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Measures of extended fractional Deng entropy and extropy 
with applications
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ABSTRACT 
Recently, Zhang and Shang introduced modifications to the concept of fractional 
entropy and proved some properties based on the inverse Mittag-Leffler function 
(MLF). The Deng entropy serves as a valuable measure in the Dempster-Shafer 
evidence theory (DST) to tackle uncertainty. In this study, we extend the fractional 
Deng entropy measure, introducing two distinct versions: Ea

fd1ðmÞ and Ea
fd2ðmÞ:

We call this new measure the extended fractional Deng entropy, EFDEn. 
Additionally, we apply a similar approach to the fractional Deng extropy measure, 
resulting in EXa

fd1ðmÞ and EXa
fd2ðmÞ: We call this new measure the extended frac-

tional Deng extropy, EFDEx. These two measures are complementary, leading to 
provide a deeper analysis of known and unknown information. Subsequently, we 
conduct a comparative analysis of these measures within the DST framework. We 
also propose the decomposable fractional Deng entropy, an extension of the 
decomposable entropy for Dempster–Shafer evidence theory, which effectively 
decomposes fractional Deng entropy. Finally, we delve into a pattern recognition 
classification problem to highlight the importance of these new measures.
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1. Introduction

The concept of entropy as a measure of uncertainty was first introduced by Shannon (Shannon 
2001) and since then it has been used in several fields as information theory, signal and image 
processing, and economics. Let X be a discrete random variable with probability mass function 
vector p ¼ ðp1, :::, pmÞ: The Shannon entropy of X is defined as

HðXÞ ¼ HðpÞ ¼ −
Xm

i¼1
pi log 2pi, (1) 

with the convention 0 log 0 ¼ 0: The concept of Shannon entropy has been generalized to various fields 
with different applications. Zhang and Shang (2020) defined a new fractional entropy as follows

HaðXÞ ¼ HaðpÞ ¼
Xn

i¼1
pi −Lnapi½ �

1
a, 0 < a < 1: (2) 
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where Lna is the inverse Mittag-Leffler function and is such that Lna1 ¼ 0, Lna0 ¼ −1, 
0ðLna0Þ

1
a ¼ 1ðLna1Þ

1
a ¼ 0, and Lnax < 0 when x < 1: It is clear that HaðXÞ is always non-negative. 

The parameter a of the fractional entropy is related to fractals, which are mathematical objects 
used to describe complex and irregular shapes or patterns. The fractal dimension is another meas-
ure of complexity. This fractional entropy concept has applications in physics, particularly in rela-
tion to Lesche and thermodynamic stability. In the context of fractional equations, Jumarie 
(2012) derived one of the most important expression in the theory of the inverse MLF which is 
given as

Lnapq½ �
1
a ¼ Lnap½ �

1
a þ Lnaq½ �

1
a: (3) 

In this framework, the inverse MLF is more suitable than the logarithmic function to calculate 
entropy and there is a well-known approximation, which will be useful in the following, given 
as Lnap � log 2pa!:

The purpose of this paper is to extend Deng entropy by using the fractional entropy. Deng 
entropy (Deng 2016; Buono and Longobardi 2020) is a measure of uncertainty which is known in 
the context of Dempster-Shafer theory (DST) of evidence (Dempster 1967; Shafer 1976). DST is a 
generalization of the classical probability theory and it deals with uncertain events that have a 
finite number of alternatives. Moreover, in DST, a mass function is used to represent the degree 
of confidence or belief in different outcomes. DST allows us to handle situations where less spe-
cific information is available compared to classical probability theory. DST has several applica-
tions due to its advantages in dealing with uncertainty; for example, it is used in reliability 
analysis (Liu et al. 2017; Han and Deng 2018), in decision making (Yang and Xu 2013; Fu, Yang, 
and Yang 2015), and in several other fields (Liu et al. 2014; Kabir et al. 2015). Additionally, a 
novel failure mode and effects analysis, FMEA, a model based on the improved pignistic prob-
ability transformation (PPT) function in DST and grey relational projection method were pro-
posed by Tang et al. (2024) to improve the accuracy and reliability in risk analysis with FMEA. 
Besides, although Dempster-Shafer theory is great for handling uncertain information, its fusion 
rule can lead to give odd results when encountering conflicting evidence. To this end (Tang et al. 
2023), used a method which is inspired by complex networks. Actually, they treat each piece of 
evidence like a node, and measure the correlation to know how they are related. Then, the 
weights for each node based on its importance in the network are calculated and by adjusting the 
original evidence with these weights, they use Dempster’s rule to fuze the information and get a 
better result.

The rest of the paper is organized as follows. In Sec. 2, we recall the basic notions of DST of 
evidence and some of the most important measures of uncertainty in this context. In Sec. 3, we 
define and study the extended fractional Deng entropy. The introduction of extended fractional 
Deng extropy, and several examples are given in Sec. 4. Section 5 presents the decomposable 
fractional Deng Entropy and it includes some related examples as well. We evaluate the effi-
ciency of fractional Deng entropy on a problem of classification in Sec. 6.

2. Methodological background

Dempster-Shafer theory (Dempster 1967; Shafer 1976), alternatively known as the theory of belief 
functions or evidence theory, is widely applied in tackling uncertain scenarios. In this section, we 
introduce the fundamental concepts, principles, and background information.
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2.1. Preliminaries in DST theory

In this subsection, we introduce key concepts in DST, such as the mass function, belief function, 
and PPT. These concepts play crucial roles in understanding the concept of DST theory.

Definition 1. Let Y be a set of mutually exclusive and collectively exhaustive events denoted as

Y ¼ h1, h2, :::, hi, :::, hjYj
� �

, 

where the set Y is named the frame of discernment (FOD). The power set of Y, denoted by 2Y , 
consists of 2jYj elements given as

2Y ¼ ;, h1f g, :::, hjYj
� �

, h1, h2f g, :::, h1, h2, :::, hif g, :::, Y
� �

:

Definition 2. (Mass function) For a FOD Y ¼ h1, h2, :::, hi, :::, hjYj
� �

, the mass function is a map-
ping m from 2Y to [0, 1], defined as

m : 2Y ! 0, 1½ �

and satisfying the following conditions
mð;Þ ¼ 0,

X

A22Y

mðAÞ ¼ 1: (4) 

The value mðAÞ represents how strongly the evidence supports A and it measures the belief 
exactly assigned to A. If mðAÞ > 0, then A is called a focal element.

