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Recently, Google proposed the Topics API framework as a privacy-friendly alternative for behavioural ad-

vertising as a possible solution to balance user’s privacy and advertisement effectiveness. Using the Topics

API, the browser builds a user profile based on navigation history, which advertisers can access. The Topics

API aim at becoming the new standard for behavioural advertising, thus it is necessary to fully understand

its operation and find possible limitations. In this article, we evaluate the robustness of the Topics API to

a re-identification attack. To build a user profile, we suppose an attacker accumulates over time the topics

a user exposes to different websites. The attacker later re-identifies the same user matching the profiles of

their audience. We leverage real traffic traces and realistic population models, and we present increasingly

powerful attack threats. We find that the Topics API mitigates but cannot prevent re-identification from tak-

ing place, as there is a sizeable chance that a user’s profile remains unique within a website’s audience and

the attacker successfully matches it with the profile of the same user on a second website. Depending on

environmental factors, the probability of correct re-identification can reach 50%, considering a pool of 1, 000

users. We offer the code and data we use in this work to stimulate further studies and the tuning of the Topic

API parameters.1
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1 Introduction

In the current Web ecosystem, targeted or behavioural advertising lets providers monetize their
content, by collecting and processing personal data to build accurate user profiles. Advertisers rely
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on the construction of profiles based on the websites a user visits [6, 15, 16]. As well known, third-
party cookies allow tracking platforms to identify the same user on different websites: when a user
visits a website, a tracker installs a third-party profiling cookie on the user’s client. The cookie acts
as a unique identifier that lets the tracker identify the user on subsequent visits to any websites
where the third-party tracker is present.As such, the tracker learns the sequence of websites the
given user visits and builds a profile describing their interests. Such profiles are used to provide
personalized advertisements. In some cases, tracking platforms employ more sophisticated and
privacy-intrusive techniques such as browser fingerprinting or ID synchronization [18, 23].

This massive data collection has created tension between users and the ads ecosystem [9, 15, 24].
Mozilla Firefox and Apple Safari have started battling third-party cookies by giving third-party
cookies a separate cookie jar per site, so they cannot be used to track users across sites anymore. In
parallel, leading researchers and industries are studying new paradigms that are more respectful of
users’ privacy while enabling targeted advertising. Novel proposals have one common feature: the
introduction of new techniques that limit or let the user control the amount of disclosed personal
information. Google proposed the Federated Learning of Cohorts (FLoC) [21]. FLoC clusters
users in cohorts according to their interests, computed by each one’s browser based on the user’s
recent activity. In the proponents’ intentions, this solution should have prevented tracking, as
every user was “hidden” in their cohort. The main issue is that while a user could hide inside a
cohort for a short period of time, the sequence of cohorts they belonged to across time could create
an identifier, increasingly unique [22]. Eventually, Google replaced FLoC with a new proposal
called Topics API. With the Topics API, the browser is in charge of building the set of topics the
user is interested in based on their navigation history. Websites ask for such topics to serve targeted
advertisements or services. Namely, when a website asks, the Topic API returns up to three topics
per week, possibly replacing one real topic with a random one.

The Topics API framework is meant to become the new standard for behavioural advertising. At
the moment of writing, Google started deprecating the use of cookies for 1% of Chrome users in the
first quarter of 2024, and plans to reach 100% in the third quarter of the same year.2 It is thus urgent
to fully understand the operation of the Topics API, and independent researchers must verify the
strengths and weaknesses of such an approach as done by Mozilla [25] and Google [4, 7].

In this article, we provide an independent evaluation of the Topics API. We build and extend
our previous work [13] by providing a more comprehensive set of attacks and means to measure
their effectiveness. Using a data-driven approach, we build realistic population models that we use
to quantify the feasibility of a re-identification attack. We assume that an attacker (i) builds the
victims’ profile by accumulating the topics exposed to a given website over weeks, and then (ii) tries
to re-identify the same victim among the audience of a second website by comparing the profiles—
as studied by authors of [4, 7]. If successful, such an attack would allow platforms to track users
across websites. Generalising the attack sketched by Thomson [25], we use a threshold mechanism
which effectively excludes random topics and filters out rare topics that impair re-identification.

We contribute to three main results:

(1) We show that the introduction of the Topics API algorithm cannot prevent re-identification.
Depending on the website’s audience size and heterogeneity, up to 50% of users still let
the attacker reconstruct a profile that allows re-identification when matched on a second
population.

(2) We demonstrate that the replacement of actual topics with random ones has limited effect in
preventing the attack. Yet, a simple denoising algorithm is very efficient in removing random
topics from the profiles the attacker builds.

2https://developer.chrome.com/blog/cookie-countdown-2023oct/, accessed on August 16, 2024
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Table 1. Main Terminology to Model Topics API Algorithm and Threat Model

Symbol Definition

ntopic Number of topics in the taxonomy
E Number of past epochs included in the profile
p Probability a random topic to replace a real topic
N Epochs of observation by the attacker
U User population set
λu,t Rate of visit by user u to topic t
Bu,e Bag of visited websites by user u at epoch e
Tu,e Bag of visited topics by user u at epoch e
Pu,e Profile for the user u at epoch e
Pu,e,w Exposed Profile to website w for user u at epoch e
Gu,N ,w Global Reconstructed Profile by w after N epochs

R
f

u,N ,w Denoised Reconstructed Profile by w after N epochs with threshold f

(3) We compare different attacks to re-identify a user. The re-identification attack that we devise
can top 50% with limited false positives (FP), less than 8%; or can decrease to 25% but with
practically no FP. However, it is also important to consider that such probabilities are a
function of the attacker’s observation period and that many weeks may be needed to carry
out the attack in practice.

Our study highlights the need for continued research and development of privacy-preserving
advertising techniques to ensure that user privacy is respected in the digital age. To foster research
in this field, we release the code and data to replicate and extend our experiments.3

In our previous work [13], we studied the probability of a user exposing a unique combination of
topics, focusing on k-anonymity. In this article, we focus directly on the re-identification probabil-
ity by mounting new and more general attacks and extensively study the impact of environmental
and design parameters. In addition, we improve the denoising algorithm of [13] and study in depth
the effect that different filtering thresholds have on the performances of the attack.

The remainder of the article is organized as follows: Section 2 formalizes Topics API operation.
Section 3 details the threat model and the attacks evaluated in this work. In Sections 4 and 5, we
describe the dataset and models we use to generate synthetic populations, respectively. Section 6
shows the results in terms of attack effectiveness, while Section 7 studies the impact of Topics
API design parameters. Finally, Section 8 summarizes related work, and Section 9 discusses our
findings, future directions and possible improvements to the Topics API.

2 The Topics API

In this section, we describe how the Topics API operates for creating a profile from the user’s
browsing history. We sum up the relevant terminology in Table 1. We consider a browser that a
user employs to navigate the Internet.4 We assume time is divided into epochs of duration ΔT (one
week in the current proposed Topics API operation). During each epoch e , the browser collects and
counts the number of visits to each website and forms a bag of websites Bu,e for the useru. It keeps
track only of the website hostnames the user intentionally visited, for example, by typing its URL,
or by clicking on a link in a web page or other applications. Formally, given a useru and the epoch

3The code is available at https://github.com/nikhiljha95/topics-api-simulator.
4We intentionally confuse the terms user and browser to identify the person and the application they use to navigate the

Internet.

ACM Trans. Web, Vol. 18, No. 3, Article 39. Publication date: August 2024.
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e , let Bu,e = {(w1, f1,u,e ), (w2, f2,u,e ), . . . , (wn , fn,u,e )}, wherewi represent the visited websites and
fi,u,e the number of times u visited wi during epoch e .

