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ABSTRACT ARTICLE HISTORY
Recently, Zhang and Shang introduced modifications to the concept of fractional Received 14 November 2023
entropy and proved some properties based on the inverse Mittag-Leffler function Accepted 8 August 2024
(MLF). The Deng entropy serves as a valuable measure in the Dempster-Shafer
evidence theory (DST) to tackle uncertainty. In this study, we extend the fractional
Deng entropy measure, introducing two distinct versions: £, (m) and £, (m). discrimination;

We _c.aII this new measure the extended fractlo_nal Deng entropy, EFDEn. Decomposable fractional
Additionally, we apply a similar approach to the fractional Deng extropy measure, Deng entropy Deng entropy
resulting in EX;{;1 (m) and EX}'&z(m). We call this new measure the extended frac- and extropy; Fractional
tional Deng extropy, EFDEx. These two measures are complementary, leading to entropy; Measures of
provide a deeper analysis of known and unknown information. Subsequently, we uncertainty

conduct a comparative analysis of these measures within the DST framework. We

also propose the decomposable fractional Deng entropy, an extension of the

decomposable entropy for Dempster-Shafer evidence theory, which effectively

decomposes fractional Deng entropy. Finally, we delve into a pattern recognition

classification problem to highlight the importance of these new measures.

KEYWORDS
Classification and

1. Introduction

The concept of entropy as a measure of uncertainty was first introduced by Shannon (Shannon
2001) and since then it has been used in several fields as information theory, signal and image
processing, and economics. Let X be a discrete random variable with probability mass function
vector P = (p1, ..., Pm). The Shannon entropy of X is defined as

H(X)=H(p) = _Zpi log »pis (1)
i1

with the convention 0log 0 = 0. The concept of Shannon entropy has been generalized to various fields
with different applications. Zhang and Shang (2020) defined a new fractional entropy as follows

n

H,(X) = Hy(p) = Y _pi[-Lnpis 0<a<1. )

i=1
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where Ln, is the inverse Mittag-Leffler function and is such that Ln,1 =0, Ln,0 = —o0,
1 1

0(Lny,0)* = 1(Lnyl)* = 0, and Ln,x < 0 when x < 1. It is clear that H,(X) is always non-negative.
The parameter o of the fractional entropy is related to fractals, which are mathematical objects
used to describe complex and irregular shapes or patterns. The fractal dimension is another meas-
ure of complexity. This fractional entropy concept has applications in physics, particularly in rela-
tion to Lesche and thermodynamic stability. In the context of fractional equations, Jumarie
(2012) derived one of the most important expression in the theory of the inverse MLF which is
given as

R1—

[Ln,pq)s = [Lnyp]* + [Linyg". (3)

In this framework, the inverse MLF is more suitable than the logarithmic function to calculate
entropy and there is a well-known approximation, which will be useful in the following, given
as Ln,p ~ log,p*.

The purpose of this paper is to extend Deng entropy by using the fractional entropy. Deng
entropy (Deng 2016; Buono and Longobardi 2020) is a measure of uncertainty which is known in
the context of Dempster-Shafer theory (DST) of evidence (Dempster 1967; Shafer 1976). DST is a
generalization of the classical probability theory and it deals with uncertain events that have a
finite number of alternatives. Moreover, in DST, a mass function is used to represent the degree
of confidence or belief in different outcomes. DST allows us to handle situations where less spe-
cific information is available compared to classical probability theory. DST has several applica-
tions due to its advantages in dealing with uncertainty; for example, it is used in reliability
analysis (Liu et al. 2017; Han and Deng 2018), in decision making (Yang and Xu 2013; Fu, Yang,
and Yang 2015), and in several other fields (Liu et al. 2014; Kabir et al. 2015). Additionally, a
novel failure mode and effects analysis, FMEA, a model based on the improved pignistic prob-
ability transformation (PPT) function in DST and grey relational projection method were pro-
posed by Tang et al. (2024) to improve the accuracy and reliability in risk analysis with FMEA.
Besides, although Dempster-Shafer theory is great for handling uncertain information, its fusion
rule can lead to give odd results when encountering conflicting evidence. To this end (Tang et al.
2023), used a method which is inspired by complex networks. Actually, they treat each piece of
evidence like a node, and measure the correlation to know how they are related. Then, the
weights for each node based on its importance in the network are calculated and by adjusting the
original evidence with these weights, they use Dempster’s rule to fuze the information and get a
better result.

The rest of the paper is organized as follows. In Sec. 2, we recall the basic notions of DST of
evidence and some of the most important measures of uncertainty in this context. In Sec. 3, we
define and study the extended fractional Deng entropy. The introduction of extended fractional
Deng extropy, and several examples are given in Sec. 4. Section 5 presents the decomposable
fractional Deng Entropy and it includes some related examples as well. We evaluate the effi-
ciency of fractional Deng entropy on a problem of classification in Sec. 6.