Within the framework of DST, the mass function is known as the basic probability assignment 
(BPA), which is the primary and initial step in DST and must be determined. Lately, new opera-
tions involving BPA have been introduced such as negation (Yin, Deng, and Deng 2019) and cor-
relation (Jiang 2018). In several applications, a need arises to construct a new BPA by leveraging 
either independent BPAs or weight of evidence denoted by a coefficient b 2 ð0, 1�: To accomplish 
this, we can generate another BPA, mb, following the method outlined in Shafer (1976) 

mbðAÞ ¼
bmðAÞ, if A � Y ,
bmðYÞ þ ð1 − bÞ, if A ¼ Y:

�

If we have two independent mass functions, denoted by m1 and m2, they can be combined 
with Dempster’s rule of combination which is defined as (Dubois and Prade 1985; Yager 2008) 

mðAÞ ¼ ðm1�m2ÞðAÞ ¼
1

1 − K

X

B\C¼A
m1ðBÞm2ðCÞ, 

where K ¼
P

B\C¼;m1ðBÞm2ðCÞ is a normalization constant representing the degree of conflict 
between m1 and m2:

Within the realm of DST, there are different indices to evaluate the degree of belief in a subset of 
the FOD. Among them, we recall the explanations of belief function, plausibility function and PPT.

Definition 3. The belief function and plausibility function associated to a BPA and evaluated for 
A, subset of the FOD, are defined as

BelðAÞ ¼
X

BjB�A

mðBÞ, PlðAÞ ¼
X

BjB\A6¼;

mðBÞ, 

respectively.

Definition 4. Given a BPA m on a FOD Y, PPT of A � Y is defined as

PPTðAÞ ¼
X

B:A�B

mðBÞ
jBj

, (5) 

see (Smets 2000).
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The PPT represents a point estimate of belief and it is particularly useful when comparing the 
elements of the FOD Y. Moreover, it is useful to note that, from the properties of the mass func-
tions, we have

XjYj

i¼1
PPTð hif gÞ ¼ 1:

2.2. Some uncertainty measures for DST theory

How to extend some measures of uncertainty for the classical probability theory to efficiently 
measure the uncertainty of a BPA is still an open issue. In the context of the DST, there are 
interesting measures of discrimination, as the Deng entropy, whose definition is recalled below, 
which has some advantages in some cases in comparison with other measures of uncertainty. 
This concept suggests us the introduction of a new extension. In Table 1, we present the defini-
tions of some of the most important measures of uncertainty in DST.

Inspired by the fractional entropy in (2) and the property (3), we can define the fractional 
measures of uncertainty as the following. We believe that these measures can be good guide for 
future works about uncertainty measures.

Definition 5. Let m be a BPA on a FOD Y. We propose the first uncertainty measure of m for 
0 < a < 1 as follows 

Ea
Fract1ðmÞ ¼

X

A�Y:mðAÞ>0

mðAÞ −LnaðBelðAÞPlðAÞÞ½ �
1
a

(6) 

¼
X

A�Y:mðAÞ>0
mðAÞ −LnaBelðAÞ½ �

1
a þ

X

A�Y:mðAÞ>0
mðAÞ −LnaPlðAÞ½ �

1
a

� a!½ �
1
a

X

A�Y:mðAÞ>0

mðAÞ − log 2BelðAÞ
� �1

a

" #

þ a!½ �
1
a

X

A�Y:mðAÞ>0

mðAÞ − log 2PlðAÞ
� �1

a

" #

:

Definition 6. Let m be a BPA on a FOD Y. We propose the second uncertainty measure of m 
for 0 < a < 1 as follows 

Table 1. Uncertainty measures in DST framework.

Uncertainty Measure Definition

Hohle’s confusion measure (Hohle 1982) CHðmÞ ¼ −
X

A�Y

mðAÞ log 2BelðAÞ

Yager’s Dissonance Measure (Yager 2008) EYaðmÞ ¼ −
X

A�Y

mðAÞ log 2PlðAÞ

Dubois and Prade’s Weighted Hartley Entropy (Dubois and Prade 1985) EDPðmÞ ¼ −
X

A�Y

mðAÞ log 2jAj

Klir and Ramer’s discord measure (Klir and Ramer 1990)
DKRðmÞ ¼ −

X

A�Y

mðAÞ log 2

X

B�Y

mðBÞ
jA \ Bj
jBj

Klir and Parviz’s strife measure (Klir and Parviz 1992)
SKPðmÞ ¼ −

X

A�Y

mðAÞ log 2

X

B�Y

mðBÞ
jA \ Bj
jAj

George and Pal’s total conflict measure (George and Pal 1996)
TCGPðmÞ ¼

X

A�Y

mðAÞ
X

B�Y

mðBÞ 1 −
jA \ Bj
jA [ Bj

� �

4 N. M. VASELABADI ET AL.



Ea
Fract2ðmÞ ¼

X

A�Y:mðAÞ>0
mðAÞ −LnaðmðAÞjAjÞ½ �

1
a

(7) 

¼
X

A�Y:mðAÞ>0

mðAÞ −LnamðAÞ½ �
1
a þ

X

A�Y:mðAÞ>0

mðAÞ −LnajAj½ �
1
a

� a!½ �
1
a

X

A�Y:mðAÞ>0

mðAÞ − log 2mðAÞ
� �1

a

" #

þ a!½ �
1
a

X

A�Y:mðAÞ>0

mðAÞ − log 2jAj
� �1

a

" #

:

Nonetheless, these defined measures are not satisfactory for entropy measures of mass func-
tions. Additionally, they suffer from complex calculations. Consequently, Deng (2016) introduced 
a novel uncertainty measure for mass functions that has yielded to relatively promising experi-
mental outcomes.

Definition 7. (Deng entropy) The Deng entropy was introduced in Deng (2016) for a BPA m as 

EdðmÞ ¼ −
X

A�Y:mðAÞ>0

mðAÞ log 2
mðAÞ

2jAj − 1

� �

, (8) 

where jAj denotes the cardinality of the focal element A. The mass of each focal element in the 
Deng entropy is divided by 2jAj − 1 which represents the potential number of states in A.

