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Abstract

Recently, a modification of fractional entropy based on the inverse Mittag-Leffler func-
tion (MLF) was proposed by Zhang and Shang (2021). In this paper, we present an exten-
sion of the fractional cumulative entropy (FCE) and obtain some further results about this
measure. We study new equivalent expressions, bounds, stochastic ordering, and proper-
ties of dynamic generalized FCE. By using the empirical approach, we give an estimator
of this measure and study large sample properties of it. In addition, the validity of this
new measure is supported by numerical simulations on logistic map equations. Finally, an
application of this measure is proposed in the evaluation of MRI scans for brain cancer.

Keywords: Cumulative entropy, Evaluation of MRI scans, Fractional entropy, Financial stock,
Inverse Mittag-Leffler function, Logistic map equations, Studying chaos
AMS Mathematical Subject Classification [2020]: 60E15, 62B10, 94A17

1 Introduction and background

Let X be a discrete random variable which takes values in {x1, x2, . . . , xm} with probability
mass function vector {p1, p2, . . . , pm}. Jumarie [13] introduced a new fractional entropy of
order α as

H̃α(X) = −
m∑
i=1

pi[Lnαpi]
1
α , 0 < α < 1, (1)

where Lnα is the inverse Mittag-Leffler function, satisfying Lnα1 = 0, Lnα0 = −∞, 0(Lnα0)
1
α =5

1(Lnα1)
1
α = 0, and Lnαx < 0 when x < 1. Note that H̃α(X) can generate negative entropy.

For instance, if α = 0.5, then H̃α(X) < 0. The parameter α considered here for the frac-
tional entropy is related to fractals, even though the fractal dimension is another and different
measure of complexity.

For a non-negative and absolutely continuous random variable X, with pdf f , Ubriaco [20]10

proposed a new entropy measure known as the fractional entropy

Hq(X) =

∫ +∞

0
f(x)[− log f(x)]qdx, 0 < q ≤ 1. (2)

*francesco.buono3@unina.it
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Ubriaco [20] established that the fractional entropy is concave, positive and non-additive. From
a physical point of view, it satisfies Lesche and thermodynamic stability. Then, following
his work, Machado and Lopes [15] proposed the fractional Rényi entropy and obtained some
results by the properties of fractional calculus. In analogy with (2), we can define the fractional15

cumulative entropy of X by

CEq(X) =

∫ s

0
F (x)[− logF (x)]qdx, 0 < q ≤ 1, (3)

where (0, s) is the support of X. Note that CE1(X) is the cumulative entropy of X (for
details on the cumulative entropy one may refer to Longobardi [14] and Balakrishnan et al.
[2]). This version of the cumulative entropy is defined on the idea of fractional cumulative
residual entropy studied by Xiong et al. [23]. Recently, Di Crescenzo et al. [3] proposed a20

new measure of entropy named fractional generalized cumulative entropy and analyzed several
of its properties. In the literature, there are many other formulations of cumulative entropies
with interesting properties and applications, see, for instance, Di Crescenzo and Longobardi
[5], Irshad et al. [12] and Psarrakos and Toomaj [16].

Recently, Zhang and Shang [26] introduced and studied a modification of the fractional25

entropy as

Hα(X) =

m∑
i=1

pi[−Lnαpi]
1
α , 0 < α < 1. (4)

Note that Hα(X) ≥ 0. Moreover, the corresponding continuous version is defined by

Hα(X) =

∫
f(x)[−Lnαf(x)]

1
αdx. (5)

Here, we recall the following important approximation Lnαp ≈ log pα! (0 < α! < 1) . Hence,
another fractional entropy is proposed to measure the information content

Kα(X) = −
m∑
i=1

pi(Lnαpi).

The corresponding version of (5) for the cumulative residual entropy has been studied by30

Foroghi et al. [9]. Fractional versions of information measures with their applications in
complex systems have been proposed and extensively studied in literature (see, for instance,
Dong and Zhang [8], Wang and Shang [21] and Zhang and Shang [25]).

In this paper we try to investigate some applications of the generalized FCE. The rest of
this paper is organized as follows. Section 2 contains some properties of a new generalized FCE35

and its dynamic version. Section 3 gives an estimator of generalized FCE by using empirical
approach and provides numerical simulations on logistic map equations to show the validity
of the generalized FCE. Moreover, the empirical measure of a generalized FCE is applied in
financial stock data. Finally, an application of generalized FCE is presented in evaluation of
MRI scans for brain cancer. Throughout this paper, it is assumed that the expectation exists40

when it appears and the terms ‘increasing’ and ‘decreasing’ are used in non-strict sense.