The Topics API algorithm operates in the browser and processes the history of Bu,e over the
past E epochs to create a corresponding Exposed Profile Pu,e,w for the user u, epoch e and each
specific website w the user visits during the current epoch. In fact, the browser builds a separate
Exposed Profile for each visited websitew to mitigate re-identification attacks. We base the follow-
ing description on the public documentation of the Topics API available online.5 The operation of
the Topics API has the following steps.

Step 1 - From websites to topics. For each of the websites wi ∈ Bu,e , the browser ex-
tracts a corresponding topic ti . To this end, the browser uses a Machine Learning (ML) classi-
fier model that returns the topic of a website given the characters and strings that compose the
website hostname. At this step, each browsing history Bu,e is transformed into a topic history
Tu,e = {(t1, f

′
1,u,e ), (t2, f

′
2,u,e ), . . . , (tm , f

′
m,u,e )}, where ti represents the topic the model outputs,

and f ′i,u,e counts its total occurrences. Each website is mapped to a topic and the original frequen-
cies fi,u,e are summed by topics into f ′j,u,e . There are ntopic which form a taxonomy of possible

interests the users have. Such taxonomy will include between a few hundred and a few thousand
topics (the IAB Audience Taxonomy contains about 1,500 topics).6 In our experiments, we employ
the Google ML model implemented in Chrome. In its first implementation, it supports ntopic = 349

topics7 and the model is based on a Neural Network trained by Google using a manually curated
set of 10,000 domains.8 It leverages website hostnames only and neglects any other part of a URL.9

Step 2 - From Topics to Profiles. Given the topic history Tu,e for useru at epoch e , the browser
selects the z most frequently visited topics and stores them into the profile history Pu,e , which will
be referred as the user u Profile at epoch e in the following. If the topic history Tu,e contains less
than z topics for a useru in epoch e , the Topics API adds to the Profile Pu,e padding, random topics
from the taxonomy until z topics are included. z is currently set to five.

Step 3 - Per-website topic selection. The first time the user visits the websitew , the browser
generates a Exposed Profile Pu,e,w . For each past epoch i ∈ {e −1, . . . , e −E}, the browser selects at
random one topic t∗i from the profile history Pu,i . To increase privacy guarantees, with probability
p the browser replaces the topic t∗i with a random topic trnhd uniformly selected from the global
topic list. p is currently suggested to be 0.05. Pu,e,w contains thus at most E topics (a topic picked
from Pu,e−1, a topic from Pu,e−2, etc.). Once generated, the Exposed Profile remains the same for
the whole epoch e .

Usage by websites. From this point on, each time the user visits the website w during the
current epoch, the websitew may request the browser to share the current Exposed Profile Pu,e,w

and use the returned topics to provide behavioural advertising. Notice that the Exposed Profile
Pu,e,w is built only for websites intentionally (first-party) visited by the user u. Any third-party
service (e.g., a component embedded on the webpage of site w , but hosted on a different domain)

5https://developer.chrome.com/docs/privacy-sandbox/topics/, accessed on August 16, 2024
6https://iabtechlab.com/standards/audience-taxonomy/, accessed on August 16, 2024
7https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v1.md, accessed on August 16, 2024
8Google announced a second version of the taxonomy (https://developer.chrome.com/blog/topics-enhancements/). How-

ever, at the moment of writing, Google still has not released the code to map websites to this second set of topics.
9The mapping from a website to a category is prone to inaccuracies and depends on the employed ML model. Here, we

do not consider the implications of such errors. See https://developer.chrome.com/docs/privacy-sandbox/topics/#classifier-

model, accessed on August 16, 2024
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Fig. 1. Threat model sketch: An attacker leverages the Exposed Profiles obtained from the Topics API to

re-identify the same user in the population of two websites.

will receive topics of the first-party websitesw it is embedded into. That is, all trackers embedded
into the website w receive always the Exposed Profiles Pu,e,w of w .

Periodic Profile update. At the beginning of the epoch e + 1, the browser computes the new
profile history Pu,e+1 and discards Pu,e−E . Similarly, if and when the user visits again the website
w , the browser creates Pu,e+1,w from Pu,e,w : it includes a new topic selected from Pu,e+1 (Step 3),
and removes the oldest topic, that is, the one originally belonging to Pu,e−E+1 (keeping the others).
This means that a website continuously visited by a user can observe up to one new topic per
epoch (and such topic may be randomly extracted).

3 Attacks Against the Topics API

3.1 Threat Model

In this article, we consider the threat model introduced by the same proponents of Topics
API [4, 7] and discussed in a technical report by Mozilla [25]. In detail, we consider the risk of
re-identification—that is, the possibility to link a Reconstructed User Profile from an audience to a
known individual; or that two websites use the profiles to match people within their audiences.
Such possibility has already been evaluated in the literature on similar contexts [12, 13, 17, 27]. We
sketch the threat model in Figure 1.

As in [4, 7], we assume that a website w uses first-party cookies to track a user over time so
that it can reconstruct the set of topics users in its audience are interested in. Then, it matches
the reconstructed profiles with the target profile of the victim (or with all profiles of the second
website audience).

In this threat model, the attacker accumulates the Exposed Profiles Pu,e,w over epochs, over-
coming the limitation introduced by Topics API to limit the Exposed Profiles to at most one new
topic per epoch, for at most E epochs. Let us assume w observes its users u ∈ U (w) for N epochs
(i.e., epochs in [1,N ]). At the end of the process, for each user u,w builds the Global Reconstructed
User Profile Gu,N ,w , where Gu,N ,w = ∪e ∈[1,N ]Pu,e,w .10 In the long run, the set of topics could act
as an identifier string (or fingerprint) for user u, enabling the re-identification process either with
the set of topics of a known user or with users from the audience U2 of website w2.

10Please note that by observing the exposed topics for N epochs, the attacker actually accumulates N +E − 1 observations

(E in the first epoch, one in the others). We opted to simplify the notation by assuming one topic per epoch, so that N

epochs correspond to N topics observed.

ACM Trans. Web, Vol. 18, No. 3, Article 39. Publication date: August 2024.
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Notice that this attack may be carried out by a third-party service s . Let us assume that bothw1

and w2 embed s . By the means of the partitioned third-party cookies — which will still be usable,
even in the new ad paradigm—the third party is thus able to collect first-party-wise topics, without
being able to link them cross-site. The third party then builds Gu,N ,w1 and Gu,N ,w2 autonomously
so that it can match the profiles of users in both audiences.11

In a real-world scenario, we expect the threat model to be more effective if two websites
have a large portion of co-occurring users. This could happen if both websites are very
popular or if both websites belong to a niche context or offer local services (e.g., for shops,
restaurants, etc.). In the case of popular websites, techniques to reduce the population of pos-
sible matching users could be used to partition the audience to increase the re-identification
probability.

3.2 Random and Rare Topic Denoising

The Global Reconstructed Profile Gu,N ,wi
is noisy and unstable, as it is built directly on the set

of exposed topics. Indeed, some topics might be observed only once on website w1 and never
on w2, or vice versa. This could happen with (i) random topics used as replacements by the API
(Step 3 of Section 2), (ii) rare topics that seldom appear in the profile history Pu,e and thus are
not consistently exposed to both websites, (iii) padding topics that fill the profile history Pu,e

in case a user has visited less than z topics in an epoch (Step 2 of Section 2). To prevent these
topics from hindering re-identification, the attacker uses filtering mechanisms to obtain a Denoised

Reconstructed Profile R
f

u,N ,wi

, where f is a threshold: the set R
f

u,N ,wi

contains only those topics

that appear in at least f different weeks.
Preliminary studies on the Topics API, such as [25], mainly considered the need for identifying

the random topics in an Exposed Profile Pu,e,w by carrying out a simple statistical test based
on the number of times a topic is exposed by a user. The author of [25] states that observing a
topic more than once is sufficient to infer its authenticity with high confidence. We further extend
our previous work [13] which considered a moving threshold by discussing the effect of single
threshold values.