Deng entropy degenerates to the Shannon entropy if, and only if, a positive mass function 
value is assigned only to singleton elements, which is EdðmÞ ¼ −

PjYj
i¼1mð hif gÞ log 2mð hif gÞ: Deng 

entropy has attracted the interest of researchers and several of its generalizations were studied. In 
Table 2 we present some modified versions of Deng entropy.

3. Extended fractional Deng entropies

In this section, we propose the concepts of extended fractional Deng entropy in the following 
definitions.

Definition 8. Let m be a BPA on a FOD Y. In order to obtain an analogue of (18), we introduce 
an extended fractional Deng entropy (EFDEn) of type 1 of m as 

Ea
fd1ðmÞ ¼

X

A�Y:mðAÞ>0

mðAÞ −Lna

mðAÞ
2jAj − 1

� �� �1
a

(9) 

Table 2. Modified deng entropy in DST framework.

Uncertainty Measure Definition

Zhou et al.’s Entropy (Zhou, Tang, and Jiang 2017)
EMdðmÞ ¼ −

X

A�Y

mðAÞ log 2
mðAÞ

2jAj − 1
e
jAj−1
jYj

� �

Pan et al.’s Entropy (Pan and Deng 2018)
PBelðmÞ ¼ −

X

A�Y

BelðAÞ þ PlðAÞ
2

log 2
PlðAÞ þ BelðAÞ

2ð2jAj − 1Þ

 !

Cui et al.’s Entropy (Cui et al. 2019)
EðmÞ ¼ −

X

A�Y

mðAÞ log 2
mðAÞ

2jAj − 1
e
P

B�X ,B6¼A

jA\Bj

2jYj−1

� �

Kazemi et al.’s Entropy (Kazemi et al. 2021)
Eq

MdðmÞ ¼
X

A�Y

mðAÞ − log 2
mðAÞ

2jAj − 1

� �� �q
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� a!½ �
1
a

X

A�Y:mðAÞ>0

mðAÞ − log 2
mðAÞ

2jAj − 1

� �� �1
a

, 0 < a < 1:

Definition 9. Let m be a BPA on a FOD Y. We define the EFDEn of type 2 of m as 

Ea
fd2ðmÞ ¼ −

X

A�Y:mðAÞ>0
mðAÞLna

mðAÞ
2jAj − 1

� �

� a!EdðmÞ, 0 < a < 1, (10) 

where EdðmÞ is the Deng entropy.

Remark 1. It is clear that Ea
fd2ðmÞ < EdðmÞ: Hence, the information content is lower than EdðmÞ:

Remark 2. Given a FOD Y ¼ a1, a2, :::, anf g: For a mass function mða1Þ ¼ mða2Þ ¼ ::: ¼

mðanÞ ¼
1
n , we have Ea

fd1ðmÞ � ½a! log 2n�
1
a � ½Ea

fd2ðmÞ�
1
a:

Theorem 3.1. If m is a BPA on a FOD Y, it holds that 

Ea
fd1ðmÞ � Ea

fd2ðmÞ
h i1

a
:

Proof. From (9) we have 

Ea
fd1ðmÞ ¼

X

A�Y:mðAÞ>0

mðAÞ −Lna

mðAÞ
2jAj − 1

� �� �1
a

�
X

A�Y:mðAÞ>0

−mðAÞLna

mðAÞ
2jAj − 1

� �� �1
a

:

(11) 

Since hðxÞ ¼ x1
a, 0 < a < 1 is a convex function, the Jensen inequality gives 

X

A�Y:mðAÞ>0
−mðAÞLna

mðAÞ
2jAj − 1

� �� �1
a

�
X

A�Y:mðAÞ>0
− mðAÞLna

mðAÞ
2jAj − 1

� �" #1
a

, 

and the result follows.                                                                                            �

4. Extended fractional Deng extropy

Buono and Longobardi (2020) proposed the Deng extropy as a measure of uncertainty dual to 
the Deng entropy.

Definition 10. (Deng Extropy) The Deng extropy was proposed in Buono and Longobardi (2020) 
for a BPA m on a FOD Y as 

EXdðmÞ ¼ −
X

A�Y:mðAÞ>0

ð1 − mðAÞÞ log 2
1 − mðAÞ
2jAcj − 1

� �

, 

where Ac is the complementary of A in Y and jAcj ¼ jYj − jAj:
Now, in analogy with EFDEn, we introduce the fractional versions of the Deng extropy.

6 N. M. VASELABADI ET AL.



Definition 11. Let m be a BPA on a FOD Y. We define the extended fractional Deng extropy 
(EFDEx) of type 1 of m as 

EXa
fd1ðmÞ ¼

X

A�Y:mðAÞ>0
ð1 − mðAÞÞ −Lna

1 − mðAÞ
2jAcj − 1

� �� �1
a

(12) 

�
X

A�Y:mðAÞ>0

ð1 − mðAÞÞ −a! log 2
1 − mðAÞ
2jAcj − 1

� �� �1
a

:

Definition 12. Let m be a BPA on a FOD Y. We introduce the EFDEx of type 2 of m as 

EXa
fd2ðmÞ ¼ −

X

A�Y:mðAÞ>0
ð1 − mðAÞÞLna

1 − mðAÞ
2jAcj − 1

� �

� a!EXdðmÞ, 0 < a < 1, (13) 

where EXdðmÞ is the Deng extropy.

Remark 3. Note that EXa
fd2ðmÞ < EXdðmÞ: So, the information content is lower than EXdðmÞ:

Remark 4. Let m be a BPA on a FOD Y, then it holds that 

EXa
fd1ðmÞ � EXa

fd2ðmÞ
h i1

a
:

Next, we give some examples of evaluation of the extended fractional Deng entropy and 
extended fractional Deng extropy in different situations.

Example 1. 
i. Assume that the FOD is Y ¼ a, b, cf g: For a mass function mðaÞ ¼ mðbÞ ¼ mðcÞ ¼ 1

3 , the 
associated EFDEn and EFDEx are obtained in Table 3. In Figure 1, the plot of EXa

fd1ðmÞ − 
Ea

fd1ðmÞ is given.
ii. Assume there exist a 2 Y such that mðaÞ ¼ 1 then EFDEn and EFDEx of type one and two 

are equal and are given as

Ea
fd1ðmÞ ¼ Ea

fd1ðmÞ ¼ EXa
fd1ðmÞ ¼ EXa

fd2ðmÞ ¼ 0 

Example 2. Let us consider a FOD Y ¼ a, b, cf g: For a mass function mðaÞ ¼ mðbÞ ¼ mðcÞ ¼
mða, bÞ ¼ mða, cÞ ¼ mðb, cÞ ¼ mða, b, cÞ ¼ 1

7 , we obtain, the associated EFDEn and EFDEx in 
Table 4.