2 New generalized FCE and its properties

In this section, we provide some properties of a new generalized FCE. Also, a dynamic (past)
version of this measure is considered and studied.
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Definition 1. Let X be a non-negative continuous random variable with support (0, s). Then,45

in analogy with the measure given in (4), a generalized FCE (GFCE) is defined by

CEα(X) =

∫ s

0
F (x)[−LnαF (x)]

1
αdx, 0 < α < 1. (6)

Remark 1. Let X be an absolutely continuous random variable with support (0, s) and cdf
F . Another extension of FCE can be proposed in the following way

C̃Eα(X) = −
∫ s

0
F (x) (LnαF (x)) dx ≈ α!CE(X), 0 < α < 1. (7)

In the following proposition, the behavior of GFCE is studied for linear transformations.
Moreover, it is shown that GFCE equals 0 if, and only if, the distribution is degenerate. The50

proof is straightforward and hence it is omitted.

Proposition 2.1. (i) Let X be a random variable with cdf F and let Y be a linear trans-
formation of X, Y = aX + b, with a > 0 and b ≥ 0. Then CEα(Y ) = aCEα(X).

(ii) Vanishing GFCE characterizes degenerate distributions, i.e., CEα(X) = 0, if and only if,
X is degenerate.55

In the following, we give a few examples of the GFCE for some well-known distributions.

Example 1. (i) Let X be a random variable with uniform distribution in (0, b), FX(x) =

x
b , 0 < x < b . Hence, CEα(X) ≈ b (α!)

1
α

(
Γ(α+1

α
)

2
α+1
α

)
.

(ii) Let X be a random variable with distribution function FX(x) = exp
(
− θ

x

)
, 0 < x, θ .

Here, we have CEα(X) ≈ (α!)
1
α θΓ( 1α − 1).60

(iii) If X has a inverse Weibull distribution with cdf FX(x) = exp(−λx−γ), 0 ≤ x, λ, γ > 0 ,

then CEα(X) ≈ (α!)
1
α

(
λ

1
γ Γ( 1

α
− 1

γ
)

γ

)
.

In the following proposition, a connection between GFCE and the extended fractional cu-
mulative residual entropy is explained for symmetric distributions. The proof is straightforward
and hence it is omitted.65

Proposition 2.2. Let X be a bounded random variable on (0, s) with a symmetric distribution,
i.e., F (x) = F̄ (s− x) for all 0 < x < s. Then, we have

CEα(X) = Eα(X),

where Eα(X) =
∫ s
0 F̄ (x)[−LnαF̄ (x)]

1
αdx is the extended fractional cumulative residual entropy

defined and studied in Foroghi et al. [9].

Proposition 2.3. Let X be a non-negative random variable with cdf F and reversed hazard
rate function r(z), z > 0, with finite GFCE, i.e., CEα(X) < ∞. Then, for any 0 < α < 1,

CEα(X) ≈ (α!)
1
α

∫ +∞

0
r(z)

{∫ z

0
F (x)[− logF (x)]

1
α
−1dx

}
dz. (8)
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Proof. By (6) and the relation − logF (x) =
∫∞
x r(z)dz, we have

CEα(X) ≈ (α!)
1
α

∫ +∞

0

∫ ∞

x
r(z)F (x)[− logF (x)]

1
α
−1dzdx.

By using Fubini’s theorem, we get

CEα(X) ≈ (α!)
1
α

∫ +∞

0

∫ z

0
r(z)F (x)[− logF (x)]

1
α
−1dxdz,

and the result follows.70

In the following propositions, we obtain some bounds and results of stochastic ordering
based on the GFCE. The proof follows on the same lines of the one given by Psarrakos and
Toomaj [16].

Proposition 2.4. Let X be an absolutely non-negative random variable with finite GFCE,
CEα(X) < ∞. Then, we have75

CEα(X) ≥ [C̃Eα(X)]
1
α , 0 < α < 1,

where C̃Eα(X) = −
∫ +∞
0 F (x)(LnαF (x))dx.

Proof. From (6) we have

CEα(X) =

∫ +∞

0
F (x)[−LnαF (x)]

1
αdx ≥

∫ +∞

0
[−F (x)LnαF (x)]

1
αdx.

Since g(x) = x
1
α , 0 < α < 1 is a convex function, the Jensen inequality gives∫ +∞

0
[−F (x)LnαF (x)]

1
αdx ≥

(
−
∫ +∞

0
F (x)LnαF (x)dx

) 1
α

,

and the result follows.