In this work, we consider a filtering threshold f , with the goal of filtering not only random
topics but any rare topics that might impair re-identification. We evaluate different values of
f , including f = 1 (no threshold). Intuitively, f should increase with larger N , as rare topics
have a greater chance of appearing multiple times. The probability a given topic is exposed
as a random topic is p/T . Thus, the probability it is included in a profile with threshold f at
epoch N as:

pabove (f ,N ,p,T ) = 1 −

f −1∑
k=0

(
N

k

) ( p
T

)k (
1 −

p

T

)N−k

.

With p = 0.05,T = 349, N = 30, and f = 2, the probability of a random topic t being included in a
profile is in the order of 10−8. Here, our goal is not only to exclude random topics but also to filter
out real-but-rare topics. In Section 6.2, we show that this filtering is essential to achieve attack
effectiveness.

11Notice not every third-party s will receive a topic. Only if s observed the user visit a site w about the topic in question

within the past E weeks, then s is allowed to receive such a topic (see https://github.com/patcg-individual-drafts/topics).

We ignore such limitation, that is, we assume that the third party s is pervasive enough to make this condition irrelevant

because the third party is present on the most popular websites, which will enable the reception of every topic. This is the

case with popular web trackers.

ACM Trans. Web, Vol. 18, No. 3, Article 39. Publication date: August 2024.
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3.3 The Attacks

In this article, we consider two attacks, the Strict and the Loose attacks. We consider two websites
w1 and w2 with populations U1 and U2, with |U1 | = |U2 | = 1, 000. By construction, we include the
same persona v (the victim) to both U1 and U2. We then evaluate the probability of re-identifying
v in w1 and w2.

3.3.1 Strict Attack. In the Strict Attack, v is matched to v ′ iff the following two conditions
occur:

—w1 and w2 reconstruct the same Denoised Reconstructed Profile that is, R
f

v,N ,w1
= R

f

v ′,N ,w2
.

— The Denoised Reconstructed Profile R
f

v,N ,w1
is unique in U1, and R

f

v ′,N ,w2
is unique in U2.

Let

PE := Prob
(
R

f

v,N ,w1
= R

f

v,N ,w2

)
,

where PE is the probability that v exposes the same Denoised Reconstructed profile on both sites.
Let

PU := Prob
(
R

f

v,N ,w1
unique in both U1 and U2

)
.

Note that, by construction, denoted with:

P (2 |1)
U

:= Prob
(
R

f

v,N ,w1
unique in U2

��Rf

v,N ,w1
unique U1

)
and

P (1)
U

:= Prob
(
R

f

v,N ,w1
unique in U1

)
,

we have P (2 |1)
U

· PU = P (1)
U

.
Thus, the probability of correct re-identification, that is, a True Positive (TP), can be computed

as:

Prob(correct re-identi f ication) = PE · PU = PE · P (1)
U

· P (2 |1)
U

Similarly, let

PE =Prob
(
∃!v ′ ∈ U2, with v ′ � v : R

f

v,N ,w1
= R

f

v ′,N ,w2
,��Rf

v,N ,w1
unique in U1

)
.

PE is the conditional probability of incorrect re-identification on the event {R
f

v,N ,w1
is unique

inU1}.
The probability of an incorrect re-identification, that is, a FP, becomes:

Prob(incorrect re-identi f ication) = P (1)
U

· PE .

In other words, given a match between two unique profilesv ∈ U1 andv ′ ∈ U2, the re-identification
is successful and correct, that is, a TP, ifv ′ = v . If insteadv ′ � v , the re-identification is successful
but wrong, that is, a FP.

3.3.2 Loose Attack. With respect to the Strict Attack, the Loose Attack adopts a different match-
ing rule: the attacker matches v and v ′ if:

— The Denoised Reconstructed Profile on w1 is a subset of the Global Reconstructe Profile on

w2; and viceversa, that is, R
f

v,N ,w1
⊆ Gv ′,N ,w2 and R

f

v ′,N ,w2
⊆ Gv,N ,w1 .

— No other user v ′′ exists such that R
f

v,N ,w1
⊆ Gv ′′,N ,w2 and R

f

v ′′,N ,w2
⊆ Gv,N ,w1 .

ACM Trans. Web, Vol. 18, No. 3, Article 39. Publication date: August 2024.
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As in the Strict Attack, we can compute the probability of a user being re-identified as follows:

Prob(correct re-identi f ication) = P̂U · PS ,

where

PS := Prob
({
R

f

v,N ,w1
⊆ Gv,N ,w2

}
∩
{
R

f

v,N ,w2
⊆ Gv,N ,w1

})
and

P̂U := Prob
(
∩v ′�v

({
R

f

v,N ,w1
� Gv ′,N ,w2

}
∪
{
R

f

v ′,N ,w2
� Gv,N ,w1

)})
(1)

while

Prob(incorrect re-identi f ication) = Prob
(
∃!v ′ ∈ U2, with v ′ � v :

({
R

f

v,N ,w1
⊆ Gv ′,N ,w2

}
∪
{
R

f

v ′,N ,w2
⊆ Gv,N ,w1

)})
.

Intuitively, the Loose Attack allows more flexibility in matching the same user on different web-
sites. For example, a user could expose a topic a different number of times on two different websites,
causing the threshold f to filter it in one of them. In the Strict Attack, this would cause the user
not being re-identifiable, while the Loose Attack, taking into consideration both the Denoised Re-

constructed Profile R
f

u,N ,w and the Global Reconstructed Profile Gu,N ,w , would be able to identify

the profiles as belonging to the same user.
On the other side, this flexibility comes with an increase in the number of FP matches.

3.3.3 Asymmetric Weighted Hamming Attack. For comparison, we consider the Asymmetric

Weighted Hamming Attack (AWHA) introduced in [4]. Authors of [4] analytically prove offers
optimal accuracy—although only under some specific assumptions. While leaving the details to
the original work, here we just present the main feature of the AWHA:

— For every user having visited website w1, the attacker computes the sequence of exposed
topics, keeping the temporal dimension.

— Among all the users having visitedw2, the attacker chooses the one that maximizes the sim-
ilarity of two profiles by minimizing the weighted Hamming distance of the two sequences.

— When comparing two users’ sequences, a weighted element-wise distance is evaluated con-
sidering whether the two users have exposed the same topic in epoch e , or not. The total
distance between two users is the sum of the element-wise distances.

— The user in w2 with the smallest weighted distance from the user in w1 is matched.

The AWHA always chooses a user u1 ∈ U1 to match user u2 ∈ U2. Contrary to the Strict Attack
and the Loose Attack, the AWHA algorithm always returns a match, largely increasing the FPs as
we will discuss in Section 6.1.