In Figure 2, we depict all four measures to see how they change in terms of a: Ea
fd1ðmÞ is 

decreasing in a while Ea
fd2ðmÞ is parabola plane curves and has minimum at ð0:462, 3:443Þ:

Table 3. The value of EFDEn and EFDEx when a changes in Example 1.

Measure Expression (approx) a ¼ 0:3 a ¼ 0:6 a ¼ 0:9

Ea
fd1ðmÞ ½a! log 23�

1
a 3.237 1.786 1.597

Ea
fd2ðmÞ a! log 23 1.422 1.416 1.524

EXa
fd1ðmÞ 2 a! log 2

9
2

� �1
a 18.446 6.029 4.529

EXa
fd2ðmÞ 2a! log 2

9
2

3.895 3.878 4.174
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Besides, EXa
fd1ðmÞ is decreasing in a and EXa

fd2ðmÞ is convex function and has minimum 
at ð0:462, 4:622Þ:

Example 3. Assume that the FOD is Y ¼ a1, a2, :::, a20f g: For a mass function 
mð a1, a2, :::, a10f gÞ ¼ 0:4, mð a11, a12, :::, a20f gÞ ¼ 0:6, we obtain the results presented in Table 5
and Figure 3.

Example 4. Given a FOD Y ¼ a, b, cf g and a BPA m such that mðaÞ ¼ 0:9, mða, bÞ ¼ 0:01 and 
mðYÞ ¼ 0:09, we have the results in Table 6. Besides, Figure 4 shows the plot of all four measures.

Figure 1. Plot of EXa
fd1ðmÞ − Ea

fd1ðmÞ in Example 1 as a function of a:

Table 4. The value of EFDEn and EFDEx when a changes in Example 2.

Measure Expression (approx) a ¼ 0:3 a ¼ 0:6 a ¼ 0:9

Ea
fd1ðm1Þ

ða!Þ
1
a

3
7
½ log 27�

1
a þ ½ log 221�

1
a

� �

þ
1
7
½ log 249�

1
a

� �
83.134 8.270 4.347

Ea
fd2ðm1Þ

a!
3
7
ð log 27þ log 221Þ þ

1
7

log 249

� �
3.490 3.474 3.739

EXa
fd1ðmÞ 18

7
½a!ð log 27 − 1Þ�

1
a þ ½a!ð log 27 − log 26Þ�

1
a

� �
12.906 5.890 5.216

EXa
fd2ðmÞ a!

18
7

2 log 27 − 1 − log 26½ �
4.684 4.663 5.02

Table 5. The value of EFDEn and EFDEx when a changes in Example 3.

Measure Expression (approx) a ¼ 0:3 a ¼ 0:6 a ¼ 0:9

Ea
fd1ðmÞ

0:4 −a! log 2
0:4

210 − 1

� �� �1
a

þ 0:6 −a! log 2
0:6

210 − 1

� �� �1
a 2050.465 44.907 13.708

Ea
fd2ðmÞ

ð−a!Þ 0:4 log 2
0:4

210 − 1

� �

þ 0:6 log 2
0:6

210 − 1

� �� �
9.845 9.801 10.550

EXa
fd1ðmÞ

0:6 −a! log 2
0:6

210 − 1

� �� �1
a

þ 0:4 −a! log 2
0:4

210 − 1

� �� �1
a 2050.465 44.907 13.708

EXa
fd2ðmÞ

a! −0:6 log 2
0:6

210 − 1

� �

− 0:4 log 2
0:4

210 − 1

� �� �
9.845 9.801 10.550
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5. Decomposable fractional Deng entropy in DST

In this section, we extend the fractional versions of decomposable Deng entropy based on 
the decomposable entropy. In the following, we define a concept of commonality function 
in DST.

Definition 13. (Commonality Function) The information in a BPA m for Y can also be repre-
sented by a corresponding commonality function (CF) Q for Y that is defined as follows 

QðEÞ ¼
X

C22Y , C�E

mðCÞ, 8E 2 2Y : (14) 

Note that the commonality function can be obtained through mass function, indicating that 
there is a strong connection between them.

Figure 2. Plot of EFDEn and EFDEx in Example 2.
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Definition 14. (Entropy of a commonality function QY ) Shannon entropy is defined as the 
expected value of the information gained when learning about a single symbol of b such that b 2
2Y (Jirou�sek and Shenoy 2018),

Figure 3. Plot of EFDEn and EFDEx in Example 3.

Table 6. The value of EFDEn and EFDEx when a changes in Example 4.

Measure Expression (approx) a ¼ 0:3 a ¼ 0:6 a ¼ 0:9

Ea
fd1ðmÞ

ða!Þ
1
a

9
10

log 2
10
9

� �� �1
a

þ
1

100
ð log 2ð300ÞÞ

1
a þ

9
100

log 2
700

9

� �� �1
a

 !
36.540 1.905 0.870

Ea
fd2ðmÞ

ða!Þ
9

10
log 2

10
9

� �

þ 100 log 2ð300Þ þ
100

9
log 2

700
9

� �� �
801.271 797.740 858.675

EXa
fd1ðmÞ

0:1 a! log 230½ �
1
a þ 0:99 a! log 2

100
99

� �1
a 13.999 1.175 0.569

EXa
fd2ðmÞ

a! 0:1 log 230þ 0:99 log 2
100
99

� �
0.453 0.451 0.486
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HðQYÞ ¼
X

b22Y

ð−1ÞjbjQYðbÞ log 2ðQYðbÞÞ: (15) 

Definition 15. (Deng entropy of a commonality function QY ) The Deng entropy of QY can be 
defined as follows (Xue and Deng 2022),

DEðQYÞ ¼
X

b22Y

ð−1ÞjbjQYðbÞ log 2
QYðbÞ
2jbj − 1

� �

: (16) 

Definition 16. (fractional Entropy of a commonality function QY ) The fractional Entropy of QY 
is given by 