Proposition 2.5. Let X be a non-negative random variable with cdf F and finite mean µ =80

E(X) < ∞. Then,

C̃Eα(X) ≥ α!gini(X)µ, 0 < α < 1,

where gini(·) is the Gini index, a measure of income inequality which can be expressed by

gini(X) = 1−
∫∞
0 [F̄ (x)]2dx

µ
,

see Wang [22].

Proof. The proof follows of Proposition 1 of Rao [18] and the result given in (7).

Proposition 2.6. Let X be a non-negative random variable with absolutely continuous cdf85

F (x) and finite GFCE, CEα(X) < ∞. Then,

CEα(X) = E (Qα(X)) , 0 < α < 1, (9)

where Qα(x) =
∫∞
x [−LnαF (w)]

1
αdw.
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Proof. From (6) and Fubini’s theorem, we get

CEα(X) =

∫ +∞

0

[∫ w

0
f(x)dx

]
[−LnαF (w)]

1
αdw =

∫ +∞

0
f(x)

[∫ ∞

x
[−LnαF (w)]

1
αdw

]
dx,

so that the relation (9) holds.

Proposition 2.7. Let X be a non-negative random variable with finite mean µ = E(X) < ∞.90

Then, we have

CEα(X) ≥ Qα(µ), 0 < α < 1,

where Qα(·) is defined in Proposition 2.6.

Proof. Since Qα(.) is a convex function, the proof follows by applying Jensen’s inequality in
(9).

Before obtaining a lower bound for CEα based on Hα, we recall the following important95

expression introduced by Jumarie [13] in the theory of the inverse MLF

[Lnαuv]
1
α = [Lnαu]

1
α + [Lnαv]

1
α .

Proposition 2.8. Let X be a non-negative and absolutely continuous random variable with
pdf f . Then, a lower bound for the GFCE is given by

CEα(X) ≥ exp

(
−1

α!

[
−Hα(X) +

∫ 1

0

(
−Lnαu(−Lnαu)

1
α

) 1
α
du

]α)
, (10)

where Hα(X) is the fractional entropy defined in (5).

Proof. Using Theorem 3 of Zhan and Shang (2020), we get100

∫ ∞

0
f(x)

(
−Lnα

f(x)

F (x)(−LnαF (x))
1
α

) 1
α

dx

= Hα(X) +

∫ ∞

0
f(x)

(
−Lnα

1

F (x)(−LnαF (x))
1
α

) 1
α

dx

= Hα(X)−
∫ ∞

0
f(x)

[
−LnαF (x)(−LnαF (x))

1
α

] 1
α
dx

≤

(
−Lnα

1∫∞
0 F (x)(−LnαF (x))

1
αdx

) 1
α

= − (−LnαCEα(X))
1
α , (11)

and the result follows.

In the following definition, we introduce the two-dimensional version of CEα(X) .

Definition 2. Let X and Y be two random variables with support (0, s1) and (0, s2), respec-
tively, and with joint cdf F (x, y). Then, the bivariate GFCE is expressed by

CEα(X,Y ) =

∫ s2

0

∫ s1

0
F (x, y)[−LnαF (x, y)]

1
αdxdy, 0 < x < s1, 0 < y < s2, 0 < α < 1.
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In the following proposition, the two-dimensional version of GFCE is analyzed for indepen-105

dent random variables. The proof follows by applying (10) and hence it is omitted.

Proposition 2.9. Suppose that the non-negative random variables X and Y are independent
with supports (0, s1), (0, s2), respectively. Then

CEα(X,Y ) = CEα(X)

∫ s2

0
F (y)dy + CEα(Y )

∫ s1

0
F (x)dx, 0 < α < 1. (12)

In analogy with the normalized CE studied in Di Crescenzo and Longobardi [4], we define
the normalized GFCE’s as follows:110

NCEα(X) =
CEα(X)

E(X)
, Ñ CEα(X) =

C̃Eα(X)

E(X)
, 0 < α < 1.

Note that 0 ≤ ÑCEα(X) ≤ 1. In the following definition, we recall some of the most im-
portant stochastic orders which will be useful in the sequel (for more details, see Shaked and
Shanthikumar [19]).

Definition 3. Let X and Y be two random variables with cdf’s F (x) and G(x), respectively.
X is said to be smaller than Y115

1. in the hazard rate order (denoted by X
hr
≤ Y ), if λX(x) ≥ λY (x) for all x.

