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Summary

Semantic segmentation is a fundamental task in computer vision that aims to
assign a semantic label to each pixel in an image, parsing it into meaningful and co-
herent regions. Thanks to the recent progresses of deep learning in computer vision,
semantic segmentation has gained significant attention due to its wide range of ap-
plications, including autonomous driving or medical image analysis. In the context
of remote sensing, this task plays a crucial role in extracting valuable information
from satellite and aerial imagery. Remote sensing data, such as multispectral and
radar images, provide valuable information for Earth Observation purposes, from
land cover, to atmospheric composition. Detailed segmentation maps can provide
insights into various geospatial phenomena, supporting applications such as urban
planning, environmental monitoring, disaster response, and agricultural analysis.
However, segmenting aerial and satellite images presents unique challenges com-
pared to conventional computer vision tasks on natural images. These often cover
large geographic areas and exhibit high spatial and spectral variability. The objects
of interest, such as buildings, roads, and vegetation, can have diverse appearances
and scales, making it difficult to capture their contextual relationships. Moreover,
annotating images for semantic segmentation is a time-consuming and intensive
process, often requiring specific domain expertise. To address these challenges,
researchers have explored various approaches to adapt and enhance segmentation
techniques for remote sensing applications. These include leveraging the multi-
scale and multi-modal nature of aerial data, incorporating domain-specific prior
knowledge, and developing efficient annotation strategies. Additionally, the in-
creasing availability of large-scale remote sensing datasets and advancements in
deep learning architectures have enabled the training of more robust and general-
izable models. This thesis directly addresses these challenges, adapting semantic
segmentation solutions to varied remote sensing scenarios. We explore several tech-
niques to effectively leverage the rich information derived from aerial and satellite
sensors, tackling issues such as data scarcity and annotation costs to develop ef-
ficient and robust models. Our research contributions span multiple aspects of
semantic segmentation in remote sensing, including regularization techniques, ar-
chitectural changes, weakly supervised learning approaches, and domain adaptation
frameworks.
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Chapter 1

Introduction

1.1 Overview
Remote sensing has emerged as a fundamental tool for Earth Observation, pro-

viding valuable information for a wide range of applications, such as land cover
mapping, environmental monitoring, disaster response, and urban planning [88].
The increasing availability of high-resolution satellite and aerial imagery has opened
up new possibilities for detailed analysis and interpretation of the Earth’s surface
[179]. However, the sheer volume and increased complexity of remote sensing data
pose significant challenges in extracting insights and information from images. Se-
mantic segmentation, a fundamental task in computer vision, has gained significant
attention in remote sensing due to its ability to provide pixel-wise classification of
images, enabling a detailed understanding of the scene’s composition and spatial
distribution of land cover and land use types [80]. By assigning a semantic label to
each pixel in an image, semantic segmentation allows for the automatic delineation
of objects and regions of interest, such as buildings, roads, vegetation, and water
bodies. The advent of deep learning techniques, particularly convolutional neural
networks (CNNs) [135] and Vision Transformers (ViTs) [61], has revolutionized the
field of semantic segmentation. These approaches have demonstrated remarkable
performance in capturing high-level features and learning complex patterns from
large-scale datasets, surpassing traditional machine learning approaches [38]. The
success of deep learning in computer vision tasks has inspired its application to
remote sensing data, leading to significant advancements in semantic segmentation
accuracy and efficiency [13]. However, semantic segmentation in remote sensing
presents unique challenges compared to traditional computer vision scenarios. Re-
mote sensing images often cover large geographic areas and exhibit high spatial and
spectral variability [245, 16]. The objects of interest in these images can have di-
verse appearances, scales, and complex spatial relationships, making it challenging
to capture their contextual dependencies and accurately delineate their boundaries.
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Moreover, the limited availability of annotated data in remote sensing poses diffi-
culties in training deep learning models, as the acquisition of pixel-level labels is
time-consuming, costly, and often requires expert knowledge [142, 253]. To address
these challenges, researchers have explored various approaches to adapt and enhance
semantic segmentation techniques for remote sensing applications. One prominent
direction is the development of specialized CNN architectures that can effectively
capture the multiscale and multi-modal nature of remote sensing data [164]. An-
other important aspect is the exploration of weakly supervised learning approaches,
which aim to reduce the reliance on expensive pixel-level annotations [99]. Weakly
supervised methods leverage alternative forms of supervision, such as image-level
labels, bounding boxes, or scribbles, to guide the training of semantic segmenta-
tion models. These approaches offer a more cost-effective and scalable solution for
training models in scenarios where pixel-level annotations are scarce or impractical
to obtain [165]. Domain adaptation techniques have also gained attention in the re-
mote sensing community, as they enable the transfer of knowledge learned from one
geographic location or from one sensor to another [125]. By minimizing the domain
gap between source and target domains, domain adaptation methods can improve
the generalization capability of semantic segmentation models, reducing the need
for extensive fine-tuning or re-training when applying models to new areas or data
sources [96]. This thesis aims to address these challenges, starting from current
state-of-the-art solutions on natural images, and optimizing them for remote sens-
ing scenarios with ad-hoc improvements. The main objective is to develop novel
techniques and methodologies that can effectively leverage the unique characteris-
tics of remote sensing data, overcome the limitations of existing approaches, and
provide accurate and efficient semantic segmentation results in various scenarios,
with an eye towards deployable solutions.

1.2 Research Contributions
This thesis presents a set of techniques and methodologies to address the unique

challenges of semantic segmentation in remote sensing scenarios. The research con-
tributions are organized into three main categories, each focusing on a specific
challenge encountered in aerial images: (i) the aerial viewpoint, (ii) imbalance,
both in terms of scales and classes, and (iii) domain robustness. For each chal-
lenge, we propose tailored methods and solutions to improve the accuracy and the
generalization abilities of semantic segmentation models.

Top-down Viewpoint. Remote sensing images captured from an aerial perspec-
tive introduce unique challenges for semantic segmentation due to the top-down
viewpoint and the arbitrary orientation of objects in the scene. To address these
challenges, we propose a novel framework that combines Augmentation Invariance

2



1.2 – Research Contributions

(AI) regularization with an Adaptive Sampling (AS) strategy. The AI component
guides the model to learn semantic representations that are invariant to photomet-
ric and geometric distortions, while the AS technique addresses class imbalance by
dynamically selecting training samples based on class distribution and model con-
fidence. We further extend these techniques to the context of incremental learning,
introducing a contrastive distillation approach that enforces invariance to orienta-
tion changes and enhances the model’s ability to incorporate new classes without
forgetting previously learned features.

Scale and Class Imbalance. Aerial images often exhibit significant variations in
object scale and a severe imbalance between classes, posing difficulties for accurate
semantic segmentation. To tackle these issues, we focus on two specific applica-
tions: flood detection and photovoltaic panel segmentation. For flood detection,
we construct a multimodal dataset combining SAR imagery, DEM data, and hy-
drography maps, and propose a multi-encoder architecture with entropy-weighted
sampling to effectively fuse the different data modalities and address class imbal-
ance. For photovoltaic panel segmentation, we introduce a multiscale regularization
approach that encourages consistency between local and global features, improving
the segmentation performance, especially for challenging categories. Additionally,
we develop a post-processing algorithm to refine the segmentation output and gen-
erate cleaner polygonal representations of the detected objects.

Domain Robustness. Semantic segmentation models often struggle to gener-
alize well to new geographic locations, sensors, or temporal conditions, requiring
expensive pixel-level annotations for adaptation. To enhance domain robustness,
reduce the need for manual annotations, and enable large-scale labeling, we ex-
plore four key techniques: unsupervised domain adaptation, learning from sparse
annotations, multitask learning, and leveraging foundation models for automated
annotation. We propose a hierarchical instance mixing strategy (HIMix) and a twin-
head architecture for unsupervised domain adaptation, effectively aligning features
across domains and improving segmentation performance. To learn from sparse an-
notations, we introduce SPADA, a framework that combines sparse ground truth
labels with pseudo-labels generated by a teacher model, enabling effective training
with limited annotated data. We then investigate the potential of multitask learn-
ing to improve the robustness and performance of semantic segmentation models,
proposing RoBAD, a multitask learning framework that incorporates land cover
classification as an auxiliary task to guide the training of the segmentation model.
Lastly, we explore the use of foundation models as robust annotators with FMARS,
a pipeline that employs state-of-the-art Large Vision Models (LVMs) to generate
labels for remote sensing images at scale. FMARS addresses the challenge of cre-
ating extensive annotated datasets and demonstrates how these machine-generated
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labels can be used to train smaller, more manageable models for specific down-
stream tasks.

1.3 Thesis Outline
The thesis is organized into six chapters, following the structure of the research

contributions presented in the previous section. The chapters are as follows: The
current chapter, Chapter 1, provides an introduction to the research topic, high-
lighting the importance of semantic segmentation in remote sensing applications
and the unique challenges posed by aerial images. It sets the context for the re-
search contributions and outlines the objectives of the thesis. Chapter 2 presents
the background and foundations necessary for understanding the research contri-
butions of the thesis. It provides an overview of semantic segmentation techniques,
including traditional methods and deep learning approaches. The chapter also in-
troduces the fundamental concepts and datasets relevant to remote sensing and
discusses the specific challenges encountered in this domain. Chapter 3 focuses on
addressing the challenges arising from the aerial viewpoint in remote sensing images.
It presents novel techniques, such as Augmentation Invariance (AI) regularization
and Adaptive Sampling (AS), to learn semantic representations that are invariant to
photometric and geometric distortions. The chapter also introduces a contrastive
distillation approach for incremental learning, enabling the incorporation of new
classes without forgetting previously learned features. Chapter 4 tackles the issues
of scale and class imbalance in aerial and satellite images, in two application sce-
narios. It describes the construction of a multimodal dataset for flood detection
and proposes a multi-encoder architecture with entropy-weighted sampling to effec-
tively fuse different data modalities. For scale imbalance, the discussion focuses on
photovoltaic panel segmentation, introducing a multiscale regularization approach
and a post-processing algorithm to improve segmentation performance and generate
cleaner polygonal outputs. Chapter 5 addresses the challenges of domain robust-
ness and weak supervision in semantic segmentation for remote sensing. It explores
techniques such as Unsupervised Domain Adaptation, learning from sparse anno-
tations, multitask learning, and automated labeling through large vision models.
The chapter presents a hierarchical instance mixing strategy (HIMix) and a twin-
head architecture for unsupervised domain adaptation, a framework (SPADA) for
learning from sparse annotations, a multitask learning framework (RoBAD) that
incorporates land cover classification as an auxiliary task to guide the segmenta-
tion model, and an automated pipeline (FMARS) to generate labels on a large scale
through LVMs. Finally, Chapter 6 concludes the thesis by summarizing the main
contributions and findings for the field of remote sensing and semantic segmenta-
tion, and outlines potential future research directions and open challenges.
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Chapter 2

Background and Foundations

2.1 Semantic Segmentation
Image segmentation is a fundamental problem in computer vision that aims

to partition an image into multiple segments or regions, each corresponding to a
different object or part of the scene. Formally, let Ω ⊂ R2 represent the image
domain. The goal of segmentation is to find a partition R = R1, . . . , Rn of Ω such
that [85]:

1. ⋃︁n
i=1 Ri = Ω

2. Ri ∩Rj = ∅ for i /= j

3. Each Ri is a connected set

4. P(Ri) = TRUE for some logical predicate P

5. P(Ri ∪Rj) = FALSE for any adjacent regions Ri and Rj

S The first two conditions ensure that the regions cover the entire image domain
without overlap. The third condition requires each region to be spatially connected.
The fourth condition states that pixels in a segmented region must share some
common property P , such as intensity, color, texture, or semantic category. The
last condition ensures that any merging of adjacent regions violates the property P .
There are three main types of image segmentation: semantic segmentation, instance
segmentation, and panoptic segmentation [121, 88]. Semantic segmentation assigns
each pixel a class label, but does not differentiate between different instances of the
same class. For example, all pixels belonging to the "person" class would be labeled
as such, without distinguishing between different people in the image. Instance
segmentation, on the other hand, detects and delineates each distinct object of
interest in the image. So different people would be segmented as separate instances.
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Panoptic segmentation unifies the two tasks and aims to assign both a class label
and an instance identifier to every pixel in the image.

Semantic segmentation can be seen as the task of assigning a semantic label
to every pixel in an image, effectively partitioning the image into semantically
meaningful regions that respect the rules above. Formally, let I : Ω → Rc denote
an input image, where Ω ⊂ R2 is the image domain made of 2D pixel coordinates
p, and c is an arbitrary number of channels (i.e., 3 for typical RGB images). The
goal of semantic segmentation is to infer a label mapping Y : Ω → 1, . . . , K that
assigns each pixel p ∈ Ω to one of K predefined semantic categories [80]. In
the deep learning paradigm, semantic segmentation is typically formulated as a
dense pixel-wise classification problem. Given a training dataset D = (Ii,Yi)i = 1N

consisting of image-label map pairs, the objective is to learn a mapping fθ : I → Y
parameterized by θ, such that fθ(I) approximates the true label map Y for a given
test image I. This is typically achieved by minimizing an empirical risk over the
training set:

θ∗ = arg min
θ

1
N

N∑︂
i=1
L(fθ(Ii),Yi) (2.1)

where L(·, ·) is a pixel-wise loss function, for instance the standard cross-entropy
loss for multi-class classification.

Semantic segmentation has numerous applications across a wide range of do-
mains. In autonomous driving, accurately understanding the drivable areas, pedes-
trians, vehicles, and other key objects in the scene is crucial for safe navigation [52,
63]. For intelligent transportation systems, semantic segmentation enables analysis
of road scenes, detection of lanes, sidewalks, and obstacles to assist driver decision-
making. In the medical field, segmenting anatomical structures and regions of
interest from medical images such as MRI or CT scans aids in diagnosis, treatment
planning, and surgical interventions [197]. Other applications include precision
agriculture, where segmenting aerial or satellite imagery into categories such as
crops, soil, and weeds facilitates monitoring of crop health and targeted treatments
[49]. In robotics, semantic understanding of the environment is essential for tasks
like grasping, manipulation, and human-robot interaction [205]. Automatic seg-
mentation of images and video frames also enables content-based retrieval, efficient
compression, and many other applications.

However, despite its wide-ranging utility, semantic segmentation of real-world
imagery poses several challenges. Unlike image classification, which predicts a single
label for the entire image, classifying each pixel is a significantly more complex task.
Segmentation models must balance local detail with global context, as both high
spatial resolution and long-range dependencies are needed for precise segmentation
[39]. The model must handle objects with varying scales, poses, and appearances,
and segment the boundaries between objects precisely. Another challenge is the
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large cost and time needed to annotate datasets with pixel-wise labels for train-
ing and evaluation. Compared to drawing bounding boxes or assigning image-level
tags, meticulously tracing object boundaries is tedious and error-prone. As a result,
semantic segmentation datasets tend to be smaller in scale or less diverse compared
to image classification datasets [69, 27]. Models trained on limited data may not
generalize well to the long tail of object appearances found in unconstrained en-
vironments. Segmentation is also more sensitive to small errors, as incorrectly
labeling even a few pixels along boundaries can substantially alter the perceived
quality of the result. Approaches that excel at classification may underperform on
segmentation without architectural changes to capture fine-grained spatial infor-
mation. Furthermore, many applications demand extremely efficient inference in
order to segment images in real-time on low-power devices. Models designed solely
for accuracy are often prohibitively expensive for effective deployment [112].

2.1.1 Metrics
Given the fine-grained pixel classification, semantic segmentation adopts differ-

ent metrics from other machine learning tasks to better describe the performance of
the models. The most widely used metrics are based on the Intersection-over-Union
(IoU) and F1 score, which provide a quantitative measure of the overlap between
the predicted and ground truth segmentation masks. The IoU, also known as the
Jaccard index, is a similarity measure between two sets. For binary segmentation,
it is defined as the size of the intersection between the predicted and ground truth
masks divided by the size of their union:

IoU = |Y ∩ Ŷ|
|Y ∪ Ŷ|

= TP
TP + FP + FN (2.2)

where Y is the ground truth mask, Ŷ is the predicted mask, and TP, FP, and FN
denote true positives, false positives, and false negatives respectively. IoU ranges
from 0 to 1, with 1 indicating perfect overlap. For multi-class segmentation with K
classes, the IoU can be computed in several ways. The class-wise IoU is calculated
separately for each class, treating it as a binary problem of the class versus the rest.
The macro-average IoU, often simply called mean IoU (mIoU), is the unweighted
average of the class-wise IoUs:

macro-IoU = 1
K

K∑︂
i=1

IoUi (2.3)

where IoUi is the IoU of class i. Macro-average IoU treats all classes equally,
regardless of their frequency. On the other hand, the micro-average IoU is calculated
globally over all classes, which effectively weights each class by its frequency:
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micro-IoU =
∑︁K

i=1 TPi∑︁
i = 1K(TPi + FPi + FNi)

(2.4)

The F1 score is the harmonic mean of precision and recall. For binary segmen-
tation, it is defined as:

F1 = 2 ∗ Precision ·Recall

Precision + Recall
= 2 · TP

2 · TP + FP + FN (2.5)

Similar to IoU, the multi-class F1 score can be computed as a macro-average (un-
weighted mean of class-wise F1 scores) or micro-average (globally over all classes).
The macro-average F1 score is given by:

macro-F1 = 1
K

K∑︂
i=1

F1i (2.6)

where F1i is the F1 score of class i. The micro-average F1 score is calculated
as:

micro-F1 = 2 ·∑︁K
i=1 TPi

2 ·∑︁ i = 1KTPi +∑︁
i = 1K(FPi + FNi)

(2.7)

Both IoU and F1 score penalize both over- and under-segmentation, provid-
ing a balanced measure of segmentation quality. In practice, macro-average IoU
(mIoU) is the most commonly reported metric for semantic segmentation, as it
treats all classes equally and is sensitive to even small segmentation errors along
object boundaries. When not specified otherwise, average IoU or mean IoU typ-
ically refers to macro-average IoU. However, micro-average metrics may be more
appropriate when class frequencies are highly imbalanced. In some cases, it is
crucial to consider both types of averaging when comparing segmentation mod-
els, as they provide complementary information about performance across different
classes.