4 Dataset

To simulate the Topic API algorithm in a realistic environment, we rely on a dataset of real
browsing histories collected from a population of users who joined a Personal Information

Management System (PIMS). The dataset is the same that we used in our previous work [13],
but we nonetheless report the collection methodology and the characterization for the sake of
completeness.
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4.1 Data Collection Methodology

In the context of the PIMCity project,12 we designed, implemented and deployed a fully-fledged
online PIMS called EasyPIMS and opened it for experimentation [14]. A PIMS (Private Informa-
tion Management System) is a framework which offers users the possibility to upload their data
and control over the purposes and the ways their data are used. Using EasyPIMS, a simple web
interface allows the users to provide fine-grained consent for sharing the data with data buyers
and eventually to monetise their data in a marketplace. Among various types of data, the platform
allows users to share their browsing history by installing a browser plugin for Google Chrome or
Microsoft Edge on their PCs running any operating system. Such plugin records all intentionally
visited webpages and stores them in a central repository. During the test of our PIMS, we recruited
3, 369 volunteers who had the possibility of using the platform for four months in 2022. Out of
them 928 installed the plugin. To join the PIMS, there was no restriction on the geographic area,
and users belong to 35 different countries in Europe, Asia, and America. Considering the demo-
graphic information of the population, 478 are male, 226 are female and 224 did not declare their
gender. The age ranges from 18 to 72 years, the average being 33.

In this article, we leverage the actual browsing histories of EasyPIMS users who explicitly pro-
vided their consent for research purposes to the usage of their browsing history and any personal
data we use. 613 gave such permissions. Among those, we restrict the population to those users
that actively used the platform. Since the Topics API operates on a weekly basis, we consider a
user to be active in a given week if they visited at least 10 webpages. In total, we obtain 267 users
that were active in at least one week. We use the sequence of websites visited by these users for
our study.

Ethical Aspects. Our data collection process is compliant with ethical principles and EU privacy
regulations. EasyPIMS was part of a European Project involving 12 partners and the European
Commission has approved all the data collection and processing procedures. Users voluntarily
participated, were informed, explicitly opted-in via the PIMS web interface, and were rewarded
by sweepstakes. We only use data of users who explicitly provided their consent for research,
which the user has to select explicitly. Moreover, data processing has been carried out in an anony-
mous fashion using a secure computing infrastructure running up-to-date software and with re-
stricted physical access to authorized personnel. During data processing, we only process data
regarding browsing histories, neglecting all other attributes, such as name, gender, or geographic
location.

4.2 Characterization of Users and Topics

In total, our dataset includes 2, 813, 283 webpage visits to 50, 976 different websites. The number
of visits per user per week varies significantly, with some users using the platform for a few weeks
and others for the whole four-month experimental period. Some users even installed the plugin
on multiple browsers and devices (e.g., desktop and laptop PCs), increasing the amount of data
collected by their account. In median, active users access 222 web pages each week, with 26.1%
of users that visit less than 50 pages; conversely, 14% of the users visit more than 1, 000 pages.
Considering unique websites a user visits in a week, in median, active users access 30 different
websites, while the 25th and 75th percentiles of the distribution are 10 and 71 websites, respectively.

Using the current implementation of the Topic API ML model Google opened since Chrome
101, for each of the 50, 976 websitesw in our dataset, we extract the corresponding topic t the API

12https://www.pimcity-h2020.eu/, accessed on August 16, 2024
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Fig. 2. Characterization of topic visits.

returns. We obtain 250 topics visited at least once by a user in our dataset. In the following, we
report the characterization of the topic visits.

Focus first on the number of unique topics each user visited at least once during the entire
experimentation. This is useful to understand how complicated (and unique) could be a Profile
Pu,e . We report the ECDF in Figure 2(a). The distribution is quite spread: in the median users visit
36 topics, with the most diverse users visiting more than 150 topics. Conversely, a handful of users
visit less than 5 topics. Not reported here for the sake of brevity, the median number of topics each
user visits per week is 17, with a maximum of about 70. Only less than 10% of users visit less than
5 topics in some weeks.

Figure 2(b) reports the ratio of users visiting a given topic. The top 5 topics in the population are
Search Engines, News, Arts and Entertainment, Internet and Telecom, and Business and Industrial.
The most popular topic is visited by 99,3% of users, while up to the top-100 (200) topics are visited
by at least 10% (1%) of the users.

At last, we show the average rate of visits per topic in Figure 2(c), that is, how many times a
topic is visited in an epoch by a user on average. We compute first the rate of visits of user u to
topic t λu,t =

∑
e f ′t,u,e/T , being T the total activity time (discretized by weeks) of user u in the

whole observation window. Then, we compute the average rate of visits among the subset U |t of
users that visited the topic t as

λt =
∑

u ∈U|t

λu,t

|U |t |
(2)

Notice a topic that is globally unpopular can still sizeably appear in the Profile of those few users
frequently visiting such topic. In fact, the construction of the topic history Tu,e depends on the
rate of visits λu,t the user u has for the topics t they are interested in during the eth epoch. Our
dataset allows us to estimate λu,t for all users.

Overall, we believe these figures reflect the natural variability of users. Despite being limited, our
dataset includes a real population of users browsing the web, with different interests, backgrounds,
nationalities, and so on. Unfortunately, we cannot advocate our dataset is representative of general
human behaviour and we do not exclude it may be biased in some direction such as gender or
education. We use it to study the impact of the Topic API algorithm to prevent an attacker from
mounting a re-identification attack.

In the following, we present two models that allow us to generate some possible realistic popu-
lation U and to study the probability two websites can link the profile of the same user.
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5 Population Models

We consider two models for the generation of the usersU that extend and generalize a mere trace-
driven approach that replicates the browsing pattern of each user in our dataset. The models allow
us to generate an artificial populationU of any desired size |U |: the first model generates personas
with the same first-order statistical properties of the users in the trace; the second model combines
the visiting rates of the users in our dataset.

Real Users. We consider each of the 268 users in the dataset. A user is characterized by a list
of visit rates λu,t for all t = 1, 2, . . . ,ntopic . λu,t is calculated by averaging the occurrences f ′t,u,e
along the period in which the user u has been active in our collection system. λu,t = 0 if the given
user never visited topic t .

I.I.D. Personas. We create a population of independent and identically distributed (i.i.d.)
personas obeying the same marginal statistics as the set of real users from our dataset. To
this end, we leverage (i) the marginal ECDF of the number of topics per user (Figure 2(a)), (ii)
the marginal empirical distribution of the topic popularity (Figure 2(b)), and (iii) the average
empirical rate of visits for each topic λt (Figure 2(c)). In such a way, we can create a population
of any size |U | that shares the same first-order statistical properties as the population of our
dataset. We adopt the inverse transform sampling method [5] for the generation of the random
variable that follows a known ECDF. In detail, we generate a persona u according to a three-step
process:

(1) We extract the number of topics cu the persona is interested in from the empirical marginal
distribution of the number of topics per user (Figure 2(a)).

(2) We choose the set of the topics Cu = {ti }, i = 1, 2, . . . , cu by extracting with no repetitions
cu topics from the normalized version of the empirical distribution of the topic popularity
(Figure 2(b)).

(3) For each t ∈ Cu , we assign an effective visit rate λt from Equation (2), which equals the
average empirical visiting rate (Figure 2(c)).

Notice that in step 2 we select each topic essentially independently (just disregarding possible
repetitions). This breaks existing correlations among topics and may appear in part unrealistic.
In fact, it is known that real users show highly-correlated interests which reflects in highly-
correlated topics [28]. The resulting personas inU have instead all the same statistical properties,
increasing the probability of having similar profiles. As such this model is a rather pessimistic
scenario for the attacker.

