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Università degli Studi di Napoli Federico II, Naples, Italy

francesco.buono3@unina.it

3 Dipartimento di Biologia
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Abstract

Recently, a new dispersion index, as a measures of information, has been intro-

duced and called varentropy. In this paper, we introduce new measures of variability

based on two measures of uncertainty, namely, the Kerridge inaccuracy measure and

the Kullback-Leibler divergence. Their generating functions are considered and their

infinite series representations are given. These new measures and associated properties,

bounds and illustrative examples are all presented in detail. Finally, an application of

Kullback-Leibler divergence and its dispersion index is illustrated by using the mean-

variance rule.
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1 Introduction

Let X be a non-negative and absolutely continuous random variable with cumulative distri-

bution function (cdf) F and probability density function (pdf) f . Shannon (1948) introduced

a measure of uncertainty as the average level of information associated with the random vari-

able X, known as Shannon entropy or differential entropy. It is defined as

H(X) = Ef [− log f(X)] = −
∫ +∞

0

f(x) log f(x)dx,

where log is the natural logarithm. Since then, several properties of Shannon entropy have

been studied and different generalizations of this measure have been introduced. One can

observe that the Shannon entropy is position-free, in the sense that X and X+b, with b ∈ R,

have the same entropy.

The differential entropy has been extended to study the discrepancy between two distri-

butions. In the context of measures discussed in this paper, f and g are two pdf’s associated

with a single random variable X in problems in which f is the pdf of the “true” distribution

of X while g is the pdf suggested by the results of an experiment (Kerridge, 1961). In an-

other viewpoint, f could be suitable to be selected as a model since it is closest to a reference

pdf g (Kullback and Leibler, 1951). To be precise, let us consider two absolutely continuous

non-negative random variables X and Y with cdf’s F, G and pdf’s f, g, respectively. If F is

the distribution corresponding to the observations and G is the distribution assigned by the

experimenter, then the inaccuracy measure of X and Y (also named cross entropy of Y on

X or relative distance between X and Y ) has been given by Kerridge (1961) as

I(f ; g) ≡ Hf (g) := Ef [− log g(X)] = −
∫ +∞

0

f(x) log g(x)dx. (1)

As in the previous definition, the inaccuracy is an extension of the entropy H(X). This

measure of uncertainty has been widely studied in the literature and has been adapted to

different contexts as well (see, for instance, Ghosh and Kundu (2018), Khorashadizadeh

(2018) and Kundu et al. (2016)). Also, Taneja and Tuteja (1986) have discussed weighted

version of this inaccuracy measure which is a shift dependent measure of uncertainty, while
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the study of residual and past lifetime distributions through the inaccuracy measure has

been carried out by Taneja et al. (2009) and Kumar et al. (2011), respectively. Recently,

Balakrishnan et al. (2022) have presented a unified formulation of entropy.

As an information distance between two random variables X and Y , Kullback and Leibler

(1951) have introduced a directed divergence defined as

K(f : g) = Ef

[
log

f(X)

g(X)

]
=

∫ +∞

0

f(x) log
f(x)

g(x)
dx. (2)

It is also known as information divergence, information gain, relative entropy or discrimina-

tion measure. The Kullback-Leibler divergence is a measure of similarity (closeness) between

two distributions and plays an important role in information theory, reliability and many

other applied fields. Several extensions of this measure have been proposed in the literature;

for instance, see Park et al. (2012) and Sunoj et al. (2017). It is important to observe that

Kullback-Leibler divergence is non-negative and is equal to 0 if and only if X and Y are

identically distributed. This characteristic allows one to use the estimated Kullback-Leibler

information as a goodness-of-fit test statistic; see Arizono and Ohta (1989) and Balakrishnan

et al. (2007) for pertinent details in this regard. Finally, the Kullback-Leibler divergence

and the inaccuracy measure are related as follows:

K(f : g) = I(f ; g)−H(X). (3)

Recently, the study of variability of measures of information has received considerable

attention in the literature. In fact, a dispersion index would be useful in understanding

about the reliability of the measure. Song (2001) studied the concept of varentropy as an

efficient alternative measure for comparing heavy-tailed distributions instead of using the

traditional kurtosis measure. In this respect, Fradelizi et al. (2016) have discussed the

notion of varentropy defined as

V arH(X) := V arf [− log f(X)] =

∫ +∞

0

f(x) log2 f(x)dx− [H(X)]2, (4)

for which Goodarzi et al. (2017) have presented a useful bound. It is clear that the notation

V arH(X) is only a way to denote the varentropy, though it is not the variance of the entropy.
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Further, Liu (2007) studied some properties of varentropy under the notion of information

volatility which has been followed up in the recent work of Buono et al. (2022).

