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A unified formulation of entropy and its application

Narayanaswamy Balakrishnan1, Francesco Buono1,, Maria Longobardi1

aMcMaster University, Canada
bUniversità di Napoli Federico II, Italy

Abstract

In this paper, a general formulation of entropy is proposed. It depends on two parameters and includes Shannon, Tsallis
and fractional entropy, all as special cases. This measure of information is referred to as fractional Tsallis entropy and
some of its properties are then studied. Furthermore, the corresponding entropy in the context of Dempster-Shafer
theory of evidence is proposed and referred to as fractional version of Tsallis-Deng entropy. Finally, an application to
two classification problems is presented.

Keywords: Measures of information, Shannon entropy, Tsallis entropy, Fractional entropy, Deng entropy,
Dempster-Shafer theory of evidence
2010 MSC: 62H30, 94A17

1. Introduction

Let X be a discrete random variable, whose support S has cardinality N, with probability vector (p1, . . . , pN). In
the context of information theory, Shannon [? ] introduced a measure of uncertainty or discrimination about X, known
as Shannon entropy, of the form

H(X) = −
N∑

i=1

pi log pi, (1)

where log denotes the natural logarithm. Since then, several generalizations of Shannon entropy have been proposed.5

Among them, one of the most important one is the Tsallis entropy introduced in [? ]. It is defined as

S α(X) =
1
α − 1

1 − N∑
i=1

pαi

 , (2)

where α > 0 and α , 1, and it is evident that

lim
α→1

S α(X) = H(X).

Several applications of Tsallis entropy have been discussed in the literature. For example, some relations to stochastic
orders and order statistics have been studied in [? ] while some connections to k-record statistics have been discussed
in [? ]. Moreover, several measures based on (??) have been introduced including the cumulative residual Tsallis10

entropy [? ] and the cumulative Tsallis entropy [? ].
Another important generalization of Shannon entropy has been introduced in [? ] in the context of fractional

calculus. It is known as fractional entropy and is defined as

Hq(X) =
N∑

i=1

pi[− log pi]q, 0 < q ≤ 1. (3)
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Evidently, it reduces to Shannon entropy, when q = 1, i.e., H1(X) = H(X).
Several measures of uncertainty have also been introduced and studied in the context of Dempster-Shafer theory15

(DST) of evidence [? ? ]. This theory is a generalization of the classical probability theory and enables describing
situations characterized by a major uncertainty. Here, a finite set X of mutually exclusive and collectively exhaustive
events is considered. It is named frame of discernment and in DST, it is possible to give a positive mass to all the
non-empty subsets of X. In particular, a mass function or a basic probability assignment m is a function defined on
the power set of X, 2X , with values in [0, 1] such that20

m(∅) = 0,
∑
A∈2X

m(A) = 1. (4)

The subsets of X with positive mass are called focal elements. Observe that if all the focal elements are singletons,
then a BPA is a discrete probability distribution on the elements of X. In analogy with the definitions given for a
discrete random variable, it is possible to define measures of uncertainty based on BPA. Nevertheless, while dealing
with BPAs, a new type of uncertainty emerges relating to the cardinality of the focal elements. In this viewpoint, Deng
[? ] introduced a new entropy, known as Deng entropy, of the form25

ED(m) = −
∑

A⊆X:m(A)>0

m(A) log
(

m(A)
2|A| − 1

)
. (5)

If the BPA reduces to a discrete probability distribution, i.e., m(A) > 0 implies |A| = 1, then Deng entropy coincides
with Shannon entropy. Several generalizations of Deng entropy have been discussed in the literature. In specific
situations, the prediction of the information volume contained in the future is still an open issue. Recently, several
new measures have been introduced for evaluating the information volume (see [? ? ? ? ]). Moreover, Liu et al. [? ]
proposed an entropy, called Tsallis-Deng entropy, as30

S Dα(m) =
1
α − 1

∑
A⊆X:m(A)>0

m(Ai)

1 − (
m(Ai)

2|Ai | − 1

)α−1 , (6)

where α > 0 and α , 1. Evidently, Tsallis-Deng entropy reduces to Deng entropy when α goes to 1. Further, Kazemi
et al. [? ] proposed the fractional version of Deng entropy as

EDq(m) =
∑

A⊆X:m(A)>0

m(Ai)
(
− log

m(Ai)
2|Ai | − 1

)q

, (7)

where 0 < q ≤ 1. This is indeed a generalization of Deng entropy as ED1(m) = ED(m). For a detailed overview of
measures of uncertainty in the context of DST, one may refer to [? ].