Crossover Personas. We generate each persona u according to the biologically-inspired
crossover procedure during the generation of offspring. We start the process from the popula-
tion U ∗ of Real Users. We then randomly select two parent individuals p0 and p1 from U ∗ and
generate a new persona u. It inherits part of the genome (i.e., visit rates to topics) from p0 and
part from p1. For this, we generate a binary mask and assign the rate of p0 (p1) if the corre-
sponding bit is true (false). In this third model, the correlation of the appearance of topics is
stronger than in the previous case. For this, we expect this scenario to be optimistic for the attacker
since the uniqueness of personas is boosted by making them more heterogeneous and easier to
re-identify.

The persona models above represent pessimistic and optimistic scenarios. For completeness, in
the Appendix we introduce two population models that represent the worst-case scenarios and
best-case scenarios.
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Fig. 3. Probability of a user being correctly re-identified across the epochs, by the means of different attacks.

5.1 Simulation of Visits and Profile Creation

Given the population U , we assume each persona u visits topic t according to a homogeneous
Poisson process with the assigned rate λu,t . At each epoch e , for each topic t and persona u, we
thus extract a Poisson-distributed random variable that represents the number of visits user u
performs to t . This allows us to obtain the topic history Tu,e , and from it the Profile history Pu,e

which contains only the top-z topics (Step 2 of Topic API algorithm). Next, we generate the Exposed
Profile Pu,e,w , possibly offering w a random topic instead of a real top topic (Step 3).

By repeating the periodic profile update procedure at the beginning of each epoch e + 1, we
simulate the process for N epochs so that, at the end, w fills the Denoised Reconstructed Profile
Ru,N ,w for each persona u ∈ U after filtering the Global Reconstructed Profile Gu,N ,w .

6 Results

In this section, we illustrate the results of our study. We first compare the effectiveness of the
different attacks presented in Section 3. Then, we evaluate how the probability of a user being
re-identified changes according to the denoising threshold chosen and the number of users in the
system.

In the following, where not expressly otherwise stated, we set the denoising threshold f = 2 and
consider the Google suggested values for the Topic API parameters (z = 5, E = 3, p = 0.05,ΔT =
1 week). We considered a population of |U | = 1, 000 personas. We repeat each experiment 10 times
and report the average performance. As introduced in Section 3.1, we consider two websites w1

and w2 aiming at re-identifying a user based on the topics that each website has observed. As a
reference metric, we consider the ratio of users that each attack correctly matches between two
websites and define it as Prob(re-identification). Similarly, we define Prob(incorrect re-identification)
as the ratio of incorrect matches.

6.1 Comparison of Attack Models

We first compare the performance of the three attacks presented in Section 3, and show the
results in Figure 3, where the x-axis represents different epochs and the y-axis the reidentification
probability Prob(re-identification). As expected, increasing the number of epochs, all attacks
become more effective and the Prob(re-identification) increases. Overall, the Loose Attack (blue
line) shows to have up to 4× better performance with respect to the Strict Attack (red line),
reaching around 25% in Prob(re-identification) after N = 30 epochs and almost 28% after N = 40
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Fig. 4. Probability of a user being incorrectly matched across the epochs, with the Strict Attack and Loose

Attack.

epochs, for I.I.D. personas (Figure 3(a)) and almost 38% for Crossover personas (Figure 3(b)). With
Crossover personas Prob(re-identification) moderately improves, as personas are, by construction,
more heterogeneous. As mentioned in Section 3, the Loose Attack has a larger flexibility than the
Strict Attack, allowing the attacker to account for behaviours that can affect the performance of
the Strict Attack: for example, a topic overcoming the denoising threshold on website w1, while
not being able to do so in w2. The other attack achieves worse performances, below 10% (20%
with Crossover personas). The likelihood-based AWHA proposed by [4] overcomes both the Strict
Attack and the Loose Attack, exceeding 40% (50%) with I.I.D. (Crossover) personas. However, we
show thereafter how the higher Prob(re-identification) comes with the cost of a large probability
of error. The fraction of users incorrectly re-identified could substantially reduce the attack
effectiveness, and that we discuss in the following.

In fact, an incorrect re-identification may happen: the attack provides a match for the target user
which is incorrect. We show the probability of this event (i.e., the Prob(incorrect re-identification))
for the Strict Attack and the Loose Attack in Figure 4. Since the AWHA attack always matches a
user’s profile with the most likely profile on the other website, the rate of users incorrectly matched
is complementary to the number of users correctly matched by design. This does not happen in the
Strict Attack and Loose Attack, where the attack matches no profile if the conditions are not met.
As such, the fraction of incorrectly matched users for AWHA largely outnumbers the ones for the
other attacks. To reduce incorrect re-identifications, one could set a threshold Dmax to reject the
identification if the distance is higher than Dmax , introducing a no-match option in the AWHA.

In Figure 5, we show how the Prob(re-identification) and Prob(incorrect re-identification) vary for
the AWHA attack when introducing the thresholdDmax . We consider N=30 epochs. The algorithm
finds no match if Dmax < 63. For higher values, both Prob(re-identification) and Prob(incorrect
re-identification) start growing. Yet, Prob(incorrect re-identification) grows quicker than Prob(re-
identification). This is because there are a lot more possible users that could generate a false-but-
closer sequence than the correct-but-looser sequence the victim generates. In fact, by construction,
the AWHA algorithm returns the users with the closest distance, that is incorrect with higher prob-
ability (i.e., Prob(incorrect re-identification) > Prob(re-identification), as shown in Figures 3 and 4).

Thus the benefits introduced by the threshold mechanism are limited and an attacker using a
threshold to reduce the amount of FPs will end up reducing the TP to a larger extent.

The Strict Attack and Loose Attack are more suitable solutions for an attacker to the Topics
API: using them, the attacker minimizes the probability of an incorrect match. Conversely, AWHA
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Fig. 5. The impact of a maximum distance threshold Dmax for the AWHA, N=30.

does not offer such a benefit. Incorrect re-identification could, for instance, push an attacker to
define a personalized marketing strategy under the false assumption that a target user has visited
two colluding websites. If the rate of incorrect re-identifications exceeds 50%, it means that every
decision of the attacker will be incorrect 50% of the times, possibly with severe financial costs. To
minimize such cost, the attacker may thus be interested in an attack that limits the amount of
incorrect re-identification, although with fewer correct re-identifications.

Both the Strict Attack and the Loose Attack show an increase in the Prob(incorrect re-
identification) in the first epochs, peaking between N = 5 and N = 15. In this phase, users’
profiles are still very similar one to the other, causing more users to be incorrectly matched. In-
creasing the epochs, the attacker builds a richer (and thus more unique) profile and improves the
re-identification chances: after N = 30 epochs, with I.I.D. personas, the error rate is around 4%,
while the Prob(re-identification) increases above 20%. For the Strict Attack, the Prob(incorrect re-
identification) never exceeds 2%, converging toward 0% with Crossover personas and 1% with I.I.D.
personas. This confirms that the Strict Attack is more conservative than Loose Attack in providing
a match, but those matches are more accurate. In summary, with enough time, the Strict Attack and
especially the Loose Attack are efficient enough to provide an interesting option for an attacker. On
the other side, recall that the AWHA outputs too many false matches for an attack to be valuable.

At last, observe that it is not possible to use the classical metrics for classification tasks, such as
F1-Score, precision or recall—nor True/FP Rate—because the Strict Attack and Loose Attack are not
binary classifiers, that is, Prob(re-identification)+Prob(incorrect re-identification) < 1. This happens
because a no-match option exists, that is, the one of a user not being matched with any other user.