2. Methodological background

Dempster-Shafer theory (Dempster 1967; Shafer 1976), alternatively known as the theory of belief
functions or evidence theory, is widely applied in tackling uncertain scenarios. In this section, we
introduce the fundamental concepts, principles, and background information.
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2.1. Preliminaries in DST theory

In this subsection, we introduce key concepts in DST, such as the mass function, belief function,
and PPT. These concepts play crucial roles in understanding the concept of DST theory.

Definition 1. Let Y be a set of mutually exclusive and collectively exhaustive events denoted as

Y = {01, 02, ooy 0,‘, ooy Hlyl},

where the set Y is named the frame of discernment (FOD). The power set of Y, denoted by 2,
consists of 2/"I elements given as

2Y - {@, {01}, ey {H\Y\}’ {01, 92}, ey {01, 92, ...,0,‘}, eey Y}

Definition 2. (Mass function) For a FOD Y = {01,0,,...,0;, ..., 0}y }, the mass function is a map-
ping m from 2Y to [0, 1], defined as
m: 2¥ —0,1]
and satisfying the following conditions
m(0) = 0, Zm(A) =1. (4)
Ae2¥

The value m(A) represents how strongly the evidence supports A and it measures the belief
exactly assigned to A. If m(A) > 0, then A is called a focal element.

Within the framework of DST, the mass function is known as the basic probability assignment
(BPA), which is the primary and initial step in DST and must be determined. Lately, new opera-
tions involving BPA have been introduced such as negation (Yin, Deng, and Deng 2019) and cor-
relation (Jiang 2018). In several applications, a need arises to construct a new BPA by leveraging
either independent BPAs or weight of evidence denoted by a coefficient 5 € (0, 1]. To accomplish
this, we can generate another BPA, m”, following the method outlined in Shafer (1976)

([ Bm(A), if ACY,
= - AT

If we have two independent mass functions, denoted by m; and mj,, they can be combined
with Dempster’s rule of combination which is defined as (Dubois and Prade 1985; Yager 2008)

m(A) = (m@m)(A) =—— > m(B)m(C)
BNC=A

where K = 5~ ym(B)my(C) is a normalization constant representing the degree of conflict
between m; and m,.

Within the realm of DST, there are different indices to evaluate the degree of belief in a subset of
the FOD. Among them, we recall the explanations of belief function, plausibility function and PPT.

Definition 3. The belief function and plausibility function associated to a BPA and evaluated for
A, subset of the FOD, are defined as

Bel(A)= > m(B), Pl(A)= > m(B),
B|BCA B|BNA#AD
respectively.

Definition 4. Given a BPA m on a FOD Y, PPT of A C Y is defined as

PPT(A) = > %T), (5)
B:ACB
see (Smets 2000).
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The PPT represents a point estimate of belief and it is particularly useful when comparing the
elements of the FOD Y. Moreover, it is useful to note that, from the properties of the mass func-
tions, we have

Y|

S PPT({0;}) =

2.2. Some uncertainty measures for DST theory

How to extend some measures of uncertainty for the classical probability theory to efficiently
measure the uncertainty of a BPA is still an open issue. In the context of the DST, there are
interesting measures of discrimination, as the Deng entropy, whose definition is recalled below,
which has some advantages in some cases in comparison with other measures of uncertainty.
This concept suggests us the introduction of a new extension. In Table 1, we present the defini-
tions of some of the most important measures of uncertainty in DST.

Inspired by the fractional entropy in (2) and the property (3), we can define the fractional
measures of uncertainty as the following. We believe that these measures can be good guide for
future works about uncertainty measures.

Definition 5. Let m be a BPA on a FOD Y. We propose the first uncertainty measure of m for
0 <o <1 as follows

Efen(m) = > m(A)[~Ln,(Bel(A)PI(A))] ©

ACY:m(A)>0

= Y mA)-LuBel(A)f+ > m(A)[~Lu,PIA)]:

ACY:m(A)>0 ACY:m(A)>0
z[oc!]%[ Z m(A)[—longel(A)]i]
ACY:m(A)>0
] m(A) [~ log,PI(A)]"].

ACY:m(A)>0

Definition 6. Let m be a BPA on a FOD Y. We propose the second uncertainty measure of m
for 0 < a < 1 as follows

Table 1. Uncertainty measures in DST framework.

Uncertainty Measure Definition
Hohle’s confusion measure (Hohle 1982) Zm ) log ,Bel(A
ACY
Yager's Dissonance Measure (Yager 2008) Eya(m Zm Ylog ,PI(A
ACY
Dubois and Prade’s Weighted Hartley Entropy (Dubois and Prade 1985) Epp(m Zm )log,A|
ACY
Klir and Ramer’s discord measure (Klir and Ramer 1990) ANB
Dyr(m Zm )log zZm ‘ 3 |
ACY BCY 18]
Klir and Parviz's strife measure (Klir and Parviz 1992) ANB
So(m) = =3 _m(A)log: Y_m(8 'A ‘
ACY BCY Al
George and Pal’s total conflict measure (George and Pal 1996) |A N B
TC
ol A;’" 2O o
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E;mth( ) = Z m(A)[—Lna(m(A”AD]% )

ACY:m(A)>0

= Y m@)[-Lnm@))+ Y m(A)[-Ln,|A[

ACY:m(A)>0 ACY:m(A)>0

%wl > m<A>[—logzm<A>F]
ACY:m(A)>0

> mA)[- log2|A]’l‘].