In this paper, we study the variability of the measures of uncertainty described above. In

fact, we point out that these measures can be defined as expectations and their generating

functions are then introduced. With these, we can evaluate their dispersion through the

variance, in the sense that a measure with a lower level of variance can be considered to

be more reliable. The rest of the paper is organized as follows. In Section 2, the definition

of the generating function for Shannon entropy and its infinite series representation are

given. In Sections 3 and 4, we introduce a dispersion index of Kerridge inaccuracy measure

and Kullback-Leibler divergence, respectively. For these new measures, we present some

properties, bounds and illustrative examples. In Section 5, we use the mean-variance rule

in order to apply the dispersion index of Kullback-Leibler divergence for some illustrative

examples.

2 A generating function

A generating function for the Shannon entropy H(X) can be introduced as follows:

GH(X)(t) = Ef

[
et(− log f(X))

]
= Ef

[
elog(

1
f(X))

t
]
= Ef

[
1

(f(X))t

]
=

∫ +∞

0

1

(f(x))t
f(x)dx.

We can then present an infinite series representation as

GH(X)(t) = Ef

[
1 +

t

1!
(− log f(X)) +

t2

2!
(− log f(X))2 +

t3

3!
(− log f(X))3 + . . .

]
,

from which we readily find

dk

dtk
GH(X)(t)

∣∣∣∣
t=0

= Ef

[
(− log f(X))k

]
.
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In particular, we get H(X) when k = 1 and V arH(X) + (H(X))2 when k = 2. Just as

V arH(X) is a dispersion index for the Shannon entropy H(X), we can also use the higher-

order derivatives of the generating function GH(X)(t) to introduce some other analogous

measures associated with H(X). For example,

SkewH(X) = E
[
(− log f(X))3

]
− 3H(X)E

[
(log f(X))2

]
+ 2(H(X))3

and

KurtH(X) = E
[
(log f(X))4

]
− 4H(X)E

[
(− log f(X))3

]
+6(H(X))2E

[
(log f(X))2

]
− 3(H(X))4

could be used as suitable measures to explain the skewness (tail tendency) and the kurtosis

(tail heaviness) associated with the Shannon entropy H(X).

We now illustrate these measures by considering some examples.

Example 1. Let us take X ∼ Exp(λ) with pdf f(x) = λe−λx, x > 0, λ > 0. Then,

GH(X)(t) =

∫ +∞

0

1

(λe−λx)t
λe−λxdx

= λ1−t

∫ +∞

0

e−(1−t)λxdx

=
λ1−t

(1− t)λ
=

λ−t

1− t
,

provided t < 1. Then,

d

dt
GH(X)(t)

∣∣∣∣
t=0

=
(1− t)(−λ−t log λ) + λ−t

(1− t)2

∣∣∣∣
t=0

= − log λ+ 1 = H(X).

We have

GH(X)(t) =
λ−t

1− t
,

(hence, GH(X)(t)|t=0 = 1) and so

logGH(X)(t) = −t log λ− log(1− t).
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Consequently, we find
G′

H(X)(t)

GH(X)(t)
= − log λ+

1

1− t

so that

H(X) = G′
H(X)(t)|t=0 = (− log λ+ 1)GH(X)(t)|t=0 = − log λ+ 1.

Next,

GH(X)(t)G
′′
H(X)(t)−

(
G′

H(X)(t)
)2

(
GH(X)(t)

)2 =
1

(1− t)2

so that

G′′
H(X)(t)|t=0 −

(
G′

H(X)(t)
)2 |t=0 = 1,

which yields

G′′
H(X)(t)|t=0 = 1 + (1− log λ)2.

Thence, we find

V arH(X) + (H(X))2 = 1 + (H(X))2

so that

V arH(X) = 1.

One can similarly derive expressions for SkewH(X) and KurtH(X) measures as well.

Example 2. Next, let us take X ∼ Power(α) with pdf f(x) = αxα−1, 0 < x < 1, α > 0.

Then,

GH(X)(t) =

∫ 1

0

1

αtxt(α−1)
αxα−1dx

= α1−t

∫ 1

0

x(α−1)(1−t)dx

= α1−t xα−1−t(α−1)+1

α− 1− t(α− 1) + 1

∣∣∣∣1
0

= α1−t 1

α− t(α− 1)
,
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provided α− t(α− 1) > 0. So,

d

dt
GH(X)(t)

∣∣∣∣
t=0

=
(α− t(α− 1))α1−t(− logα) + α1−t(α− 1)

(α− t(α− 1))2

∣∣∣∣
t=0

=
−α2 logα + α(α− 1)

α2
=

α− 1− α logα

α
= H(X).

