3:4 = 0.35048. Suppose we know only X1:4 = X1 = 0.10728,
hence, by proceeding as described above we obtain

X̂2:4 = t1 +
log 2

M(1)
= 0.22281, M(1) = µ2(1) + µ3(1) + µ4(1) = 6,

X̂
(3)
3:4 = X̂2:4 +

log 2

M(1, 3)
= 0.45386, M(1, 3) = µ2(1, 3) + µ4(1, 3) = 3,

X̂
(4)
3:4 = X̂2:4 +

log 2

M(1, 4)
= 0.36144, M(1, 4) = µ2(1, 4) + µ3(1, 4) = 5,

from which it follows that the prediction for T = 0.35048 is

T̂ =
1

6
· 0.22281 + 1

2
· 0.45386 + 1

3
· 0.36144 = 0.38454.

If the system does not fail at X2:4, i.e. the second order statistic is assumed by
X3 or X4, and we just know that t2 = X2:4 = 0.17977, then the prediction for the
lifetime of the system will be

T̂ = t2 +
3

5
· log 2

M(1, 3)
+

2

5
· log 2

M(1, 4)
= 0.37385,

or, by using the median of the mixture of two exponential distributions with param-
eters M(1, 3) and M(1, 4) and weights 0.6 and 0.4, respectively, T̂ = 0.36645. If we
also know that X2:4 = X3, then the prediction will be

T̂ = t2 +
log 2

M(1, 3)
= 0.41082.

In both cases we can obtain prediction bands for T . In the first case we have a mixture
of two exponential distributions and in the second an exponential distribution with
parameter 3. The prediction bands in the first case for the point estimation T̂ =
0.36645 are C90 = [0.19329, 1.04527] and C50 = [0.25621, 0.56174], and in the second

case, for T̂ = 0.41082, we have C90 = [0.19687, 1.17835] and C50 = [0.27566, 0.64187].

6 Conclusions

In this paper, some properties of the order dependent time-homogeneous load-
sharing (ODTHLS) model are discussed. The non-order dependent model is
recovered as a particular case and hence all the results are valid and applicable
for it too. The problem of the predictions of future failure times in these models
is addressed. Then a procedure is described to generate samples which follow
the ODTHLS model. Different scenarios based on the level of information are
considered and several examples are proposed. These procedures can also be
applied to predict system failures. Prediction bands for these future values are
provided as well. For predictions without assuming the ODTHLS model see
[8] and the references therein.
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