—&-[oc!]i

ACY:m(A)>0

Nonetheless, these defined measures are not satisfactory for entropy measures of mass func-
tions. Additionally, they suffer from complex calculations. Consequently, Deng (2016) introduced
a novel uncertainty measure for mass functions that has yielded to relatively promising experi-
mental outcomes.

Definition 7. (Deng entropy) The Deng entropy was introduced in Deng (2016) for a BPA m as
m(A
Ey(m) = — Z m(A) logz(L), (8)
ACY:m(A)>0 -1

where |A| denotes the cardinality of the focal element A. The mass of each focal element in the

Deng entropy is divided by 24/ — 1 which represents the potential number of states in A.
Deng entropy degenerates to the Shannon entropy if, and only if, a positive mass function

value is assigned only to singleton elements, which is E;(m) = —Zlyllm({ﬂ i})log,m({6;}). Deng
entropy has attracted the interest of researchers and several of its generalizations were studied. In
Table 2 we present some modified versions of Deng entropy.

3. Extended fractional Deng entropies

In this section, we propose the concepts of extended fractional Deng entropy in the following
definitions.

Definition 8. Let m be a BPA on a FOD Y. In order to obtain an analogue of (18), we introduce
an extended fractional Deng entropy (EFDEn) of type 1 of m as

Binm) = AQY;M)wm(A) [_Lna (2’7’1(1?1)]é ©

Table 2. Modified deng entropy in DST framework.

Uncertainty Measure

Definition

Zhou et al.'s Entropy (Zhou, Tang, and Jiang 2017)

Pan et al.'s Entropy (Pan and Deng 2018)

Cui et al.’s Entropy (Cui et al. 2019)

Kazemi et al.’s Entropy (Kazemi et al. 2021)

ACY
p&mm):—zge’(’”z* PIA) 1 z< (;jfe:()’”

|ANB|

Zm IogZ(z\A\(A) e B&X,B#AW)

ACY

Bt = 320 - (G2

ACY

EMd Zm |Og 2 <2I‘:"(A ‘\_>
I(
2

ACY
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~ [al]" > m(A) [—log2< m(4) )]1 0<a<l.

A
ACY:m(A)>0 2M -1

Definition 9. Let m be a BPA on a FOD Y. We define the EFDEn of type 2 of m as

Efp(m) = - Z m(A)L”a<

ACY:m(A)>0

1> ~olE;(m), 0<o<]l, (10)

where E;(m) is the Deng entropy.
Remark 1. 1t is clear that Ef,(m) < Eq(m). Hence, the information content is lower than Eq(m).

Remark 2. Given a FOD Y = {a,ay,...,a,}. For a mass function m(a;) =m(a;) = ... =

m(ay) =1, we have E;, (m) ~ [o! log ,n)* ~ [E}‘dz(m)]i.

Theorem 3.1. If m is a BPA on a FOD Y, it holds that

1

E;m(’”) 2 {E}{dz(m)}“-
Proof. From (9) we have

Eam = 3 nia) L (%ﬂ

) (11)
m(A) |’
> > [—m(A)Lnx (zlA ~ 1>} :
ACY:m(A)>0
Since h(x) = x5, 0 < a < 1 is a convex function, the Jensen inequality gives
1 1
m(A) \|* m(A) \ |’
mian (G = | 2 - ()
ACY:m(A)>0 ACY:m(A)>0
and the result follows. |

4, Extended fractional Deng extropy

Buono and Longobardi (2020) proposed the Deng extropy as a measure of uncertainty dual to
the Deng entropy.

Definition 10. (Deng Extropy) The Deng extropy was proposed in Buono and Longobardi (2020)
for a BPA m on a FOD Y as

_ o o 1—m(A)
Bum == 3 (1w ions (577

where A€ is the complementary of A in Y and |A¢| = |Y| — |A].
Now, in analogy with EFDEn, we introduce the fractional versions of the Deng extropy.
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Definition 11. Let m be a BPA on a FOD Y. We define the extended fractional Deng extropy
(EFDEX) of type 1 of m as

B m = 3 <1—m<A>>[—Lna(1‘”“(A>)]l 12

AE
ACY:m(A)>0 2 -1

~ Y (1-m(a) {—a! log» (12;7”1_(‘?”

ACY:m(A)>0

Definition 12. Let m be a BPA on a FOD Y. We introduce the EFDEx of type 2 of m as

1—m(A)

VY ) ol
ZAC_I) oalEXg(m), 0<a<l, (13)

EXjp(m)=— (l—m(A))Lna<
ACY:m(A)>0

where EX;(m) is the Deng extropy.
Remark 3. Note that EX}),(m) < EXq(m). So, the information content is lower than EXy(m).

Remark 4. Let m be a BPA on a FOD Y, then it holds that

1
«

EXjy(m) > [EXjy(m)]”

Next, we give some examples of evaluation of the extended fractional Deng entropy and
extended fractional Deng extropy in different situations.