In this case, we have

GH(X)(t) =
α1−t

α− (α− 1)t
,

(hence, GH(X)(t)|t=0 = 1) and so

logGH(X)(t) = −(1− t) logα− log(α− (α− 1)t).

Consequently, we find
G′

H(X)(t)

GH(X)(t)
= − logα +

α− 1

α− (α− 1)t

so that

H(X) = G′
H(X)(t)|t=0 = − logα +

α− 1

α
,

which is monotone decreasing for α > 1 and monotone increasing for α < 1. Next,

GH(X)(t)G
′′
H(X)(t)−

(
G′

H(X)(t)
)2

(
GH(X)(t)

)2 =
(α− 1)2

(α− (α− 1)t)2

so that

G′′
H(X)(t)|t=0 −

(
G′

H(X)(t)
)2 |t=0 =

(α− 1)2

α2

which yields

G′′
H(X)(t)|t=0 =

(α− 1)2

α2
+ (H(X))2.

Thence, we find

V arH(X) + (H(X))2 =
(α− 1)2

α2
+ (H(X))2

so that

V arH(X) =

(
1− 1

α

)2

,

which is easily seen to be monotone decreasing in α. One can similarly derive expressions

for SkewH(X) and KurtH(X) measures.
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3 Varinaccuracy

The Kerridge inaccuracy measure can be expressed in terms of expectation of − log g(X)

(see (1)) and for this reason, it is useful to study the variance of this random variable. In

the following definition, we introduce the varinaccuray as a dispersion index, also known as

cross entropy.

Definition 1. Let X and Y be two non-negative random variables with pdf’s f and g,

respectively. Then, the varinaccuracy of X and Y is defined as

V arI(f ; g) := V arf [− log g(X)]

=

∫ +∞

0

f(x) log2 g(x)dx− [I(f ; g)]2 . (5)

Here again, V arI(f ; g) does not represent the variance of I(f ; g), but is rather a notation.

Of course, if X and Y are identically distributed, then, as the inaccuracy measure reduces

to the Shannon entropy, the varinaccuracy reduces to the well-known varentropy in (4).

Remark 1. In should be mentioned that Definition 1 could be given in a more general

context omitting the non-negativity assumption. In this case, all integrals have to be under-

stood as extended to the common support of X and Y , but its use and interpretation may

have to be looked into very carefully.

As done in Section 2, we can introduce a generating function for Kerridge inaccuracy as

GI(f ;g)(t) = Ef

[
et(− log g(X))

]
= Ef

[
elog(

1
g(X))

t
]
= Ef

[
1

(g(X))t

]
=

∫ +∞

0

1

(g(x))t
f(x)dx.

An infinite series representation can then be presented as

GI(f ;g)(t) = Ef

[
1 +

t

1!
(− log g(X)) +

t2

2!
(− log g(X))2 +

t3

3!
(− log g(X))3 + . . .

]
,
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from which we readily find

dk

dtk
GI(f ;g)(t)

∣∣∣∣
t=0

= Ef

[
(− log g(X))k

]
.

In particular, we get I(f ; g) when k = 1 and V arI(f ; g) + (I(f ; g))2 when k = 2. Using the

higher-order derivatives of GI(f :g)(t) we can similarly define the following measures:

SkewI(f : g) = Ef

[
(− log g(X))3

]
− 3I(f ; g)Ef

[
(log g(X))2

]
+ 2(I(f ; g))3,

KurtI(f : g) = Ef

[
(log g(X))4

]
− 4I(f ; g)Ef

[
(− log g(X))3

]
+6(I(f ; g))2Ef

[
(log g(X))2

]
− 3(I(f ; g))4.

Now, we give some examples to demonstrate the evaluation of varinaccuracy for different

distributions.

Example 3. Let X ∼ Exp(λ) and Y ∼ Exp(η). Then, by (1), the inaccuracy measure of

X and Y is given by

I(f ; g) = −
∫ +∞

0

λe−λx log
(
ηe−ηx

)
dx =

η

λ
− log η.

Hence, the varinaccuracy is obtained from (5) as

V arI(f ; g) =
d2

dt2
GI(f ;g)(t)

∣∣∣∣
t=0

− (I(f ; g))2

=

∫ +∞

0

λe−λx log2
(
ηe−ηx

)
dx−

(η
λ
− log η

)2
= log2 η − 2

η

λ
log η + 2

η2

λ2
− η2

λ2
− log2 η + 2

η

λ
log η =

η2

λ2
.