2.1.2 Literature Review
Traditional methods. Early approaches to semantic segmentation relied heavily
on hand-crafted features and heuristic rules. Low-level cues such as color, texture,
and edges were used to group pixels into coherent regions, often based on similar-
ity criteria or graph-based formulations [85]. For example, thresholding techniques
aimed to separate foreground objects from the background based on intensity differ-
ences, while region growing methods iteratively expanded segments based on local
similarity measures. While these techniques could produce reasonable results for
simple images with clear boundaries and homogeneous regions, they often struggled
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Figure 2.1: An example of U-Net architecture [197], the archetype of encoder-
decoder model for semantic segmentation. The encoder (left) progressively down-
samples the input image using convolutions and max-pooling, capturing higher-level
features at each scale. The decoder (right) upsamples the feature maps using trans-
posed convolutions and concatenates them with the corresponding encoder features
through skip connections.

with more complex scenes containing occlusions, illumination changes, and intra-
class variations [85]. The advent of machine learning brought more principled and
data-driven approaches to semantic segmentation. Rather than relying solely on
low-level cues, these methods aimed to learn a mapping from input features to out-
put labels based on annotated training data. Popular techniques included Random
Forests [210], boosting [101], and Support Vector Machines (SVMs) [243], which
could learn discriminative classifiers for each semantic category. However, these
methods still relied on hand-engineered features such as SIFT [137], HOG [55],
and TextonBoost [115], which limited their generalization ability and robustness to
variations in appearance and scale. Moreover, these approaches often treated each
pixel independently, ignoring the rich contextual information and spatial depen-
dencies present in natural images. To address this limitation, Conditional Random
Fields (CRFs) [115, 70, 38] were widely used as a post-processing step to refine
the segmentation maps produced by the classifiers. CRFs could model the pairwise
compatibilities between neighboring pixels and encourage label consistency, lead-
ing to smoother and more coherent predictions. However, the performance of these
methods was still heavily dependent on the quality of the initial segmentation and
the choice of energy functions and inference algorithms.
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Convolutional networks. The field of semantic segmentation has recently un-
dergone a paradigm shift with the rise of deep learning, particularly Convolutional
Neural Networks (CNNs). CNNs have the ability to learn hierarchical features
directly from raw images, capturing both low-level appearance and high-level se-
mantics in a unified framework. One of the first pioneering works introduced the
concept of Fully Convolutional Networks (FCNs) [135], which adapted existing
classification architectures such as AlexNet [61] or VGGNet [135] for dense predic-
tion by replacing the fully-connected layers with convolutional ones. By leveraging
the inherent spatial structure of convolutions and combining features from differ-
ent depths, FCNs achieve significant improvements over previous state-of-the-art
methods on challenging datasets like PASCAL VOC [69]. The downsampling op-
erations in CNNs, such as pooling and stride convolutions, lead to a loss of spatial
resolution in the feature maps, resulting in coarse and blurry segmentation bound-
aries. To alleviate this issue, several architectures based on the encoder-decoder
paradigm have been proposed. These architectures typically consist of an encoder
that progressively reduces the spatial resolution of the feature maps, and a decoder
that gradually recovers the object details and spatial dimensions [15, 197]. The
decoder often incorporates upsampling operations, such as transpose convolutions,
and skip connections from the encoder to the decoder to combine low-level fea-
tures with high-level semantic information. Another approach to address the loss
of spatial resolution is to gather multiscale information, for instance through the
use of dilated convolutions, which expand the receptive field without reducing the
resolution of the feature maps [38, 39]. By using dilated convolutions, models can
capture larger context while preserving the spatial information, leading to more
precise segmentation boundaries. Some architectures, such as DeepLab [38], also
integrate Conditional Random Fields (CRFs) as a post-processing step to further
refine the segmentation results and enforce spatial consistency. As the depth and
complexity of CNN architectures grow, overfitting becomes a major problem and
the availability of large-scale annotated datasets becomes crucial. To improve the
generalization and efficiency of semantic segmentation models, various techniques
have been developed. Multiscale context aggregation modules, such as pyramid
pooling [270] or atrous spatial pyramid pooling [39], are used to capture contextual
information at different scales and resolutions.

Transformer architectures. Attention mechanisms have emerged as powerful
tools for modeling long-range dependencies and capturing global context in se-
mantic segmentation, since the emergence of the Transformer architecture [232].
Self-attention modules are used to adaptively integrate local features with their
global dependencies, allowing the model to focus on relevant regions and capture
contextual information at different scales [77, 262]. Some architectures introduce
efficient attention mechanisms into convolutional models, such as axial-attention,
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which decomposes the global self-attention operation into separate attention oper-
ations along the spatial dimensions, making it computationally feasible for high-
resolution feature maps [238]. Pure Transformer-based architectures have also been
proposed, treating semantic segmentation as a sequence-to-sequence prediction task
and leveraging the strong global context modeling capabilities of Transformers
[271]. The advent of foundation models, large-scale pre-trained models that can
be adapted to various downstream tasks, has further pushed the boundaries of se-
mantic segmentation. These models, typically based on Transformers or hybrid
CNN-Transformer architectures, are trained on massive amounts of unlabeled or
weakly-labeled data using self-supervised learning objectives, and then fine-tuned
on specific tasks with limited annotated data [61, 222, 131]. Some approaches in-
troduce novel frameworks that unify different segmentation tasks, such as semantic
and instance segmentation, using a Transformer decoder to predict a set of binary
masks and their corresponding class labels [44]. Others extend this idea to panoptic
segmentation, jointly predicting semantic and instance masks using a Transformer
decoder with masked attention [45]. End-to-end Transformer architectures have
also been designed specifically for semantic segmentation, achieving state-of-the-
art performance. These architectures often incorporate novel mechanisms, such
as overlapping patch embeddings and hierarchical feature extraction, to capture
multiscale contextual information and produce high-resolution segmentation maps
[255].

Benchmark datasets. The success of semantic segmentation methods on nat-
ural images heavily relies on the availability of high-quality annotated datasets.
In the following paragraphs, we provide a non-exhaustive list of the most com-
mon benchmarks, considering natural images. PASCAL VOC [69] is one of the
pioneering datasets for object detection and semantic segmentation, with 20 ob-
ject categories and pixel-level annotations for a subset of images. Together with
PASCAL VOC, Microsoft COCO [129] is probably the most well-known bench-
mark for natural images. This large-scale dataset contains 80 object categories
with instance-level annotations, which can be converted to semantic segmentation
labels. Another popular benchmark is ADE20K [272], a diverse dataset covering
150 semantic categories of objects, stuff, and parts, with annotations for both in-
door and outdoor scenes. A large portion of semantic segmentation literature orbits
around autonomous driving, also thanks to the availability of large-scale annotated
datasets. For instance, Cityscapes [52] is a high-resolution dataset focused on ur-
ban scene understanding for autonomous driving, with 30 semantic classes and fine
pixel-level annotations. It is also common to exploit synthetic data to improve gen-
eralization capabilities. For instance, SYNTHIA [198] is a large synthetic dataset of
urban scenes with pixel-level semantic annotations, designed to facilitate research
on domain adaptation and transfer learning [96]. These datasets have played a
crucial role in advancing the state-of-the-art in semantic segmentation, providing

11



Background and Foundations

standardized benchmarks for evaluating and comparing different approaches.

Figure 2.2: Simplified visualization of the electromagnetic spectrum, and distribu-
tion of the most common Satellite Remote Sensing (SRS) sensors [179].

2.2 Remote Sensing
Remote sensing is a field of study that focuses on obtaining information about

the Earth’s surface and atmosphere from a distance, typically through the use of
satellite, airborne, or ground-based sensor technologies [195, 56]. This involves mea-
suring the emanating energy using sensors on these above-ground platforms, and
using their measurements to construct landscape images. The Earth’s atmospheric
composition and structure constrain the usable imaging wavelengths to the visible,
infrared, thermal infrared, and microwave ranges [195], as displayed in Fig. 2.2.
While the most common energy source remains reflected sunlight, other alternative
sources can provide additional information, such as thermal emission, to inspect
the surface heat and temperatures, or active microwave illumination, sensitive to
the physical characteristics of the underlying terrain and capable of operating re-
gardless of the weather. The sensors used to measure the radiation can be broadly
classified into two categories: passive and active. Passive remote sensing relies on
naturally occurring radiation, such as sunlight reflected from the Earth’s surface or
thermal energy emitted by the surface materials. Passive sensors detect and record
this radiation without emitting any energy themselves. Examples of passive re-
mote sensing include optical imagery captured by multispectral and hyperspectral
sensors [56]. In contrast, active remote sensing systems generate their own electro-
magnetic radiation and measure the backscattered energy from the Earth’s surface.
Radar and LiDAR are examples of active remote sensing technologies, which use
microwave and laser pulses, respectively, to illuminate the surface and record the
returned signal [56].
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The choice of instrument depends on the kind of interaction, that can be sum-
marized into three forms, named reflection, absorption, or emission, depending on
the properties of the surface materials and the wavelength of the radiation [56].
Reflection occurs when incident electromagnetic radiation bounces off the surface
and is redirected back into the atmosphere. The amount of reflected energy de-
pends on the surface’s albedo, which is a measure of its reflectivity [195]. Surfaces
with high albedo, such as fresh snow or white sand, reflect a large portion of the
incident energy, while surfaces with low albedo, such as water bodies or dark soil,
reflect less energy [56]. The reflected energy is often measured by passive remote
sensing systems, such as multispectral and hyperspectral sensors, to characterize
the surface properties and composition. This is the most common family of sensor,
adopted for instance by Landsat [250] or Sentinel-2 constellations [65]. Absorption,
on the other hand, occurs when incident electromagnetic radiation is taken up by
the surface materials and converted into other forms of energy, such as heat [56,
184]. The degree of absorption varies depending on the wavelength of the radia-
tion and the molecular structure of the surface materials. For example, vegetation
absorbs a significant portion of the visible light for photosynthesis, while it reflects
more energy in the near-infrared region [195, 209, 218]. By measuring the patterns
of absorption and reflection across different wavelengths, remote sensing systems
can provide information about the type, health, and distribution of vegetation on
the Earth’s surface [65]. Emission is the process by which surface materials release
electromagnetic radiation due to their own thermal energy. All objects with a tem-
perature above absolute zero emit radiation, with the wavelength and intensity of
the emitted radiation depending on the object’s temperature and emissivity [56].
Emissivity can be defined as a measure of a material’s ability to emit thermal ra-
diation compared to a perfect black body at the same temperature [18]. Remote
sensing systems, particularly those operating in the thermal infrared region, can
detect and measure the emitted radiation to determine the surface temperature
and thermal properties of the Earth’s surface [195]. This is for instance the case of
the Moderate-Resolution Imaging Spectroradiometer (MODIS) [175] and Sentinel-3
[60] constellations.

2.2.1 Sensor types
In addition to the sensor type, remote sensing systems can also be classified

based on the platforms that carry the sensors. The main types of remote sensing
platforms include satellites, aircraft, and unmanned aerial vehicles (UAVs).

Satellite imagery. Satellite systems involve the use of sensors mounted on satel-
lites in orbit to collect data about the Earth’s surface and atmosphere. These
satellites can be classified based on their orbit type, such as geostationary or polar-
orbiting, and their sensor payload [195]. Geostationary satellites orbit the Earth
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at an altitude of approximately 36,000 km, maintaining a fixed position relative
to the Earth’s surface. These satellites are primarily used for weather monitoring
and communications [56]. Polar-orbiting satellites, on the other hand, orbit the
Earth at lower altitudes, between 600 and 800 km above the surface, and pass
over the poles on each revolution. These satellites provide global coverage and are
widely used for Earth observation, including land cover mapping such as Landsat
[250] and Sentinel-2 [65], ocean monitoring such as Sentinel-3 [60], and atmospheric
studies. Satellite remote sensing offers several key advantages, including the ability
to provide consistent and global coverage of the Earth’s surface, even in remote and
inaccessible regions. These systems can collect data over large areas using a wide
range of sensor types, resulting in diverse datasets suitable for various applications.
Additionally, many satellite missions span several decades, ensuring long-term data
continuity. However, satellite remote sensing also has some limitations, such as
relatively coarse spatial resolution compared to aerial and UAV-based systems, or
prohibitive costs for VHR data, fixed temporal resolution determined by the satel-
lite’s orbit and revisit cycle, and potential data quality issues caused by cloud cover
and atmospheric interference.

Aerial imagery. Aerial remote sensing involves instead the use of sensors mounted
on aircraft or helicopters, provides higher spatial resolution than satellite-based sys-
tems, enabling more detailed mapping of the surface and the detection of smaller
features. They typically operate at lower altitudes compared to satellites, ranging
from a few hundred meters to several kilometers above the ground [195]. These
systems offer flexibility in data acquisition, as flight parameters and timing can be
adjusted based on specific requirements. Aerial remote sensing also has the poten-
tial to capture oblique imagery, offering a different perspective compared to vertical
imagery. Moreover, aerial surveys are generally less expensive and can be deployed
faster than satellite missions. However, aerial remote sensing covers smaller areas
compared to satellite-based systems and is more sensitive to weather conditions,
which can impact flight schedules and data quality. Additionally, aerial remote
sensing data may be subject to geometric distortions caused by aircraft motion and
terrain variation.

UAV imagery. UAV-based remote sensing has gained popularity in recent years
due to the increasing availability and affordability of small, lightweight drones
equipped with high-resolution cameras and other sensors [56]. UAVs offer sev-
eral advantages over traditional satellite and aerial platforms, including lower cost,
higher flexibility, and the ability to collect data at very high spatial resolutions
(often below 10 cm) [195]. UAV-based remote sensing is particularly useful for
small-scale applications, such as precision agriculture, infrastructure monitoring,
and environmental research. These systems can be deployed quickly and easily,
allowing for frequent data collection and near-real-time monitoring of dynamic
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processes [29]. UAVs emerged as a popular choice in recent years, thanks to the
increasing availability and affordability of small, lightweight drones equipped with
high-resolution cameras and other sensors. These systems offer very high spatial
resolution, enabling detailed mapping of small-scale features. UAVs provide high
flexibility in data acquisition, as flight parameters and timing can be easily ad-
justed. They are also relatively low-cost and can be rapidly deployed compared to
satellite and aerial platforms. Moreover, they have the potential to capture data
beneath cloud cover and in areas that are inaccessible to larger platforms. However,
UAV-based remote sensing has some limitations, such as limited coverage area due
to battery life and range constraints, sensitivity to weather conditions (particularly
wind and precipitation), and regulatory restrictions on UAV operation in certain
areas, such as near airports or in urban environments.

2.2.2 Remote Sensing Resolutions
Remote sensing data is characterized by three key dimensions: spatial resolu-

tion, spectral resolution, and temporal resolution. These dimensions determine the
level of detail captured in the data, the ability to distinguish between different
features or materials, and the frequency at which observations are made. Under-
standing these characteristics is crucial for selecting the appropriate remote sensing
data for a given application and interpreting the information derived from the data.

Spatial resolution. It refers to the size of the smallest object or feature that can
be detected and distinguished in a remote sensing image. It is typically expressed in
terms of the Ground Sample Distance (GSD), which represents the distance between
the centers of adjacent pixels on the ground [195]. The smaller the GSD, the higher
the spatial resolution of the image. The spatial resolution of remote sensing data
varies depending on the sensor and platform used. For example, the Landsat-8
satellite has a spatial resolution of 30 meters for its multispectral bands and 15m
for its panchromatic band [250], while Sentinel-2 provides a sampling of 10m per
pixel. In contrast, VHR commercial satellites can provide imagery with a spatial
resolution below 1m even for multispectral bands, such as Maxar data [89, 30], or
Planet SkySat [203] (see Section 2.2.4). The choice of spatial resolution depends
on the specific application and the level of detail required. High spatial resolution
data is essential for tasks such as urban planning, infrastructure monitoring, and
small-scale feature detection. However, higher spatial resolution also means larger
data volumes and increased processing time. Lower spatial resolution data, on
the other hand, is suitable for large-scale applications, such as global land cover
mapping [78, 264], where larger and broader patterns are the main interest.

Spectral Resolution. Spectral resolution describes the ability of a remote sens-
ing sensor to distinguish between different wavelengths of electromagnetic radiation,
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and it is determined by the number and width of the spectral bands captured by the
sensor [56]. A spectral band is a range of wavelengths within the electromagnetic
spectrum, such as visible light (400-700 nm), near-infrared (700-1100 nm), or ther-
mal infrared (8-14 µm). Multispectral sensors typically have a few broad spectral
bands, usually covering the visible and near-infrared regions of the spectrum. For
example, the Landsat-8 Operational Land Imager (OLI) has nine spectral bands,
including visible, near-infrared, and shortwave infrared bands [250]. These bands
are selected to capture key features of the Earth’s surface, such as vegetation health,
water bodies, and mineral composition. Hyperspectral sensors, on the other hand,
have hundreds or even thousands of narrow, contiguous spectral bands, providing a
nearly continuous representation of the electromagnetic spectrum. This high spec-
tral resolution allows for the detection and identification of specific materials or
chemical compounds based on their unique spectral signatures [56]. Hyperspectral
data is particularly useful for applications such as mineral exploration, vegetation
species mapping, and water quality monitoring. Usually, spectral resolution is in-
versely proportional to spatial resolution: VHR sensors often provide visible (i.e.,
RGB) and optionally near-infrared (NIR) data, while lower resolution sensors such
as Sentinel-2 compensate the lack of detail by providing more bands [65]. The choice
of spectral resolution depends on the specific application and the level of spectral
detail required. Multispectral data is sufficient for many applications, such as land
cover classification and vegetation monitoring, while hyperspectral data is neces-
sary for more specialized tasks that require the identification of specific materials
or chemical compounds [195].

Temporal Resolution. Temporal resolution refers to the frequency at which
a remote sensing system acquires data over a given area. This is determined by
the revisit time of the sensor, intended as the time it takes for the satellite to
return to the same location on the planet’s surface [56]. The temporal resolution of
remote sensing data can range from a few minutes to several weeks or even months,
depending on the sensor and platform used. High temporal resolution is crucial for
monitoring dynamic processes and changes, such as vegetation phenology, natural
disasters, and urban development. For example, the Moderate Resolution Imaging
Spectroradiometer (MODIS) sensor aboard the Terra and Aqua satellites provides
daily global coverage, enabling near-real-time monitoring of larger scale phenomena
such as wildfires, floods, and algal blooms [195]. Sensors with lower temporal
resolution, such as Landsat-8 (16-day revisit time) or Sentinel-2 (5-day revisit time),
are still valuable for many applications, particularly those that focus on longer-term
changes or trends [78, 142]. These sensors provide consistent, high-quality data that
can be used to track changes in land cover, monitor agricultural productivity, and
assess the impacts of climate change over time. The choice of temporal resolution
depends on the specific application and the rate at which changes occur in the
phenomena of interest. Once again, the temporal resolution is often directly tied
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to the spatial resolution: higher resolution sensors often have longer revisit times,
also due to the larger amount of data to be processed and stored.