Example 1.

i. Assume that the FOD is Y = {a,b,c}. For a mass function m(a) = m(b) = m(c) =1, the
associated EFDEn and EFDEx are obtained in Table 3. In Figure 1, the plot of EXf, (m) —
E};, (m) is given.

ii. Assume there exist a € Y such that m(a) = 1 then EFDEn and EFDEx of type one and two
are equal and are given as

Efy (m) = Egy (m) = EXfy (m) = EXgy(m) =0

Example 2. Let us consider a FOD Y = {a,b,c}. For a mass function m(a) = m(b) = m(c) =
m(a,b) = m(a,c) = m(b,c) = m(a,b,c) =1, we obtain, the associated EFDEn and EFDEx in
Table 4.

In Figure 2, we depict all four measures to see how they change in terms of o. Ef;,(m) is

decreasing in « while E}‘dz(m) is parabola plane curves and has minimum at (0.462,3.443).

Table 3. The value of EFDEn and EFDEx when o changes in Example 1.

Measure Expression (approx) =03 =206 o=0.9
Efen (m) (! log 53] 3.237 1786 1,597
E,'?‘dg (m) #logs3 1.422 1416 1524
EXign (m) 2[xlog, 9]} 18.446 6.029 4.529

EXZ,(m) 2allog, 2 3.895 3.878 4174
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Figure 1. Plot of EX,, (m) — Ef;;(m) in Example 1 as a function of o.

Table 4. The value of EFDEn and EFDEx when « changes in Example 2.

Measure Expression (approx) =03 o0=0.6 =09
Egn(m 1[3 1 A ! 83.134 8.270 4347
i () (a)? {; ([ log ,7)7 + [log 221]1> +3 [log 249]1}
EZ,(m 3 1 3.490 3.474 3.739
w(m) o §(|0g27+ |09221)+§Iogz49}
EXZ, (m 18 1 1 12.906 5.890 5.216
fer (M) - ([a! log,7 — 1)]* + [o!(log ;7 — log z6)]1>
x 18
EXZp(m) o > 210g,7 — 1 — log 6] 4.684 4.663 5.02
Table 5. The value of EFDEn and EFDEx when o changes in Example 3.
Measure Expression (approx) 0=03 o=20.6 o=0.9
Efy (m) ' 04 \1 ' 06 \1¢ 2050.465 44.907 13.708
0.4|-allog, 07 +0.6|—allog, 07
2 (m) 0.4 0.6 9.845 9.801 10.550
fd2 (—al) {0.4 log, (W) +0.6log, <W>}
X%, (m) ' 06 \1* ' 04 \1]* 2050.465 44.907 13.708
0.6|—allog, 707 +0.4|—allog, 07
EXfin(m) ' 0.6 0.4 9.845 9.801 10.550
a!|—0.6 Ing ﬁ —0.4'092 w

Besides, EX{(m) is decreasing in o and EXf,(m) is convex function and has minimum
at (0.462,4.622).

Example 3. Assume that the FOD is Y = {aj,ap,....,a}. For a mass function
m({ay,az, ...,a10}) = 0.4, m({ai, a2, ...,ax}) = 0.6, we obtain the results presented in Table 5

and Figure 3.

Example 4. Given a FOD Y = {a,b,c} and a BPA m such that m(a) = 0.9, m(a,b) = 0.01 and
m(Y) = 0.09, we have the results in Table 6. Besides, Figure 4 shows the plot of all four measures.
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|

10

4.7

0.462 , 4.622

46

(c) Plot of EX$y(m) (d) Plot of EX$y5(m)
Figure 2. Plot of EFDEn and EFDEx in Example 2.

5. Decomposable fractional Deng entropy in DST

In this section, we extend the fractional versions of decomposable Deng entropy based on
the decomposable entropy. In the following, we define a concept of commonality function
in DST.

Definition 13. (Commonality Function) The information in a BPA m for Y can also be repre-
sented by a corresponding commonality function (CF) Q for Y that is defined as follows

QE)= Y m(C), VEc2". (14)

ce2¥, COE

Note that the commonality function can be obtained through mass function, indicating that
there is a strong connection between them.
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Figure 3. Plot of EFDEn and EFDEx in Example 3.
Table 6. The value of EFDEn and EFDEx when « changes in Example 4.
Measure Expression (approx) a=0.3 =06 =09
oL
E%, (m) ) 9 (Io <1o>)i R (1og(300) + 9 (IO (700»; 36.540 1.905 0.870
)i | = = . FRI =
10\ 929 100 092 100 \ 22\ 9
Egp(m 9 10 100 700 801.271 797.740 858.675
(m) (a)| = loga| — | 4+ 100log,(300) + — log, | —
10 9 9 9
EXZ1 (m) 1 1001} 13.999 1175 0.569
0.1[c! log 230 + 0.99 {oc! log, E}
EXg, (m) 0.453 0.451 0.486

100
ol {0.1 log,30 +0.9910g , @}

Definition 14. (Entropy of a commonality function Qy) Shannon entropy is defined as the
expected value of the information gained when learning about a single symbol of b such that b €
2Y (Jirousek and Shenoy 2018),
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Figure 4. Plot of EFDEn and EFDEx in Example 4.
b
H(Qv) = Y (=1)"Qy(b) log2(Qr (b)) (15)

be2?