2. in the decreasing convex order (denoted by X
dcx
≤ Y ), if E(ϕ(X)) ≤ E(ϕ(Y )) for any

decreasing convex functions ϕ.

3. in the dispersive order (denoted by X
disp
≤ Y ), if F−1(v) − F−1(v) ≤ G−1(v) − G−1(u)

for all 0 < u ≤ v < 1, where F−1 and G−1 are the right-continuous inverses functions of120

F and G, respectively.

Furthermore, in the following definition, we introduce a new stochastic order based on the
comparison among GFCE.

Definition 4. Let X and Y be two random variables. X is said to be smaller than Y in the

GFCE order (denoted by X
gfce
≤ Y ) if, for all 0 < α < 1, we have CEα(X) ≤ CEα(Y ).125

Proposition 2.10. Let X and Y be two non-negative random variables such that X
disp
≤ Y .

Then X
gfce
≤ Y .

Proof. The proof follows in analogy with Proposition 2.16 in Foroghi et al. [9], where it is
studied about the fractional cumulative residual entropy, and hence it is omitted.

Corollary 2.1. Let X and Y be two non-negative random variables such that X
dcx
≤ Y . Then,130

X
gfce
≤ Y .

Corollary 2.2. Let X and Y be two non-negative random variables such that X
hr
≤ Y and let

X or Y be DFR (decreasing failure rate). Then, we have CEα(X) ≤ CEα(Y ).
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Proof. If X
hr
≤ Y and X or Y is DFR, then X

disp
≤ Y (see Bagai and Kochar [1]). Hence, the

result follows by Proposition 2.10.135

Proposition 2.11. Let X and Y be two independent non-negative random variables with log-
concave densities. Then,

CEα(X + Y ) ≥ max {CEα(X), CEα(Y )} . (13)

Proof. The proof is similar to that of Theorem 3.2 of Di Crescenzo and Toomaj [6] and hence
it is omitted.

Proposition 2.12. Let ϕ : (0,∞) → (0,∞) be a strictly increasing function such that ϕ′(u) ≥ 1140

for all u > 0 and define Y as Y = ϕ(X). Then, CEα(X) ≤ CEα(Y ).

Hereafter, consider two non-negative random variables X and Xθ with cdf’s F (x) and
F ∗(x), respectively. These variables satisfy the proportional reversed hazard rate model
(PRHM), with proportionality constant θ > 0, if

F ∗
Xθ

(x) = [F (x)]θ, x > 0, (14)

see Gupta et al. [11]. Now, by using (6) and the formula Lnα(x
b) = bαLnα(x), we get

CEα(Xθ) = θ

∫ +∞

0
[F (x)]θ[−LnαF (x)]

1
αdx.

Proposition 2.13. Let X be a non-negative absolutely continuous random variable with cdf
F . Then, the GFCE of X and Xθ are related, for θ ≥ 1, by

CEα(Xθ) ≤ θCEα(X).

Suppose that X is the lifetime of a system with cdf F . Clearly, the past lifetime X̃t =145

[X|X < t] is a non-negative random variable representing the lifetime of the system given that

it has been found down at time t. Hence, the cdf of X̃t is given by FX̃t
(x) = F (x)

F (t) , x < t.
Analogously, we can also consider the dynamic version of GFCE as

CEα(X̃t) := CEα(X; t) =

∫ t

0

F (x)

F (t)

[
−Lnα

F (x)

F (t)

] 1
α

dx

=
1

F (t)

∫ t

0
F (x) [−LnαF (x)]

1
α dx− [−LnαF (t)]

1
α

∫ t

0

F (x)

F (t)
dx

=
CEα(t−X)

F (t)
− M̃X(t)[−LnαF (t)]

1
α , t > 0, 0 < α < 1, (15)

where M̃X(t) is the mean past lifetime function. Naturally, CEα(X; 0) = CEα(X). Another
version of dynamic FCE is proposed as150

C̃Eα(X̃t) := C̃Eα(X; t) = −
∫ t

0

F (x)

F (t)
Lnα

F (x)

F (t)
dx ≈ α!C̃E(X̃t), 0 < α < 1, (16)

where C̃E(X̃t) = −
∫ t
0

F (x)
F (t) log

(
F (x)
F (t)

)
dx.

7



Remark 2. Let X be a non-negative absolutely continuous random variable with cdf F . Then,
for any t > 0, we have

CEα(t−X) ≥ M̃X(t)F (t)[−LnαF (t)]
1
α .