2.2.3 The Copernicus Programme
In the context of Earth Observation, remote sensing has emerged as a crucial

tool for monitoring and understanding our planet. Among the openly available re-
sources at the European level, the Copernicus Programme, coordinated by the Eu-
ropean Space Agency (ESA), stands out as the most comprehensive and ambitious
initiative. This program effectively revolutionized the access to Earth Observation
data worldwide, providing a wealth of information to support environmental mon-
itoring, emergency response, and scientific research. The Copernicus Programme,
formerly known as Global Monitoring for Environment and Security (GMES), can
be defined as the European Union’s Earth observation program [12]. It serves as
the central reference point for the EU to exploit remote sensing for environmental
monitoring, emergency management, and civil security. In fact, Copernicus pro-
vides a comprehensive, unified system that collects and processes vast amounts of
satellite data, supporting decision-makers, researchers, and other stakeholders with
timely, accurate, and easily accessible information [105]. The primary objectives of
the Copernicus Programme are threefold. First, it aims to monitor and understand
the Earth’s environment and climate change. Second, it provides support for emer-
gency response and civil security. Finally, it fosters the development of innovative
applications and services based on Earth observation data [12]. To achieve these
objectives, Copernicus integrates data from a variety of sources, including dedicated
satellites (Sentinels), contributing missions, and in situ sensors. The Programme
consists of several interconnected components that work together to provide a com-
prehensive Earth observation system. The space component, managed by the ESA,
represents its backbone. It includes the Sentinel family of satellites, specifically de-
signed to meet the operational needs of the program [12]. The Sentinels provide
a unique set of observations, covering various aspects of the Earth’s environment.
Sentinel-1 focuses on all-weather, day-and-night radar imaging (i.e., SAR) for land
and ocean services, while Sentinel-2 provides high-resolution optical imaging for
land monitoring. Sentinel-3 is a multi-instrument mission for marine and land
monitoring, and Sentinel-4 and Sentinel-5 are dedicated missions for atmospheric
monitoring. The Sentinel-5 Precursor aims to reduce data gaps between Envisat
and Sentinel-5, and Sentinel-6 is a radar altimetry mission for measuring global sea-
surface height [68]. ESA is responsible for the development, launch, and operation
of the Sentinel satellites, as well as for coordinating access to data from contributing
missions. The in situ component complements the space-based observations by pro-
viding ground-based, airborne, and seaborne measurements. These measurements
are essential for calibrating and validating satellite data, as well as for providing
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additional information that cannot be obtained from space [105]. The services com-
ponent of Copernicus transforms the raw data collected by the space and in situ
components into value-added information products. These products are delivered
through six thematic services: Land Monitoring, Marine Environment Monitoring,
Atmosphere Monitoring, Climate Change, Emergency Management, and Security
[105]. Each service provides specific information products tailored to the needs of
users in their respective domains. The Copernicus Programme is an invaluable tool
for computer vision research applied to remote sensing data, and it constitutes the
primary source of data for several works presented in this manuscript, especially
considering land applications (see Section 5.3) or disaster management (Section 4.2
and Section 5.4). The vast amounts of high-quality, multi-modal data provided
by the Sentinel satellites and contributing missions offer the necessary inputs for
advanced computer vision techniques applied to Earth observation problems, while
more refined products such as delineation maps derived from the Emergency Man-
agement Service (EMS) [64], or land cover maps derived from the Land Monitoring
service can be exploited as manually validated ground truth. Among the various
missions, Sentinel-1 and Sentinel-2 have emerged as the most widely utilized. In
the following sections, we will focus on these two missions, exploring their charac-
teristics, data products, and their specific relevance to the field of computer vision
in remote sensing, as they form the backbone of many data sources used in this
thesis.

Sentinel-1

Sentinel-1, a constellation of two polar-orbiting satellites (Sentinel-1A and Sentinel-
1B), is the first of the five Copernicus missions developed by ESA. As the European
Radar Observatory for the Copernicus joint initiative, Sentinel-1 operates day and
night in all weather conditions, carrying a C-band Synthetic Aperture Radar (SAR)
instrument that enables the acquisition of imagery regardless of the weather [221].
The Sentinel-1 mission is designed to provide continuity of data from the European
Remote Sensing (ERS) satellites and the Envisat mission, which operated C-band
SAR instruments. With its improved revisit time, coverage, timeliness, and reliabil-
ity of service, Sentinel-1 has become a crucial tool for operational applications and
scientific research [221]. The two satellites, Sentinel-1A and Sentinel-1B, share the
same orbital plane with a 180° orbital phasing difference, allowing for a revisit time
of 6 days at the equator. The satellites fly in a near-polar, sun-synchronous orbit
at an altitude of 693 km, with a 12-day repeat cycle and 175 orbits per cycle [221].
This configuration ensures consistent long-term data archives, which are essential
for applications based on long time series.

Products. The SAR instrument aboard Sentinel-1 satellites can operate in four
exclusive modes: Stripmap (SM), Interferometric Wide swath (IW), Extra-Wide
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swath (EW), and Wave (WV). From the data acquired in each mode, the Instru-
ment Processing Facility (IPF) generates two types of Level-1 products: Single
Look Complex (SLC) and Ground Range Detected (GRD). GRD products are fur-
ther classified by their resolution into Full (FR), High (HR), and Medium (MR)
[221]. Level-2 Ocean (OCN) products are also available, containing geophysical
parameters such as ocean wind fields, swell spectra, and surface radial velocities
[221]. SLC products contain focused SAR data that uses the full signal bandwidth
and preserves the phase information. These products are suitable for applications
requiring phase information, such as interferometry and coherence analysis. GRD
products, on the other hand, are detected, multi-looked, and projected to ground
range using an Earth ellipsoid model [221]. They are more suitable for applications
that do not require phase information, such as backscatter analysis, classification,
and change detection.

Applications. Sentinel-1 data is utilized in a wide range of applications. In
land monitoring, it plays a crucial role in forestry, or agriculture [225, 181]. For
forestry applications, Sentinel-1 can be used for clear-cut and partial-cut detec-
tion, forest type classification, biomass estimation, and disturbance detection. In
agriculture, Sentinel-1 data helps in monitoring crop conditions, soil properties,
and tillage activities, as well as in assessing land use and predicting harvests [225].
Terrain deformation mapping using Sentinel-1 interferometric SAR (InSAR) data
allow for the detection of surface movements with millimeter-level accuracy, which
is essential for monitoring land subsidence, structural damage, or underground
construction [174]. For maritime monitoring, Sentinel-1 is used for ice monitoring,
ship detection, oil spill monitoring, and the observation of marine winds and waves.
Ship detection using Sentinel-1 data enables the identification of vessels not car-
rying Automatic Identification System (AIS) or other tracking systems, which is
crucial for monitoring illegal activities such as illegal fishing and piracy [248]. Oil
spill monitoring applications use Sentinel-1 data for gathering evidence of illegal
discharges, analyzing the spread of oil spills, and prospecting for oil reserves by
highlighting naturally occurring seepage [185]. In the context of emergency man-
agement, Sentinel-1 data is invaluable for flood monitoring, earthquake analysis,
and landslide and volcano monitoring [161, 174]. SAR’s capability to observe dur-
ing cloud cover and Sentinel-1’s frequent revisits make it ideal for flood monitoring,
allowing for the assessment of flooded areas and the impact on human, economic,
and environmental loss. SAR systems, however, including Sentinel-1, are subject
to a characteristic phenomenon known as speckle noise. This noise appears as a
grainy texture in SAR images, resulting from the coherent nature of radar imaging.
Speckle occurs due to the constructive and destructive interference of radar waves
reflected from multiple scatterers within each resolution cell. While speckle is often
considered noise, it actually contains information about the imaged surface’s struc-
ture. However, speckle can complicate image interpretation and analysis tasks,
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often requiring noise reduction techniques for an effective use [186].
InSAR provides the unique ability to produce medium and high-resolution maps

of earthquake deformations, enabling the discovery of active fault lines and the
study of potential risks. SAR interferometry can also locate areas prone to land-
slides and monitor surface deformation to provide early warning of potential disas-
ters and monitoring of critical infrastructure. Pre-eruption uplift and post-eruption
volcanic shrinkage can be monitored with similar interferometric techniques, com-
plementing in-situ networks from volcano observatories [174]. As of August 4, 2022,
the Copernicus Sentinel-1B satellite has reached the end of its mission due to an
anomaly related to the instrument electronics power supply in December 2021.
However, the mission continues with the fully operational Sentinel-1A satellite,
and plans are in place to extend the constellation in the short term with a new
Sentinel-1C satellite in the following months [66].

Sentinel-2

Band Central Wavelength (nm) Bandwidth (nm) Resolution (m)

B1 443 20 60
B2 490 65 10
B3 560 35 10
B4 665 30 10
B5 705 15 20
B6 740 15 20
B7 783 20 20
B8 842 115 10

B8A 865 20 20
B9 945 20 60
B10 1375 30 60
B11 1610 90 20
B12 2190 180 20

Table 2.1: Spectral bands of the Sentinel-2 Multi-Spectral Instrument (MSI). The
table lists the 13 spectral bands, their corresponding central wavelengths, band-
widths, and spatial resolutions.

Sentinel-2 is a wide-swath, high-resolution, multi-spectral imaging mission de-
signed to provide continuity for the SPOT and Landsat missions. The full mission
specification of the twin satellites, flying in the same orbit but phased at 180°, is
designed to give a high revisit frequency of 5 days at the Equator [65]. As docu-
mented in Table 2.1, the mission carries a single Multi-Spectral Instrument (MSI)
payload that samples 13 spectral bands, with four bands at 10m, six bands at 20m,
and three bands at 60m spatial resolution, sensing at an orbital swath width of 290
km [65]. The MSI measures the Earth’s reflected radiance in spectral bands from
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aerosol, to visible and infrared (both NIR and SWIR), with the design driven by
the need for large swath high spatial and spectral resolution imagery [65].

Products. Sentinel-2 products are available at the public in two processing lev-
els: Level-1C and Level-2A. Level-1C products provide Top-Of-Atmosphere (TOA)
reflectance images derived from the associated Level-1B products. They are com-
posed of 100×100 km2 tiles in UTM/WGS84 projection, but each tile is provided
with an additional 5 km overlap on each side, resulting in 110×110 km2 images.
Level-2A products, on the other hand, provide atmospherically-corrected Surface
Reflectance (SR) images, derived from the Level-1C products. They are also pro-
vided as 110×110 km2 tiles, and include additional outputs such as an Aerosol
Optical Thickness (AOT) map, a Water Vapor (WV) map, and a Scene Classifica-
tion (SCL) map [65].

Applications. Sentinel-2 data is used in a wide variety of applications, includ-
ing land monitoring, emergency management, and security. In land monitoring,
Sentinel-2 data is used for various purposes, such as mapping land cover and land
use changes [78, 142], monitoring vegetation health and growth, and estimating geo-
physical parameters like Fraction of Absorbed Photosynthetically Active Radiation
(FAPAR) [90] and Leaf Area Index (LAI) [240]. Sentinel-2’s frequent revisits and
relatively high spatial resolution make it ideal for emergency management applica-
tions, such as rapid mapping in response to natural disasters [51, 72, 10]. In the
security domain, Sentinel-2 data supports applications like maritime surveillance,
border monitoring, and infrastructure monitoring [132]. Sentinel-2 data are also
important for various Copernicus services, including the Land Monitoring Service,
which uses Sentinel-2 data for a variety of applications such as spatial planning,
forest management, water management, and agriculture [53, 225]. Another exam-
ple of Copernicus downstream application is the Emergency Management Service,
that uses Sentinel-2 data to provide rapid mapping in response to natural disasters
and other emergencies [64].

2.2.4 Other Platforms and Constellations
In addition to the Copernicus programme and its associated Sentinel missions,

there is a wide range of Earth observation satellite constellations and platforms
that provide valuable data for remote sensing applications. These systems offer
diverse capabilities across various spectral bands, spatial resolutions, and temporal
frequencies, responding to the different needs of researchers and industries. In
this section, we present a non-exhaustive list of some of the most popular satellite
constellations and platforms, grouped by sensor type, namely optical, thermal, and
radar.
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Optical Sensors. Optical constellations are by far the most common, comprising
the majority of the available satellite sources. Among these, the Landsat program,
jointly managed by NASA and the United States Geological Survey (USGS), is the
longest-running Earth observation satellite series, with the first satellite launched in
1972. Landsat satellites carry optical sensors, providing openly available moderate-
resolution multispectral imagery of the whole planet. The most recent satellites
in the series, Landsat 8 and Landsat 9, offer spatial resolutions of 15 meters for
the panchromatic band and 30 meters for the multispectral bands [250]. Another
open data source is MODIS, a key instrument aboard the NASA Terra and Aqua
satellites. MODIS provides a comprehensive suite of global observations of the
Earth’s surface and atmosphere, with a spatial resolution ranging from 250 meters
to 1 kilometer. The sensor acquires data in 36 spectral bands, covering visible,
near-infrared, and shortwave infrared wavelengths. MODIS data is widely used for
applications such as land cover mapping, vegetation monitoring, and ocean color
studies [175].

Among higher resolution satellite constellations it is worth mentioning the Satel-
lite Pour l’Observation de la Terre (SPOT), a series of high-resolution optical
imaging satellites operated by the French space agency, Centre National d’Études
Spatiales (CNES). The SPOT satellites provide multispectral imagery at spatial
resolutions ranging from 1.5 to 20 meters, depending on the sensor and spectral
band. SPOT data is commonly used for land cover mapping, urban planning, and
commonly adopted for disaster management [47, 64].

Another very popular VHR data source is represented by Maxar Technologies
[148], with its constellations WorldView and GeoEye. The former consists of high-
resolution commercial Earth observation satellites, providing panchromatic imagery
at spatial resolutions ranging from 31 to 46 centimeters, as well as multispectral
imagery at resolutions from 1.24 to 1.85 meters. This source is also often used for a
wide range of applications, from urban monitoring to disaster response [89]. GeoEye
is another high-resolution commercial Earth observation satellite constellation, also
operated by Maxar. GeoEye-1, the flagship satellite of the constellation, provides
panchromatic imagery at a spatial resolution of 41 centimeters and multispectral
imagery at 1.65 meters.

Among the European options, it is worth mentioning Airbus Pleiades. These are
a series of high-resolution Earth observation satellites operated by France’s CNES
[84]. These satellites, Pleiades 1A and 1B, were launched in December 2011 and
December 2012, respectively. They provide optical imagery with a resolution of
50 cm, enabling detailed monitoring and analysis for similar applications such as
urban planning, agriculture, and disaster management.

Thermal Sensors. In addition to their optical capabilities, several satellite pro-
grams also include thermal infrared sensors. The Landsat program, for instance,
incorporates thermal infrared sensors alongside its optical sensors. Specifically,
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Landsat 8 and Landsat 9 are equipped with the Thermal Infrared Sensor (TIRS)
[250], which collects data in two thermal infrared bands at a spatial resolution of
100 meters. This thermal data is invaluable for various applications, such as sur-
face temperature mapping, water resource management, and wildfire monitoring
[200]. Similarly, the MODIS instrument, as mentioned earlier, acquires data in the
thermal infrared region of the electromagnetic spectrum. MODIS thermal bands,
with a spatial resolution of 1 kilometer, are employed for a range of applications,
including land surface temperature monitoring, cloud detection, and atmospheric
temperature and humidity profile estimation [175]. Furthermore, the Visible In-
frared Imaging Radiometer Suite (VIIRS) instrument [31], operated by NOAA and
NASA on the Suomi NPP and NOAA-20 satellites, collects thermal infrared data
with spatial resolutions of 375 meters and 750 meters. VIIRS data is crucial for
applications such as sea surface temperature measurement, wildfire detection, and
atmospheric studies.

Another thermal source is the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER) instrument aboard NASA’s Terra satellite captures
high-resolution thermal infrared data at 90-meter spatial resolution across five ther-
mal bands. This data is used for applications such as volcanic activity monitoring,
land surface temperature estimation, and mineral exploration [204].

Lastly, the Sentinel-3 satellite, part of the European Space Agency’s Copernicus
program, carries the Sea and Land Surface Temperature Radiometer (SLSTR).
SLSTR measures thermal infrared radiation at a spatial resolution of 1 kilometer,
supporting sea surface temperature monitoring, land surface temperature mapping,
and wildfire detection [60].

Radar Sensors. Radar satellite constellations offer all-weather, day-and-night
imaging capabilities. Among the available constellations, RADARSAT is operated
by the Canadian Space Agency (CSA), and consists of SAR satellites providing
radar imagery at various spatial resolutions and polarizations. The most recent ad-
dition, RADARSAT Constellation Mission (RCM), offers a spatial resolution of 1
meter in ultra-fine mode and a revisit time of up to four times per day. RADARSAT
data is crucial for sea ice monitoring, ship detection, and disaster management [192,
162]. Similarly, the German Aerospace Center (DLR) operates the TerraSAR-X
[182] and TanDEM-X satellites [273], which provide high-resolution radar imagery
in the X-band (i.e., with a wavelength of around 3cm) with spatial resolutions
ranging from 0.24 to 40 meters. The unique flying formation of these satellites en-
ables the generation of high-precision global digital elevation models (DEM). Data
from TerraSAR-X and TanDEM-X is utilized for topographic mapping, surface de-
formation monitoring, and urban planning [182, 273]. Another prominent radar
constellation is COSMO-SkyMed, operated by the Italian Space Agency (ASI) and
the Italian Ministry of Defense. This constellation consists of four SAR satellites
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that provide high-resolution radar imagery with spatial resolutions down to 1 me-
ter. COSMO-SkyMed data is used for various applications, including emergency
management, environmental monitoring, and defense and security [25].

2.3 Semantic Segmentation in Remote Sensing
Semantic segmentation plays a crucial role in the analysis and understanding

of remote sensing imagery. This task of assigning a label to each pixel has be-
come increasingly important in the field of remote sensing due to its wide range of
applications, from land cover mapping [142, 53, 78], to urban planning [199, 59], en-
vironmental monitoring [79], or disaster management [22, 51, 72, 10]. The following
sections introduce the concepts behind computer vision applied to Remote Sensing,
highlightning the challenges at hand, and providing a brief albeit comprehensive
view of the research landscape in this field, focusing on segmentation.

2.3.1 Characteristics and Challenges
Remote sensing imagery presents unique challenges compared to natural images

when it comes to semantic segmentation. One of the primary differences lies in the
viewpoint. Remote sensing images are typically captured from an aerial or satel-
lite perspective, providing a top-down view of the Earth’s surface. This viewpoint
introduces variations in object appearances, scales, and orientations, which can sig-
nificantly impact the performance of segmentation algorithms [91]. Another chal-
lenge in remote sensing semantic segmentation is the large-scale and high-resolution
nature of the imagery, in terms of raw pixel dimensions. Remote sensing datasets
often cover vast geographical areas and contain images with extremely high spatial
coverage [89, 199]. This leads to scale imbalances, where different objects of inter-
est may appear at vastly different scales within the same image or across different
images. This is also tightly linked with class imbalance: while overrepresented or
underrepresented categories are often common in the available datasets, disparities
in average dimensions between classes (e.g., “car” vs “building”) directly translates
into an inherent pixel imbalance, which pose difficulties in training segmentation
models and achieving accurate results [261]. The complexity and heterogeneity
of landscapes captured in remote sensing imagery further complicate the seman-
tic segmentation task. Remote sensing scenes often encompass a wide variety of
land cover types, such as urban areas, forests, agricultural fields, and water bodies,
sometimes even across wildly different geographical areas. These landscapes exhibit
diverse textures, patterns, and spectral characteristics, making it challenging to de-
velop robust segmentation models that can generalize well across different domains.
Domain adaptation techniques are often employed to address this issue, enabling
the transfer of knowledge learned from one domain to another [6]. Compared to
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natural images, limited data availability remains a significant issue in remote sens-
ing to this day. Collecting and annotating large-scale remote sensing datasets is a
time-consuming and labor-intensive process, and the availability of labeled data is
often limited in terms of scope, dimensions, and the number of annotated samples.
This scarcity of labeled data hinders the training of deep learning models, which
typically require vast amounts of annotated examples to achieve high performance.
Several works have explored various approaches to mitigate this challenge, such as
transfer learning, or weakly, and self-supervised learning techniques [3, 78, 245]. In
the following section, we provide a comprehensive overview of the semantic segmen-
tation landscape, applied to the remote sensing field, and the different approaches
and solutions proposed for the aforementioned challenges.