Definition 15. (Deng entropy of a commonality function Qy) The Deng entropy of Qy can be
defined as follows (Xue and Deng 2022),

DE(Qy) = Y _(-1)"1Qy(b) log2<QY(b)). (16)

be2” 2M-1

Definition 16. (fractional Entropy of a commonality function Qy) The fractional Entropy of Qy
is given by

Hy(Qy) = Y _Qy(b)[-log2(Qr(b))]%, 0<g<1. (17)

be2¥
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Note that the fractional Deng entropy of Qy can be defined as follows

Qr) =Y _Qv(b) [—log2<2(ﬁj(_b>l>]q, 0<qg<l. (18)

be2¥

Example 5. Let us consider a FOD Y = {y1,y,,y3} and a BPA m such that

my({y1,y2}) = my({y1,y3}) = my({y2,y3}) = 3

Then, the Qy can be obtained as follows

WIDNW|NDWI| N

Qr({y1}) = my({y1.y2}) + my({y1,y3}) + my(Y)
Qv({12}) = my

Qv({y3}) = my({y1,y3}) + my({y2,y3}) + my(Y) =
Qy(Y) = my(Y) = 0,
Qr({yy2}) = Qv({r1y3}) = ({2 y3}) =3

uy2}) +my({y2,p3}) + my(Y) =

—~ o~

As a result, the fractional entropy and fractional Deng entropy of commonality function Qy

are obtained as follows
2\ 17 1\ ]?
o (] s ]

DE,(Qy) = 2[— log2<§)]q + {—ZIOgZ(%)]q.

Example 6. Given frame of discernment Y = {y1,y>,y3}, m is a mass function under Y as follows

my({n}) = my({y2}) = mr({ys}) =5

Then, the Qy can be obtained as follows

Qr({n}) =my({n}) + my({yny2}) + my({y,ys}) + my(Y)
Qr({y2}) = my({y2}) + my({y1,y2}) + my({y2,y3}) + my(Y)

Qr({ys}) = my({ys}) + my({y1,y3}) + mY({)’z))’a}) +my(Y) =
Y({}’l’)’z}) =my({yiy2}) + my(Y) =
Qv({y1y3}) = my({y1,y3}) + my(Y) =
({yza)/s}) = my({y2,y3}) + my(Y) =

The fractional entropy of commonality function Qy can be obtained as

I
W[ =W =W =

H,(Qy) = DE,(Qy) = [— logzﬂ '

As can be seen from this example, fractional entropy and fractional Deng entropy are equal.
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Example 7. Given a frame of discernment Y = {y1,y,,y3}, m is a mass function under Y as follows
my({n}) = my({y:}) = my({33}) = my({y1.32})
1
= my({yys}) = my({y2.ys}) = my({y.ynys}) = -

Then, the Qy can be obtained as follows

Qr({n}) = my({y1}) + my({y1,y2}) + my({y1,y3}) + my(Y)

Qr({12}) = my({y2}) + my({y1,y2}) + my({y2.y3}) + my(Y)

Qr({13}) = my({ys}) + my({y1y3}) + my({y2.y3}) + my(Y)

Qr({y1,32}) = my({y1,y2}) + my(Y) = -,

Qr({y1-y3}) = my({y1,y3}) + my(Y) =

Qv({y2y3}) = my({ynys}) + my(Y) =
1

The fractional entropy of commonality function Qy can be obtained as

NN AN S

>

>

NN NN

12 417 6 217 1 117
Hq(Qy)7|:—10g2;:| +;|:—10g2;:| +;|:—10g2;:| .

Also, the fractional Deng entropy of commonality function Qy is obtained as follows

DE<Q)_12 | 4”7+6[l 2]q+1 | 1]°
g\Sy) = T8 TS 080y 7|7 %8249 -

Example 8. Given a frame of discernment Y = {y1,y>,y3}, m is a mass function under Y as follows

my((n}) = my((a}) = my({s}) = =

19°
my({y2}) = my({y1,33}) = my({y2,y3}) = 13_9,
my({y1,y2y3}) = %.
Then, the Qy can be obtained as follows

Qr({1}) = my({1}) + my({y1,32}) + my({1,y3}) + my(Y) = %
Qr({2}) = my({y2}) + my({y1,y2}) + my({y2,y3}) + my(Y) = %,
Qrl{ys}) = my(ps}) + my(Qoys)) + my({rays}) + my(¥) =
Qrl{yira}) = my({puya)) + mr(¥) =10,
Qr({yi2s}) = my(pnys}) +mr(¥) =,
Qr{{rya}) = my({yas}) + mr(¥) = 10,

7

Qy(Y)=my(Y) = 5
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The fractional entropy of commonality function Qy can be obtained as

H,(Qy) — 42 1417 30 1017 7 _ 714
v) =19 gz— +1— gz— +1— ngﬁ :

Also, the fractional Deng entropy of commonality function Qy is obtained as follows

42 141?30 1017 7 114
E,(Qy) = 19{ log21—9] +1—9{—10g2§] +E{—log21—9].