Proposition 2.14. Let X be a non-negative and absolutely continuous random variable with
cdf F . Then, for any t > 0 and 0 < α < 1, we have155

CEα(X; t) = E[Qα(X; t)|X < t],

where

Qα(x; t) =

∫ t

x

[
−Lnα

F (z)

F (t)

] 1
α

dz, 0 < x < t.

Remark 3. If X is a non-negative and absolutely continuous random variable with cdf F ,
then, for 0 < α < 1, we have

CEα(Xt) ≥ [C̃Eα(Xt)]
1
α .

Remark 4. Suppose that X is a non-negative random variable with cdf F . Then, for any
θ ≥ 1, we obtain

CEα(Xθ; t) ≤ θCEα(X; t).

3 Applications of empirical measure of CEα(X)160

Let X1, X2, . . . , Xn be a random sample of size n from a continuous cdf F (x). Let X(1) ≤
X(2) ≤ · · · ≤ X(n) represent the order statistics of the sample X1, X2, . . . , Xn. Then, the
empirical measure of F (x) is defined by

F̂n(x) =


0, x < X(1),
i
n , X(i) ≤ x < X(i+1), i = 1, 2, . . . , n− 1

1, x ≥ X(n+1).

Thus, the empirical measure of CEα(X) is obtained as

CEα(F̂n) ≈ (α!)
1
α

∫ +∞

0
F̂n(x)

(
− log F̂n(x)

) 1
α
dx

≈ (α!)
1
α

n−1∑
i=1

Ui+1

(
i

n

)[
− log(

i

n
)

] 1
α

, 0 < α < 1, (17)

where Ui+1 = X(i+1) −X(i). Similarly, the empirical measure of C̃Eα(X) is given by

C̃Eα(F̂n) ≈ −α!

n−1∑
i=1

Ui+1

(
i

n

)
log

(
i

n

)
.

The following theorem asserts that CEα(F̂n) converges almost surely to the CEα(F ) := CEα(X).165

Theorem 3.1. Let X be a non-negative and absolutely continuous random variable with cdf
F such that X ∈ Lp for some p > 2. Then, we have

CEα(F̂n)
a.s→ CEα(F ) as n → ∞.

8



Proof. The proof follows by using Glivenko-Cantelli theorem and in analogy with Theorem 4.1
in Foroghi et al. [9].

In the following examples, we obtain the CEα(F̂n) for uniform and exponential distributions.170

Example 2. Let X1, X2, . . . , Xn be a random sample with a uniform distribution in [0, 1]
as parent distribution. Then Ui+1, i = 1, 2, . . . , n − 1 are independent and follow the beta
distribution with parameters 1 and n (see, for instance, Pyke [17]). Hence, by using (17), we
obtain the mean and the variance of CEα(F̂n)

E
[
CEα(F̂n)

]
≈ (α!)

1
α

n+ 1

n−1∑
i=1

(
i

n

)[
− log

(
i

n

)] 1
α

, (18)

175

V ar
[
CEα(F̂n)

]
≈ n(α!)

2
α

(n+ 1)2(n+ 2)

n−1∑
i=1

(
i

n

)2 [
− log

(
i

n

)] 2
α

. (19)

Note that

lim
n→∞

E
[
CEα(F̂n)

]
≈ (α!)

1
α

(
Γ(α+1

α )

2
α+1
α

)
, lim

n→∞
V ar

[
CEα(F̂n)

]
= 0.

Due to the symmetric properties of the parent distribution and based on Proposition 2.2, the
results obtained here for the empirical GFCE are the same of the ones obtained in Example
4.2 in Foroghi et al. [9]. By using the numerical results given there, we can observe that

E
[
CEα(F̂n)

]
is increasing in n and decreasing in α, while V ar

[
CEα(F̂n)

]
is decreasing in n180

and α. By plotting the estimation of GFCE for a random variable with uniform distribution
in [0, 1] with the theoretical values, we can observe that CEα(F̂n) is close to CEα(F ) of the
uniform distribution for each value of α (see also Figure 2 in Foroghi et al. [9]).

Example 3. Let X1, X2, . . . , Xn be a random sample from an exponential distribution with
parameter λ (mean 1

λ). Then, Ui+1, i = 1, 2, . . . , n − 1 are independent and follow the185

exponential distribution with mean 1
λ(n−i) (see, for instance, Pyke [17]). By using (17), the

mean and the variance of the CEα(F̂n) are respectively given by

E
[
CEα(F̂n)

]
≈ (α!)

1
α

nλ

n−1∑
i=1

i

n− i

[
− log

(
i

n

)] 1
α

, (20)

and

V ar
[
CEα(F̂n)

]
≈ (α!)