In the remainder of this Section and in Section 7, we only consider the Loose Attack, as it provides
the best trade-off between Prob(re-identification) and Prob(incorrect re-identification), compared
with the other two attacks. We keep comparing the results with both I.I.D. and Crossover personas.

Takeaway: Under the current threat model, the Topics API still leave a considerable percentage
of users at risk of being re-identified. Google’s AWHA returns the highest probability of correctly re-
identifying the user, but, being so aggressive, it comes with a large portion of incorrect re-identification.
From an attacker’s perspective, the Loose Attack results the best.

6.2 Impact of the Denoising Filter

In this section, we discuss the impact of the attacker choice for the denoising threshold f . We
expect that imposing no threshold (i.e., f = 1) leads to almost null performance, and, to maximize
effectiveness, the attacker should set f to 2 or 3. They could even consider combining the results
obtained by using both thresholds. Notice that f should increase with epochs N as the attacker has
a higher probability of observing multiple times the same random or rare topics. This was already
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Fig. 6. Probability of a user being correctly re-identified across the epochs, by the means of different thresh-

old rules.

evident in Figure 3(b): The Prob(re-identification) for the Loose Attack Attack flattens when N
exceeds 30. This is in great part caused by setting f = 2, which becomes less effective the more
epochs the attacker observes topics exposed by users.

To better understand the impact of f , we show in Figure 6 how Prob(re-identification) evolves
with f = 2 and 3. Later, we also propose a couple of compound strategies. For the sake of readability,
we omit to represent the case with f = 1: in fact, the Prob(re-identification) never exceeds 3%
for both population models demonstrating that a filtering strategy is necessary to achieve attack
effectiveness. Let us first focus on the curves representing the Prob(re-identification) with f = 2
and f = 3. Using f = 2 (red line), the attacker re-identifies users earlier, because, in a few epochs,
new topics populate R. However, when the number of epochs increases, the attack becomes less
effective, allowing a number of random and rare topics to pollute R. Indeed, those topics make the
reconstructed profile of a given user different on the two websites, thus impeding re-identification.
At that point, the attacker shall increase the threshold to f = 3, which can better cope with the
larger magnitude of noise introduced by rare and random topics. When f = 3 (blue curve), the
attack is less effective in the first epochs—since too few topics exceed the threshold resulting in
an (almost) empty profile R. Conversely, it performs better when the number of epochs becomes
sufficiently large. Setting f = 3 outperforms f = 2 when N > 24 and N > 36 for I.I.D. and
Crossover personas, respectively.

6.2.1 Combining Strategies. Now, we consider two additional strategies that combine the sets of
the users re-identified with threshold f = 2 and f = 3 to make a final decision. In the first strategy,
the attacker considers a user to be re-identified if the user appears in both sets; this represents a
conservative approach. In the second strategy, the attacker considers a user re-identified if they
appear in at least one of the sets; this represents a daring approach.

It is important to clear a possible misunderstanding at once: one could consider, for instance,
that the set of users re-identified with f = 2 and f = 3 is the same as the set of users re-identified
with f = 3, thinking that if a user is re-identified with f = 2, than they will be re-identified also
with the stricter threshold f = 3. However, due to the filtering threshold a user’s profile can be
unique13 with f = 2 but not with f = 3, causing the user to be re-identified in one case but not
the other.

These two filtering strategies work as lower and upper bounds when tuning the trade-off be-
tween the fraction of re-identified users and the error rate. With the first approach (green curve,

13With abuse of language, under the Loose Attack, we say that user’s profile is unique if the event in r.h.s. of (1) occurs.

ACM Trans. Web, Vol. 18, No. 3, Article 39. Publication date: August 2024.



39:16 N. Jha et al.

Fig. 7. Probability of a user being incorrectly re-identified across the epochs, by the means of different thresh-

old rules.

Fig. 8. Probability of being re-identified with different numbers of personas.

labelled as “f = 2 AND f = 3” in Figure 6), Prob(re-identification) is always below the f = 2 and
f = 3 cases. Conversely, with the second approach (purple curve, labelled as “f = 2 OR f = 3’),
Prob(re-identification) is always higher. Different is the picture for the error rate—the Prob(incorrect
re-identification)—depicted in Figure 7. The cautious attacker that uses the AND approach obtains a
negligible Prob(incorrect re-identification), thus maximizing the high correct/incorrect match ratio.
An attacker willing to maximize the Prob(re-identification) would instead opt for the OR approach,
which, however, leads to a sizeable Prob(incorrect re-identification). Also in terms of Prob(incorrect
re-identification), the two classical attacks with f = 2 and f = 3 stand in the middle as expected.

In the analysis, we limit the study to f ≤ 3. The benefits of f > 3 would appear for very large
observation windows (i.e., for N > 40) which makes the analysis not interesting.

Takeaway: Different threshold f values impact the efficiency of the attack. Moreover, combina-
tions of threshold can offer lower and upper bounds to the Prob(re-identification) and Prob(incorrect
re-identification). Since an attacker cannot know the underlying topic-visiting rate distribution, they
cannot know in advance the optimal f value to use. Such bounds can thus allow to understand the
expected efficiency range of the attack.

6.3 Impact of the Number of Users

We now fix f = 2, N = 30 and vary the number of users |U |. Intuitively, the number of users in
the set of candidates has an impact on the probability of a user being re-identified. The larger the
website’s audience, the harder the re-identification is. We illustrate this effect in Figure 8, where we

ACM Trans. Web, Vol. 18, No. 3, Article 39. Publication date: August 2024.



Re-Identification Attacks against the Topics API 39:17

Fig. 9. The probability of an attacker correctly re-identifying a user, with different values of z. N = 30,

|U | = 1, 000, f = 2, p = 0.05. We highlight the Prob(re-identification) with the default value z = 5.

show how re-identification probability varies when increasing the number of users in the audience
ofw1 andw2—notice the log scale on the x-axis. In a larger pool of users, there is a higher probabil-
ity of finding another user exposing a similar combination of topics. This makes the user identical
to more than one individual in the eyes of the attacker, thus preventing re-identification. Recall that
Strict Attack and Loose Attack do not make any guess if a user does not have a unique Denoised
Reconstructed Profile. Notice, however, that the decrease of the Prob(correct re-identification) slows
down with a larger number of users |U | both with I.I.D. and Crossover personas, following a loga-
rithmic decrease: even with a pool of 105 users, the Prob(re-identification) is not negligible. More-
over, also consider that other techniques (such as browser fingerprinting) could be used by an
attacker to reduce the set of possible re-identification candidates. This could enhance the attack
even on websites with a large audience, where it would be otherwise easier for the user to hide
in the crowd. Fingerprinting techniques could help the attacker partition a large number of users
into smaller sub-populations, each of which could be the target of an attack independent from the
others; the reduction of the population dimension would improve the attack chances, as the total
virtual number of users would decrease.

Takeaway: A large website popularity allows the user to “hide in the crowd”. However, techniques
exist to partition and reduce the size of the victim audiences, increasing the attacker’s re-identification
probabilities.

7 The Role of Topics API Design Parameters

In this section, we study the impact of the Topics API parameters on the Prob(re-identification).
In particular, we investigate the roles of z, that is, the number of topics that are selected every
epoch to build the profile Pu,e of a user, and p, that is, the probability at which an exposed topic
is replaced with a random one. In the following experiments, we consider N = 30, |U | = 1, 000,
f = 2.