In the last few decades, several new measures of information have been studied and applied in many problems35

including language model, medical diagnosis, multi-sensor information fusion, fault diagnosis, pattern recognition,
failure mode and effects analysis, risk assessment, decision-making, emergency management, quantum decision (see
[? ] and the references therein). For this reason, we thought about introducing a unified formulation of entropy.

We would like to emphasize that this paper is not a survey. The proposed results are new as the definitions; only
in particular cases, the reader can find well-known entropies. The rest of this paper is organized as follows. In Section40

2, the definition of fractional Tsallis entropy is given and some properties and examples are studied. In Section 3, the
fractional version of Tsallis-Deng entropy is introduced and then it is shown that it includes several other entropies
as limiting or particular cases. In Section 4, an application of the fractional version of Tsallis-Deng entropy to two
classification problems is demonstrated. It is used to analyze two datasets, one about qualities of Italian wine and the
other about types of iris flowers, and to classify each instance into one of three possible classes. Finally, in Section 5,45

some concluding remarks are made including the suggestion of some open problems.

2. Fractional Tsallis entropy

In this section, we introduce fractional Tsallis entropy of X as

S q
α(X) =

1
α − 1

N∑
i=1

pi(1 − pα−1
i )(− log pi)q−1, (8)
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Fractional Tsallis Entropy

Tsallis Entropy
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q =
1

α→ 1

α→ 1

q =
1

q = 1, α→ 1

Figure 1: Relationships among different entropies in classical probability theory.

where α > 0, α , 1 and 0 < q ≤ 1. A distinct advantage of this definition is that it includes fractional, Tsallis and
Shannon entropies, all as special cases.50

Remark 1. The fractional Tsallis entropy in (??) is always non-negative. This is due to the fact that 1 − pα−1
i is

positive for α > 1 and negative for 0 < α < 1, and so the sum in (??) has a definite sign and it is the same as that of
α − 1.

Proposition 2.1. The fractional Tsallis entropy in (??) coincides with Tsallis entropy when q = 1.

Proof. When q = 1, from (??) we get55

S 1
α =

1
α − 1

N∑
i=1

pi(1 − pα−1
i ) =

1
α − 1

1 − N∑
i=1

pαi

 = S α(X),

as required.

Proposition 2.2. As α tends to 1, fractional Tsallis entropy converges to fractional entropy.

Proof. Taking the limit as α tends to 1 in (??), and by using L’Hôpital’s rule, we get

lim
α→1

S q
α(X) = lim

α→1

1
α − 1

N∑
i=1

pi(1 − pα−1
i )(− log pi)q−1

= lim
α→1

N∑
i=1

pi

(
−pα−1

i

)
log pi(− log pi)q−1

= lim
α→1

N∑
i=1

pαi (− log pi)q =

N∑
i=1

pi(− log pi)q = Hq(X),

as required.

Corollary 2.1. If both parameters of the fractional Tsallis entropy tend to 1, fractional Tsallis entropy in (??) con-60

verges to Shannon entropy, i.e.,
lim
α,q→1

S q
α(X) = H(X).

To summarize the results given in Propositions ?? and ?? and Corollary ??, the relationships among different
kinds of entropies are depicted in the form of a schematic diagram, in Figure ??.

Example 1. Let X be uniformly distributed over a support S of cardinality N. When N changes, the values of
fractional Tsallis entropy were computed for different choices of α and q, and these are presented in Table ??.65
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Table 1: Values of fractional Tsallis entropy as N changes, for different choices of q and α.

N q = 0.5, α = 0.5 q = 0.5, α = 2 q = 1, α = 2 q = 0.3, α = 0.75 q = 0.3, α = 1.5 q = 0.5, α = 5

2 0.9950 0.6006 0.5 0.9782 0.7571 0.2815
3 1.3968 0.6360 0.6667 1.1837 0.7914 0.2356
4 1.6986 0.6370 0.75 1.3182 0.7956 0.2115
5 1.9487 0.6306 0.8 1.4200 0.7923 0.1967
6 2.1657 0.6226 0.8333 1.5207 0.7868 0.1866
7 2.3596 0.6145 0.8571 1.5727 0.7807 0.1791
8 2.5359 0.6068 0.875 1.6336 0.7745 0.1733
9 2.6985 0.5997 0.8889 1.6877 0.7685 0.1686
10 2.8499 0.5931 0.9 1.7364 0.7628 0.1647

From Table ??, we observe that fractional Tsallis entropy does not always exhibit the same monotonic behavior
as a function of N. For the uniform distribution, fractional Tsallis entropy is given by

S q
α

(
1
p
, . . . ,

1
p

)
=

1
α − 1

(
1 −

1
Nα−1

)
(log N)q−1.