2
α

(nλ)2

n−1∑
i=1

i2

(n− i)2

[
− log

(
i

n

)] 2
α

. (21)

In Table 1, the values of the mean (20) and the variance (21) are obtained for sample sizes

n = 15, 20, 30 with α = 0.2, 0.3, 0.4, 0.5 and λ = 0.5, 1, 2 . Note that E
[
CEα(F̂n)

]
is increasing190

(decreasing) in n (α), while V ar
[
CEα(F̂n)

]
is decreasing in n and α. In addition, we remark

that

lim
n→∞

V ar
[
CEα(F̂n)

]
= 0.

9



Table 1: Computed values of E
[
CEα(F̂n)

]
and V ar

[
CEα(F̂n)

]
for exponential distribution

presented in Example 3.

E
[
CEα(F̂n)

]
λ 0.5 1 2 0.5 1 2 0.5 1 2
n α = 0.5 α = 0.6 α = 0.8
5 0.5648 0.2824 0.1412 0.6455 0.3228 0.1614 0.8462 0.4231 0.2116
10 0.6103 0.3052 0.1526 0.6880 0.3440 0.1720 0.9120 0.4560 0.2280
20 0.6266 0.3133 0.1566 0.7022 0.3511 0.1755 0.9375 0.4688 0.2344
30 0.6305 0.3153 0.1576 0.7055 0.3527 0.1764 0.9445 0.4722 0.2361
40 0.6321 0.3161 0.1580 0.7068 0.3534 0.1767 0.9475 0.4738 0.2369
50 0.6330 0.3165 0.1582 0.7074 0.3537 0.1769 0.9492 0.4746 0.2373
100 0.6342 0.3171 0.1586 0.7084 0.3542 0.1771 0.9522 0.4761 0.2380

V ar
[
CEα(F̂n)

]
λ 0.5 1 2 0.5 1 2 0.5 1 2
n α = 0.5 α = 0.6 α = 0.8
5 0.0913 0.0228 0.0057 0.1083 0.0271 0.0068 0.0057 0.0014 0.0004
10 0.0490 0.0123 0.0031 0.0561 0.0140 0.0035 0.0956 0.0239 0.0060
20 0.0250 0.0062 0.0016 0.0282 0.0071 0.0018 0.0486 0.0121 0.0030
30 0.0167 0.0042 0.0010 0.0188 0.0047 0.0012 0.0325 0.0081 0.0020
40 0.0125 0.0031 0.0008 0.0141 0.0035 0.0009 0.0244 0.0061 0.0015
50 0.0100 0.0025 0.0006 0.0113 0.0028 0.0007 0.0196 0.0049 0.0012
100 0.0050 0.0013 0.0003 0.0057 0.0014 0.0004 0.0098 0.0024 0.0006

In the following, we show a central limit theorem for the empirical measure of CEα(X) from
an exponential distribution with parameter λ (mean 1

λ).

Theorem 3.2. Let X1, X2, . . . , Xn be a random sample from exponential distribution with
parameter λ. Then,

CEα(F̂n)− E[CEα(F̂n)](
V ar[CEα(F̂n)]

)1/2 d→ N (0, 1).

Proof. The empirical measure CEα(F̂n) can be approximated by the following sum of indepen-195

dent random variables

CEα(F̂n) ≈
n−1∑
i=1

Yi, (22)

where Yi = (α!)
1
αUi+1[

i
n ][− log( i

n)]
1
α , i = 1, 2, . . . , n − 1 are independent with mean and

variance given by

E(Yi) =
(α!)

1
α i

nλ(n− i)

[
− log

(
i

n

)] 1
α

, (23)

V ar(Yi) =
(α!)

2
α i2

(nλ)2(n− i)2

[
− log

(
i

n

)] 2
α

. (24)
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By defining βi,r = E[|Yi − E(Yi)|r], r = 2, 3, we get the following approximations for large n200

n−1∑
i=1

βi,2 =

n−1∑
i=1

E[|Yi − E(Yi)|2] =
(α!)

2
α

(nλ)2

n−1∑
i=1

i2

(n− i)2

[
− log

(
i

n

)] 2
α

≈
(α!)

2
αΓ( 2α + 1)

λ2n
.

Hence, by recalling that for the exponential distribution we have E[|Yi−E(Yi)|3] = 2(6−e)[E(Yi)]
3

e ,
we get

m−1∑
i=1

βi,3 =
(α!)