7.1 The Number of Topics in the Profile

In Figure 9, we show how the choice of the parameter z impacts the probability of a user being
correctly re-identified for I.I.D. personas (red curve) and Crossover personas (blue curve), in a
scenario with 1, 000 users. When exposing a limited number of topics (in the extreme case, only
the top topic from the previous week), the Prob(re-identification) decreases because of the low in-
formative value of the top topic(s) (e.g., Search Engine), which are popular among most users
and do not characterize a specific individual. Interestingly, the Prob(re-identification) hits a max-
imum with z = 3, 4, depending on which personas model we consider. This is the best setting
for the attacker: the available combinations of exposed topics differentiate users, meaning they
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Fig. 10. Probability of a user being re-identified, with different values of p. N = 30, |U | = 1, 000, f = 2, z = 5.

We highlight the Prob(re-identification) with the default value p = 0.05.

are easier to be linked and thus re-identified. Further increasing z rapidly impairs the Prob(re-
identification), which goes towards zero. This is caused by the padding introduced by the Top-
ics API when the number of exposed topics in a week by a user is smaller than z, which hap-
pens with increasing probability with larger z. The random topics added as padding have two
consequences:

— Every week, many users’ profiles Pu,e are filled with random topics, generated indepen-
dently every week. This breaks the stationarity assumption that benefits the Loose Attack
(as well as the Strict Attack) since the users’ behaviour over time becomes unpredictable.

— Even if all the z topics are real (i.e., really belong to the user and are not injected randomly),
a larger pool to choose from slows down the convergence of the reconstructed profiles by
both websites. A website collects, at each epoch, one topic. Thus, the larger the z, the larger
the number of epochs needed to collect them all.

Takeaway: The number of topics z composing the users’ profile has a large impact on the Prob(re-
identification). Under our persona models, reducing the topic set size to z = 3, 4 leads to a higher
re-identification probability than the default value z = 5.

7.2 The Role of Random Topics

We now set f = 2, N = 30, |U | = 1, 000, p = 0.05 and we quantify the impact of the probability
of exposing a random topic p on the attack effectiveness. In Figure 10, we show how Prob(re-
identification) varies with different values of p. Notice that p = 0.05 corresponds to the current de-
fault value of the Topics API. Increasing p has a negative effect on the probability of re-identifying
a user. This is no surprise, as a larger p increases the probability of replacing a real with a random
topic. Recall the topic replacement takes place independently for each website, thus making the
reconstructed profiles different.

Interestingly, the introduction of the random topic does not significantly impact the Prob(re-
identification). In fact, it decreases by less than 5% between p = 0.0 and p = 0.10. This is due to
the effectiveness of the filtering threshold that can remove the random topics quite efficiently. An
interesting line of future work would be to evaluate the trade-off between the improvements in
the privacy guarantees introduced by p and the impact on the data utility (from the advertiser’s
perspective) caused by the introduction of false information.

Takeaway: The fake topic injection probability has a minor impact on the Prob(re-identification)
thanks to the efficiency of the filtering algorithm.
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8 Related work

From the dawn of the Web, behavioural advertising has been a pillar of the ecosystem and entailed
the collection of personal information through web tracking. This phenomenon has been the sub-
ject of several studies that measured its spread [6, 16] or dug into its technical operation [1, 18, 23].
The implications of web tracking on users’ privacy have become more and more debated by the
industry [11] and by the research community [9, 15, 24]. It also fostered the birth of anti-tracking
tools (i.e., the Ad and Tracker Blockers [19]) and encouraged the legislator to issue privacy-related
regulations, such as the US CCPA [3] or the European GDPR [10].

FLoC has been the first public effort by Google to go beyond the classical web tracking based
on third-party cookies [21]. In FLoC, users were grouped in cohorts according to the interests
inferred by each one’s browser. When asking for information about a user visiting a website, third
parties were offered the user’s cohort, from which they could have information about the user’s
interests. In the intention of the proposal, FLoC provided an acceptable utility for the advertisers,
while hiding the users (and thus, their identity) behind a group of peers [8]. However, criticism
arose around the easiness for first- and third-party cookies to follow the user over time exploiting
the sequence of cohorts to which she belongs to isolate and thus identify her [22]. The attack
can exploit browser fingerprint to further improve its effectiveness [2]. FLoC’s privacy anonymity
properties can be broken in several ways [26]. As a response to the critics towards FLoC, Google
retired the proposal and conceived the Topics API, whose functioning we describe in Section 2.

The Topics API exposes users’ profiles in terms of topics of interest to the websites and advertis-
ing platforms. In this article, we study to what extent users’ profiles can be used by an attacker to
re-identify the same individual across time or space. Past works already demonstrated that profil-
ing users based on their browsing activity can present severe risks to the privacy of the users [9].
They can be identified with high probability based on the sequence of visited websites [12, 17, 27].
Mitigation such as partitioned storage has been put in place to limit the risk, but ways to bypass
them exist [20].

Specifically to the Topics API, the same threat we analyze has been already identified by
Epasto et al [7] from Google. The authors carry out an information theory analysis and conclude
that the attack is hardly feasible. In this article, we go a step further. Our analyses are not limited
to an analytical study on profiles’ uniqueness but offer a thorough evaluation using real traffic
traces and different user models. To the best of our knowledge, Thomson [25] from Mozilla issued
the first independent study on the privacy guarantees of Topics API, elaborating on the conclu-
sions by Epasto et al [7]. He, again, used analytical models and raised severe concerns about the
offered privacy guarantees. Recently, Carey et al [4] from Google discussed the privacy implica-
tions of the Topics API. They define a theoretical framework to determine re-identification risk
and propose the AWHA for re-identification. Differently from us, they do not consider any denois-
ing algorithm. In our article, we compare the AWHA attack with our attack strategies, and we
find that, even if AWHA shows the best attack in terms of Prob(re-identification), it suffers from
a high probability of incorrect match that makes the attack not practical. With a better balance
between Prob(re-identification) and Prob(incorrect re-identification), we believe that especially the
Loose Attack could be a threatening solution.

The present work is an extension of our previous one [13]. In this version, we improved the work
in several aspects. (i) In [13], we studied the probability of a user being k-anonymous among the
profiles collected by a user. We used this probability as a proxy metric to infer the risk undergone by
users and introduced what we now define as Strict Attack. Here, we directly focus on the Prob(re-
identification) and Prob(incorrect re-identification). (ii) We introduce a new Loose Attack which
results more efficient than the Strict Attack we introduced in [13] and we compare results with the
attack provided by Google in [4]. (iii) We offer better insights into the impact of the threshold f and
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use it to mount even more complex and efficient attacks. (iv) We extend and present a thorough
analysis of the impact of the various system and scenario parameters.

9 Discussion and Future Work

We finally discuss the limitations of our model, suggest some possible improvements to the Topics
API, and present interesting directions for future work.

9.1 Limitations

The Topics API proposal represents a solid improvement for end-user privacy. Although we
showed that they do not prevent an identification attack, they definitively improve the situation
from the current “all-allowed” scenarios, balancing privacy with the ability to provide personalised
advertisements. Considering the attack and the evaluation we presented in this article, we need to
consider limitations in our analysis that could make the attack impractical in real scenarios.

First of all, our results show that the attacker needs 10 to 30 weeks (i.e., up to 6 months) to suc-
cessfully re-identify the victim with significant probability. If the user visits the colluding websites
less than once every epoch (or at least every E week), the time needed to carry the attack increases.

In such a long period of time, the underlying stationarity assumption may be unrealistic. Users’
interests may present a seasonal effect. While this shift would be indeed observed by both websites,
the filtering algorithm may negatively impact the construction of the Reconstructed Profile. In ad-
dition, when considering an a priori known victim profile, the shift may harm the re-identification
attack.