Upon differentiating with respect to N (treating N as continuous), we obtain

∂S q
α

∂N
=

(log N)q−2

Nα
1
α − 1

[
(α − 1) log N + (q − 1)(Nα−1 − 1)

]
sgn
=

1
α − 1

[
(α − 1) log N + (q − 1)(Nα−1 − 1)

]
. (9)

By observing that
(α − 1) log N + (q − 1)(Nα−1 − 1) = log Nα−1 + (q − 1)(Nα−1 − 1),

we see that we need to consider the function70

ρ(v) = log v + (q − 1)(v − 1), v > 0,

which is increasing for v < 1
1−q . Here, v represents Nα−1 which is in (0, 1) for α ∈ (0, 1) and greater than 2α−1 for

α > 1. As 1
1−q > 1, with q ∈ (0, 1), ρ is increasing in (0, 1) and reaches the maximum value for v = 1, that is, ρ(1) = 0.

Hence, for α ∈ (0, 1), the sign in (??) is given by the ratio of two negative quantities and so fractional Tsallis entropy
is increasing in N. For q = 1, it is easy to observe from (??) that it is increasing in N regardless of α. Finally, when
α > 1 and q ∈ (0, 1), there are two possible scenarios. In fact, the fractional Tsallis entropy may be always decreasing75

in N, or simply definitely decreasing as seen in Table ??.

Theorem 2.1. The supremum of fractional Tsallis entropy, as a function of q ∈ (0, 1], is attained at one of the
extremes of the interval, and the infimum is attained at one of the extremes of the interval or it is a minimum at a
unique q0 ∈ (0, 1).

Proof. The fractional Tsallis entropy is a convex function of q. Hence, it can be strictly increasing, strictly decreasing80

or decreasing up to q0 ∈ (0, 1), and then increasing. In the first case, the infimum is attained at 0 and the maximum at
q = 1. In the second case, the minimum is reached at q = 1 and the supremum at 0. In the last case, the minimum is
attained at q0 and the supremum is reached at one of the extremes of the interval (0, 1).

3. Fractional version of Tsallis-Deng entropy

In this section, we introduce fractional version of Tsallis-Deng entropy for a BPA m as85

S Dq
α(m) =

1
α − 1

∑
A⊆X:m(A)>0

m(Ai)

1 − (
m(Ai)

2|Ai | − 1

)α−1 (− log
m(Ai)

2|Ai | − 1

)q−1

, (10)
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where α > 0, α , 1, 0 < q ≤ 1. In analogy with fractional Tsallis entropy, this is a general expression of entropy
as it includes several versions of entropy measure both in the context of DST and in the classical probability theory
viewpoint.

Remark 2. In analogy with Remark ??, fractional version of Tsallis-Deng entropy (??) is non-negative too.

Proposition 3.1. When q = 1, fractional version of Tsallis-Deng entropy in (??) is equal to Tsallis-Deng entropy.90

Proof. Upon taking q = 1 in (??), we get

S D1
α(m) =

1
α − 1

∑
A⊆X:m(A)>0

m(Ai)

1 − (
m(Ai)

2|Ai | − 1

)α−1 = S Dα(m),

as required.

Proposition 3.2. As α tends to 1, fractional version of Tsallis-Deng entropy in (??) reduces to fractional Deng entropy.

Proof. Upon letting α tend to 1 in (??), and by using L’Hôpital’s rule, we get

lim
α→1

S Dq
α(m) = lim

α→1

∑
A⊆X:m(A)>0

m(Ai)

− (
m(Ai)

2|Ai | − 1

)α−1 (− log
m(Ai)

2|Ai | − 1

)q−1

log
m(Ai)

2|Ai | − 1

= lim
α→1

∑
A⊆X:m(A)>0

m(Ai)
(

m(Ai)
2|Ai | − 1

)α−1 (
− log

m(Ai)
2|Ai | − 1

)q

=
∑

A⊆X:m(A)>0

m(Ai)
(
− log

m(Ai)
2|Ai | − 1

)q

= EDq(m),

as required.95

Corollary 3.1. When both parameters α and q in (??) tend to 1, fractional version of Tsallis-Deng entropy in (??)
converges to Deng entropy, i.e.,

lim
α,q→1

S Dq
α(m) = ED(m).