Example 9. Given a frame of discernment Y = {y1,y,,y3}, m is a mass function under Y as
follows

my({y1}) =0.9, my({y1,y2}) =0.0L,  my({y1,y2y3}) = 0.09.
Then, the Qy can be obtained as follows
Qv({)}) = my({n}) + my({y1,y}) + my({y,y3}) + my(Y) =1
y({2}) = my({y2}) + my({y1,y2}) + my({y2,y3}) + my(Y) = 0.
y({y3}) = my({y3}) + my({y1,y3}) + my({y2,y3}) + my(Y) = 0.
Qv({y1,2}) = my({y1,2}) + my(Y) = 0.1,
y({71:93}) = my({y1,3}) + my(Y) = 0.09,
v({2y3}) = my({y2y3}) + my(Y) = 0.09,
The fractional entropy of commonality function Qy can be obtained as
H,(Qy) = 0.2[-10g,0.1]7 + 0.36[— log ,0.09].

Also, the fractional Deng entropy of commonality function Qy is obtained as follows

1 q
DE‘I(QY) =0.1 ([— 10g20.1}q + |:— 10g2%:| )

9 q
+0.09<[—log20.09]q+2[—10g20-03] [ logzm] )

Definition 17. (fractional joint Deng entropy of a commonality function Qy, with state space
Y x Z)

Qyz(b !
a(Qrz) = Y Qualb [ log ((zlbw _ I)Z((ZZlZ _ 1))1 ’ (19)

bez)’x[

in which b | Y and b | Z represent the subsets of b that consist of elements present in the sets Y
and Z, respectively.

Remark 5. Let m be a mass function with state space Y x Z. If the cardinalities of all focal ele-
ments of m are 1, then

E,(Qyz) = Z Qyz(b lOgZQY,Z(b)}q, 0<g<1l (20)

bEZYXZ
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Definition 18. (Conditional fractional Deng entropy of a commonality function Qgy)

Qzr(®) \|"
z)y
QZ\Y Z Qyz(b) | —log, m , 0<g<1 (21)
beaV*z
Remark 6. New versions of fractional entropy for a commonality function Qy are presented as
H,(Qy) = Y (-1)"1Qy(b)Ln,Qy(b) ~ «!H(Qy), 0<a <1, (22)
bea?

Note that new versions of the fractional Deng entropy of a commonality function Qy can be
defined as follows

- S ()]

be2¥

1

~ [O(!PZQy(b) [— log2<2(ily(_b)l>}x, 0<a<l.

be2?

Remark 7. Suppose Qy is a CF for Y. It holds that

FDE,(Qy) > [H,(Qy)F.

Definition 19. (New version of fractional joint Deng entropy for a commonality function Qy,
with state space Y x Z)

FDE,(Qrz) = 3 Qualb [Lm(( Qrz(b) )] 0<a<l (4

R 21011 1) (22l — )

Remark 8. Let m be a mass function with state space Y x Z. If the cardinalities of all focal ele-
ments of m are 1, then

FDE,(Qy,z) ~ [o]* Z Qrz(b)[~1log2Qy.z(b)]*, 0 <a < 1. (25)

bezYxZ

Definition 20. (New version of Conditional fractional Deng entropy of Qzy)

FDE,(Qgzy) = Z Qzy(b)Qy (b )l—Lna (%)] ’ (26)

bezYxA
Q) \|'
= bezZYXZQY,Z(b) [—Ln“ (m)] ,0<a< 1.

Remark 9. Given a state space Y x Z, then the decomposable property of fractional Deng entropy
is FDE,(Qyz) = FDE“(QZ‘Y) + FDE,(Qy).
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Remark 10. Given a state space Y x Z, then the decomposable property of H,(Qy)
is HO((QY,Z) - Hoc(QZ\Y) + Hac(QY)

Example 10. Given a mass function myz under a given state space Y x Z with ¥ = {y,y} and
Z ={z,z}, my is a mass function under Y as follows

my(y) = 0.6, my(y) = 0.3, my(y,y) =0.1.

Now let the conditional mass functions my), and my; be as follows

my,({z}) = 0.8, my,({z}) = 0.1, my,({z,2}) = 0.1,

myy({z}) = 0.3, my,({z}) = 0.6, my;({z,2}) = 0.1.

In Table 7, the values of the H,(Qy,) and FDE,(Qy,z) are obtained for o« = 0.5. In addition,
we remark that H,(Qyz) = H.(Qy) + Hx(Qy). The other results in Table 7 are deduced directly

from (Xue and Deng 2022).

Example 11. Given a mass function myz under a given state space Y x Z with ¥ = {y,y} and
Z = {z,z}, my is a mass function under Y as follows

T’I’ly()/) = 0.6, my(jl) =04.