In Figure 1, the inaccuracy and the varinaccuracy measures of X and Y are plotted as

functions of η, for λ = 1, 2, 3, 4, with black, blue, red and green lines, respectively. Observe

that I(f ; g) has its minimum at η = λ and V arI(f ; g) is increasing in η, as one would expect.

Example 4. Let X ∼ U(0, 1) and Y have power distribution function with parameter α > 0

and probability density function g as

g(y) = αyα−1, y ∈ (0, 1).
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Figure 1: Plot of I and V arI in Example 3 as a function of η for λ = 1, 2, 3, 4.

Then, by (1), the inaccuracy measure of X and Y is given by

I(f ; g) = −
∫ 1

0

log
(
αxα−1

)
dx = α− 1− logα.

Hence, the varinaccuracy is obtained from (5) as

V arI(f ; g) =
d2

dt2
GI(f ;g)(t)

∣∣∣∣
t=0

− (I(f ; g))2

=

∫ 1

0

log2
(
αxα−1

)
dx− (α− 1− logα)2

= log2 α− 2(α− 1) logα + 2(α− 1)2

−(α− 1)2 − log2 α + 2(α− 1) logα = (α− 1)2.

In Figure 2, the inaccuracy and the varinaccuracy measures of X and Y are plotted as

functions of α. In this case, the inaccuracy reaches the minimum at α = 1, that is, when

Y also has a uniform distribution in (0, 1), and V arI is monotone decreasing for α < 1 and

monotone increasing for α > 1.

In the following proposition, we examine the behaviour of varinaccuracy under affine

transformations. The proof of it follows by a simple change of variable technique and is

similar to the property of Shannon entropy along with invariance of the variance under

translation.
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Figure 2: Plot of I and V arI in Example 4 as a function of α.

Proposition 3.1. Let X and Y be two random variables with common support S and pdf’s

f and g, respectively. Let a > 0, b ≥ 0 and the variables X̃, Ỹ be X̃ = aX + b, Ỹ = aY + b

with pdf’s f̃ and g̃, respectively. Then, we have

V arI(f̃ ; g̃) = V arI(f ; g).

Proposition 3.2. Let X and Y be two random variables with common support S and pdf’s

f and g, respectively. Let ϕ be a strictly monotone function and the variables X̃, Ỹ be

X̃ = ϕ(X), Ỹ = ϕ(Y ) with pdf’s f̃ and g̃, respectively. Then, we have

V arI(f̃ ; g̃) = V arI(f ; g) + V arf [log |ϕ′(X)|]− 2covf (log g(X), log |ϕ′(X)|).

Proof. Without loss of generality, let us take S = (0,+∞) with ϕ strictly increasing from

ϕ(0) to +∞. Then, the common support of X̃ and Ỹ is (ϕ(0),+∞). The relation between

the pdf’s of X̃, Ỹ and X, Y is given by

f̃(x) =
f(ϕ−1(x))

ϕ′(ϕ−1(x))
, g̃(x) =

g(ϕ−1(x))

ϕ′(ϕ−1(x))
, x ∈ (ϕ(0),+∞),

where 1
ϕ′(ϕ−1(x))

= d
dy
ϕ−1(y)

∣∣∣
y=ϕ−1(x)

. Then, the inaccuracy measure of X̃ and Ỹ can be
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expressed as

I(f̃ ; g̃) = −
∫ +∞

ϕ(0)

f(ϕ−1(x))

ϕ′(ϕ−1(x))
log

[
g(ϕ−1(x))

ϕ′(ϕ−1(x))

]
dx

= I(f ; g) + Ef [log ϕ
′(X)].

Then, the varinaccuracy of X̃ and Ỹ can be obtained as

V arI(f̃ ; g̃) =

∫ +∞

ϕ(0)

f(ϕ−1(x))

ϕ′(ϕ−1(x))
log2

[
g(ϕ−1(x))

ϕ′(ϕ−1(x))

]
dx

−[I(f ; g) + Ef [log ϕ
′(X)]]2

=

∫ +∞

0

f(x) log2 g(x)dx+

∫ +∞

0

f(x) log2(ϕ′(x))dx

−2

∫ +∞

0

f(x) log(ϕ′(x)) log(g(x))dx− [I(f ; g) + Ef [log ϕ
′(X)]]2

= V arI(f ; g) + V arf [log ϕ
′(X)]− 2covf (log g(X), log ϕ′(X)),

as required.

Proposition 3.3. Let X and Y be two random variables with common support S and pdf’s

f and g, respectively. Then, V arI(f ; g) = 0 if and only if Y is uniformly distributed in S.