Remark 3. If the BPA m is a discrete probability distribution, then for each focal element |A| = 1; in this case, the
fractional version of Tsallis-Deng entropy reduces to fractional Tsallis entropy, i.e.,

S Dq
α(m) =

1
α − 1

∑
A⊆X:m(A)>0

m(Ai)
[
1 − (m(Ai))α−1

] (
− log m(Ai)

)q−1
= S q

α(X),

where X is a discrete random variable with probability vector m.100

To summarize the results given in Propositions ?? and ??, Corollary ?? and Remark ??, the relationships among
different kinds of entropies are depicted in the form of a schematic diagram, in Figure ??.

Theorem 3.1. The supremum of the fractional verson of Tsallis-Deng entropy in (??), as a function of q ∈ (0, 1], is
attained at one of the extremes of the interval, and the infimum is attained at one of the extremes of the interval or it
is a minimum at a unique q0 ∈ (0, 1).105

Proof. The proof is similar to that of Theorem ?? and is therefore omitted for brevity.

Example 2. Consider a frame of discernment X = {1, 2, . . . , 15} and a BPA m such that m(3, 4, 5) = 0.05, m(6) = 0.05,
m(A)=0.8, m(X) = 0.1. When A changes, the values of fractional version of Tsallis-Deng entropy in (??) have been
computed for different choices of α and q, are these are presented in Table ??.

5



Fractional version of Tsallis-Deng Entropy

Tsallis-Deng Entropy

Fractional Deng Entropy

Deng Entropy

Fractional Tsallis Entropy

q =
1

α→ 1

α→ 1

q =
1

q = 1, α→ 1

m
(A

)
>

0
⇒
|A
|
=

1

Figure 2: Relationships among different entropies in DST theory (blue) and in classical probability theory (yellow).

Table 2: Values of fractional version of Tsallis-Deng entropy as A changes, for different choices of q and α.
A q = 0.5, α = 0.5 q = 0.5, α = 2 q = 1, α = 2 q = 0.3, α = 0.75 q = 0.3, α = 1.5 q = 0.5, α = 5

{1} 35.1571 0.4165 0.3571 2.3353 0.5823 0.2698
{1, 2} 34.0606 0.5881 0.7838 2.8415 0.7361 0.1929
{1, 2, 3} 34.8845 0.5590 0.9057 3.1505 0.7156 0.1556
{1, . . . , 4} 35.8694 0.5202 0.9545 3.4400 0.6793 0.1367
{1, . . . , 5} 37.1288 0.4854 0.9765 3.7409 0.6415 0.1244
{1, . . . , 6} 38.7866 0.4558 0.9870 4.0676 0.6056 0.1156
{1, . . . , 7} 41.0020 0.4310 0.9921 4.4306 0.5726 0.1087
{1, . . . , 8} 43.9887 0.4100 0.9946 4.8390 0.5428 0.1032
{1, . . . , 9} 48.0383 0.3921 0.9959 5.3023 0.5160 0.0986
{1, . . . , 10} 53.5510 0.3767 0.9965 5.8305 0.4919 0.0946
{1, . . . , 11} 61.0779 0.3633 0.9968 6.4350 0.4704 0.0913
{1, . . . , 12} 71.3801 0.3515 0.9970 7.1288 0.4512 0.0883
{1, . . . , 13} 85.5090 0.3411 0.9971 7.9267 0.4339 0.0857
{1, . . . , 14} 104.9202 0.3317 0.9971 8.8461 0.4183 0.0833

Example 3. In this example, we consider a well-known BPA defined for all A ⊆ X as110

m∗(A) =
2|A| − 1∑

B⊆X
(
2|B| − 1

) ,
so,

m∗(A)
2|A| − 1

=
1∑

B⊆X
(
2|B| − 1

) = K,

where K ∈ (0, 1) is a constant. The interest of this BPA is due to the fact that it gives a degree of belief to each
non-empty subset of the frame of discernment and the mass of a focal element depends only on its cardinality. Then,
the fractional version of Tsallis-Deng entropy can be evaluated for the BPA m∗ as