Now let the conditional mass functions ), and my; be as follows

myp,({z}) = 0.8, my,({z}) =0.2,

mzy({z}) = 0.3, my;({z}) = 0.7.

According to Table 8, we have obtained the values of H,(Qy) and FDE,(Qy,) for a = 0.5.
Moreover, we conclude that H,(Qyz) = H,(Qzy) + H,(Qy). The other results in Table 8 are
deduced directly from (Xue and Deng 2022).

6. Application to pattern recognition

In this section, we assess the performance of all EFDEns on a pattern recognition problem, using
the Iris data set given in Dua and Graff (2017). The data set comprises 150 samples. Each

Table 7. Mass functions and commonality functions.

b m;(Y,Z) m,; myz lewz; Qumyy Qs
(v.2) 0.7 0.9 0.63
w.2) 0.7 0.2 0.14
(v.2),(y.2)} 0.6 0.7 0.1 0.07

[ (7. 2) 04 04 016
(.2) 0.4 0.7 0.28
.2), (v.2) 03 0.4 0.1 0.04
W.2), (v.2) 0.1 0.36 0.036

*(y, 2),(y,2) 0.1 0.63 0.063
W.2), (v.2) 0.1 0.08 0.008
.2),(v.2) 0.1 0.14 0.014
v,2), (v, 2), (7, 2) 03 0.1 0.04 0.004

*(y, 2),(y,2), (v.2) 06 0.1 0.07 0.007
W.2), (v.2), (v,2) 08 0.1 0.09 0.009
w.2),(v.2), (7.2) 0.1 0.1 0.02 0.002

YxZ 0.1 0.1 0.1 0.1 0.01 0.001

Ho.s 0.49 0.29 0.78

FDEg s 0.43 1.92 235
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Table 8. Mass functions and commonality functions.

b mTY(YZ) myz myz Om”(Y,Z) sz‘y Q’T‘Y,Z
(v,2) 06 08 048
(v,2) 0.6 0.2 0.12
(v.2),(v.2)} 0.6 0.6
.2) 0.4 0.3 0.12
(y,i)i 04 0.7 0.28
(,2), (7,2) 0.4 0.4
v.2), (7.2) 024
(v,2), (7,2) 0.56
v,2), (V,2) 0.06
.2).(v.2) 0.14
v.2), (v,2), (v, 2) 03
v.2). (y,2), (v.2) 0.7
v.2), (v,2), (v.2) 0.8
v.2).v.2), (v,2) 0.2
Y xZ
Hos 0.860 0.69 1.55
FDEy 5 24 0.8 3.2
Table 9. The interval numbers of the statistical model.
Attributes
ltem SL SW PL PW
Se [4.3, 5.8] [2.3, 44] [1.0, 1.9] [0.1, 0.6]
Ve [4.9, 7.0] [2.0, 3.4] [3.0, 5.1] [1.0, 1.8]
Vi [4.9, 7.9] [2.2, 3.8] [4.5, 6.9] [1.4, 2.5]
Se, Ve [4.9, 5.8] [2.3, 3.4] NA NA
Se, Vi [4.9, 5.8] [2.3, 3.8] NA NA
Ve, Vi [4.9, 7.0] [2.2, 3.4] [4.5, 5.1] [1.4,1.8]
Se, Ve, Vi [4.9, 5.8] [2.3, 3.4] NA NA

categorized into one of three classes, Iris Setosa (Se), Iris Versicolor (Ve) and Iris Virginica (Vi).
Additionally, each sample is characterized by four attributes: the sepal length in cm (SL), the
sepal width in cm (SW), the petal length in cm (PL) and the petal width in cm (PW). We select
40 samples for each kind of Iris and then we use the method of max-min values to generate a
model of interval numbers. In particular, for a fixed attribute, we study the interval of variability
in a single class and then we intersect the intervals of more classes. The model of interval num-
bers is shown in Table 9. In the third and fourth columns, NA is used for (Se, Ve) instead of a
specific interval, indicating that there is no intersection between the intervals of Se and Ve, and
similarly for the cases of (Se, Vi) and (Se, Ve, Vi).

Suppose that the selected instance is [6.3,2.7,4.9,1.8,Iris Virginica]. From the dataset, we
know that the selected instance belongs to the class Iris Virginica and our purpose is to classify it
in the right way. We generate four BPAs, one for each attribute, by using a method based on the
similarity of interval numbers which was proposed by Kang et al. (2012). Given two intervals
A = [a1,a;] and B = [by, by] their similarity is denoted by S(A, B) and is defined as

1

R o)

(27)

where § > 0 is the coefficient of support, we set f = 5, and D(A, B) is the distance of intervals A
and B that is defined in Tran and Duckstein (2002) as

a; +ap (b1+b2) +1 a; — ap 2+<b2—bl>2
2 2 3 2 2 .
For each attribute, we can get seven values of similarity by choosing as A the intervals given
in Table 9 and as B the corresponding singleton of the selected instance. Then, by normalizing

2

D*(A,B) =
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the obtained values, we get four BPAs which are reported in Table 10. Without any additional
information, we can evaluate a final BPA by averaging of four values related to each attribute. In
this way, we get the final BPA in Table 11.