Proof. The varinaccuracy is defined as a variance, which vanishes only for degenerate distri-

butions. In particular, log g(x) needs to be constant for x ∈ S, i.e., g needs to be a constant

function in which case Y is uniformly distributed in S.

In the following proposition, we obtain a lower bound for varinaccuracy based on Cheby-

shev inequality which, for a random variable W with mean E(W ) and variance V ar(W ), is

given by

P (|W − E(W )| < ε) ≥ 1− V ar(W )

ε2
, ε > 0. (6)

Proposition 3.4. Let X and Y be two random variables with common support S and pdf’s

f and g, respectively, and let ε > 0. Then, a lower bound for varinaccuracy is given by

V arI(f ; g) ≥ ε2
[
P
(
g(X) ≤ e−ε−I(f ;g)

)
+ P

(
g(X) ≥ eε−I(f ;g)

)]
. (7)
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Proof. Based on the definitions of inaccuracy and varinaccuracy in (1) and (5), Chebyshev

inequality in (6) yields

V arI(f ; g) ≥ ε2P(| log g(X) + I(f ; g)| ≥ ε). (8)

The second factor on the right hand side of the above equation can be written as

P(| log g(X) + I(f ; g)| ≥ ε)

= P (log g(X) + I(f ; g) ≤ −ε) + P (log g(X) + I(f ; g) ≥ ε)

= P
(
g(X) ≤ e−ε−I(f ;g)

)
+ P

(
g(X) ≥ eε−I(f ;g)

)
, (9)

and the proof then gets completed by combining (8) and (9).

In the following corollaries, we specialize the result of Proposition 3.4 to the cases when

g is strictly increasing and decreasing.

Corollary 3.1. Let X and Y be two random variables with common support S, pdf ’s f and

g and cdf’s F and G, respectively, and let ε > 0. If g is strictly decreasing in S, then

V arI(f ; g) ≥ ε2
[
F
(
g−1(e−ε−I(f ;g))

)
+ F

(
g−1(eε−I(f ;g))

)]
, (10)

where F (·) = 1− F (·) is the survival function of X.

Corollary 3.2. Let X and Y be two random variables with common bounded support S,

pdf ’s f and g and cdf’s F and G, respectively, and let ε > 0. If g is strictly increasing in S,

then

V arI(f ; g) ≥ ε2
[
F
(
g−1(e−ε−I(f ;g))

)
+ F

(
g−1(eε−I(f ;g))

)]
. (11)

Example 5. Let X ∼ Exp(λ) and Y ∼ Exp(η). In Example 3, we have plotted the

varinaccuracy measure of X and Y . Here, we use Corollary 3.1 to evaluate a lower bound.

In fact, in this case, the pdf g of Y is strictly decreasing and we have

g−1(z) = −1

η
log

z

η
, z ∈ (0, η).
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Moreover, the inaccuracy measure of X and Y is given by

I(f ; g) = − log η +
η

λ
.

If ελ > η, we have

eε−I(f ;g) > η,

and then P(g(X) ≥ eε−I(f ;g)) = 0. Thus, we can conclude

V arI(f ; g) ≥

ε2
(
e−1−ελ/η + 1− e−1+ελ/η

)
, if ελ ≤ η

ε2e−1−ελ/η, if ελ > η.

(12)

In Figure 3, we have plotted the varinaccuracy and the bound in the case λ = 4 as a function

of η for different choices of ε.

0 1 2 3 4 5 6

0

0.5

1

1.5

2

2.5

Figure 3: Plot of V arI(f ; g) (dashed line) and lower bounds in Example 5 as a function of

η for λ = 4 and ε = 0.25, 0.5, 1, 1.25 (red, black, blue and green lines, respectively).

Example 6. Let X ∼ U(0, 1) and Y ∼ Power(α) with α > 1. In Example 4, we have

plotted the varinaccuracy measure of X and Y . Here, Corollary 3.2 is used to evaluate the

lower bound. In fact, in this case, the pdf g of Y is strictly increasing, and we have

g−1(z) =
( z
α

) 1
α−1

, z ∈ (0, α).

Moreover, the inaccuracy measure of X and Y is given by

I(f ; g) = − logα + (α− 1).

14



If 1 < α < 1 + ε, we have

eε−I(f ;g) > α,

and then P(g(X) ≥ eε−I(f ;g)) = 0. Thus, we can conclude

V arI(f ; g) ≥

ε2
(
e

1−ε−α
α−1 + 1− e

1+ε−α
α−1

)
, if α ≥ 1 + ε

ε2e
1−ε−α
α−1 , if 1 < α < 1 + ε.