S Dq
α(m∗) =

1
α − 1

∑
A⊆X

(
2|A| − 1

)
K

[
1 − Kα−1

]
(− log K)q−1

=
1
α − 1

[
1 − Kα−1

]
(− log K)q−1. (11)

It is a decreasing function in α since the partial derivative with respect to α of the function in (??) has the same sign115

as that of the function
g(x) = x − 1 − x log x

6



which is non-positive for each x > 0. Based on Proposition ??, α = 1 is a removable discontinuity and then the
supremum of S Dq

α(m∗) is attained for α→ 0+ and it is given by

lim
α→0+

1
α − 1

[
1 − Kα−1

]
(− log K)q−1 =

[
K−1 − 1

]
(− log K)q−1.

4. Application to classification problems

In this section, the fractional version of Tsallis-Deng entropy in (??) is made use of for two classification problems.120

First, it is used to analyze a dataset given in [? ] about typical qualities of Italian wines composed of 178 instances
and, for each one, thirteen attributes are given. The instances of the dataset are divided into three classes of wine:
Class 1, Class 2 and Class 3. Six attributes (Alcohol, Malic acid, Ash, OD280/OD315 of diluted wines (OD), Color
intensity (CI) and Proline) are used to classify each instance into the correct class. The method of max–min values
is applied to generate a model of interval numbers. For a fixed attribute, the interval of variability in a single class125

is determined, and then the intervals of more classes are intersected. The model of interval numbers is presented in
Table ??.

Table 3: The model of interval numbers.
Class Alcohol Malic Acid Ash OD CI Proline

1 [12.850, 14.830] [1.3500, 4.0400] [2.0400, 3.2200] [2.5100, 4.0000] [3.5200, 8.9000] [680, 1680]
2 [11.030, 13.860] [0.7400, 5.8000] [1.3600, 3.2300] [1.5900, 3.6900] [1.2800, 6.0000] [278, 985]
3 [12.200, 14.340] [1.2400, 5.6500] [2.1000, 2.8600] [1.2700, 2.4700] [3.8500, 13.0000] [415, 880]

1, 2 [12.850, 13.860] [1.3500, 4.0400] [2.0400, 3.2200] [2.5100, 3.6900] [3.5200, 6.0000] [680, 985]
1, 3 [12.850, 14.340] [1.3500, 4.0400] [2.1000, 2.8600] − [3.8500, 8.9000] [680, 880]
2, 3 [12.200, 13.860] [1.2400, 5.6500] [2.1000, 2.8600] [1.5900, 2.4700] [3.8500, 6.0000] [415, 880]

1, 2, 3 [12.850, 13.860] [1.3500, 4.0400] [2.1000, 2.8600] − [3.8500, 6.0000] [680, 880]

Suppose the selected instance is (12.330, 1.1000, 2.2800, 1.6700, 3.2700, 680). It belongs to Class 2 and our aim
is to classify it correctly. Six BPAs, one for each attribute, are generated by using a method based on the similarity of
interval numbers proposed by Kang et al. [? ]. Given two intervals A = [a1, a2] and B = [b1, b2], the similarity index130

S (A, B) defined by these authors is

S (A, B) =
1

1 + α D(A, B)
,

where α > 0 is the coefficient of support (we used α = 5 here), and D(A, B) is the distance between intervals A and B
defined in [? ] as

D2(A, B) =
[(a1 + a2

2

)
−

(
b1 + b2

2

)]2

+
1
3

(a2 − a1

2

)2
+

(
b2 − b1

2

)2 .
For each attribute, seven values of similarity index are obtained by choosing as A the intervals given in Table ?? and
as B the corresponding singleton of the selected instance. Then, by normalizing the obtained values, six BPAs are135

computed, and these are presented in Table ??.
Without any additional information, the final BPA is determined by giving the same weight to each attribute, i.e.,

by summing the six values that are related to a focal element and then dividing by six. In this way, we get the final
BPA as presented in Table ??.