HqðQYÞ ¼
X

b22Y

QYðbÞ − log 2ðQYðbÞÞ
� �q, 0 < q � 1: (17) 

Figure 4. Plot of EFDEn and EFDEx in Example 4.
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Note that the fractional Deng entropy of QY can be defined as follows 

DEqðQYÞ ¼
X

b22Y

QYðbÞ − log 2
QYðbÞ
2jbj − 1

� �� �q

, 0 < q � 1: (18) 

Example 5. Let us consider a FOD Y ¼ y1, y2, y3f g and a BPA m such that 

mYð y1, y2f gÞ ¼ mYð y1, y3f gÞ ¼ mYð y2, y3f gÞ ¼
1
3
:

Then, the QY can be obtained as follows 

QYð y1f gÞ ¼ mYð y1, y2f gÞ þmYð y1, y3f gÞ þmYðYÞ ¼
2
3

,

QYð y2f gÞ ¼ mYð y1, y2f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
2
3

,

QYð y3f gÞ ¼ mYð y1, y3f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
2
3

,

QYðYÞ ¼ mYðYÞ ¼ 0,

QYð y1, y2f gÞ ¼ QYð y1, y3f gÞ ¼ QYð y2, y3f gÞ ¼
1
3
:

As a result, the fractional entropy and fractional Deng entropy of commonality function QY 
are obtained as follows 

HqðQYÞ ¼ 2 − log 2
2
3

� �� �q

þ − log 2
1
3

� �� �q

,

DEqðQYÞ ¼ 2 − log 2
2
3

� �� �q

þ −2 log 2
1
3

� �� �q

:

Example 6. Given frame of discernment Y ¼ y1, y2, y3f g, m is a mass function under Y as follows 

mYð y1f gÞ ¼ mYð y2f gÞ ¼ mYð y3f gÞ ¼
1
3
:

Then, the QY can be obtained as follows 

QYð y1f gÞ ¼ mYð y1f gÞ þmYð y1, y2f gÞ þmYð y1, y3f gÞ þmYðYÞ ¼
1
3

,

QYð y2f gÞ ¼ mYð y2f gÞ þmYð y1, y2f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
1
3

,

QYð y3f gÞ ¼ mYð y3f gÞ þmYð y1, y3f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
1
3

,

QYð y1, y2f gÞ ¼ mYð y1, y2f gÞ þmYðYÞ ¼ 0,
QYð y1, y3f gÞ ¼ mYð y1, y3f gÞ þmYðYÞ ¼ 0,
QYð y2, y3f gÞ ¼ mYð y2, y3f gÞ þmYðYÞ ¼ 0,
QYðYÞ ¼ mYðYÞ ¼ 0:

The fractional entropy of commonality function QY can be obtained as 

HqðQYÞ ¼ DEqðQYÞ ¼ − log 2
1
3

� �q

, 

As can be seen from this example, fractional entropy and fractional Deng entropy are equal.
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Example 7. Given a frame of discernment Y ¼ y1, y2, y3f g, m is a mass function under Y as follows 

mYð y1f gÞ ¼ mYð y2f gÞ ¼ mYð y3f gÞ ¼ mYð y1, y2f gÞ

¼ mYð y1, y3f gÞ ¼ mYð y2, y3f gÞ ¼ mYð y1, y2, y3f gÞ ¼
1
7
:

Then, the QY can be obtained as follows 

QYð y1f gÞ ¼ mYð y1f gÞ þmYð y1, y2f gÞ þmYð y1, y3f gÞ þmYðYÞ ¼
4
7

,

QYð y2f gÞ ¼ mYð y2f gÞ þmYð y1, y2f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
4
7

,

QYð y3f gÞ ¼ mYð y3f gÞ þmYð y1, y3f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
4
7

,

QYð y1, y2f gÞ ¼ mYð y1, y2f gÞ þmYðYÞ ¼
2
7

,

QYð y1, y3f gÞ ¼ mYð y1, y3f gÞ þmYðYÞ ¼
2
7

,

QYð y2, y3f gÞ ¼ mYð y2, y3f gÞ þmYðYÞ ¼
2
7

,

QYðYÞ ¼ mYðYÞ ¼
1
7
:

The fractional entropy of commonality function QY can be obtained as 

HqðQYÞ ¼
12
7

− log 2
4
7

� �q

þ
6
7

− log 2
2
7

� �q

þ
1
7

− log 2
1
7

� �q

:

Also, the fractional Deng entropy of commonality function QY is obtained as follows 

DEqðQYÞ ¼
12
7

− log 2
4
7

� �q

þ
6
7

− log 2
2

21

� �q

þ
1
7

− log 2
1

49

� �q

:

Example 8. Given a frame of discernment Y ¼ y1, y2, y3f g, m is a mass function under Y as follows 

mYð y1f gÞ ¼ mYð y2f gÞ ¼ mYð y3f gÞ ¼
1

19
,

mYð y1, y2f gÞ ¼ mYð y1, y3f gÞ ¼ mYð y2, y3f gÞ ¼
3

19
,

mYð y1, y2, y3f gÞ ¼
7

19
:

Then, the QY can be obtained as follows 

QYð y1f gÞ ¼ mYð y1f gÞ þmYð y1, y2f gÞ þmYð y1, y3f gÞ þmYðYÞ ¼
14
19

,

QYð y2f gÞ ¼ mYð y2f gÞ þmYð y1, y2f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
14
19

,

QYð y3f gÞ ¼ mYð y3f gÞ þmYð y1, y3f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼
14
19

,

QYð y1, y2f gÞ ¼ mYð y1, y2f gÞ þmYðYÞ ¼
10
19

,

QYð y1, y3f gÞ ¼ mYð y1, y3f gÞ þmYðYÞ ¼
10
19

,

QYð y2, y3f gÞ ¼ mYð y2, y3f gÞ þmYðYÞ ¼
10
19

,

QYðYÞ ¼ mYðYÞ ¼
7

19
:
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The fractional entropy of commonality function QY can be obtained as 

HqðQYÞ ¼
42
19

− log 2
14
19

� �q

þ
30
19

− log 2
10
19

� �q

þ
7

19
− log 2

7
19

� �q

:

Also, the fractional Deng entropy of commonality function QY is obtained as follows 