(13)

In Figure 4, we have plotted the varinaccuracy and the bound as a function of α for different

choices of ε.
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Figure 4: Plot of V arI(f ; g) (dashed line) and lower bounds in Example 6 as a function of

α for ε = 0.5, 1, 1.5, 2 (black, blue, red and green lines, respectively).

4 A dispersion index for Kullback-Leibler divergence

In the following definition, we introduce a dispersion index for Kullback-Leibler divergence

based on (2).

Definition 2. Let X and Y be two non-negative random variables with pdf’s f and g,

respectively. Then, a dispersion index for Kullback-Leibler divergence of X and Y is defined
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as

V arK(f : g) := V arf

[
log

f(X)

g(X)

]
= Ef

[
log2

f(X)

g(X)

]
− [K(f : g)]2

=

∫ +∞

0

f(x) log2
f(x)

g(x)
dx− [K(f : g)]2 . (14)

It is important to keep in mind here again that V arK(f : g) does not represent the

variance of Kullback-Leibler divergence, but is rather a short notation.

Remark 2. As mentioned earlier for the varinaccuracy measure, the definition of V arK can

also be given for variables with a common support S not necessarily equal to (0,+∞), but

its use and interpretation may need to be examined carefully.

In analogy with Section 2, we can introduce a generating function for K(f : g) as

GK(f :g)(t) = Ef

[
et(log f(X)−log g(X))

]
= Ef

[
elog(

f(X)
g(X) )

t
]
= Ef

[(
f(X)

g(X)

)t
]
.

We can then present an infinite series representation for it as

GK(f :g)(t) = Ef

[
1 +

t

1!
(log f(X)− log g(X)) +

t2

2!
(log f(X)− log g(X))2

+
t3

3!
(log f(X)− log g(X))3 + . . .

]
,

from which we readily find

dk

dtk
GK(f :g)(t)

∣∣∣∣
t=0

= Ef

[
(log f(X)− log g(X))k

]
. (15)

In particular, when k = 1, we get K(f : g), and when k = 2, we get Ef [(log f(X) −

log g(X))2] which is related to V arK(f : g). We can then proceed to define SkewK(f : g)

and KurtK(f : g) measures, based on higher-order derivatives of the generating functions

GK(f :g)(t), in a manner similar to what was done in the preceding sections.

In the following proposition, in analogy with the relation in (3), we present a connection

between varentropy, varinaccuracy and V arK measures.
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Proposition 4.1. Let X and Y be two non-negative random variables with common support

S and pdf’s f and g, respectively. Then,

V arK(f : g) = V arH(X) + V arI(f ; g)− 2covf (log f(X), log g(X)). (16)

Proof. From (14) and by taking into account the expression of the variance of the sum, we

obtain

V arK(f : g) = V arf

[
log

f(X)

g(X)

]
= V arf [log f(X)− log g(X)]

= V arf [log f(X)] + V arf [log g(X)]− 2covf (log f(X), log g(X))

= V arf [− log f(X)] + V arf [− log g(X)]

−2covf (log f(X), log g(X))

and, by recalling (4) and (5), we get the required result.

Proposition 4.2. Let X and Y be two random variables with common support S and pdf’s

f and g, respectively. Then, V arK(f : g) = 0 if and only if X and Y are identically

distributed.

Proof. V arK is defined as a variance, and so vanishes only for degenerate distributions. In

particular, log f(x)
g(x)

needs to be constant for x ∈ S, i.e.,

f(x)

g(x)
= a, x ∈ S,

where a is a non-negative constant. In view of the normalization condition, we have a = 1

and so X and Y are identically distributed.

Remark 3. Proposition 4.2 enables one to consider V arK as a measure of divergence since

it shares the positive-definiteness property with the Kullback-Leibler divergence. Moreover,

as the Kullback-Leibler divergence, it can not be considered as a metric since it is not

symmetric and does not satisfy the triangular inequality. The former is quite intuitive from

the definition, while the latter is shown by the following counterexample. Let X, Y and Z
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follow the power distribution function with parameters 0.5, 3 and 2, and let us denote the

corresponding pdf’s by f , g, and h, respectively. We then readily find

V arK(f : g) = 25, V arK(f : h) = 9, V arK(h : g) = 0.25,

so that

V arK(f : g) > V arK(f : h) + V arK(h : g),

and so the triangular inequality is not satisfied.

For furher developments, it would be of interest to analyze the relationships between this

new divergence measure and some well-known measures such as Kullback-Leibler, Rényi,

Cressie-Read and Chernoff α divergences (see Bedbur and Kamps (2021) for their defini-

tions).