Given a BPA, there are different methods for choosing the most appropriate focal element. Obviously, a simple140

method is to consider the focal element with highest mass. In this example, as our objective is to discriminate between
singletons, it will be reasonable to consider the pignistic probability transformation (PPT). The PPT is a point estimate
of belief towards focal elements and is defined for A ⊆ X as

PPT (A) =
∑

B:A⊆B

m(B)
|B|

; (12)

7



Table 4: BPAs based on Kang’s method.

Class Alcohol Malic Acid Ash OD CI Proline

m(1) 0.1008 0.1645 0.1180 0.1062 0.0977 0.0394
m(2) 0.1785 0.1153 0.1098 0.1455 0.2137 0.1084
m(3) 0.1381 0.1132 0.1635 0.3259 0.0575 0.1646

m(1, 2) 0.1445 0.1645 0.1180 0.1171 0.1859 0.1292
m(1, 3) 0.1191 0.1645 0.1635 0.0000 0.0949 0.1969
m(2, 3) 0.1745 0.1132 0.1635 0.3053 0.1751 0.1646

m(1, 2, 3) 0.1445 0.1645 0.1635 0.0000 0.1751 0.1969

Table 5: Final BPA.

Class Final BPA

m(1) 0.1045
m(2) 0.1452
m(3) 0.1605

m(1, 2) 0.1432
m(1, 3) 0.1232
m(2, 3) 0.1827

m(1, 2, 3) 0.1408

see [? ]. Upon considering the PPT only for singletons, we end up getting a discrete probability distribution. Now,
based on the BPA in Table ??, the PPT of the singleton classes is computed to be145

PPT (1) = 0.2846, PPT (2) = 0.3551, PPT (3) = 0.3603.

Thus, the focal element with the highest PPT is Class 3, and would therefore be our final decision, which is not the
correct one in this case.

We now try to improve the described method by using fractional version of Tsallis-Deng entropy in (??). Fix
the values of q = 0.5 and α = 4. The fractional version of Tsallis-Deng entropy of BPAs given in Table ?? is then
evaluated and the corresponding results are shown in Table ??.

Table 6: Fractional versions of Tsallis-Deng entropies of BPAs in Table ??.

Attribute Alcohol Malic Acid Ash OD CI Proline

S Dq
α 0.2085 0.2058 0.2057 0.2464 0.2087 0.2032

150

Because a greater value of S Dq
α means a higher uncertainty, it is reasonable to give more weight to the attributes

with lower S Dq
α. Specifically, we define the weights by normalizing to 1 the reciprocal values of the fourth power of

fractional versions of Tsallis-Deng entropies. The weights so determined are reported in Table ??.
Based on the weights in Table ??, a weighted version of the final BPA is obtained, as given in Table ??. Then,

based on the weighted BPA in Table ??, we compute the PPT of the singleton classes to be155

PPT (1) = 0.2956, PPT (2) = 0.3533, PPT (3) = 0.3510.

Thus, the focal element with the highest PPT is Class 2, and would therefore be our final decision, which is indeed
the correct decision in this case.
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Table 7: The weights of attributes based on fractional version of Tsallis-Deng entropy.

Attribute Alcohol Malic Acid Ash OD CI Proline

Weight 0.1745 0.1838 0.1843 0.0895 0.1741 0.1938

Table 8: Final weighted BPA.

Class Final Weighted BPA

m(1) 0.1037
m(2) 0.1438
m(3) 0.1431

m(1, 2) 0.1451
m(1, 3) 0.1358
m(2, 3) 0.1711

m(1, 2, 3) 0.1542

In Table ??, the recognition rates of the non-weighted method and methods based on fractional version of Tsallis-
Deng entropy are presented for different choices of q and α.

Table 9: The recognition rate for different choice of q and α.

Non-Weighted Method q α Fractional Tsallis-Deng Method

93.26% 0.5 4 93.82%
0.6 3 93.82%
0.1 0.8 91.57%
1 5 93.26%

Next, let us consider a different dataset given in [? ] about Iris flowers which is composed of 150 instances and,160

for each one, four attributes are given, namely, the sepal length in cm (SL), the sepal width in cm (SW), the petal
length in cm (PL) and the petal width in cm (PW). The instances of the dataset are divided into three kind of flowers:
Iris Setosa (S e), Iris Versicolour (Ve) and Iris Virginica (Vi). By using the method of max–min values, the model of
interval numbers is obtained and is presented in Table ??.