DEqðQYÞ ¼
42
19

− log 2
14
19

� �q

þ
30
19

− log 2
10
57

� �q

þ
7

19
− log 2

1
19

� �q

:

Example 9. Given a frame of discernment Y ¼ y1, y2, y3f g, m is a mass function under Y as 
follows 

mYð y1f gÞ ¼ 0:9, mYð y1, y2f gÞ ¼ 0:01, mYð y1, y2, y3f gÞ ¼ 0:09:

Then, the QY can be obtained as follows 

QYð y1f gÞ ¼ mYð y1f gÞ þmYð y1, y2f gÞ þmYð y1, y3f gÞ þmYðYÞ ¼ 1,
QYð y2f gÞ ¼ mYð y2f gÞ þmYð y1, y2f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼ 0:1,
QYð y3f gÞ ¼ mYð y3f gÞ þmYð y1, y3f gÞ þmYð y2, y3f gÞ þmYðYÞ ¼ 0:09,
QYð y1, y2f gÞ ¼ mYð y1, y2f gÞ þmYðYÞ ¼ 0:1,
QYð y1, y3f gÞ ¼ mYð y1, y3f gÞ þmYðYÞ ¼ 0:09,
QYð y2, y3f gÞ ¼ mYð y2, y3f gÞ þmYðYÞ ¼ 0:09,
QYðYÞ ¼ mYðYÞ ¼ 0:09:

The fractional entropy of commonality function QY can be obtained as 

HqðQYÞ ¼ 0:2 − log 20:1½ �
q
þ 0:36 − log 20:09½ �

q
:

Also, the fractional Deng entropy of commonality function QY is obtained as follows 

DEqðQYÞ ¼ 0:1 − log 20:1½ �
q
þ − log 2

1
30

� �q
 !

þ0:09 − log 20:09½ �
q
þ 2 − log 20:03½ �

q
þ − log 2

9
700

� �q
 !

:

Definition 17. (fractional joint Deng entropy of a commonality function QY ,Z with state space 
Y � Z) 

DEqðQY ,ZÞ ¼
X

b22Y�Z

QY ,ZðbÞ − log 2
QY ,ZðbÞ

ð2jb#Yj − 1Þð2jb#Zj − 1Þ

 !" #q

, (19) 

in which b # Y and b # Z represent the subsets of b that consist of elements present in the sets Y 
and Z, respectively.

Remark 5. Let m be a mass function with state space Y � Z: If the cardinalities of all focal ele-
ments of m are 1, then 

DEqðQY ,ZÞ ¼
X

b22Y�Z

QY ,ZðbÞ − log 2QY ,ZðbÞ
� �q, 0 < q � 1: (20) 
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Definition 18. (Conditional fractional Deng entropy of a commonality function QZjY ) 

DEqðQZjYÞ ¼
X

b22Y�Z

QY ,ZðbÞ − log 2
QZjYðbÞ
ð2jb#Zj − 1Þ

 !" #q

, 0 < q � 1: (21) 

Remark 6. New versions of fractional entropy for a commonality function QY are presented as 

HaðQYÞ ¼
X

b22Y

ð−1ÞjbjQYðbÞLnaQYðbÞ � a!HðQYÞ, 0 < a < 1, (22) 

Note that new versions of the fractional Deng entropy of a commonality function QY can be 
defined as follows 

FDEaðQYÞ ¼
X

b22Y

QYðbÞ −Lna

QYðbÞ
2jbj − 1

� �� �1
a

(23) 

� a!½ �
1
a

X

b22Y

QYðbÞ − log 2
QYðbÞ
2jbj − 1

� �� �1
a

, 0 < a < 1:

Remark 7. Suppose QY is a CF for Y. It holds that 

FDEaðQYÞ � HaðQYÞ½ �
1
a:

Definition 19. (New version of fractional joint Deng entropy for a commonality function QY ,Z 
with state space Y � Z) 

FDEaðQY ,ZÞ ¼
X

b22Y�Z

QY ,ZðbÞ −Lna

QY ,ZðbÞ
ð2jb#Yj − 1Þð2jb#Zj − 1Þ

 !" #1
a

, 0 < a < 1: (24) 

Remark 8. Let m be a mass function with state space Y � Z: If the cardinalities of all focal ele-
ments of m are 1, then 

FDEaðQY ,ZÞ � a!½ �
1
a

X

b22Y�Z

QY ,ZðbÞ − log 2QY ,ZðbÞ
� �1

a, 0 < a < 1: (25) 

Definition 20. (New version of Conditional fractional Deng entropy of QZjY ) 

FDEaðQZjYÞ ¼
X

b22Y�Z

QZjYðbÞQYðb # YÞ −Lna

QZjYðbÞ
ð2jb#Zj − 1Þ

 !" #1
a

(26) 

¼
X

b22Y�Z

QY ,ZðbÞ −Lna

QZjYðbÞ
ð2jb#Zj − 1Þ

 !" #1
a

, 0 < a < 1:

Remark 9. Given a state space Y � Z, then the decomposable property of fractional Deng entropy 
is FDEaðQY ,ZÞ ¼ FDEaðQZjYÞ þ FDEaðQYÞ:
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Remark 10. Given a state space Y � Z, then the decomposable property of HaðQYÞ

is HaðQY ,ZÞ ¼ HaðQZjYÞ þHaðQYÞ:

Example 10. Given a mass function mY ,Z under a given state space Y � Z with Y ¼ y, �yf g and 
Z ¼ z, �zf g, mY is a mass function under Y as follows 

mYðyÞ ¼ 0:6, mYð�yÞ ¼ 0:3, mYðy, �yÞ ¼ 0:1:

Now let the conditional mass functions mZjy and mZj�y be as follows 

mZjyð zf gÞ ¼ 0:8, mZjyð �zf gÞ ¼ 0:1, mZjyð z, �zf gÞ ¼ 0:1, 

mZj�yð zf gÞ ¼ 0:3, mZj�yð �zf gÞ ¼ 0:6, mZj�yð z, �zf gÞ ¼ 0:1:

In Table 7, the values of the HaðQY ,ZÞ and FDEaðQY ,ZÞ are obtained for a ¼ 0:5: In addition, 
we remark that HaðQY ,ZÞ ¼ HaðQZjYÞ þHaðQYÞ: The other results in Table 7 are deduced directly 
from (Xue and Deng 2022).