5 VarK applications in testing the underlying distri-

bution

The Kullback-Leibler divergence is a measure of similarity between two distributions. If

we consider X to be distributed as the observed data, then we can choose Y in different

ways and then compare the values of K(f : g), where f and g are the pdf’s of X and Y ,

respectively. Of course, a lower value of Kullback-Leibler divergence corresponds to a higher

similarity between the distributions of Y and that of the data. There may be situations in

which Y1 and Y2 are two different random variables with pdf’s g1 and g2, respectively, such

that K(f : g1) ≃ K(f : g2). In this case, we can choose the more suitable distribution by

considering V arK, in the sense that we would prefer a distribution with a lower variance

even if it has a slightly higher or similar value of K, between the two chosen models.

In order to obtain a criterion based on Kullback-Leibler divergence and the related dis-

persion index, we set a threshold r such that if K(f : gi), i = 1, 2, exceeds the value r, we

can not accept such a distribution. To be specific, let us suppose K(f : g1) ≤ K(f : g2).
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Moreover, consider the case in which K(f : g2) < r. As K(f : g2) tends to r, it becomes more

difficult to prefer Y2 to Y1, but we can tolerate a higher value of Kullback-Leibler divergence

if we balance with a lower value of variance. We may then use V arK to standardize the

difference between r and K and make comparisons. We would prefer Y2 to Y1 if the following

inequality is satisfied:
r −K(f : g1)√
V arK(f : g1)

<
r −K(f : g2)√
V arK(f : g2)

. (17)

Remark 4. Observe that the criterion in (17) is reasonable since when K(f : g1) = K(f :

g2), the variable with lower V arK is preferred. Moreover, with the same variance, the

variable with lower Kullback-Leibler divergence is still preferred. Finally, if Y1 has lower K

as well as V arK, it will be preferred to Y2.

In order to apply the criterion to concrete situations, we have to choose a value for the

threshold r. It may not be possible to fix a numerical value for r, but we can relate this

quantity to the Kullback-Leibler divergences. In particular, we choose r = 2K(f : g1), where

K(f : g1) ≤ K(f : g2). Hence, the criterion in (17) can be reformulated in the following

manner: Y2 is preferred to Y1 if the following inequality is satisfied:

K(f : g1)√
V arK(f : g1)

<
2K(f : g1)−K(f : g2)√

V arK(f : g2)
,

which is equivalent to

K(f : g2) <

(
2−

√
V arK(f : g2)

V arK(f : g1)

)
K(f : g1). (18)

Remark 5. The same dispersion index given in Definiton 2 can also be introduced in the

discrete case. When we have two discrete probability distributions P and Q defined on the

same probability space X , the Kullback-Leibler divergence of P and Q is defined as

K(P : Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
. (19)

The corresponding index of dispersion is then

V arK(P : Q) =
∑
x∈X

P (x) log2
P (x)

Q(x)
− [K(P : Q)]2. (20)
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In the following, we illustrate three applications of the above method in different scenar-

ios. In the first one, we will have Kullback-Leibler divergences which do not satisfy similarity

property. In the second one, we will present the case in which we have two equal Kullback-

Leibler divergences. In the final one, we will present the more important situation, i.e., we

will find a distribution with lower K, but with higher V arK.

Example 7. The data presented in Table 1 were obtained from 200 repetitions of an ex-

periment involving 3 tosses of a coin and then recording the number of heads observed.

Table 1: Data of Example 7.

Number of heads 0 1 2 3

Number of observations 20 63 84 33

If we denote by X the random variable distributed as the data, from Table 1, we get the

distribution of X as

p0 = P(X = 0) = 0.1, p1 = 0.315, p2 = 0.42, p3 = 0.165.

Our intention is to establish a suitable distribution for these data, for which we deter-

mine Kullback-Leibler divergence and its variance between X and three different variables

Y1, Y2, Y3, with probability mass functions P,Q1, Q2, Q3, respectively. In particular, Y1 fol-

lows a binomial distribution B(3, 0.55), where 0.55 is obtained by maximum likelihood esti-

mation, Y2 follows a beta-binomial distribution with parameters n = 3, α = 12 and β = 10,

and Y3 follows a discrete uniform distribution over the four elements. The values of Kullback-

Leibler divergence and its variance are presented in Table 2. As the binomial distribution has

lower Kullback-Leibler divergence and lower V arK, we can conclude that the binomial dis-

tribution is more appropriate than the Beta-binomial and the discrete uniform distributions.