Suppose the selected instance is (6.3, 2.7, 4.9, 1.8). It belongs to the kind Iris Virginica and our aim is then to165

classify it correctly. Four BPAs, one for each attribute, are generated by using the similarity of interval numbers as
above. Without any additional information, the final BPA is determined by giving the same weight to each attribute,
i.e., by summing the four values that are related to a focal element and then dividing by four. In this way, we get the
final BPA as presented in Table ??.

In order to discriminate among classes, we evaluate the PPT of singleton classes for the BPA given in Table ??170

and the results are
PPT (S e) = 0.1826, PPT (Ve) = 0.4131, PPT (Vi) = 0.4043.

Thus, the focal element with the highest PPT is the type Iris Versicolour, and would therefore be our final decision,
which is not the correct one in this case. We now try to improve the method by using fractional version of Tsallis-
Deng entropy in (??). Fix the values of q = 0.5 and α = 0.5. The fractional version of Tsallis-Deng entropy of BPAs
obtained by using the similarity of interval numbers is then evaluated and the corresponding results are shown in Table175

??.
As stated earlier, because a greater value of S Dq

α means a higher uncertainty, it is reasonable to give more weight

9



Table 10: The model of interval numbers.

Class SL SW PL PW

S e [4.3, 5.8] [2.3, 4.4] [1.0, 1.9] [0.1, 0.6]
Ve [4.9, 7.0] [2.0, 3.4] [3.0, 5.1] [1.0, 1.8]
Vi [4.9, 7.9] [2.2, 3.8] [4.5, 6.9] [1.4, 2.5]

S e,Ve [4.9, 5.8] [2.3, 3.4] − −

S e,Vi [4.9, 5.8] [2.3, 3.8] − −

Ve,Vi [4.9, 7.0] [2.2, 3.4] [4.5, 5.1] [1.4, 1.8]
S e,Ve,Vi [4.9, 5.8] [2.3, 3.4] − −

Table 11: Final BPA.

Class Final BPA

m(S e) 0.0872
m(Ve) 0.1891
m(Vi) 0.1861

m(S e,Ve) 0.0759
m(S e,Vi) 0.0643
m(Ve,Vi) 0.3215

m(S e,Ve,Vi) 0.1759

to the attributes with lower S Dq
α. In this case, we define the weights by normalizing to 1 the exponential function of

fractional versions of Tsallis-Deng entropies multiplied by one. The weights so determined are reported in Table ??.
Based on the weights in Table ??, a weighted version of the final BPA is obtained, as given in Table ??. Then,180

based on the weighted BPA in Table ??, we compute the PPT of the singleton classes to be

PPT (1) = 0.1156, PPT (2) = 0.4360, PPT (3) = 0.4485.

Thus, the focal element with the highest PPT is the type Iris Virginica, and would therefore be our final decision,
which is indeed the correct one in this case.

In Table ??, the recognition rates of the non-weighted method and methods based on fractional version of Tsallis-
Deng entropy are presented for different choices of q and α.185

5. Conclusions

In this paper, we have put forward a general formulation of entropy measure which depends on two parameters
and includes Shannon, Tsallis and fractional entropy all as special cases. Some properties of this new measure,
referred to as fractional Tsallis entropy, have been studied. Moreover, the fractional version of Tsallis-Deng entropy
has been defined and analyzed in the context of Dempster-Shafer theory of evidence. Finally, we have presented two190

applications to classification problems. Based on the results of this paper, it would similarly be of interest to unify the
notion through information volume, and we plan to consider this as our future research.
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Table 12: Fractional versions of Tsallis-Deng entropies of BPAs based on similarity of interval numbers.

Attribute Alcohol Malic Acid Ash OD

S Dq
α 3.6184 3.7153 2.1226 2.0932

Table 13: The weights of attributes based on fractional version of Tsallis-Deng entropy.

Attribute SL SW PL PW

Weight 0.0912 0.0828 0.4069 0.4191
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Table 14: Final weighted BPA.

Class Final Weighted BPA

S e 0.0825
Ve 0.2050
Vi 0.2194

S e,Ve 0.0262
S e,Vi 0.0224
Ve,Vi 0.4182

S e,Ve,Vi 0.0262

Table 15: The recognition rate for different choice of q and α.

Non-Weighted Method q α Fractional Tsallis-Deng Method

94% 0.5 0.5 96.67%
0.25 0.6 94.67%
0.8 0.75 96.67%

0.75 2 94%
1 5 94%
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