3
α

(nλ)3

n−1∑
i=1

[
− log

(
i

n

)] 3
α

≈
(α!)

3
α 2(6− e)Γ( 3α + 1)

eλ3n2
,

for 0 < α < 1 and large n. Finally, the proof is completed by observing that Lyapunovâs
condition of the central limit theorem is satisfied since

(
∑m

i=1 βi,3)
1/3

(
∑m

i=1 βi,2)
1/2

≈
[2(6− e)Γ( 3α + 1)]

1
3

e
1
3 [Γ( 2α + 1)]

1
2

(n)−1/6 → 0 as n → ∞.

Now, in analogy with Xiong et al. [23], we consider the stability of the empirical GFCE.

Definition 5. Let {X́i}i=1,2,...,n be a small deformation of the random sample {Xi}i=1,2,...,n205

taken from a population with cdf F . Then, the empirical GFCE is stable if, for all ϵ > 0, there
exists δ > 0 such that

n∑
i=1

|Xi − X́i| < δ ⇒ |CEα(F̂n(X))− CEα(F̂n(X́))| < ϵ.

for all n ∈ N

In the following theorem we present sufficient condition for the stability of CEα(F̂n).

Theorem 3.3. Let X be a non-negative and absolutely continuous random variable distributed210

on a finite interval. Then, the empirical GFCE of X is stable.

Proof. Suppose X is distributed on a non-negative finite interval. Then, the empirical GFCE
is given by

CEα(F̂n) ≈ (α!)
1
α

n−1∑
i=1

[X(i+1) −X(i)](Fn(X(i)))[− log(Fn(X(i))]
1
α , (25)

Hence, the proof follows by Theorem 5 of Xiong et al. [23].
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3.1 Numerical simulations of logistic map equations215

In the following cases, we consider the validity of the GFCE through simulations on discrete
logistic map equations.
Case 1: The logistic map has excellent properties in studying chaos. The conventional logistic
map equation, which is a polynomial mapping with degree 2, is defined by

xn = βxn−1(1− xn−1), (26)

where x0 ∈ [0, 1] and β ∈ [0, 4]. It is usually regarded as a typical nonlinear dynamic sys-220

tem with chaotic characteristics. Figure 1 (left) illustrates the bifurcation diagram of the
logistic map, and Figure 1 (right) presents the GFCE measure for generated series with
β = 3.2, 3.4, 3.6, 3.8, 4, n = 2000 and the initial value chosen as x0 = 0.1. If the logistic
map is fully chaotic, that is β = 4, then the degree of randomness is the highest for all possible
values of α. Observe that the GFCE increases with the increasing of the parameter β, and so225

it can properly characterize the difference of uncertainty between chaotic and periodic series.
As α increases, the curve gradually tends to a stable level. For the logistic map exhibiting
chaotic behavior (i.e., β = 3.8 and 4), we have higher entropy values than periodic ones. So,
these results demonstrate that the GFCE is a valid measure of uncertainty in applications.
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Figure 1: Bifurcation diagram for the logistic map (left). The GFCE of logistic map with
varied parameters β and sample size is n = 2000. The fractional order α is chosen from 0 to 1
with step-size 0.02 (right).

Case 2: The best example to study discrete chaotic systems is the fractional order logistic230

map. The equation of this logistic map is introduced as

xn = xn−1 +
ra

Γ(1 + a)
βxn−1(1− xn−1), (27)

where x0 ∈ [0, 1], β ∈ [4, 9], r = 0.25 and a = 0.8. With the change of β, the data have
different characteristics like chaotic states and periodical series. The bifurcation diagram for
the fractional order logistic map can be seen in Figure 2 (left). Now, we use the sample size
n = 2000 with the initial value of x0 = 0.1 and the step size 0.02. From Figure 2 (right), it can235

be clearly observed that the GFCE increases with the increasing of the parameter β, and then
it can properly characterize the difference of uncertainty between chaotic and periodic series.
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Figure 2: Bifurcation diagram for the order logistic map (left). The GFCE of order logistic
map with varied parameters β and sample size is n = 2000. The fractional order α is chosen
from 0 to 1 with step-size 0.02 (right).