Example 11. Given a mass function mY ,Z under a given state space Y � Z with Y ¼ y, �yf g and 
Z ¼ z, �zf g, mY is a mass function under Y as follows 

mYðyÞ ¼ 0:6, mYð�yÞ ¼ 0:4:

Now let the conditional mass functions mZjy and mZj�y be as follows 

mZjyð zf gÞ ¼ 0:8, mZjyð �zf gÞ ¼ 0:2, 

mZj�yð zf gÞ ¼ 0:3, mZj�yð �zf gÞ ¼ 0:7:

According to Table 8, we have obtained the values of HaðQY ,ZÞ and FDEaðQY ,ZÞ for a ¼ 0:5:
Moreover, we conclude that HaðQY ,ZÞ ¼ HaðQZjYÞ þHaðQYÞ: The other results in Table 8 are 
deduced directly from (Xue and Deng 2022).

6. Application to pattern recognition

In this section, we assess the performance of all EFDEns on a pattern recognition problem, using 
the Iris data set given in Dua and Graff (2017). The data set comprises 150 samples. Each 

Table 7. Mass functions and commonality functions.

b m"ðY ,ZÞ
Y my,Z m�y,Z

Qm"ðY,ZÞ
Y QmZjY QmY,Z

ðy, zÞ
� �

0.7 0.9 0.63
ðy,�zÞ
� �

0.7 0.2 0.14
ðy, zÞ, ðy,�zÞ
� �

0.6 0.7 0.1 0.07
ð�y, zÞ
� �

0.4 0.4 0.16
ð�y,�zÞ
� �

0.4 0.7 0.28
ð�y, zÞ, ð�y,�zÞ
� �

0.3 0.4 0.1 0.04
ðy, zÞ, ð�y, zÞ
� �

0.1 0.36 0.036
ðy, zÞ, ð�y,�zÞ
� �

0.1 0.63 0.063
ðy, zÞ, ð�y, zÞ
� �

0.1 0.08 0.008
ðy,�zÞ, ð�y,�zÞ
� �

0.1 0.14 0.014
ðy, zÞ, ðy,�zÞ, ð�y, zÞ
� �

0.3 0.1 0.04 0.004
ðy, zÞ, ðy,�zÞ, ð�y, �zÞ
� �

0.6 0.1 0.07 0.007
ðy, zÞ, ð�y, zÞ, ð�y, �zÞ
� �

0.8 0.1 0.09 0.009
ðy,�zÞ, ð�y, zÞ, ð�y, �zÞ
� �

0.1 0.1 0.02 0.002
Y � Z 0.1 0.1 0.1 0.1 0.01 0.001
H0:5 0.49 0.29 0.78
FDE0:5 0.43 1.92 2.35
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categorized into one of three classes, Iris Setosa (Se), Iris Versicolor (Ve) and Iris Virginica (Vi). 
Additionally, each sample is characterized by four attributes: the sepal length in cm (SL), the 
sepal width in cm (SW), the petal length in cm (PL) and the petal width in cm (PW). We select 
40 samples for each kind of Iris and then we use the method of max-min values to generate a 
model of interval numbers. In particular, for a fixed attribute, we study the interval of variability 
in a single class and then we intersect the intervals of more classes. The model of interval num-
bers is shown in Table 9. In the third and fourth columns, NA is used for ðSe, VeÞ instead of a 
specific interval, indicating that there is no intersection between the intervals of Se and Ve, and 
similarly for the cases of ðSe, ViÞ and ðSe, Ve, ViÞ:

Suppose that the selected instance is ½6:3, 2:7, 4:9, 1:8, Iris Virginica�: From the dataset, we 
know that the selected instance belongs to the class Iris Virginica and our purpose is to classify it 
in the right way. We generate four BPAs, one for each attribute, by using a method based on the 
similarity of interval numbers which was proposed by Kang et al. (2012). Given two intervals 
A ¼ ½a1, a2� and B ¼ ½b1, b2� their similarity is denoted by SðA, BÞ and is defined as 

SðA, BÞ ¼
1

1þ b DðA, BÞ
, (27) 

where b > 0 is the coefficient of support, we set b ¼ 5, and DðA, BÞ is the distance of intervals A 
and B that is defined in Tran and Duckstein (2002) as

D2ðA, BÞ ¼
a1 þ a2

2

� �

−
b1 þ b2

2

� �" #2

þ
1
3

a2 − a1

2

� �2

þ
b2 − b1

2

� �2
" #

:

For each attribute, we can get seven values of similarity by choosing as A the intervals given 
in Table 9 and as B the corresponding singleton of the selected instance. Then, by normalizing 

Table 8. Mass functions and commonality functions.

b m"ðY ,ZÞ
Y my,Z m�y,Z Qm"ðY ,ZÞ

Y 
QmZjY QmY,Z

ðy, zÞ
� �

0.6 0.8 0.48
ðy,�zÞ
� �

0.6 0.2 0.12
ðy, zÞ, ðy,�zÞ
� �

0.6 0.6
ð�y, zÞ
� �

0.4 0.3 0.12
ð�y,�zÞ
� �

0.4 0.7 0.28
ð�y, zÞ, ð�y,�zÞ
� �

0.4 0.4
ðy, zÞ, ð�y, zÞ
� �

0.24
ðy, zÞ, ð�y,�zÞ
� �

0.56
ðy, zÞ, ð�y, zÞ
� �

0.06
ðy,�zÞ, ð�y,�zÞ
� �

0.14
ðy, zÞ, ðy,�zÞ, ð�y, zÞ
� �

0.3
ðy, zÞ, ðy,�zÞ, ð�y, �zÞ
� �

0.7
ðy, zÞ, ð�y, zÞ, ð�y, �zÞ
� �

0.8
ðy,�zÞ, ð�y, zÞ, ð�y, �zÞ
� �

0.2
Y � Z
H0:5 0.860 0.69 1.55
FDE0:5 2.4 0.8 3.2

Table 9. The interval numbers of the statistical model.