2.3.2 Literature Review
Methods. In parallel with the methodological evolution in natural images, ma-
chine learning techniques have been widely explored for semantic segmentation in
remote sensing imagery. Traditional supervised learning algorithms such as Support
Vector Machines (SVMs) and Random Forests (RFs) have demonstrated effective-
ness in capturing spatial and contextual information, handling high-dimensional
feature spaces, and processing large datasets for remote sensing image segmen-
tation [243, 191, 142]. Unsupervised learning methods, which do not require la-
beled data and aim to discover inherent patterns and structures in the input data,
have also been commonly used in this context. Algorithms like K-means [141] and
Self-Organizing Maps [73] have been proposed for different tasks. However, un-
supervised methods often require post-processing steps to refine the segmentation
results and align them with the desired semantic classes. Similarly, semi-supervised
learning approaches have shown promise in enhancing the generalization capability
of classifiers and learning meaningful feature representations from unlabeled data
[120, 213]. Comparative studies have highlighted the superiority of deep learning
approaches, particularly convolutional neural networks (CNNs), over traditional
machine learning methods in terms of segmentation accuracy and generalization
ability [166]. FCNs have been widely adopted for semantic segmentation tasks, re-
placing the fully connected layers in traditional CNNs with convolutional layers to
generate pixel-wise predictions [135]. The U-Net architecture [197], originally pro-
posed for biomedical image segmentation, has been successfully applied to remote
sensing imagery in several contexts [72, 51, 59, 57]. Several variants and extensions
of the standard encoder-decoder architecture have been proposed to improve seg-
mentation performance, incorporating techniques such as residual connections [59],
atrous convolutions [39], pyramid pooling [270], and attention mechanisms [232] to
enhance the network’s ability to capture multiscale contextual information, focus
on relevant features, and suppress irrelevant ones [160, 2, 98, 238]. Transformers
have recently gained traction in remote sensing, with architectures such as ViT [61]
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and Swin Transformer [131] showing promising results for image classification tasks
and semantic segmentation in aerial scenarios [218] and satellite scenes [27, 234].
Deep learning-based approaches have also been explored for domain adaptation
and transfer learning in remote sensing, aiming to bridge the gap between differ-
ent data domains and improve segmentation performance across different datasets
[242]. Among techniques aimed at mitigating data scarcity, it is worth mentioning
incremental learning approaches, [217] and multitask learning frameworks [246].

Applications. Land Use and Land Cover (LULC) mapping is one of the most
common applications of semantic segmentation in remote sensing, aiming to classify
the planet surface into categories such as urban, forest, water, and agricultural land
[142, 57]. Accurate and up-to-date LULC maps are crucial for various purposes,
including urban planning, environmental monitoring, and natural resource man-
agement. Recent datasets, such as the ESA World Cover [264], provide valuable
information for monitoring land cover changes and enabling downstream applica-
tions [10]. Semantic segmentation also plays a vital role in infrastructure mapping,
such as building footprint extraction and road network delineation [46]. Identifying
and monitoring man-made structures from satellite imagery is essential for urban
development, transportation planning, and disaster response. Deep learning ar-
chitectures and large-scale datasets have been proposed to tackle these challenges,
enabling the development and evaluation of semantic segmentation models for in-
frastructure monitoring [46, 21, 89]. In the agriculture domain, semantic segmenta-
tion is widely used for precision farming and crop monitoring [74], allowing farmers
to optimize resource allocation and maximize crop yield by accurately delineat-
ing field boundaries, identifying crop types [225], and detecting weeds or diseases
[49]. Pixel-wise segmentation approaches and large-scale aerial image databases
have been introduced to facilitate the development and evaluation of semantic seg-
mentation models in this field[74, 49, 209, 218]. Disaster management, such as
flood mapping and damage assessment, also heavily relies on semantic segmenta-
tion. Rapid and accurate mapping of flood extent and affected areas is essential
for emergency response and resource allocation [189, 106]. Georeferenced datasets
and large-scale damage assessment datasets have been created to support the de-
velopment of deep learning algorithms for flood detection and post-disaster damage
assessment [22, 89, 161]. Despite the advancements in semantic segmentation for
remote sensing, several challenges remain, such as the large variation in viewpoint
and scale of objects, class imbalance problem, and domain adaptation issues. Re-
searchers have proposed various techniques to address these challenges, including
rotation equivariant detectors, entropy-based sampling approaches, and incremen-
tal learning methods [91, 122, 217].

Datasets. To train and evaluate semantic segmentation models for remote sens-
ing, many larger and smaller datasets have been proposed in literature, in different
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contexts and application scenarios. Some of these sources were mentioned above
and refer to specific application scenarios, such as ESA WorldCover [264] (which
is itself a product of machine learning), Agriculture-Vision [49], Sen1Floods11 [22],
or xBD datasets [89].

The ISPRS Vaihingen and Potsdam datasets [199] have been widely used as
benchmarks for semantic segmentation in remote sensing, similar to the role that
the PASCAL VOC dataset has played in the computer vision community. These
datasets provide VHR aerial imagery and corresponding pixel-wise annotations for
several object classes, such as buildings, roads, and vegetation. The Vaihingen
dataset consists of 33 patches of varying sizes, while the Potsdam dataset comprises
38 patches, each covering an area of 6000×6000 pixels. Building upon these sources,
several larger-scale and more diverse datasets have been introduced in recent years
to address the growing needs for resources.

DeepGlobe [57] was introduced as part of a challenge for parsing the Earth
through satellite images. It consists of three sub-datasets: road extraction, building
detection, and land cover classification. The dataset covers a diverse range of
geographic locations and provides high-resolution satellite imagery along with pixel-
wise annotations for each task.

DOTA (Dataset for Object deTection in Aerial images) [252] is a large-scale
dataset designed for object detection in aerial images. It covers 15 object categories,
such as planes, ships, vehicles, and bridges, with annotations provided in the form
of oriented bounding boxes. The dataset captures objects at various orientations
and scales in high resolution, making it a good source for aerial pretraining.

LoveDA [242] is a land cover dataset designed for domain adaptive seman-
tic segmentation. It consists of high-resolution aerial images from multiple cities
and sensors, covering different geographic locations and imaging conditions. The
dataset provides pixel-wise annotations for several land cover classes, such as build-
ing, road, water, and vegetation.

More recently, thanks to the increasing popularity and effectiveness of large
foundation models [112], many large-scale datasets have been proposed in the lit-
erature, either for benchmarking or pretraining purposes. For instance, Open-
EarthMap [253] provides additional labels for a general-purpose LULC mapping,
reusing the images from other task-specific datasets and effectively obtaining a
large-scale worldwide benchmark. Given the amount of data comprising remote
sensing resources, these sources may need high storage requirements. For in-
stance, SSL4EO-S12 [245] provides instead a worldwide collection of Sentinel-1 and
Sentinel-2 co-registered tiles for pretraining, with more than 1TB of data. SAtlas
Pretrain [16] is perhaps the prime example of large-scale pretraining source, with
more than 30 TB of information, with diverse tasks and images, with worldwide
coverage.
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Chapter 3

The Aerial Viewpoint

3.1 Introduction
Aerial imagery has become a valuable tool for a wide array of applications,

however the unique characteristics of aerial imagery pose significant challenges for
existing semantic segmentation models, which are often adapted from other do-
mains such as autonomous driving or medical imaging [135, 197]. One of the most
prominent challenges is the top-down perspective inherent to aerial images, where
scenes are captured from a bird’s eye view. This perspective allows for arbitrary
rotations of the sensor around the vertical axis, resulting in the same scene be-
ing captured from different angles. Consequently, the appearance of objects and
their spatial relationships can vary significantly across different images, making it
difficult for traditional segmentation models to generalize effectively [19]. To ad-
dress these challenges, in this chapter we propose specific approaches that explicitly
account for these unique properties. One option is to exploit this invariance with re-
spect to rotations of the remote sensing images through regularization techniques.
While leveraging geometric and photometric augmentations to train models can
improve the robustness of models with respect to changes in image orientation, we
can explicitly model that into the training procedure.

In Section 3.2, we introduce a framework that implements this concept as an
Augmentation Invariance (AI) regularization, combined with an Adaptive Sam-
pling (AS) strategy. The AI component guides the model to learn semantic repre-
sentations that are invariant to photometric and geometric distortions commonly
found in aerial imagery. The AS technique addresses the class imbalance prob-
lem by selecting training samples based on the pixel-wise distribution of classes
and the current confidence of the model. This approach proves to be effective on
the Agriculture-Vision dataset, consistently outperforming the baseline methods.
These techniques can be further extended, and they can also be applied in other
settings, such as incremental learning. In Section 3.3, we propose a contrastive
regularization technique that compares the segmentation features produced by an
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input image and its augmented version (i.e., flipped, or rotated). By minimizing the
difference between these features, the model learns to be invariant to orientation
changes. This approach not only improves the robustness of the model to different
aerial viewpoints but also improves the model distillation phase, allowing the model
to incorporate new classes without forgetting previously learned features.

The contributions presented in this chapter led to the publication of two works:

• Arnaudo A. Cermelli F., Tavera A., Rossi C., Caputo B., A Contrastive Dis-
tillation Approach for Incremental Semantic Segmentation in Aerial Images,
In Proceedings of the 21st International Conference of Image Analysis and
Processing (ICIAP 2022), Lecce, Italy, May 23–27, 2022 (pp. 742-754).

• Tavera A., Arnaudo A., Masone C., Caputo B., Augmentation Invariance and
Adaptive Sampling in Semantic Segmentation of Agricultural Aerial Images,
In Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, (pp. 1656-1665).

3.2 Augmentation Invariance in Aerial Images
The use of semantic segmentation for environmental monitoring through aerial

imagery has continuously expanded in recent years, from urban mapping [199] to
cropland analysis [49]. In these contexts, as with other computer vision challenges,
the use of deep learning has contributed to revolutionary results. However, the
majority of deep learning models applied to semantic segmentation were originally
designed for different use cases mostly involving natural images, such as navigating
autonomous vehicles [52, 198] or completely different domains, such as inspecting
medical acquisitions [197]. Given the similarity between scenarios, these models
are often repurposed for remote sensing analysis without significant modifications
to accommodate the unique characteristics inherent to aerial imagery, which can
negatively impact the effectiveness of these frameworks when applied outside their
original context.

Focusing on the distinct challenges posed by aerial imagery, one of the main
aspects that distinguishes it from other domains is the top-down perspective. In
the remote sensing field, images that are typically captured from an aerial view-
point utilize cameras mounted on aircraft and usually positioned orthogonal to the
Earth’s surface to fully capture the scene with limited obstructions. This perspec-
tive is unique in that it lacks traditional depth cues and reference points that are
often present in terrestrial or street-level photography. Furthermore, the ability
to capture images from any rotational angle around the vertical axis adds another
layer of complexity [91]. This flexibility in viewpoint results in images where the
spatial organization of semantic elements is far less predictable than in datasets
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designed for natural images, where structural elements like roads and sky are con-
sistently positioned in specific regions of the image. This fundamental difference
in perspective requires tailored approaches in the analysis and processing of aerial
images to effectively understand and interpret the complex and dynamic landscapes
captured from above.

Another important aspect, especially in environmental scenarios, is represented
by class unbalance. This is a well-known issue in the computer vision domain:
this is already pronounced in the context of aerial imagery, where the objects of
interest vary greatly in size (i.e., from small vehicles to expansive natural regions),
and it is brought to the extreme in challenging tasks such as detecting defective
cropland patterns [49], given the inherently infrequent nature of the entities to
locate. Consequently, this issue translates into widely different raw pixel counts,
that need to be taken into consideration for a balanced training.

To address the unique challenges posed by aerial imagery, we propose a set of
regularization to be applied at training time, specifically aimed at semantic segmen-
tation on remote sensing imagery to enhance performance. Our proposed approach
incorporates two techniques: Augmentation Invariance (AI) and Adaptive Sampling
(AS). The former method exploits various augmentations to train with a contrastive
approach, where the same inputs are subtly modified in different ways so that the
model can learn features that are robust to changes in appearance and perspective.
Among these, rotations around the vertical axis remain the predominant focus, so
that the obtained features remain invariant to the point of view. Overall, this tech-
nique aims to enable the model to focus on semantic content rather than just visual
appearance. Adaptive Sampling tackles instead the issue of class imbalance using
two main parameters: first it statically conditions the selection of training images
based on the distribution of pixels among the available classes, then it dynamically
adjusts the class sampling weights by exploiting the model’s current level of confi-
dence in its predictions. This method ensures that underrepresented classes receive
more focus during training, promoting a more balanced learning process. Both
strategies are integrated into a cohesive end-to-end training framework, enhancing
the model’s ability to interpret complex aerial images effectively.

In summary, this section provides the following contributions: (i) a study of the
aerial viewpoint as an exploitable characteristic to obtain better results through
regularization, proposing the AI strategy to manage the unique perspective chal-
lenges of aerial data, helping the model to better differentiate between semantic
information and visual details, and (ii) an adaptive sampling (AS) method aimed
at mitigating the severe class imbalance commonly encountered in aerial image
datasets. This approach dynamically adjusts the sampling of training data based
on real-time assessments of class distribution and model confidence, ensuring a
fairer representation of all classes during the learning process. An ablation study
is further carried out on the overall framework to analyze the impact of each solu-
tion introduced, aiming to validate their effectiveness and utility comprehensively.
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Last, (iii) we conduct a thorough series of experiments using the Agriculture Vision
dataset [49], a large aerial dataset that encompasses multiple semantic classes over
agricultural fields with complex patterns, focusing on recent transformer-based ar-
chitectures such as SegFormer as main backbone [255], given their robustness in
other contexts. Moreover, the experiments were designed to also evaluate the ef-
fectiveness of training models using only RGB images versus incorporating Near-
Infrared (NIR) data, which can provide additional valuable information, especially
considering vegetation. The relevant code to reproduce the results presented here
is available at https://github.com/edornd/agrivision-2022.

3.2.1 Related Works
In the domain of aerial and remote sensing, semantic segmentation has been ap-

plied to various target environments, including urban areas [59, 166, 13], land cover
[21, 242, 57], and agricultural scenarios [152, 257, 49]. Each application comes with
its own set of challenges and requirements. For instance, urban monitoring tasks of-
ten necessitate high-resolution imagery and may involve temporal change detection
[46, 140]. Land cover segmentation, on the other hand, must handle significant vari-
ations in semantic category sizes and visual differences across domains, which can
be addressed through multi-level or multiscale feature aggregation [260] and domain
adaptation techniques [242, 19]. In agricultural settings, traditional segmentation
approaches rely on vegetation indices like NDVI [249]. However, the current trend is
shifting towards more robust computer vision techniques, such as automated fusion
of multi-spectral data [209] and precise crop segmentation [74]. Agricultural aerial
images often include additional spectral bands, such as near-infrared (NIR), along-
side the visible spectrum. To effectively utilize this multi-modal data, researchers
have proposed solutions like duplicating input weights [49, 177] or employing early
or late fusion strategies [260, 181]. Another critical aspect of aerial imagery is the
arbitrary and uncertain camera orientation, which can significantly impact the per-
formance of semantic segmentation models. While this issue has been addressed in
incremental learning [8] and classification tasks [187], this can also be applied in
semantic segmentation, as shown in the following sections.

3.2.2 Method
Our framework, illustrated in Fig. 3.1, focuses on the SegFormer architecture

[255] by incorporating two additional modifications. In the first place, we imple-
ment a specialized regularization function designed to align pixel embeddings from
the Transformer network for both the original and augmented images, named Aug-
mentation Invariance. This alignment aims to ensure that the semantic represen-
tations learned by the model are robust against common photometric distortions
and changes of perspective encountered in aerial imagery. Second, we devise an
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Figure 3.1: Overview of the Framework Architecture. The process begins with the
Adaptive Sampling process dynamically selecting a sample, followed by the creation
of its augmented version. These images are then processed by the segmentation
model, which calculates the standard segmentation loss, Lseg. Simultaneously, the
LAI objective drives the model to identify and extract identical features from both
the original and the augmented images in a contrastive way through Augmentation
Invariance, ensuring consistency in feature recognition across transformations.

Adaptive Sampling strategy that selects training samples based on the prior knowl-
edge of class distribution and the current confidence levels of the network. In the
subsequent sections, we begin by defining the problem setting and then elaborate
on these two mechanisms.

Problem Statement

Here, we address the problem of detecting agricultural cropland defects from
aerial images using semantic segmentation. Our training data consists of triplets
< x, y, z > of images organized as S = {(x ∈ X, y ∈ Y, z ∈ Z)}, where X denotes
the set of RGB images, Z refers to the Near-Infrared (NIR) component, and Y
comprises the semantic labels that link each pixel to a specific class c within a fixed
and well-defined array of semantic classes C. For clarity, we refer to I to refer to the
collective set of pixels present in each image and mask. In order to feed the model
with a four-dimensional image containing every channel, i.e., red, green, blue and
NIR, we further construct x̃ ∈ X̃ as a four-channel image by concatenating x and
z along the channel dimension.

Considering the RGB-NIR images, the aim of this work is to develop a mapping
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function fθ : X̃ → R|I|×|C| that, using a fixed set of parameters θ adjustable via
training, assigns a probability to each pixel in RGB-NIR inputs to indicate its
likelihood of belonging to any given semantic category in C. In every experiment
presented in this section, we first focus on minimizing the standard cross-entropy
loss Lseg as base objective function :

Lseg(x̃, y) = − 1
|I|
∑︂
i∈I

∑︂
c∈C

yc
i log(pc

i(x̃)), (3.1)

where pc
i(x̃) = fθ(x̃)[i, c] is the output of our model for a pixel i in class c, and

yc
i indicates the correct classification for that pixel and class. We note that the

same process can be applied to the images in the RGB space, namely x, to obtain
pc

i(x) = fθ(x)[i, c].

Augmentation Invariance

Typical frameworks designed for semantic segmentation may experience signifi-
cant performance declines when applied to aerial imagery, due to the variable per-
spectives inherent in aerial images, the potential for substantial distortions caused
by different camera angles, and substantial photometric variations across various
scenes.

To address these challenges, we introduce a contrastive regularization approach
named Augmentation Invariance (AI). This mechanism employs augmentations to
train the model to learn representations that remain invariant to these perspective
and appearance variations. The process operates as follows: in the first place, given
an input image x, pixel-wise features fi(x) are extracted from the penultimate
layer of the model architecture, intentionally bypassing the final layer used for
pixel-wise segmentation. This yields raw pixel-wise information that is not yet
classified into a specific category, however already represents a localized information
that could potentially be mapped to those classes by the subsequent linear layer.
In short, the feature maps should already contain a robust representation of the
scenery, with high vector similarities between semantically comparable pixels. At
the same time, a duplicate of x is subjected to a series of augmentations, including
a random pipeline of geometric transformations Ag (such as horizontal flipping,
vertical flipping, and random rotation) and photometric augmentations Ap (such
as color jitter). For brevity, we denote the composite augmentation process as
Ap ◦ Ag = A. The augmented image A(x) is processed through the model to
extract features fi(A(x)). This process can be equally applied to both RGB and
RGB-NIR images, respectively named x and x̃.

Once both the original and augmented feature maps have been obtained, we
enforce that the information extracted from the original image x align with those
extracted from the augmented image A(x), ensuring invariance to the applied trans-
formations. However, due to the application of geometric transformations, the
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obtained tensors have to be transformed back in a common reference system by
either applying the same geometric modifications Ag to the feature maps of the
original image fi(x), or by applying an inverse transformation to the feature maps
of the augmented image fi(A(x)). In our work, the alignment is achieved using a
pixel-wise mean squared error loss, defined as:

LAI(x, A(x)) = 1
|I|

∑︂
i∈I

(fi(x)− A−1
g (fi(A(x))))2 (3.2)

where A−1
g denotes the inversion of the geometric augmentations applied to x,

ensuring that features from corresponding pixels are compared.
Additionally, we preserve the ground truth annotations of the augmented im-

ages, applying the segmentation loss to both the original and augmented images.
The total training loss is formulated as:

Ltot = Lseg(x, y) + Lseg(A(x), Ag(y)) + λLAI(x, A(x)) (3.3)
where Ag(y) represents the geometric transformation applied to the ground

truth annotation y, and λ is a balancing factor.
This approach is distinct from conventional data augmentation, as it pairs the

original and transformed images to provide robust guidance during training in a
contrastive fashion, with the aim of enhancing the model’s ability to learn repre-
sentations that are robust to variations in perspective and appearance.