Now, based on the BPA in Table 11, we can evaluate the PPT whose definition is recalled in
(5). The results are

PPT(Se) = 0.1826, PPT(Ve) = 0.4131, PPT(Vi) = 0.4043

Hence, the focal element with the highest PPT is the class Ve, which is not the same as our
sample, [6.1,3.0,4.9,1.8,Iris Virginica]. However, we guess by computing PPTs, relating to each
EFDEn, the correct estimation would be held. Let us fix the value o = 0.5. We evaluate the
EFDEn of BPAs given in Table 10 and we obtain the results shown in Table 12. Since a higher
value of EFDEn means higher uncertainty, we normalize Ej;(m) by using softmax function. All
normalized E}‘dl.(m) are presented in Table 13. Based on the weights in Table 13, we get the
weighted version of the final BPAs. The results are shown in Table 14 in which BPA; is related
to }‘di(m), i=12.

Finally, based on the BPAs in Table 14, we evaluate the PPT of the classes and we get our
desired result shown in Table 15.

Table 10. BPAs based on kang’s method.

Attributes

Item SL W PL PW
m(Se) 0.1035 0.0863 0.0624 0.0966
m(Ve) 0.1751 0.1555 0.1839 0.2418
m(Vi) 0.1471 0.1252 0.1817 0.2903
m(Se, Ve) 0.1330 0.1705 NA NA
m(Se, Vi) 0.1330 0.1242 NA NA
m(Ve, Vi) 0.1751 0.1677 0.5719 0.3713
m(Se, Ve, Vi) 0.1330 0.1705 NA NA
Table 11. Final BPA.

Class Final BPA
m(Se) 0.0872
m(Ve) 0.1891
m(Vi) 0.1861
m(Se, Ve) 0.0759
m(Se, Vi) 0.0643
m(Ve, Vi) 03215
m(Se, Ve, Vi) 0.0759

Table 12. Extended fractional Deng entropies of BPAs in Table 10.

Attributes
Methods SL W PL PW
Ef"‘” (m) 12.571576 13.089082 5.079195 5.034744
Ez,z (m) 3.420982 3.532220 2.227733 2.178458
Table 13. The normalized EFDEN.
Attributes

Methods SL SW PL PW
Normalized EZ; (m) 0.00027 0.00016 0.48868 0.51089

Normalized E7,,(m) 0.11552 0.10335 0.38094 0.40019




COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATION® 19

Table 14. Final weighted BPA.

Class Final weighted BPA; Final weighted BPA,
m(Se) 7.989529e-02 0.08331220
m(Ve) 2.134721e-01 0.20312736
m(Vi) 2.372085e-01 0.21535537
m(Se, Ve) 6.320910e-05 0.03299475
m(Se, Vi) 5.579557e-05 0.02820607
m(Ve, Vi) 4.692418e-01 0.40400949
m(Se, Ve, Vi) 6.320910e-05 0.03299475

Table 15. PPT of the classes.

Methods PPT(Se) PPT(Ve) PPT(Vi) Final decision
E%, (m) 0.07997586 0.4481457 0.4718784 Vi
7o (m) 0.1249109 0.4326277 0.4424614 Vi

Table 16. The recognition rate.

p Method Recognition Rate
B =0.001 Kang 46.6%
Ezy (m) 61.5%
Ezp(m) 60.7%
EXZ, (m) 61.5%
o (M) 33.5%
p=1 Kang 95.1%
Ezp(m) 95.7%
E¢p(m) 96.6%
EX%, (m) 62.2%
(M) 33.5%
p=5 Kang 94.4%
E2.(m) 96.9%
Ezp(m) 96.9%
EXZ, (m) 96.9%
EXZ, (m) 33.5%
p=10 Kang 95.1%
EZ (m) 96.9%
E2,(m) 96.9%
EXZ, (m) 96.9%
EXZ,(m) 33.5%
B = 1000 Kang 94.4%
E¢y(m) 96.9%
EZ,(m) 96.9%
EXg, (m) 96.6%
EXZ, (m) 33.5%
B = 10000 Kang 91.9%
Ey(m) 96.3%
EZ,(m) 96.3%
EXZ, (m) 96.3%
EXZ, (m) 33.5%

In Table 16, we present the recognition rates of Kang and EFDEn methods, with o set to 0.5.
Changing « does not have any effect on our results. However, altering the value of § in Equation
(27) would correspondingly modify the results. Each recognition rate is an average of 1000 simu-
lations. Based on Table 16 it is clear that for > 1, Ef, (m), Ej;,(m), and EXZ), (m) outperform

the Kang method and all of them classify the Iris dataset with the same accuracy.

7. Conclusions

In this paper the measures of EFDEn and EFDEx have been introduced as the extended versions
of Deng entropy and extropy. Several numerical examples are presented to demonstrate the
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effectiveness and applicability of these newly proposed measures. Finally, we have discussed a
classification problem using a data set to underscore the significance of these measures in pattern
recognition. This study has provided the framework for further research aimed at evaluating the
performance attributes of fractional entropy.
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