Attributes
Item SL SW PL PW

Se [4.3, 5.8] [2.3, 4.4] [1.0, 1.9] [0.1, 0.6]
Ve [4.9, 7.0] [2.0, 3.4] [3.0, 5.1] [1.0, 1.8]
Vi [4.9, 7.9] [2.2, 3.8] [4.5, 6.9] [1.4, 2.5]
Se, Ve [4.9, 5.8] [2.3, 3.4] NA NA
Se, Vi [4.9, 5.8] [2.3, 3.8] NA NA
Ve, Vi [4.9, 7.0] [2.2, 3.4] [4.5, 5.1] [1.4, 1.8]
Se, Ve, Vi [4.9, 5.8] [2.3, 3.4] NA NA
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the obtained values, we get four BPAs which are reported in Table 10. Without any additional 
information, we can evaluate a final BPA by averaging of four values related to each attribute. In 
this way, we get the final BPA in Table 11.

Now, based on the BPA in Table 11, we can evaluate the PPT whose definition is recalled in 
(5). The results are 

PPTðSeÞ ¼ 0:1826, PPTðVeÞ ¼ 0:4131, PPTðViÞ ¼ 0:4043 

Hence, the focal element with the highest PPT is the class Ve, which is not the same as our 
sample, ½6:1, 3:0, 4:9, 1:8, Iris Virginica�: However, we guess by computing PPTs, relating to each 
EFDEn, the correct estimation would be held. Let us fix the value a ¼ 0:5: We evaluate the 
EFDEn of BPAs given in Table 10 and we obtain the results shown in Table 12. Since a higher 
value of EFDEn means higher uncertainty, we normalize Ea

fdiðmÞ by using softmax function. All 
normalized Ea

fdiðmÞ are presented in Table 13. Based on the weights in Table 13, we get the 
weighted version of the final BPAs. The results are shown in Table 14 in which BPAi is related 
to Ea

fdiðmÞ, i ¼ 1, 2:
Finally, based on the BPAs in Table 14, we evaluate the PPT of the classes and we get our 

desired result shown in Table 15.

Table 10. BPAs based on kang’s method.

Attributes
Item SL SW PL PW

mðSeÞ 0.1035 0.0863 0.0624 0.0966
mðVeÞ 0.1751 0.1555 0.1839 0.2418
mðViÞ 0.1471 0.1252 0.1817 0.2903
mðSe, VeÞ 0.1330 0.1705 NA NA
mðSe, ViÞ 0.1330 0.1242 NA NA
mðVe, ViÞ 0.1751 0.1677 0.5719 0.3713
mðSe, Ve, ViÞ 0.1330 0.1705 NA NA

Table 11. Final BPA.

Class Final BPA

mðSeÞ 0.0872
mðVeÞ 0.1891
mðViÞ 0.1861
mðSe, VeÞ 0.0759
mðSe, ViÞ 0.0643
mðVe, ViÞ 0.3215
mðSe, Ve, ViÞ 0.0759

Table 12. Extended fractional Deng entropies of BPAs in Table 10.

Attributes
Methods SL SW PL PW

Ea
fd1ðmÞ 12.571576 13.089082 5.079195 5.034744

Ea
fd2ðmÞ 3.420982 3.532220 2.227733 2.178458

Table 13. The normalized EFDEn.

Attributes
Methods SL SW PL PW

Normalized Ea
fd1ðmÞ 0.00027 0.00016 0.48868 0.51089

Normalized Ea
fd2ðmÞ 0.11552 0.10335 0.38094 0.40019
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In Table 16, we present the recognition rates of Kang and EFDEn methods, with a set to 0.5. 
Changing a does not have any effect on our results. However, altering the value of b in Equation 
(27) would correspondingly modify the results. Each recognition rate is an average of 1000 simu-
lations. Based on Table 16 it is clear that for b > 1, Ea

fd1ðmÞ, Ea
fd2ðmÞ, and EXa

fd1ðmÞ outperform 
the Kang method and all of them classify the Iris dataset with the same accuracy.

7. Conclusions

In this paper the measures of EFDEn and EFDEx have been introduced as the extended versions 
of Deng entropy and extropy. Several numerical examples are presented to demonstrate the 

Table 14. Final weighted BPA.

Class Final weighted BPA1 Final weighted BPA2

mðSeÞ 7.989529e-02 0.08331220
mðVeÞ 2.134721e-01 0.20312736
mðViÞ 2.372085e-01 0.21535537
mðSe, VeÞ 6.320910e-05 0.03299475
mðSe, ViÞ 5.579557e-05 0.02820607
mðVe, ViÞ 4.692418e-01 0.40400949
mðSe, Ve, ViÞ 6.320910e-05 0.03299475

Table 15. PPT of the classes.

Methods PPT(Se) PPT(Ve) PPT(Vi) Final decision

Ea
fd1ðmÞ 0.07997586 0.4481457 0:4718784 Vi

Ea
fd2ðmÞ 0.1249109 0.4326277 0:4424614 Vi

Table 16. The recognition rate.

b Method Recognition Rate

b ¼ 0:001 Kang 46.6%
Ea

fd1ðmÞ 61.5%
Ea

fd2ðmÞ 60.7%
EXa

fd1ðmÞ 61.5%
EXa

fd2ðmÞ 33.5%
b ¼ 1 Kang 95.1%

Ea
fd1ðmÞ 95.7%

Ea
fd2ðmÞ 96.6%

EXa
fd1ðmÞ 62.2%

EXa
fd2ðmÞ 33.5%

b ¼ 5 Kang 94.4%
Ea

fd1ðmÞ 96.9%
Ea

fd2ðmÞ 96.9%
EXa

fd1ðmÞ 96.9%
EXa

fd2ðmÞ 33.5%
b ¼ 10 Kang 95.1%

Ea
fd1ðmÞ 96.9%

Ea
fd2ðmÞ 96.9%

EXa
fd1ðmÞ 96.9%

EXa
fd2ðmÞ 33.5%

b ¼ 1000 Kang 94.4%
Ea

fd1ðmÞ 96.9%
Ea

fd2ðmÞ 96.9%
EXa

fd1ðmÞ 96.6%
EXa

fd2ðmÞ 33.5%
b ¼ 10000 Kang 91.9%

Ea
fd1ðmÞ 96.3%

Ea
fd2ðmÞ 96.3%

EXa
fd1ðmÞ 96.3%

EXa
fd2ðmÞ 33.5%
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effectiveness and applicability of these newly proposed measures. Finally, we have discussed a 
classification problem using a data set to underscore the significance of these measures in pattern 
recognition. This study has provided the framework for further research aimed at evaluating the 
performance attributes of fractional entropy.
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