Adaptive Sampling

As further discussed in Chapter 4, a significant challenge in semantic segmen-
tation of aerial imagery is the severe imbalance in the pixel-wise distribution of
semantic classes, with some classes appearing extremely rarely while others are
overly represented. To mitigate this issue and ensure that the model receives a bal-
anced exposure to all semantic categories during training, we introduce an Adaptive
Sampling (AS) technique that operates in tandem with the AI approach described
above. The core idea behind the AS method is to dynamically select training sam-
ples based on two primary factors: the global, pixel-wise class distribution, and
the current network confidence for each category. By considering these factors, the
sampling mechanism prioritizes images that contain underrepresented classes and
those for which the network exhibits the least confidence. This approach helps to
regularize the training process and prevents the model from being biased towards
the more frequent classes. More formally, the AS method assigns a probability ASc

to each class c at every iteration, defined as:

ASc = σ((1− dist ∗ conf)γ), (3.4)
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where dist represents the global class distribution, stored as an array with length
|C|, conf denotes the current class-wise network confidence, again stored as a list
with equal length, σ is a normalization function using a simple min-max approach,
and γ is a relaxation parameter. For γ values greater than 1, the sampling probabil-
ity distribution becomes more skewed towards the underrepresented classes, while
using γ < 1, the distribution becomes more uniform, giving less emphasis to the
rare classes.

After selecting a semantic class c based on this dynamically updated probabil-
ity, an image is randomly sampled from a subset of data Xc that contains pixels
belonging to the chosen class. To compute the class distribution dist, we exploit
the supervised learning setting and statically calculate the pixel count for each se-
mantic class c ∈ C as a preprocessing step. The resulting array, which encodes the
class distribution, is normalized to the range [0, 1] and denoted as dist. The min-
max normalization function is applied to ensure consistency to these class priors
and allow for a probability-like factor at sampling time. The network confidence
conf is instead computed online, during the training process, and maintained in
an array of size |C|. At each iteration step t, the pixel-wise Softmax probabilities
are computed on the current batch of prediction logits. The mean confidence value
for each class c is then derived from the available ground truth labels by averaging
the pixels belonging to that category. To smooth out the confidence estimates,
therefore avoiding sudden changes in the sampling mechanism, the actual network
confidence is computed as the exponential moving average of the prior confidence
at step t− 1:

conft = αconft−1 + (1− α)conft, (3.5)
where α represents a smoothing factor. The higher the value of α remains, the

more the network gives weight to the historical estimates. Likewise, lower values
emphasize the current estimate more. By actively selecting training samples based
on the global class distribution and the current network confidence, the Adaptive
Sampling approach exposes the model to a more balanced distribution of semantic
classes. This, in turn, leads to improved performance on underrepresented cate-
gories and helps to prevent the model from being dominated by the more frequent
classes. The integration of both AI and AS into the training loop allows learning
robust and invariant representations for accurate semantic segmentation in unbal-
anced aerial settings.

3.2.3 Experiments
Implementation details

We evaluate our proposed approach on the Agriculture-Vision dataset [49], a
novel large-scale aerial agricultural image dataset designed for advancing research
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in agricultural pattern analysis and semantic segmentation. The dataset consists of
94,986 high-quality aerial images collected from 3,432 farmlands across the United
States between 2017 and 2019. Each image is accompanied by dense pixel-level
annotations of nine types of important field patterns, including double plant, dry-
down, end row, nutrient deficiency, planter skip, storm damage, water, waterway,
and weed cluster. These labels were obtained by manual annotation, carried out
by domain experts. The aerial images in Agriculture-Vision have spatial resolu-
tions ranging from 10 cm to 15 cm per pixel, significantly higher than typical open
satellite images [65]. Furthermore, each image in this dataset contains four spectral
channels: Red, Green, Blue (RGB), and Near-infrared (NIR), providing rich spec-
tral information for vegetation pattern analysis. Agricultural experts annotated
the aforementioned nine types of field patterns on these images using a commer-
cial labeling software. The annotated images were then cropped into patches using
a sliding window approach to generate the final dataset, which consists of 56,944
training images, 18,334 validation images, and 19,708 test images. The dataset
exhibits significant class imbalance, with some field patterns, such as dry-down and
weed cluster, occupying much larger areas than others. The size and shape of the
same field pattern can also vary substantially across different images. Moreover, the
scarcity of some field patterns, such as storm damage, poses additional difficulties
for model training and evaluation. Thanks to its high-resolution, multi-spectral
imagery, large-scale annotations, and the peculiar use case, the Agriculture-Vision
dataset provides a robust benchmark for semantic segmentation. Due to the un-
availability of the test set at the time of these study, we assess the performance of
our method on the provided validation set. We conduct two sets of experiments:
the first using only RGB images for training and testing, and the second exploiting
the combination of RGB and NIR data. The images are provided in a tiled format,
with each tile having a resolution of 512× 512 pixels.

In terms of metrics, we adopt the standard mean Intersection over Union (mIoU)
[69] to evaluate the performance of our method in all the experiments, in line with
previous works [49, 209], as in Eq. (2.3).

Given its effectiveness in the context of natural images, we build our framework
on top of the SegFormer architecture [255], utilizing a MiT-B5 encoder pretrained
on the ImageNet-1k dataset as backbone. We compare our method against a di-
verse set of state-of-the-art semantic segmentation techniques, including FCN [135],
DeepLab V3 [40], DeepLab V3+ [39], UperNet [254], FPN [128], PSPNet [270],
HRNetV2 [241], HRNetV2+OCR [262], and the vanilla SegFormer [255]. These
baselines are trained using ResNet-50 or HRNetV2-W18 backbones pretrained on
ImageNet, depending on the specific architecture. We develop our framework and
reproduce all the baselines using the mmsegmentation [158] library, in turn based on
the PyTorch. The experiments are conducted on two NVIDIA Tesla V100 GPUs,
each with 16 GB of RAM. During training, we apply various data augmentation
techniques, including random resizing from 1× to 2× the original size, random
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horizontal and vertical flipping, and random crops subsequently resized back to
512×512. For the evaluation phase, we perform inference on the raw data with-
out any additional preprocessing. All the baselines and our model are trained for
80,000 iterations using AdamW as optimizer, with a learning rate of 6 × 10−5,
a weight decay of 0.01, and beta parameters set to the default value of 0.9 and
0.999 respectively. We employ a polynomial learning rate decay with a factor of
1.0 and an initial linear warm-up for 1,500 iterations. We do not use class-balanced
loss or Online Hard Example Mining (OHEM) approaches, as in the original Seg-
Former [255], since our setup focuses on evaluating the goodness of the proposed
methods, without introducing further balancing options. However, these additional
techniques could be potentially included to further improve the performance in im-
balanced scenarios. When training on the x̃ ∈ X̃ examples that provide an extra
NIR channel, we expand the network input to four bands by duplicating the input
weights of the first channel, belonging to red, the most similar in terms of wave-
length [49]. For the AI variants, we apply additional transformations to the input
images, including horizontal and vertical flipping, random rotation from 0° to 360°
with a step of 90°, and photometric and perspective distortion with a strength
of 0.1. The probability for each transformation is set to p = 0.5, meaning each
augmentation has a 50% chance of being activated for each input. Based on the
hyperparameter study detailed in the next section, the value of λ in Eq. (3.3) is
set to 0.75 for every experiment. We also evaluate the performance of our model
using different combinations of γ and α values on both the RGB and NIR-RGB
experimental settings. For the relaxation parameter γ reported in Eq. (3.4), we
considered the values in the set {1, 2, 4, 6}. This parameter adjusts the distribu-
tion of sampling probabilities, with higher values of γ increasing the emphasis on
underrepresented classes and lower values resulting in a more balanced distribu-
tion. Similarly, for the smoothing factor α in Eq. (3.5), we explored a fixed set of
values in {0.75, 0.85, 0.90, 0.968, 0.99}. Higher values of α assign more importance
to past estimates, resulting in a more stable and smooth confidence curve, while
lower values prioritize the current estimate and allow for faster adaptability. Based
on this search, we empirically found that the combination γ = 4 and α = 0.968
consistently produced the highest mIoU scores across both settings.

Results

We consider two experimental settings: using only RGB images and using a
combination of RGB and Near-Infrared (NIR) images. Our method aims to ad-
dress the unique challenges posed by aerial imagery, such as the need for handling
multi-spectral data, extreme class imbalance, and large-scale variations in aerial
patterns. Results for the RGB setting are displayed in Table 3.1. Our approach
achieves a mIoU of 46.41, surpassing all baseline models by a significant margin.
The improvement is particularly notable for underrepresented classes such as double
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Method Backgr. Db. Plant Dry-down End row Nutr. Def. Pl. Skip Water Waterways Weed Cl. mIoU

FCN 69.99 16.91 45.55 0.18 13.66 6.62 42.27 0.52 8.50 22.91
DeepLab V3 66.27 17.01 40.64 9.46 16.40 10.04 17.06 12.29 9.97 22.13
DeepLab V3+ 68.55 16.31 46.36 6.46 16.05 4.56 16.61 19.10 13.89 23.10
UperNet 65.84 15.79 38.03 10.12 17.31 11.09 4.47 15.45 16.94 21.67
SFPN 69.65 10.61 49.49 2.70 11.46 4.80 35.68 9.89 11.16 22.83
PSPNet 68.11 16.93 45.77 4.89 18.99 8.54 11.31 17.64 17.20 23.26
HRNetV2 71.21 16.81 55.10 5.22 18.63 13.26 13.03 21.23 14.07 25.39
HRNetV2+OCR 72.42 19.46 56.79 12.31 17.30 21.31 28.36 24.62 18.05 30.07
SegFormer 74.93 33.19 59.65 18.28 31.64 39.20 77.97 41.45 28.31 44.96
Ours 75.47 36.97 58.49 22.69 31.29 41.39 80.23 40.07 30.42 46.41

Table 3.1: Results of the experiments carried out on the RGB set in terms of IoU
over the Agriculture-Vision dataset.

Method Backgr. Db. Plant Dry-down End row Nutr. Def. Pl. Skip Water Waterways Weed Cl. mIoU

FCN 68.35 9.40 47.57 0.54 15.16 9.97 53.74 0.47 10.17 23.93
DeepLab V3 69.03 19.97 43.94 5.85 23.98 17.86 46.74 29.03 11.36 29.75
DeepLab V3+ 68.29 17.18 48.07 7.48 24.17 19.57 19.43 24.58 13.22 26.89
UperNet 67.43 15.63 36.40 10.73 20.37 14.57 34.21 25.28 14.54 26.57
SFPN 68.69 5.99 48.71 0.18 22.74 17.21 44.50 18.30 12.79 26.57
PSPNet 66.92 17.73 29.87 10.24 28.01 18.66 13.90 29.83 11.99 25.24
HRNetV2 71.28 16.99 54.30 4.52 27.90 15.74 21.66 25.47 17.88 28.42
HRNetV2+OCR 72.60 17.98 56.69 11.97 27.91 23.79 48.99 27.73 22.06 34.42
SegFormer 76.17 33.63 58.96 18.92 40.57 38.93 80.56 42.85 27.88 46.50
Ours 76.19 37.32 61.75 24.57 42.75 42.01 81.32 43.71 31.75 49.04

Table 3.2: Results of the experiments carried out on the RGB-NIR set in terms of
IoU over the Agriculture-Vision dataset.

plant and end row, which experience an increase of 3.78 and 4.41 in IoU, respec-
tively, compared to the best-performing baseline, SegFormer. To further enhance
the segmentation performance, we incorporate NIR information alongside the RGB
channels. The results for this configuration are shown in Table 3.2. In this setting,
our method achieves an even higher mIoU of 49.04, outperforming the baselines
by a substantial margin. The inclusion of NIR data proves to be advantageous for
all classes, with the most significant improvements observed in categories such as
nutrient deficiency, dry-down, and waterways, which exhibit respective IoU gains of
11.41, 3.26, and 3.64 compared to the RGB-only setting. These findings highlight
the importance of multi-spectral information in computer vision applied to vegeta-
tion and agricultural analysis, in consistency with previous studies in the literature
[257].

Method Backgr. Db. Plant Dry-down End row Nutr. Def. Pl. Skip Water Waterways Weed Cl. mIoU

SegFormer 76.17 33.63 58.96 18.92 40.57 38.93 80.56 42.85 27.88 46.50
SegFormer + AI 76.62 35.26 61.24 20.74 43.45 43.49 80.41 45.10 33.12 48.82
SegFormer + AS 75.89 35.86 59.23 22.5 41.25 40.72 77.98 40.85 30.99 47.25
SegFormer + AI + AS 76.19 37.32 61.75 24.57 42.75 42.01 81.32 43.71 31.75 49.04

Table 3.3: Ablation study conducted on both AI and AS components, applied
to the RGB-NIR setup, highlighting the effectiveness of the combination of both
techniques.
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Method Backgr. Db. Plant Dry-down End row Nutr. Def. Pl. Skip Water Waterways Weed Cl. mIoU

0.1 76.60 33.92 60.24 18.84 41.92 41.28 82.23 42.45 31.70 47.69
0.25 76.54 35.26 60.70 20.55 42.22 43.84 80.60 43.16 33.25 48.46
0.5 76.48 35.79 59.71 20.34 42.65 40.03 81.12 44.52 32.00 48.07
0.75 76.62 35.26 61.24 20.74 43.45 43.49 80.41 45.10 33.12 48.82
1 76.57 34.42 60.25 20.32 41.95 40.03 82.14 43.51 32.22 47.93

Table 3.4: Hyperparameter study on the influence of λ applied to the RGB-NIR
setting.

Ablation study. To further validate the effectiveness of our approach, we con-
duct an ablation study to assess the individual contributions of the AI and AS
components. As shown in Table 3.3, the Augmentation Invariance technique pro-
vides a significant boost to the overall framework, confirming our hypothesis about
the importance of addressing the specific challenges in agricultural aerial imagery.
The addition of AS further enhances the performance, particularly for underrep-
resented classes, by dynamically selecting training samples based on the global
class distribution and current network confidence. The combination of AI and AS
yields the best results, demonstrating the combined effect of these components in
tackling the unique characteristics of the aerial domain. We further perform a
comprehensive analysis of the influence of the λ hyperparameter, which controls
the intensity of the AI loss. As reported in Table 3.4, the best results are ob-
tained with λ = 0.75, therefore applying a 25% reduction factor with respect to the
standard segmentation loss, highlighting the importance of balancing between CE
and feature consistency. Notably, even with suboptimal hyperparameter settings,
our AI component outperforms all the baselines, highlighting its effectiveness. The
qualitative results presented in Fig. 3.2 provide visual evidence of the superiority
of our approach compared to the baselines. The segmentation maps generated by
our AI and AS method exhibit more precise and accurate delineation of field pat-
terns, especially for challenging cases with small, scattered, or irregularly shaped
anomalies.

Performance costs. Inevitably, the implementation of AI and AS introduces
some computational overhead, albeit with minimal impact. AI effectively doubles
the batch size, as it processes both the original and augmented versions of each
image. This primarily results in increased GPU memory usage, as the augmenta-
tions can be kept on the GPU device with minimal additional computational cost.
AS, on the other hand, operates on a 1D vector of length C (where C is the num-
ber of classes), updating class confidence after each batch. This update process is
computationally efficient, leveraging matrix operations on the GPU, with only the
final update requiring CPU intervention. Moreover, these computational overhead
only needs to be applied at training time, and can be dropped once the model is
completely trained.
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In summary, our experimental results and analysis on the Agriculture-Vision
dataset demonstrate the effectiveness of the proposed AI and AS techniques in ad-
dressing the unique challenges of semantic segmentation in aerial imagery. By lever-
aging multi-spectral data, handling extreme class imbalance, and learning invariant
representations, our approach achieves state-of-the-art performance, surpassing a
wide range of baseline models.

3.3 Rotation Invariance applied to Incremental
Learning

Semantic segmentation plays a crucial role in aerial image processing in many
fields, including environmental and agricultural monitoring [13], as shown in pre-
vious sections. Despite the rapid progress, adapting these models to evolving en-
vironments and integrating new knowledge over time remains a challenge. The
majority of state-of-the-art solutions are designed to operate on a static set of cate-
gories, relying on end-to-end training with the assumption that all relevant classes
are known a priori. However, this assumption does not hold in real-world scenarios
where new classes may emerge, or the domain may shift over time. When pre-
sented with new training data containing previously unseen categories, deep neural
networks are prone to catastrophic forgetting [149], a phenomenon in which the
model’s performance on previously learned classes deteriorates significantly. This
limitation hinders the practical deployment of semantic segmentation models in
more complex environments, where the ability to incrementally learn and adapt is
key. Incremental learning is a recurring problem in machine learning research, where
several techniques have been proposed over the years to mitigate the catastrophic
forgetting. These techniques can be broadly categorized into replay-based meth-
ods [217], parameter isolation approaches [143], and regularization-based methods
[193]. While these approaches have displayed impressive results in tasks such as
image classification and object detection, their application to semantic segmenta-
tion has been limited. The unique challenges posed by this downstream task, such
as the need for dense pixel-wise predictions and the presence of imbalanced class
distributions, often require ad-hoc solutions. In the context of aerial imagery, the
problem of incremental learning is particularly relevant. Aerial datasets are often
scarce and expensive to annotate, making it impractical to collect exhaustive la-
beled data. Moreover, the images themselves may be acquired incrementally over
time (e.g., satellite acquisitions), effectively requiring to update and expand the
model’s knowledge as new information becomes available.

One of the key challenges in incremental learning for semantic segmentation is
the need to balance the stability of previously acquired knowledge with the dy-
namism required to incorporate new information. Existing approaches, such as
those based on knowledge distillation [35], provide an excellent starting point by
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Figure 3.2: Qualitative results obtained on the Agriculture-Vision dataset.

leveraging the outputs of a previous model to guide the learning of a new model.
However, these approaches often struggle to capture the unique characteristics of
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aerial imagery, such as the arbitrary orientation of objects and the presence of
large-scale patterns. For these reasons, we propose here a novel Incremental Class
Learning (ICL) framework for semantic segmentation, specifically designed to tackle
the challenges of remote sensing images. Similar to the solution presented in Sec-
tion 3.2, we introduce a contrastive regularization scheme that explicitly models
the orientation invariance of aerial imagery. By encouraging the model to learn
representations that are robust to rotations and reflections, we aim to improve
the stability and generalization of the incremental learning process. Pivotal to
our approach is the idea of contrastive representation learning, which has recently
emerged as a powerful paradigm for unsupervised learning [41, 93]. Contrastive
learning aims to learn representations that are invariant to certain transformations
while being discriminatory between different classes. In the context of aerial im-
agery, we hypothesize that learning orientation-invariant representations can lead
to more robust incremental learning, as the model can better capture the inherent
structure and patterns in the data regardless of the specific orientation of objects.
To this end, we propose a two-stage contrastive regularization scheme. In the first
stage, we apply contrastive learning within each incremental step, encouraging the
model to learn representations that are invariant to rotations and reflections of the
input. This is achieved by comparing the activations of the model on transformed
pairs of aerial images and minimizing their difference. In the second stage, we ex-
tend this idea to the incremental learning setting by comparing the activations of
the current model with those of the previous model, thereby promoting consistency
and stability across incremental steps. We evaluate the effectiveness of our pro-
posed approach on the Potsdam dataset [199], a widely-used benchmark for aerial
semantic segmentation. Through extensive experiments, we demonstrate that our
contrastive regularization scheme consistently improves the performance of incre-
mental learning, outperforming robust incremental baselines in various settings.
We also provide insights into the learned representations and analyze the impact
of different design choices on the model’s performance. In short, the main contri-
butions of these sections are: (i) an improved incremental learning framework for
semantic segmentation exploiting the peculiar viewpoint of remote sensing imagery
as regularization, (ii) an extensive set of experiments on the Potsdam dataset to
provide empirical evidence of the effectiveness of our approach, and (iii) an analysis
of the impact of the different design choices, highlighting strengths and limitations.