We also see that the Beta-binomial distribution is preferred to the discrete uniform.
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Table 2: K(P : Qi) and V arK(P : Qi), for i = 1, 2, 3, in Example 7.

Distribution K(P : Q) V arK(P : Q)

Binomial 0.0011 0.0023

Beta-binomial 0.0027 0.0054

Uniform 0.1305 0.2253

Example 8. Consider the real data (see Data Set 4.1 in Murthy et al. (2004)) present-

ing times to failure of 20 units: 11.24, 1.92, 12.74, 22.48, 9.60, 11.50, 8.86, 7.75, 5.73, 9.37,

30.42, 9.17, 10.20, 5.52, 5.85, 38.14, 2.99, 16.58, 18.92, 13.36. The data are distributed as the

random variable X whose pdf is f . We estimate the density function through a kernel es-

timator with MATLAB function ksdensity. In order to establish if the distribution of the

data is similar to a Weibull distribution W2(α, λ) with pdf

g(x) = λαxα−1 exp (−λxα) , x > 0,

we consider two different Weibull distribution, Y1 ∼ W2(1.5487, 0.0166), with parameters

given by the maximum likelihood method, and Y2 ∼ W2(1.6, 0.0127). Note that both dis-

tributions are accepted by using Kolmogorov-Smirnov test at a significance level of 5%. In

Figure 5, we have plotted the estimated pdf of the data and the pdf’s g1, g2 of Y1, Y2. With

these distributions, we obtain

K(f : g1) = K(f : g2) = 0.0990.

Hence, to choose the more suitable distribution, we have to compare the values of V arK,

for which we obtain

V arK(f : g1) = 0.3350 > V arK(f : g2) = 0.2936.

So, we choose Y2 since its Kullback-Leibler divergence has a lower variability.
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Figure 5: Plot of pdf’s of X, Y1, Y2 in Example 8 (black, red and blue lines, respectively).

Example 9. Consider the crab dataset presented in Murphy and Aha (1994). We focus

on the distribution of the width of female crabs, represented by the random variable X

with pdf f ; then, we have a sample of 100 units. Here again, we first estimate the density

function through a kernel estimator with MATLAB function ksdensity. We now wish to

compare the distribution of the data with Weibull and Lognormal distributions. Recall that

if Y2 ∼ Lognormal(µ, σ), then the pdf is given by

g2(x) =
1

xσ
√
2π

exp

(
−(log x− µ)2

2σ2

)
, x > 0.

In particular, by using the maximum likelihood estimation, we choose Y1 ∼ W2(5.6162,

1.1953e-09) and Y2 ∼ Lognormal(3.5559, 0.2192). Note that both distributions are accepted

by using Kolmogorov-Smirnov test at a significance level of 5%. In Figure 6, we have plotted

the estimated pdf of data and pdf’s of Y1, Y2. With these distributions, we obtain

K(f : g1) = 0.0381, K(f : g2) = 0.0420,

V arK(f : g1) = 0.1148, V arK(f : g2) = 0.0924.

Hence, we are in the case in which Y1 has lower Kullback-Leibler divergence but higher

V arK, and the difference between K(f : g2) and K(f : g1) is small enough. Then, in
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Figure 6: Plot of pdf’s of X, Y1, Y2 in Example 9 (black, red and blue lines, respectively).

order to choose the most suitable distribution, we use the criterion in (18) and compute the

difference

K(f : g2)−

(
2−

√
V arK(f : g2)

V arK(f : g1)

)
K(f : g1) = −3.8085e-05.

Thus, the inequality in (18) is satisfied, and so we choose Y2 as the distribution that fits the

data the best.

6 Conclusion

In this paper, we have introduced new measures of variability for some measures of un-

certainty, and specifically for the Kerridge inaccuracy measure and the Kullback-Leibler

divergence. We have presented the generating functions of these measures and of Shannon

entropy. We have defined a dispersion index based on the Kerridge inaccuracy, V arI, named

varinaccuracy. We have discussed the effect of linear transformations and strict monotone

functions on varinaccuracy and then have presented lower bounds. A dispersion index of

Kullback-Leibler divergence, V arK, and a connection among varentropy, varinaccuracy and
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V arK have been given. As the Kullback-Leibler divergence is a measure of similarity be-

tween two distributions, V arK has been used to compare two distributions chosen to fit the

data. In order to obtain a criterion based on Kullback-Leibler divergence and its variance, we

have used the mean-variance rule and some examples have then been presented to illustrate

the results and methods developed here. Further analysis of these dispersion indices could

be done for comparing distributions under different assumptions like shape characteristics

and reliability properties.
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