As α increases, the curve gradually tends to a stable level. Thus, it is efficient when applied
to chaotic systems.
Case 3: Another example to study discrete chaotic systems is the fractional generalized logistic240

map. The equation of this logistic map is given by

xn = βxan−1(1− xbn−1), (28)

where x0 ∈ [2, 4], β ∈ [0, 4] and a = b = 0.6. By varying the value of β, the data have different
characteristics like chaotic states, periodical series and clusters points. The bifurcation diagram
for the fractional order logistic map is given in Figure 3 (left). Here, we choose n = 2000 with
the initial value x0 = 0.1 and the step size 0.02. Figure 3 (right) illustrates the corresponding245

fractional GFCE for the generated series. Note that the GFCE can properly characterize the
difference of uncertainty between chaotic and periodic series. The chaotic dynamics is produced
with β = 3.93 and β = 4. They have higher entropy values than periodic ones. When the
logistic map is fully chaotic (β = 4), the degree of randomness is the highest for all β. Hence,
these results show that the GFCE is a credit measure of uncertainty in applications.250

3.2 Application of C̃Eα(F̂n) in financial stock data

In this subsection, we apply the empirical measure C̃Eα(F̂n) to the price returns of Dow Jones
Average (DJIA) from 1997 to 2014 (a total of T = 4500 data points). All the data are
daily closing prices collected from Yahoo Finance [24]. We first calculate the price return as
rt = log(xt)− log(xt−1), where xt is the closing price of the current date and xt−1 is the price255

of previous day. Before calculating the empirical measure C̃Eα(F̂n) of DJIA, we transform the
returns in non-negative values by yt = rt −min{rt}Tt=1. In Figure 4 it is shown a time series of
yt. For evaluating the GFCE of yt, an overlapping sliding time window of W = 200 data points
with shift size of 100 points is considered. Figure 5 represents the contour plot of C̃Eα(F̂n) for
the transformed returns y. The fractional order α is chosen from 0 to 1 with step-size 0.02.260

On the vertical axis, the time index is the center of each sliding time window. Note that C̃Eα,
for 0 < α < 1, has a high sensitivity to the dynamics of the series. There was a crisis during
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Figure 3: Bifurcation diagram for the generalized logistic map (left). The GFCE of generalized
logistic map with arbitrary power with varied parameters β and sample size is n = 2000. The
fractional order α is chosen from 0 to 1 with step-size 0.02 (right).

the years 2008-2010, and the entropy values fluctuate a lot in the region α < 0.5. Hence, when
α is close to 1, the variations become much less significant, so the classic cumulative entropy
is unable to reveal that much information on the financial system compared to C̃Eα.265
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y 1997−02−03 / 2014−11−19

0.02

0.04

0.06

0.08

0.02

0.04

0.06

0.08

Figure 4: A time series of the transformed returns y.

3.3 Application in evaluation of MRI scans for brain cancer

In this subsection, we use of CEα(F̂n) to evaluate the MRI scans for a type of brain cancer.
It is an aggressive type of brain cancer, glioblastoma, and has no cure. Patients survive an
average of 15 months after the diagnosis. A recent study from Washington University in St.
Louis has pointed out that timing of chemotherapy could improve treatment for deadly brain270

cancer. A minor adjustment to the current standard treatment giving chemotherapy in the
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Figure 5: The contour plot of C̃Eα with fractional order α and time index t.

morning rather than the evening, could add a few months to patients’ survival (see Damato
et al. [7]). By resorting to a study made in Foroghi et al. [10] based on a weighted version
of entropy, we want to use the GFCE measure to support this hypothesis. We use two MRI
brain images of size 377× 507 pixels given in Figure 1 in Foroghi et al. [10] representing MRI275

scans of the brain of a participant in evaluating chronotherapy based on circadian rhythms for
glioblastoma, one for the morning and one for the evening. Figure 6 represents the plots of
CEα(F̂n) for MRI scans. The fractional order α is chosen from 0.2 to 0.8 with step-size 0.01. It
can be seen that there is significant difference between GFCE measures of two MRI scans. So,
this result is interesting because is suggests that chemotherapy or the timed delivery of drugs,280

for glioblastoma may work better in morning than evening. Also, this result shows that the
GFCE is a credit measure of uncertainty in evaluation of MRI scans for brain cancer.

Conclusions

In this paper, we have proposed and studied a new version of FCE and its dynamic formulation.
Some properties of this information measure have been analyzed. Moreover, we have obtained285

several results including the bivariate version of GFCE, some bounds and connections with
stochastic orders. The validity of the new measure has been supported by numerical simulations
on logistic map equations. Finally, we have presented an application of this measure in the
evaluation of MRI scans for brain cancer, by showing a significant difference between GFCE
measures of two MRI scans. So, this result has shown that chemotherapy or the timed delivery290

of drugs, for glioblastoma may work better in morning than evening, supporting the hypothesis
of other recent studies.
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