3.3.1 Related Works
Semantic segmentation of aerial images presents distinct challenges compared

to natural images, such as arbitrary orientations and additional spectral bands be-
yond the visible spectrum. Deep learning techniques have been successfully applied
to this domain [13, 166], addressing the multi-modal nature of the data through
strategies like input weight duplication [177] or late fusion of features [181, 260].
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Considering regularization methods, several solutions have been proposed to handle
the rotational invariance of aerial images, improving classification performance [187,
236]. Our work leverages this property by applying contrastive regularization to
both the segmentation and incremental learning stages, enhancing the segmentation
and the knowledge distillation process. Incremental learning aims to sequentially
learn new information while mitigating catastrophic forgetting [149] of previously
acquired knowledge. Existing approaches include replay-based methods that uti-
lize exemplars from old classes [193], parameter isolation techniques that selectively
prune weights [143], and memory-based methods that consolidate important param-
eters [265]. Knowledge distillation, often employing a teacher-student paradigm,
has emerged as one of the most effective strategies [124, 35]. For semantic segmen-
tation of aerial images, hybrid approaches combining knowledge distillation and
exemplar replay [217] and methods that reinforce internal representations across
learning steps [75] have been proposed. Recognizing the unique challenges posed by
the background class in semantic segmentation, unbiased losses and regularization
have been introduced to address the associated distributional shift [35]. Contrastive
learning has recently gained importance as a powerful technique for representation
learning, nearly closing the gap between supervised and self-supervised approaches
[155, 41, 93, 32] and even surpassing supervised methods by learning more ro-
bust representations [111]. The core idea is to cluster representations of similar
samples together while pushing dissimilar instances apart. Contrastive learning is
often applied using pretext tasks based on image transformations [155, 41], image
reconstruction [167, 213], or cross-modal techniques [134, 228]. These auxiliary
tasks can be combined with supervised objectives like semantic segmentation to
improve performance [213, 228], handle low-resource settings [36], or incorporate
additional modalities [180]. Inspired by these successes, we propose augmenting
inputs and using the resulting representations to regularize the model during both
standard training and knowledge distillation, promoting invariance to the applied
transformations.

3.3.2 Method
Our approach builds upon the MiB framework [35], a robust baseline for ICL

in semantic segmentation tasks, and introduces a novel Contrastive Distillation
technique that leverages the unique viewpoint of aerial imagery to improve the
model’s ability to learn new classes while retaining knowledge of previously learned
classes. The key contributions of our methodology lie in the introduction of a
contrastive regularization term and a contrastive distillation term. The former
exploits the orientation invariance property of remote sensing imagery by applying
random transformations to the input images and enforcing the model to produce
similar representations for the original and transformed images, to learn features
that are robust to variations in orientation. The latter aims instead to transfer
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orientation-invariant knowledge from the previous model to the current model. This
is achieved by minimizing the difference between the representations of the current
model on the transformed image and the transformed features of the previous model
on the original image. This enables the model to learn new classes while retaining
knowledge of previously learned categories, improving on previous methods. In
the following subsections we provide a detailed description of our methodology,
including the baseline framework, contrastive distillation technique, the training
procedure, and the experimental setup.

Problem Statement

Here we focus on the problem of Incremental-Class Learning (ICL) for Semantic
Segmentation in the context of aerial images. The goal is to develop a model
that can learn new classes incrementally without forgetting the previously learned
knowledge. We consider a scenario where different subsets of data are provided
sequentially, each containing a distinct set of labels. First, let us define Semantic
Segmentation as a pixel-wise classification task, where each pixel xi in an image
x ∈ X with fixed dimensions H × W is assigned a label yi ∈ Y representing its
semantic category. In some cases, pixels may also be associated with a generic
background class b ∈ Y . The objective is to learn a function fθ, where θ represents
the learnable parameters, that maps the image space X to the pixel-wise label space
Y , i.e., fθ : X → RH×W×|Y|. In the ICL setting, the learning process is divided
into multiple sequential training phases, which we refer to as learning steps. At
each step t, we receive a new training set Dt and a set of new labels Yt. The label
space is expanded by combining the previous labels Yt−1 with the new labels Yt,
resulting in an updated label set Ct = Yt−1 ∪ Yt. The pixel-wise labels yi in Dt

belong to either one of the current categories Yt or the generic background class
b. The challenge lies in training a new model f t

θ on the entire label set Ct while
preserving the knowledge learned from previous steps. To achieve this, we derive
the old labels from the outputs of the previous model f t−1

θ : X → RH×W×|Yt−1|

and learn the new labels through standard training on the current dataset Dt. The
ultimate goal is to obtain a single model f t

θ that performs well on both old and new
classes, i.e., f t

θ : X → RH×W×|Ct|.

Baseline Framework

As a robust baseline for our methodology, we adopt the MiB framework pro-
posed in [35]. The MiB approach addresses the challenge of catastrophic forgetting
by addressing the main peculiarity of Semantic Segmentation tasks, namely the
concept of background class. The core idea behind the MiB framework is to employ
a dual-loss strategy that combines a supervised cross-entropy loss and a knowledge
distillation loss. The supervised cross-entropy loss focuses on learning the new
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classes introduced in the current incremental step, while the knowledge distillation
loss aims to preserve the knowledge acquired from previous classes. Formally, let
LCE(θt) denote the cross-entropy loss for the new classes at incremental step t,
and let LKD(θt) represent the knowledge distillation loss that transfers knowledge
from the previous model fθt−1 to the current model fθt . The overall loss function
optimized by the MiB framework at each incremental step t is defined as:

L(θt) = LCE(θt) + λLKD(θt) (3.6)
where λ is a hyperparameter that controls the balance between the two loss

terms.
The knowledge distillation loss LKD(θt) plays a crucial role: it is designed to

minimize the discrepancy between the predictions of the current model and the
predictions of the previous model for the old classes. Specifically, the knowledge
distillation loss is computed as follows:

Lθt
KD(x, y) = 1

N

∑︂
i∈x

∑︂
c∈Yt−1

qt−1
x (i, c) log(qt

x(i, c)) (3.7)

where x is an input image, i denotes a pixel in the image, c represents a class
label from the set of old classes Yt−1, and N is the total number of pixels. The terms
qt−1

x (i, c) and qt
x(i, c) represent the predicted probabilities of a pixel i belonging to

the class c for the previous model fθt−1 and the current model fθt , respectively.
This can be defined as a standard KD loss formulation, however one of the key

challenges in ICL for semantic segmentation is the presence of a background class
that is shared among different incremental steps. The contents of the background
class can in fact vary significantly across different steps, leading to a distributional
shift. In MiB, LCE and LKD are provided in an unbiased formulation, where the
predicted probability for the background class is redefined as the sum of the prob-
abilities of the old classes for the current model and the sum of the probabilities of
the new classes for the previous model, as detailed in Eq. (3.8).

qt
x(i, b) =

⎧⎨⎩
∑︁

k∈Yt−1 qt
x(i, k) for CE loss∑︁

k∈Yt
qt

x(i, k) for KD loss
(3.8)

This modification helps to mitigate the bias induced by the background class
and improves the model’s ability to handle any variations.

Furthermore, the MiB framework employs a specific weight initialization strat-
egy for the final classifier layer of the model: the weights corresponding to the new
classes are initialized in a way that their outputs are uniformly distributed around
the background class. This initialization scheme facilitates the convergence of the
model during incremental learning steps and helps to prevent the bias towards new
classes.
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Contrastive Distillation

Figure 3.3: Schema representing our incremental learning framework. At each
incremental step t, the pair composed of the input image x and the transformed
T (x) is processed by both the previous model fθt−1 and the current model fθt . The
new classes are learned through supervised training using the available ground truth
(depicted in blue), while the knowledge of old classes is transferred via distillation
(shown in yellow). Additionally, the representations of the transformed inputs are
contrasted with the transformed features of the original input, regularizing both the
supervised training (LCR) and the distillation process (LCD) (illustrated in red).

Building upon this baseline framework, we introduce a novel contrastive distilla-
tion approach that leverages the unique characteristics of aerial imagery to enhance
the incremental learning process. Similar to Section 3.2.2, our approach is moti-
vated by the observation that aerial images exhibits an invariance to orientation:
unlike natural images, where the orientation of objects is typically fixed and plays
a crucial role in their recognition, aerial images capture scenes from a top-down
perspective, resulting in arbitrary orientations of objects. This property suggests
that the semantic content of an aerial image should remain consistent regardless
of its orientation. We propose to exploit this orientation invariance property by
incorporating a contrastive learning mechanism into the distillation process itself.
Contrastive learning has emerged as a powerful paradigm for learning discrimina-
tive feature representations. It works by encouraging the model to produce similar
representations for positive pairs of samples, while pushing apart the representa-
tions of negative pairs [41, 93]. In the context of ICL for semantic segmentation
of aerial images, we adapt the contrastive learning principles to promote the learn-
ing of orientation-invariant features and improve the knowledge transfer across
incremental steps. Our approach consists of two key components: a Contrastive
Regularization (CR) term and a Contrastive Distillation term. The CR term is
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designed to encourage the model to learn features that are invariant to orientation,
without yet considering the ICL context. Given an input aerial image x, we apply a
random transformation T to obtain a transformed version of the image, denoted as
T (x). The transformation T can include operations such as rotation and flipping,
which preserve the semantic content of the image while altering its orientation, but
also photometric distortions such as the ones applied in Section 3.2.3. We then
extract the feature representations of both the original image and the transformed
image using the current model fθt , denoted as ϕθt(x) and ϕθt(T (x)), respectively.
To enforce the learning of orientation-invariant features, we introduce a Contrastive
Regularization term LCR that minimizes the mean squared error (MSE) between
the feature representations of the transformed image and the transformed features
of the original image:

LCR = 1
N

N∑︂
i=1

(ϕθt(T (xi))− T (ϕθt(xi)))2 (3.9)

where N is the number of samples in the batch, and xi denotes the i-th sample.
By minimizing this term, we encourage the model to produce similar representations
for the original and transformed versions of the image, thus boosting the learning of
orientation-invariant features. In addition to the CR term, we propose a Contrastive
Distillation term LCD that aims to transfer the orientation-invariant knowledge
from the previous model fθt−1 to the current model fθt . Similar to the previous
formulation, we apply the transformation T to the input image and extract the
features using both the previous and current models. The CD term is defined
as the MSE between the representations of the current model on the transformed
image and the transformed features of the previous model on the original image.
Formally:

LCD = 1
N

N∑︂
i=1

(︂
ϕθt(T (xi))− T (ϕθt−1(xi))

)︂2
(3.10)

By minimizing this term, we encourage the current model to learn feature rep-
resentations that are consistent with the orientation-invariant knowledge captured
by the previous model, improving the knowledge transfer across incremental steps.
The overall loss function for our contrastive distillation approach is therefore de-
fined as:

L(θt) = LCE(θt) + λLKD(θt) + ηLCR(θt) + ρLCD(θt) (3.11)
where LCE(θt) and LKD(θt) are the cross-entropy loss and knowledge distillation

loss from the MiB framework, respectively, and η and ρ are hyperparameters that
control the contribution of the contrastive regularization and distillation terms.
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3.3.3 Experiments
In our experiments, we evaluate the effectiveness of our proposed contrastive

distillation approach on the Potsdam dataset, a widely-used benchmark for seman-
tic segmentation of aerial images. The Potsdam dataset is a high-resolution aerial
image dataset captured over the city of Potsdam, Germany, and is part of the IS-
PRS 2D Semantic Labeling Contest [199]. The dataset consists of 38 patches, each
covering an area of 6000 × 6000 pixels with a ground sampling distance (GSD) of
5 cm. The dataset includes multiple modalities, such as RGB (true color), infrared
(IR), and digital surface model (DSM) data, offering rich spectral and spatial infor-
mation for semantic segmentation tasks. The Potsdam dataset provides pixel-wise
annotations for six semantic classes: impervious surfaces, buildings, low vegeta-
tion, trees, cars, and clutter. These classes represent the main urban land cover
categories commonly found in aerial imagery. The dataset is highly detailed and
captures the complex urban landscape of Potsdam, including a mix of residential,
commercial, and industrial areas, as well as green spaces and transportation net-
works. Here, we leverage the RGB and infrared modalities of the Potsdam dataset
to evaluate our proposed solution under different input settings.

Implementation Details

We build upon the MiB framework [35] as a strong baseline for ICL in semantic
segmentation, however we note that the simplicity of this approach allows its appli-
cation in any context. To simulate the incremental learning scenario, we divide the
Potsdam dataset into multiple incremental steps, each introducing new semantic
classes. We consider two different experimental configurations: (i) a three-step sce-
nario named (3S), where the initial step includes the classes building and tree, the
second step adds impervious surfaces and low vegetation, and the final step intro-
duces the car class; and (ii) a five-step scenario (5S), where each class is introduced
sequentially in this order: building, tree, impervious surfaces, low vegetation, and
car. For the 5S configuration, we exclude the clutter class from our experiments
since it is not part of the official benchmark evaluation [199]. To ensure a fair
evaluation, we create a disjoint split of the dataset for each incremental step, such
that each split contains only a single semantic class. This setup guarantees that the
model is exposed to new and unseen images at each step, providing a more chal-
lenging and realistic incremental learning scenario. We employ an encoder-decoder
architecture based on the Res-UNet model [59] as the backbone for our experiments.
To optimize the memory requirements, we replace the ResNet encoder with a more
efficient TResNet architecture [196] pretrained on ImageNet. For experiments in-
volving multi-modal data (e.g., RGB+IR), we adapt the input layer of the network
by duplicating the weights of the red channel, following the approach briefly de-
scribed in Section 3.2.3 [177]. We train the model for 80 epochs at each incremental
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step using the AdamW optimizer with a learning rate of 10−3 and a cosine anneal-
ing scheduler. The learning rate is reduced to 10−4 for the final steps to facilitate
fine-tuning. We employ a batch size of 8, and due to the contrastive augmentation,
the effective batch size is effectively doubled to 16 at runtime. Given the large size
of the Potsdam patches, we divide them into smaller tiles of size 512 × 512 pixels
with an overlap of 12 pixels to ensure a balance between computational efficiency
and spatial context. Besides the additional regularization, we extensively apply
data augmentation to further enhance the robustness of the final model. We focus
on geometric transformations, including random flipping, random rotations with
varying degree and around a randomly selected center, and random scaling factors
to zoom in and out. Given the remote sensing context, we further apply reflection
padding to the areas of the images that fall outside the frame after these transfor-
mations. Following previous experiments [59], this method leverages the symmetry
commonly found in urban aerial images, making it particularly effective for our
application. For the CR and CD terms, we empirically set the weight factors η
and ρ to 0.1 in order to introduce these soft penalties while keeping the focus on
CE and KD during training. In terms of augmentations, we use random vertical
flipping, horizontal flipping, and 90-degree rotations as regularization. We allocate
15% of the training set as the validation set to monitor the model’s performance
during training. To evaluate the performance of our approach, we use the F1 score
as in Eq. (2.5) as the primary metric following previous works [59], computed on
the official test set of the Potsdam dataset. Similar to the IoU metric, the F1 score
provides a balanced measure of precision and recall, making it suitable for assessing
the quality of the semantic segmentation results.

Results

Method Building Tree Clutter Surf. Low veg. Car Avg.

MiB (RGB) 0.9116 0.8217 0.2766 0.8918 0.7589 0.8500 0.7517
MiB + CRCD (RGB) 0.9209 0.8085 0.3119 0.9021 0.7619 0.8541 0.7599

MiB (RGBIR) 0.8708 0.8062 0.2682 0.8773 0.7414 0.8176 0.7303
MiB + CRCD (RGBIR) 0.9178 0.8190 0.3128 0.8950 0.7635 0.8515 0.7598

Table 3.5: Class-wise and average F1 scores obtained after three incremental steps
using the 3S configuration, where vertical lines separate the label groups introduced
at each step. We compare the performance of the MiB baseline and our proposed
regularizations (MiB + CRCD) using both RGB and multi-spectral (RGBIR) input
modalities.

Table 3.5 presents the class-wise and average F1 scores obtained after the three
incremental steps in the 3S configuration. The results demonstrate that the MiB
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Method Building Tree Surfaces Low veg. Car Avg.

MiB (RGB) 0.8451 0.7449 0.7912 0.7011 0.6759 0.7810
MiB + CRCD (RGB) 0.9015 0.7515 0.8848 0.7313 0.8287 0.8195

MiB (RGBIR) 0.8564 0.7007 0.8575 0.6862 0.8228 0.7847
MiB + CRCD (RGBIR) 0.8770 0.7740 0.8755 0.7343 0.8437 0.8209

Table 3.6: Class-wise and average F1 scores obtained after five incremental steps
using the 5S configuration. We evaluate the performance of the MiB baseline and
our proposed approach (MiB + CRCD) using RGB and multi-spectral (RGBIR)
input modalities.

baseline achieves a competitive performance, indicating its effectiveness as a frame-
work specifically designed for semantic segmentation tasks. However, our con-
trastive distillation approach consistently improves upon the MiB baseline in every
experiment and across all incremental steps. These improvements are observed for
both RGB and multi-spectral (RGBIR) input settings. It is worth noting that in
the simpler 3S configuration, the RGB baseline performs on par with the regu-
larized version. We hypothesize that this is due to both the effectiveness of the
standard approach and the robustness of the backbone network pretrained on RGB
images, which could also justify the performance drop with the additional infrared
channel. However, in more challenging scenarios such as the 5S configuration, the
contribution of the additional regularization becomes more pronounced. As shown
in Table 3.6, our contrastive distillation approach achieves a significant improve-
ment over the MiB baseline, with an average increase of approximately 4% in the
F1 score.

Figure 3.4: Micro-averaged F1 scores over the incremental steps for the 3S con-
figuration (left) and 5S configuration (right). The proposed CRCD solution often
outperforms the strong MiB baseline, with the multi-spectral (RGBIR) variant
(dashed lines) providing further improvements.

Fig. 3.4 illustrates the micro-averaged F1 scores across the incremental steps
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for both the 3S and 5S configurations. The results highlight the performance im-
provements of our CRCD solution over the MiB baseline, especially in the latter
setup. The proposed method consistently achieves higher F1 scores throughout the
incremental learning process, indicating its effectiveness in mitigating catastrophic
forgetting and enabling the model to successfully learn new classes while retain-
ing knowledge of previously learned classes. This is true in both the multi-spectral
(RGBIR) and standard (RGB) scenario, thus regardless of the spectral information.

Table 3.7: Ablation study results on the 5S configuration, as class-wise and average
F1 scores for the last incremental step.