Considering the evaluation we presented in this work, the I.I.D. and Crossover models are two
possible means to generate personas, but they cannot consider the overall factors that impact the
users’ browsing habits. For instance, they do not model user interests shifting in time—as discussed
above—and they might not represent correctly the correlations in the interests that exist in the real
world. This is especially true for the I.I.D. method, where the users’ topic-visiting rates are sampled
independently. For this, we introduce also the best- and worst-scenarios in the Appendix to provide
lower and upper bound to the Prob(re-identification).

Related to the above, the original dataset can be improved, both in the size and the represen-
tativity of a true population. To this end, we offer our code and tools as open source, which can
effectively be reused with larger datasets or more sophisticated population models.

9.2 Improvement of Topics API

To further improve end-user privacy and reduce the ability to perform a re-identification attack,
some additional measures could be considered:

— Limit cookie lifetime: Periodically expiring the first-party and third-party cookies would
bring an immediate privacy-related benefit, as it prevents websites from accumulating infor-
mation on users for a long time. Figures 3 and 6 show that deleting the first-party cookies
every N = 10 epochs would keep the Prob(re-identification) below 5% with the current at-
tack setup, and Prob(incorrect re-identification) would settle to a similar value. This makes
the re-identification attack impractical.

— Topics API parameter optimization: The suggested values of z, E, and p proposed in the
Topics API draft are open to further review. We believe that the code we offer can be used as a
tool to investigate how different parameter choices impact the probability of re-identifying
users, and choosing the best combination. In particular, we already observed that z has a
significant impact in the Prob(re-identification).
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— Probabilistic profile: The profile of a user Pu,e is currently populated by the z-top topics
in epoch e . It could be worth considering other approaches to build the profile (e.g., proba-
bilistic). This will also better balance the utility for the advertisers while not affecting the
privacy of the users. This would also benefit the exposure of less-popular topics, opening
opportunities to less-mainstream topics/ads to be considered.

9.3 Future Directions

Our work provides a first study on how re-identification attacks can be successful inside the Topics
API framework, opening to several angles to be further explored.

First, we rely on a dataset collected from the set of volunteers who participated in the EasyP-
IMS experimentation. As such, we cannot verify the dataset is representative of general human
behaviour. The process of gathering such kind of personal data is cumbersome, but a larger and
more heterogeneous audience may help in drawing more solid conclusions. In a similar direction, it
is interesting to evaluate more diverse population generation approaches, including diverse usage
patterns, classes of users, and so on.

Second, the threat model could be improved: for instance, the attacker could consider more
sophisticated techniques to match the profiles. It may be interesting to scale the attack surface
considering more than two colluding websites.

Third, we suppose the attacker has no background knowledge of the victims. As said above, this
assumption can be relaxed to study to what extent any additional information on the user (e.g.,
retrieved through the IP address or browser fingerprinting techniques) can help the attacker.

Fourth, in this work we did not consider the semantics and possibly correlations among the
topics in the taxonomy. However, they are relevant both for a business-centered and a privacy-
centered analysis. At the moment of writing, Google announced a new taxonomy14 with more
topics—but did not offer the code to map websites to it. Moreover, the accuracy of the mapping
model, which works only on hostnames, is up for debate. Future work could explore these lines of
research.

Finally, since at the moment of writing Google started giving access to the Topics API to real
users and advertisers, one could try to mount the attack in a real-world scenario.

The Topics API is a novel proposal by Google, and we believe the research community should
further work to understand the implications of its design, as it might become the de facto standard
for online advertising in the near future.

Appendix

A Attacker’s Best- and Worse-Case Scenarios

While introducing the two population models we presented in this article, I.I.D. and Crossover
(see Section 5), we mentioned the fact that some models could be a more optimistic scenario for an
attacker. In particular, we stated that Crossover personas have more heterogeneous profiles, and
thus it is easier for an attacker to tell personas apart based on their reconstructed profiles. Our
results (e.g., Figure 3) confirm our intuition.

In this appendix, we go in the direction of visually quantifying how much the I.I.D. and
Crossover methods are optimistic from an attacker’s point of view. In order to do so, we compare
them with the best- and worst-case users’ scenarios for the attacker. To define these scenarios, we
focused on the Strict Attack and Loose Attack.

14https://github.com/patcg-individual-drafts/topics/blob/main/taxonomy_v2.md, accessed on August 16, 2024.
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Fig. 11. Probability of a user being correctly re-identified across the epochs, comparing different possible

user models.

We consider a worst-case scenario for an attacker a situation where the users’ profiles are indis-
tinguishable with the higher possible probability. This happens when every user exposes exactly z
topics in a week, and the set of exposed topics is the same for every user. To obtain such scenario,
in our experiment we set z = 5 topics with λ = 5 log(10), and we set the λ for every other topic to
zero. We choose this value of λ such that the probability of a user not visiting the topic is at most
10−5. Essentially, we force every user to exhibit the same profile Pu,e In short, in this scenario,
every user will certainly visit z = 5 and z = 5 only topics, which will thus populate their profile
without the risk of introducing padding topics in the user’s profile (see Section 2 Step 2).

On the other side, a best-case scenario for an attacker is a setting that maximises the probability
of profiles being different with any other user. We obtained such setting by assigning to every user
a 5-tuple of topics with λ = 5 log(10), being careful that no users share the same 5-tuple. All the
other topics’ λs are set to zero. In this way, after a sufficient amount of time, the two websites will
have collected all the topics in the 5-tuple of each users, making it trivial to correctly match the
users—as every 5-tuple is unique to a user in this scenario.

We show the results of our analyses in Figure 11. In particular, Figure 11(a) we show the impact
of the user model on the Prob(re-identification) presuming a Loose Attack. We observe that in the
worst-case scenario no user is re-identified: this happens because we keep close to zero the proba-
bility of a user’s profile being unique on two websites, and thus to be matched across websites. On
the other hand, once every topic has been exposed more than the threshold f times, the Prob(re-
identification) with the best-case scenario rapidly approaches 1: every user is re-identified, thanks
to the orthogonal sets of exposed topics which are not polluted by random topics.

In Figure 11(b), we observe the impact of users model for the AWHA. Here, in the best-case
scenario we observe that the Prob(re-identification) goes to 1 more slowly: this happens because,
although orthogonal in their set, individual topics can appear in multiple profiles, and their tem-
poral co-occurrence reduces the chances of the AWHA to correctly match personas.

With both attacks, we can observe that I.I.D. and Crossover personas are, generally speak-
ing, midway between the fully-orthogonal and the fully-homogeneous user scenarios, with the
Crossover model slightly closer to the former. The level of correlation in the dataset from which
the two models derive their personas moves them away from the best-case scenario, while not
forcing equal visiting rates on every topic.

Finally, in Figure 12 we observe the probability of incorrectly matching users in the worst- and
best-case scenarios. The AWHA case is less interesting, as the Prob(incorrect re-identification) can
be evaluated as 1−Prob(re-identification). On the other hand, an attacker exploiting a Loose Attack
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Fig. 12. Probability of a user being incorrectly re-identified across the epochs, comparing different possible

user models.

would not observe any incorrectly matched users after a few epochs. In the worst-case scenario,
since all the users have the same profile, the attacker cannot attempt any match. In the best-case
scenario, since a unique 5-tuple corresponds to each user, in principle, users cannot be incorrectly
matched provided that the 5-tuples of users have been correctly identified. However, a few incor-
rect matches may occur after a few epochs, when it is possible that some topic in the 5-tuple has
not been yet exposed, and profiles of different users can temporarily overlap.
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