LCE LKD LCR LCD Building Tree Imp. surf. Low veg. Car Average

0.0 0.0 0.0 0.0 0.8708 0.1742
✓ ✓ ✓ 0.6118 0.4927 0.6924 0.2909 0.5275 0.5231
✓ ✓ 0.8491 0.7625 0.8480 0.6751 0.7703 0.7810
✓ ✓ ✓ 0.8178 0.7452 0.8514 0.6781 0.8186 0.7822
✓ ✓ ✓ 0.9079 0.7522 0.8815 0.7011 0.7895 0.8064
✓ ✓ ✓ ✓ 0.9015 0.7515 0.8848 0.7313 0.8287 0.8196

Offline 0.9510 0.8535 0.9063 0.8415 0.8942 0.8893

Figure 3.5: Qualitative comparison of segmentation results. From left to right:
input image in RGB format, a standard finetuning, finetuning with CD and CR
terms, MiB baseline, MiB with regularization terms (MiB + CRCD), and ground
truth. Our approach produces more accurate and coherent segmentation maps
compared to the baseline.
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Ablation study. To better assess the individual contributions of the proposed
regularization terms and their impact on the overall performance, we conduct an
ablation study. Table 3.7 presents the results of this study, focusing on the 5S con-
figuration with RGB input modality. We assign a column for each of the necessary
regularization terms, namely unbiased Cross-Entropy (LCE), unbiased Knowledge
Distillation loss (LKD), Contrastive Regularization (LCE), and Contrastive Dis-
tillation (LCD). We begin by establishing a simple finetuning baseline, where the
model is trained on new classes without considering any previous knowledge and no
regularizing factors. As expected, this approach leads to catastrophic forgetting,
resulting in poor performance on all classes except the last one. The finetuning
baseline serves as a lower bound, demonstrating the necessity of employing tech-
niques to mitigate forgetting in incremental learning contexts. To further validate
the distillation capabilities of our regularization terms, we conduct an additional
experiment where we apply finetuning with LCE and our approach, considering
both CR and CD, without the actual distillation loss. The results demonstrate
that the proposed regularization terms actively contribute to the preservation of
previous knowledge, even in the absence of explicit distillation. Next, we evaluate
the performance of the MiB framework, which incorporates knowledge distillation
and unbiased cross-entropy loss to address the challenges of incremental learning.
The MiB framework achieves significantly better results compared to the finetuning
baseline, with an average improvement of over 60%. This highlights its effective-
ness as a strong baseline for ICL in semantic segmentation tasks. To investigate
the impact of our proposed regularization terms on top of that, we start by naively
introducing the LCR term, which focuses on the current incremental step only.
While this regularization improves the performance on the last class, as expected,
it has a negative effect on the previously seen categories, which are not explicitly
considered. This underscores the importance of addressing the knowledge transfer
across incremental steps. On the other hand, applying the LCD term alone, which
compares the activations between the current and previous models, yields higher
scores for the previous categories. This regularization term facilitates the transfer
of knowledge from the old model to the new one, resulting in an average score
increase of 2%. However, it does not provide any performance boost for the classes
introduced in the current incremental step. The best performance is obtained when
combining both regularization terms, LCR and LCD. By jointly optimizing for con-
sistency within the current step and knowledge distillation across incremental steps,
we achieve an improvement of around 4% over the baseline. This performance boost
is observed for both the current and previous classes, demonstrating the effective-
ness of the combination of our regularization terms. Last, it is worth noting that
the results obtained by our approach are close to the theoretical upper bound of
the offline setting, where the model is trained on the entire dataset at once.
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Computational cost. Similar to AI+AS (Section 3.2), including two additional
regularization factors inevitably introduces a performance overhead. Nevertheless,
once again, the two penalties are applied during a standard segmentation loss pass,
and distillation pass, duplicating the batch into two comparable sets of image.
Except for the unavoidable additional memory usage, the actual computational
cost can be minimized by keeping every processing on the GPU device.

3.4 Summary
In this chapter, we explored the unique challenges posed by the aerial view-

point in semantic segmentation tasks and proposed novel techniques to address
them. We focused on two key aspects: the arbitrary orientation of scenes cap-
tured from a top-down perspective and the severe class imbalance commonly found
in aerial imagery datasets. In Section 3.2, we introduced a framework that com-
bines Augmentation Invariance (AI) regularization with an Adaptive Sampling (AS)
strategy. The AI component guides the model to learn semantic representations
that are invariant to photometric and geometric distortions, while the AS technique
addresses class imbalance by dynamically selecting training samples based on class
distribution and model confidence. Experiments on the Agriculture-Vision dataset
demonstrated the effectiveness of this approach, consistently outperforming baseline
methods. The ablation studies and qualitative results confirmed the importance of
explicitly addressing the unique characteristics of aerial imagery to improve per-
formance and generalization capabilities. We further extended these techniques to
the context of incremental learning in Section 3.3. We proposed a contrastive dis-
tillation approach that compares the segmentation features of an input image and
its augmented version to enforce invariance to orientation changes. This not only
improves the model’s robustness to different aerial viewpoints but also enhances
the model distillation phase, enabling the incorporation of new classes without
forgetting previously learned features. The experimental results on the Potsdam
dataset highlighted the effectiveness of the contrastive distillation in incremental
learning scenarios, outperforming robust incremental baselines in various settings.
The findings presented in this chapter provide valuable insights and effective solu-
tions for semantic segmentation in aerial imagery, both in standard and incremental
learning settings. By leveraging invariance to photometric and geometric transfor-
mations, as well as tackling class imbalance, the proposed techniques consistently
improve performance and offer a promising direction for future research in this
field. However, we acknowledge that the proposed methods were evaluated on
Agriculture-Vision and Potsdam. Future works may be aimed at evaluating their
effectiveness on other aerial imagery datasets with different characteristics, or at
assessing which augmentation techniques and hyperparameters may require further
optimization for optimal performance in different scenarios. Another interesting
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direction for future work is the investigation of similar techniques in unsupervised
or semi-supervised learning approaches, to leverage the vast amounts of unlabeled
aerial imagery available, reducing the reliance on large-scale annotated datasets.

55



56



Chapter 4

Class and Scale Imbalance in
Remote Sensing

4.1 Introduction
In the context of remote sensing data, we often face the challenge of class and

scale imbalance, which can significantly impact the performance of machine learn-
ing models. Class imbalance refers to the uneven distribution of categories within
a dataset, where certain groups are disproportionately represented compared to
others. On the other hand, scale imbalance pertains to the variations in the size
and spatial extent of objects or regions of interest within the image. Addressing
both class and scale imbalance is crucial for developing robust and accurate mod-
els: large-scale datasets often exhibit class unbalance with a power-law probability
distribution [11] and some categories only provide a handful of samples. Without
countermeasures, the model may tend to favor the majority class, leading to biased
predictions and poor performance on the minority classes. Similarly, scale unbal-
ance can affect the model’s ability to effectively capture and represent objects at
different scales, resulting in suboptimal feature extraction and bad generalization
capabilities. In this chapter, we tackle these challenges focusing on two widely
different application scenarios: flood delineation applied to satellite images, and
photovoltaic panel delineation from VHR aerial imagery.

In the first case, we construct our own dataset, named MMFlood, using Sentinel-
1 as main input and the Copernicus Emergency Management System (CEMS) ac-
tivations as ground truth source [64]. Given the nature of the problem at hand, the
dataset exhibits a significant class imbalance, with the majority of pixels represent-
ing non-flooded areas and only a small portion corresponding to flooded regions.
This is inherent to the nature of flood events, where the affected areas typically cover
a limited portion of the land surface compared to the overall extent of the analyzed
region. To address the class imbalance problem in flood delineation, we investi-
gate various strategies, including an Entropy-Weighted Sampling (EWS) technique.
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EWS leverages the concept of information entropy to assign higher importance to
samples with more informative content. By considering the distribution of pixels
among the flooded and non-flooded classes within each label, EWS calculates a
weight for each sample based on its information content. Samples with higher en-
tropy are given higher weights, indicating their significance in the training process.
This weighted sampling strategy enables the model to learn more effectively from
the available data and improves its ability to accurately delineate flooded regions.
We evaluate the goodness of this approach on MMFlood, a multimodal dataset
specifically designed for flood delineation, that combines Synthetic Aperture Radar
(SAR) imagery from Sentinel-1 with additional modalities such as Digital Elevation
Model (DEM) and hydrography maps. The inclusion of these complementary data
sources provides additional context of more accurate delineations. On this dataset,
we carry out a comprehensive benchmark evaluation using standard deep learning
model architectures, comparing the introduced methodologies.

In the second application scenario, we focus on the delineation of photovoltaic
(PV) panels from VHR aerial imagery. The main challenge of this task is instead
related to scale imbalance, as PV panels appear in a wide range of scales, from
small residential components to industrial-grade plants spanning entire fields. To
address this issue, we start by constructing a tailored dataset covering the Piedmont
region in Italy, comprising 105 large-scale aerial images and more than 9,000 manual
annotations. We then propose ad-hoc modifications to the semantic segmentation
model architecture, introducing a local-contextual training paradigm that guides
the model towards multiscale consistency by encouraging high-resolution and low-
resolution features to be similar. We evaluate the effectiveness of our approaches
through a comprehensive benchmark on the custom PV panel dataset, comparing
the performance of different semantic segmentation architectures and assessing the
impact of our modifications. The benchmark results demonstrate the benefits of
the multiscale training paradigm and the inclusion of additional modalities, such as
the infrared band, on the final scores. Furthermore, we introduce a post-processing
algorithm tailored for PV panel delineation, which leverages prior knowledge about
their geometry to refine the segmentation output and produce cleaner and more
precise boundaries. In summary, this chapter presents contributions that led to the
publication of the following works:

• Montello F., Arnaudo E., Rossi C., MMFlood: A Multimodal Dataset for Flood
Delineation from Satellite Imagery, IEEE Access, vol. 10, pp. 96774-96787,
2022.

• Arnaudo E., Blanco G., Monti A., Bianco G., Monaco C., Pasquali P., Do-
minici F., A Comparative Evaluation of Deep Learning Techniques for Pho-
tovoltaic Panel Detection From Aerial Images, IEEE Access, vol. 11, pp.
47579-47594, 2023.
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4.2 Class Unbalance in Flood Delineation
Floods are among the most devastating natural disasters, causing significant

damage to infrastructure, agriculture, and human lives. The increasing frequency
and intensity of flood events due to climate change [147] have emphasized the
need for accurate and timely flood delineation methods. Synthetic Aperture Radar
(SAR) imagery has emerged as a valuable tool for this purpose, thanks to its abil-
ity to penetrate clouds and operate in all weather conditions [24]. However, flood
delineation from SAR imagery remains a challenging task due to several factors.
First, the complex interactions between SAR signals and the Earth’s surface lead
to speckle noise (see Section 2.2.3) and other artifacts, hindering accurate delin-
eation [146]. Second, the heterogeneous nature of flood events occurring in different
landscapes and environmental conditions makes it difficult to develop robust and
generalizable algorithms. Finally, and most importantly, the class imbalance prob-
lem, where the number of pixels representing flooded areas is much smaller than
the number of non-flooded pixels, can lead to biased models that underestimate
the extent and severity of flood events. To address the class imbalance problem
in flood delineation, we apply a sampling mechanism, Entropy Weighted Sampling
(EWS). EWS is a technique that assigns higher probabilities to more informative
samples, i.e., those with higher entropy, during the training process. By focusing on
the inputs with more information content, EWS aims to mitigate the bias towards
the majority class and improve the model’s performance on the minority class. In
the context of flood mapping, EWS can help the model better learn the charac-
teristics of flooded areas, even when they represent a small fraction of the total
pixels in the dataset. To evaluate the effectiveness this sampling mechanism in
the context of flood delineation, we introduce MMFlood, a large-scale multi-modal
dataset featuring SAR imagery, digital elevation models (DEMs), and hydrography
information for a diverse set of events worldwide, sourced from the Copernicus EMS
[64] platform. MMFlood provides a challenging benchmark for machine learning
algorithms, as it encompasses a wide range of geographical regions and environ-
mental conditions, and exhibits significant this inherent class imbalance. In this
work, we conduct extensive experiments on the MMFlood dataset to assess the
performance of EWS in combination with standard deep learning architectures for
semantic segmentation. We compare the results obtained using EWS with those
of standard training strategies and demonstrate the benefits of our approach in
terms of improved accuracy and robustness on the minority class. Furthermore, we
explore the potential of leveraging the complementary information provided by the
multiple data modalities in MMFlood, namely SAR imagery and DEM, exploiting
a deep architecture that effectively fuses these data sources to enhance the overall
performance. Relevant code and the associated datasets described in this section
are available at https://github.com/edornd/mmflood.
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4.2.1 Related Works

Dataset Source Modalities Geoloc. Task Images Img. size Res.

Vaihingen [199] Aerial RG-IR, DSM ✓ S 33 <2,500×2,000 10cm
Potsdam [199] Aerial RGB-IR, DSM ✓ S 38 6,000×6,000 10cm
BigEarthNet [216] S2 12 bands ✓ C 590,326 120×120 10-60m
LandCoverNet [21] S2 12 bands ✓ C 9,000 256×256 10-60m
Agriculture-Vision [49] Aerial RGB-NIR × S 94,986 512×512 10-20cm
HRSID [248] S1, TerraSAR-X HH,VV,HV ✓ OD 5,604 800×600 1-5m
DeepGlobe [57] Maxar RGB × S 1,146 2,448×2,448 50cm
xBD [89] Maxar RGB × OD 9,168 1,024×1,024 80cm
FloodNet [189] Aerial RGB × S, C, VQA 2,343 4,500×3,000 1.5cm
SEN12FLOOD [190] S1, S2 VV-VH (S1), 12 bands (S2) ✓ C 336* 512×512 10-60m
sen1floods11 [22] S1, S2, JRC VV-VH (S1), 12 bands (S2), Hd. ✓ S 4,831 512×512 10-60m
ETCI-2021 [102] S1, NASA VV-VH, Hd. × S 33,405 256×256 20m
MM-Flood S1, MapZen, OSM VV-VH, DEM, Hd. ✓ S 1,748 <2,000x2,000 20m

Table 4.1: Comparison between MMFlood and other remote sensing datasets, high-
lighting their characteristics and limitations with focus on flood mapping. The table
presents information on data sources (S1: Sentinel-1, S2: Sentinel-2), modalities
(RGB, DSM, DEM, SAR polarizations, hydrography), georeferencing, task types
(C: classification, S: segmentation, OD: object detection, VQA: visual question
answering), number of images, image sizes, and spatial resolutions.

Datasets. Despite the growing interest in remote sensing applications, the avail-
ability of large-scale aerial and satellite datasets remains limited, if we consider spe-
cific tasks such as flood delineation. Many of the most widely used datasets in the
Earth Observation (EO) domain, such as the Vaihingen and Potsdam datasets [199]
described in previous sections, focus primarily on urban land cover classification and
its related tasks. These datasets often cover a single area, or contain a small number
of images. Some larger datasets, including BigEarthNet [216], or DeepGlobe [57],
aim to address more general-purpose tasks. However, they still have some limita-
tions and limited reusability. BigEarthNet, for instance, provides coarse labels for
multiple land cover classes across ten countries, but does not include annotations
for semantic segmentation. Similarly, DeepGlobe covers various geographical areas
and offers pixel-level semantic annotations for seven categories, but lacks location
data, is limited to the visible spectrum, and provides a simplified taxonomy. When
considering datasets specifically designed for disaster management, the list of avail-
able resources is even shorter. Datasets like xBD [89] and FloodNet [189] provide
annotated images for flood events, but they are limited to optical imagery and may
lack geographical diversity. A major drawback remains the absence of SAR data,
which is particularly useful in contexts where cloudy weather is expected. Among
the few datasets that include SAR imagery for flood delineation, SEN12-FLOOD
[190] and Sen1floods11 [22] are notable examples. However, SEN12-FLOOD cov-
ers a limited number of flood events and geographical regions, while Sen1floods11,
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despite its worldwide coverage, relies on a mix of manual and automated annota-
tions, which may result in incomplete or noisy ground truth data. Additionally,
the reliance on Sentinel-2 imagery for flood delineation in Sen1floods11 can lead
to missing annotations due to cloud coverage. Another dataset worth mentioning
is the ETCI 2021 dataset [102], which contains a large number of SAR images
from five different geographical regions. Despite their undeniable value, most flood
mapping datasets have some limitations. Firstly, many existing datasets contain a
limited number of images representing actual flood events, with the majority of the
data depicting water basins. Secondly, the absence of a Digital Elevation Model
(DEM) can hinder the models’ ability to distinguish between flooded areas and
permanent water bodies [113, 168]. To address the limitations of existing datasets,
we introduce MMFlood, a large-scale multi-modal dataset specifically designed for
flood delineation using SAR imagery. Our dataset leverages the CEMS activations
as ground truth, generating high-quality masks from activations that have been pro-
duced using SAR imagery, manually validated by experts, and most importantly,
only include flooded areas. In addition to the SAR imagery and flood masks, MM-
Flood incorporates DEM and hydrography data when available, covering the same
areas of interest. These can be provided to the models as additional inputs, or sim-
ply applied in post-processing to further clean the final result. To provide a more
comprehensive overview of the limitations and characteristics of existing datasets,
we present a comparative analysis in Table 4.1, highlighting the key features and
shortcomings of each dataset in the context of flood mapping.

Flood delineation. Flood delineation works encompass a wide range of tech-
niques, utilizing various algorithms and data sources. Among the satellite in-
struments available, Synthetic Aperture Radar (SAR) data from networks such as
TerraSAR-X [116], RADARSAT [192], COSMO-SkyMed [25], and Sentinel-1 [221]
have been extensively used in the flood mapping literature. Sentinel-1, in particular,
has emerged as one of the most convenient options due to its worldwide coverage
at medium-high spatial resolution, short revisit times, and open data availability.
Early approaches in this field primarily relied on masking and thresholding tech-
niques, coupled with meticulous data preprocessing [146, 233, 138, 7] or Fuzzy Logic
approaches [226, 186, 145]. As Artificial Intelligence and Deep Learning techniques
gained traction in the Computer Vision domain, numerous supervised machine
learning classifiers were developed and applied to these tasks, including Support
Vector Machines [103, 20], Fully Convolutional Neural Networks [106], Bayesian
Networks [54], Deep Belief Networks [17], and Random Forests [176]. Currently,
deep learning solutions have primarily concentrated on flood delineation at ground
level [263] or through drone and aerial imagery [189]. However, significant research
has been conducted on remote sensing SAR data for various applications, such as
image despeckling [119, 159], detection of large objects like ships [37, 248], and land
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Figure 4.2: Geographical distribution of flood events in the MMFlood dataset.
The map depicts the locations of the major floods derived from Copernicus EMS
activations, with different colors representing the dataset splits: training (blue),
validation (red), and testing (yellow).

Italy 11 Sweden 3 Djibouti 1 Mexico 1
France 10 Nicaragua 2 Slovenia 1 Iran 1
Spain 7 Netherlands 2 Portugal 1 Nigeria 1

Germany 6 Norway 2 Croatia 1 Madagascar 1
Greece 6 Vietnam 2 Moldova 1 Belgium 1
Ireland 5 Uganda 2 Lithuania 1 Austria 1

United Kingdom 4 Ukraine 2 Timor-Leste 1 Slovakia 1
Australia 3 Latvia 1 Guyana 1 Bosnia and Hze. 1

Albania 3 Tunisia 1 Peru 1 United States 1
Finland 3 Belgium 1 Tajikistan 1

Romania 3 Togo 1 Honduras 1

Table 4.2: Countries present in the MMFlood dataset and their number of activa-
tions. The dataset covers a total of 42 countries and 96 events, with Italy, France,
and Spain having the highest number of mapped flood events.

change mitigation and adaptation strategies. The EMS, one of the information
tools provided by Copernicus, offers a comprehensive collection of geospatial infor-
mation related to various disaster types, including meteorological and geophysical
hazards, man-made disasters, and humanitarian crises. To construct the MMFlood
dataset, we programmatically retrieve the vector packages containing flood delin-
eation products from the EMS Rapid Mapping service. These packages, comprising
sets of geographical files, are used to assess the extent of flood events and serve as

63



Class and Scale Imbalance in Remote Sensing

ground truth for training machine learning models. Due to inconsistencies in pack-
age structure, naming conventions, and geometry, a small portion of the available
activations were discarded. Subsequently, we conducted a thorough manual inspec-
tion of the remaining activations to ensure correctness and uniformity. The final
dataset encompasses a total of 95 individual flood events spanning seven years,
from 2014 to 2021, and covering 42 different countries, as detailed in Table 4.2.
The geographical distribution of the selected events is depicted in Fig. 4.2, with
different colors representing the various dataset splits. Although the Copernicus
products inherently focus on European regions, with Italy, France, and Spain having
the highest number of activations, a substantial portion of the data is distributed
across the globe. South America, with two unique flood events, is the least repre-
sented continent in terms of absolute numbers. For each EMS activation, we extract
essential information to provide accurate annotations and contextual details. This
information includes the estimated flood start date, the general location of the area
of interest, the bounding box of the event, and the polygons delineating the actual
flooded areas. As each activation often groups together multiple disasters occurring
in the same region and caused by the same agent, it may contain one or more vec-
tor packages defining different flooded sub-regions within the event. To maximize
the dataset’s coverage, we consider each sub-region separately during the image
acquisition and rasterization phase. The flood polygons provided by the EMS have
undergone manual validation by both the service provider responsible for generat-
ing the delineations and the Joint Research Centre (JRC) services to ensure a high
level of accuracy [5]. From these polygons, we automatically derive the minimum
bounding box fully enclosing the flooded areas, which is necessary for the image
retrieval process. To account for potential inaccuracies in the delineations and to
include contextual information, we expand the bounding box in each direction by
a variable amount corresponding to 10% of its maximum extent.

From the obtained polygons, we can derive a raster dataset by downloading the
corresponding remote sensing images in that specific window in time and space.
Our primary focus is on Synthetic Aperture Radar (SAR) imagery due to its unique
properties that make it particularly suitable for flood delineation tasks, especially
in cloudy environments. We select Sentinel-1, as it offers worldwide coverage, rela-
tively short revisit times, and open access to its data, making it an ideal choice for
our dataset. The Sentinel-1 constellation consists of two twin satellites, Sentinel-
1A and Sentinel-1B, which share the same orbital plane and carry a C-band SAR
instrument. The revisit time varies depending on the latitude, with an estimated 3
days at the equator and less than 1 day at the poles. For the purpose of flood de-
lineation, we focus on Level-1 Interferometric Wide (IW) Ground Range Detected
(GRD) products. These provide the signal amplitude without the phase infor-
mation, maintaining an approximately square spatial resolution and pixel spacing
without further resampling. Additionally, the multi-look processing applied to these
products reduces speckle noise, which is beneficial for our task. To streamline the
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image retrieval process and ensure that we only acquire data for the desired areas
and time periods, we leverage the Sentinel-Hub platform [212]. This third-party
service offers advanced filtering and compositing capabilities, providing direct ac-
cess to various open remote sensing data sources. For each bounding box obtained
from the Copernicus EMS activations, we retrieve the corresponding raw SAR sig-
nal in two polarization modes: VV (Vertical transmit and Vertical receive) and
VH (Vertical transmit and Horizontal receive). To minimize discrepancies between
the SAR imagery and the flood delineations, we restrict the acquisition window
to a maximum of 4 days from the reported event date. In cases where a single
Sentinel-1 tile does not fully cover the area of interest, we utilize the mosaicking
features of Sentinel-Hub to automatically merge neighboring acquisitions. In the
rare event that adjacent tiles are not available, we mask out the missing pixels in
both the SAR acquisition and the corresponding ground truth to maintain consis-
tency. The resulting images are provided as orthorectified, georeferenced GeoTIFF
files with a spatial resolution of 20m/pixel and 32-bit floating-point precision. To
enhance the contextual information available for flood delineation, we incorporate
additional modalities into the dataset. We collect Digital Elevation Model (DEM)
data for the same areas of interest using Mapzen’s terrain tiles, which are primar-
ily based on the Shuttle Radar Topography Mission (SRTM30) [229]. The DEM
data provides information about the terrain elevation, which in turn should aid
the identification of areas more susceptible to flooding. Although the DEM data
is static and may not capture small variations in terrain due to concurrent natu-
ral events like landslides, it offers wider coverage and reduced noise compared to
dynamic data sources. We resample the DEM data to match the 20m/pixel reso-
lution of the SAR imagery and include it as a separate single-band GeoTIFF file.
Furthermore, we extend the dataset by including hydrography maps of the areas of
interest. Given the global scope of the EMS activations, we utilize OpenStreetMap
(OSM) data for this purpose. By leveraging the OSM Overpass API, we extract
polygons representing water layers within the image bounds, whenever available.
To maintain pixel-wise alignment among the dataset tuples, we also rasterize the
hydrography vectors at 20m/pixel, matching the resolution of the SAR and DEM
data. While the availability and quality of hydrography data may vary across dif-
ferent regions, we successfully obtain hydrography rasters for more than half of the
SAR acquisitions. To ensure the quality and relevance of the dataset, we perform a
thorough manual filtering process: for each EMS activation, we retrieve Sentinel-1
images within a 4-day window starting from the reported event date. Among these
images, we select the one that visibly matches the flood delineation mask and dis-
card the others. Additionally, we manually verify the DEM rasters and filter out
tuples with invalid elevation data to maintain data integrity. Regarding hydrog-
raphy data, we acknowledge that its availability may be limited in certain areas
due to missing data or the absence of water basins. However, we choose to retain
all samples, even those without corresponding hydrography data, to support future
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studies and enable optional post-processing steps, such as subtracting permanent
water areas from the model predictions if required. The final MMFlood dataset
comprises 1,748 tuples, each containing SAR, DEM, and binary flood mask images.
Among these tuples, 1,012 (57.9%) also include the corresponding hydrography im-
ages. Each tuple is accompanied by metadata specifying the EMS activation code,
event date, and country of occurrence. Moreover, the SAR GeoTIFF is annotated
with the acquisition date of the satellite signal, which may differ from the actual
event date. On average, the SAR acquisition occurs 1 day and 21 hours after the
reported event date. To accommodate the requirements of semantic segmentation
tasks, we preserve the original image size for each area of interest while ensuring
that the minimum input dimensions of 512× 512 pixels are maintained across the
entire dataset. The smallest image size in the dataset is 531× 524 pixels, while the
largest is 1,944 × 1,944 pixels. For benchmarking and training purposes, we split
the dataset into three subsets: training, validation, and testing. To ensure a robust
and unbiased split, we perform a random division based on the EMS activations,
taking into account the geographical distribution of the events. This approach
guarantees that each subset contains a proportionally equal number of examples
from different locations worldwide, mitigating potential biases arising from specific
land types or geographical areas. The resulting splits, visualized in Fig. 4.2, consist
of 54 activations for the training set, 34 for the test set, and 7 for the validation
set.

4.2.3 Method
The MMFlood dataset presents several challenges that must be addressed to en-

sure effective training and utilization of the data. These challenges arise from the
inherent characteristics of the task at hand, such as the class imbalance, the nature
of SAR data, and the inclusion of multiple modalities. The primary challenge re-
mains the significant class disparity between flooded and non-flooded pixels, with
flooded areas often constituting only a small portion of the segmentation mask.
To tackle this issue, we explore different approaches, including filtering and down-
sampling strategies based on the flood-to-background ratio, and an Entropy-based
Weighted Sampling (EWS) technique that assign higher weights to samples with
more balanced class distributions. Another challenge stems from the inherent noise
in SAR data. While typical preprocessing pipelines for SAR imagery involve radio-
metric correction and speckle noise reduction, we deliberately avoid these manual
steps to maintain the dataset’s reusability and expect deep learning algorithms to
learn relevant features from the raw data. To address the noise, we employ data
augmentation techniques and investigate the effectiveness of incorporating DEM
data alongside the SAR imagery. The inclusion of multiple modalities, such as
SAR data in VV and VH polarizations and elevation rasters from DEM, presents
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both opportunities and challenges in effectively combining and utilizing the com-
plementary information they provide. We explore various approaches to merge
the modality-specific features, including expanding input weights and employing
early and late fusion strategies. In this section, we describe the methodology and
training configurations employed to address these challenges and exploit the unique
characteristics of the dataset constructed.

Problem Statement

In this work, we focus on the flood delineation task, considering only SAR and
DEM data as training modalities, as the hydrography information can be utilized
as a post-processing step to further refine the results. We formulate the flood
delineation problem as a binary segmentation problem, where the objective is to
classify each pixel in an image as either flood or background.

Let X be a set of samples, where each sample consists of a pair of images xs

and xd, representing the SAR and DEM inputs, respectively. These images have
matching and constant dimensions of H ×W pixels. Additionally, let Y be a set
of corresponding labels, where each label y ∈ Y has the same dimensions as the
input images. For each pixel i in an image, the label provides a binary annotation
yi ∈ {0, 1}, where 0 indicates a background pixel and 1 represents a flooded pixel.

The goal of binary segmentation training is to learn a model fθ with parameters
θ that maps from the image space to the label space, i.e., fθ : X → R|H×W |. In the
multimodal setting, we employ a model architecture with two separate encoders,
gS and gD, which extract features from the SAR and DEM inputs, respectively.
These features are then fused through a shared decoder h to obtain the final model
f = h(gS(xS)⊕ gD(xD)), where ⊕ denotes the feature fusion operation.

Handling Class Imbalance

To mitigate the imbalance problem, we investigate two complementary ap-
proaches based on downsampling and upsampling techniques. In the downsampling
approach, we apply a threshold on the percentage of flood pixels in each image tile,
effectively filtering out tiles that are almost entirely covered by background pixels.
This allows us to focus on tiles that contain a higher proportion of informative
flood pixels. Formally, given a list of preprocessed tiles, we compute a flood pixel
ratio τ , obtained as:

τ =
∑︁

i 1[yi = 1]∑︁
i 1[yi]

(4.1)

where yi represents the label of the pixel i, and 1[·] is the indicator function. In
other words, τ is the ratio of flood pixels to the total number of pixels in the label.
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At training time, we simply select a cutoff value of τ and conduct the experiments
on the subset of samples. This provides a baseline for the subsequent experiments.

In the upsampling approach, we leverage the concept of entropy from infor-
mation theory to estimate the informative content of each label. Entropy can
be interpreted as the amount of information contained in a sample, with higher
entropy indicating more informative content [122]. We exploit this property to per-
form EWS, where each sample is weighted by a factor wj based on its information
content, computed as:

wj = λ

(︄
−
∑︂

y

p(y) log2 p(y)
)︄

, ∀j ∈ |X| (4.2)

where p(y) represents the distribution of pixels among the two classes (flood
and background) in the label y, λ is a modulating factor between 0 and 1, and
j is the index of each sample in the dataset X. By assigning higher weights to
samples with higher entropy, we prioritize the selection of more informative tiles
during training.

Integrating Multiple Modalities

Figure 4.3: Multi-encoder architecture for integrating SAR and DEM modalities.
The network consists of two separate encoders (blue and yellow) for each modality,
which are merged layer-wise using Squeeze-and-Excitation (SaE) blocks to produce
multimodal feature maps (green). The decoder (red) is agnostic to the multi-
encoder setup.

Another challenge in the MMFlood dataset is the integration of multiple modal-
ities, specifically SAR and DEM data, which provide complementary information
for flood delineation. Given the matching spatial extents of both modalities, we
explore two approaches to effectively combine these data sources: input channel
expansion, with a single-encoder model (SE), and a multi-encoder (ME) approach.
In the baseline SE approach, we simply concatenate the SAR bands and the DEM
image along the channel dimension, creating a 3-channel input for the network. The
network is trained from scratch, allowing it to learn features from each modality
independently.
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For the improved ME approach, we design a custom residual U-Net architec-
ture [59] with two separate, lightweight encoders, one for each modality. Inspired
by previous works, [228], we incorporate early and late fusion mechanisms using
Squeeze-and-Excitation (SaE) blocks [98]. At each layer i of the encoders, we ob-
tain feature maps with dimensions Hi × Wi × Ci. The SaE block merges these
feature maps by first concatenating them along the channel dimension, resulting
in a tensor of size Hi ×Wi × 2Ci. This tensor is then calibrated using a weight
map generated by the second branch of the SaE block. The weight map is obtained
by squeezing the input tensor into a channel descriptor with Ci

η
channels and then

expanding it back to 2Ci channels. The expanded tensor is passed through a sig-
moid activation function to scale the values between 0 and 1, and then multiplied
element-wise with the concatenated feature maps. Finally, the calibrated feature
maps are reduced to the original dimensions Hi ×Wi × Ci using a convolutional
layer, ensuring compatibility with the decoder architecture. This multi-encoder ap-
proach enables the network to learn modality-specific features while leveraging the
different information content provided by SAR and DEM data. Fig. 4.3 illustrates
the multi-encoder architecture, with the SaE block depicted on the right and the
overall network structure on the left.

4.2.4 Experiments
In this section, we present a comprehensive analysis of the experiments con-

ducted on the MMFlood dataset and discuss their outcomes. We begin by outlining
the preprocessing pipeline designed to transform the raw images into suitable input
data for our models. This is followed by a series of benchmark tests aimed at iden-
tifying the most effective encoder-decoder combination to serve as the foundation
for further experimentation. Subsequently, we test the introduction of additional
components described in Section 4.2.3, namely EWS, the integration of DEM as an
extra input channel, and the multi-encoder (ME) architecture compared against the
single-encoder architecture (SE). We examine the impact of these enhancements on
the model’s performance, assessing their strengths and limitations in the context
of flood delineation.

Implementation Details

In order to prepare the MMFlood dataset for training, we first apply a series
of preprocessing steps to the raw images. For the SAR data, we take the base-10
logarithm of the acquisitions, converting the values to decibels and reducing the
impact of high backscatter peaks. As for the DEM data, which represents the raw
altitude in meters, we limit the range to [−100, 6000] to minimize errors and keep
values in a reasonable range. Furthermore, we normalize each input by calculating
the mean and standard deviation for each channel, ensuring consistency across all
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experiments.
The MMFlood dataset contains images of varying sizes and scales, which poses

a challenge for training. To address this issue and maintain a standardized setup,
we adopt an offline tiling approach [49]. We divide each image and modality into
512 × 512 tiles, extracting the minimum number of tiles needed to fully cover
the original image. This tile size strikes a balance between preserving pixel-wise
class balance and capturing sufficient contextual information. In situations where
the image dimensions are not evenly divisible by the tile size, we use dynamic
overlapping, extending the tiles by the minimum number of pixels required to cover
the image entirely without padding. This approach maximizes the visual content
within each tile. After preprocessing, the training set consists of 6,182 tiles, with
an additional 560 tiles reserved for validation, excluding the test partition. To
maintain the integrity of the pixel count, we apply the tiling procedure only to the
training and validation sets, preserving the full-sized images for testing. During the
testing phase, we employ online tiling with a fixed overlap and merge the predictions
to create a single output with dimensions matching those of the input images. In
addition to preprocessing, we utilize various online data augmentation techniques to
reduce overfitting during training. For experiments involving multiple modalities,
we apply a shared set of transformations to each input, including random rotation,
cropping, horizontal and vertical flipping, each with a probability of p = 0.5. We
also include grid and elastic deformations, commonly used in medical image analysis
[34], to generate diverse flood patterns and simulate terrain variations, possibly
enhancing the model’s ability to generalize across different geographical contexts.
To tackle the inherent speckle noise in SAR images, we apply further pixel-level
transformations, such as random Gaussian blur and multiplicative noise.

Throughout our experiments, we train the models for 100 epochs, employing an
early stopping criterion with patience of 30 epochs. Given the unique characteristics
of the MMFlood dataset, we do not use any pre-trained weights. We use a batch size
of 16 for most experiments, with the exception of UNet combined with ResNet50 or
DenseNet121, where we reduce the batch size to 12 to manage memory constraints.
It is worth noting that due to the incompatible stride sizes between the outputs of
DenseNet and the DeepLabV3+ decoder, we exclude this particular combination
from our baseline results. For optimization, we use the AdamW optimizer with an
initial learning rate of λ = 1× 10−3 and a weight decay coefficient of 0.01. We also
employ a polynomial learning rate scheduler with γ = 3, decreasing the learning
rate to λ = 10−4 by the end of training.

Considering the imbalanced nature of the flood delineation task, we select the
focal Tversky loss [2] as our loss function for all experiments. This loss extends the
soft Dice score by incorporating a focal component, making it particularly suitable
for handling imbalanced problems. Formally, this objective function can be defined
as:
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L(p, y) = (1− IT (p, y))γ (4.3)
where IT refers to the Tversky Index, in turn computed as:

IT (p, y) =
∑︁N

i=1 piyi∑︁N
i=1 piyi + α

∑︁N
i=1(1− pi)yi + β

∑︁N
i=1 pi(1− yi)

(4.4)

Here, N is the total number of pixels, pi and yi are the predicted and ground
truth labels for a pixel i, and α and β are hyperparameters that control the trade-
off between false positives and false negatives. γ is a focal parameter that adjusts
the weight of easy and hard examples. We set the hyperparameters of the loss
to α = 0.6, β = 0.4, and γ = 2. To thoroughly evaluate the performance of our
models, we consider Precision, Recall, IoU, and F1 Score as metrics. We calculate
the mean value of these metrics across all test images, giving equal weight to each
tile. All experiments and procedures outlined in the next section were carried out
on a workstation featuring an Intel Xeon Silver 4216 CPU and four Nvidia GTX
2080Ti GPUs. The implementation was developed using Python, leveraging the
PyTorch library for model training and testing.

Results

Encoder Decoder Precision Recall IoU F1

Otsu 0.2895 0.4627 0.1963 0.2895
ResNet50 UNet 0.6910 0.8710 0.6269 0.7706
ResNet50 DLV3+ 0.6733 0.9031 0.6279 0.7714
ResNet50 PSPNet 0.6659 0.8858 0.6132 0.7603
TResNet UNet 0.6151 0.9178 0.5830 0.7366
TResNet PSPNet 0.7376 0.7462 0.5897 0.7419
TResNet DLV3+ 0.6331 0.6299 0.4614 0.6315
EfficientNet UNet 0.6856 0.6242 0.4853 0.6534
EfficientNet DLV3+ 0.4491 0.2050 0.1638 0.2815
EfficientNet PSPNet 0.7143 0.6211 0.4976 0.6645
DenseNet121 PSPNet 0.6050 0.8967 0.5656 0.7225
DenseNet121 UNet 0.5954 0.9054 0.5605 0.7184

Table 4.3: Comparative analysis of various encoder-decoder combinations for flood
delineation on the MMFlood test set. The table presents the performance metrics
(precision, recall, IoU, and F1 score) for each model, with the Otsu method serving
as a baseline. The ResNet50 encoder paired with UNet and DeepLabV3+ (DLV3+)
decoders achieves the best overall performance.
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Model τ DEM EWS Precision Recall IoU F1

SE 2% 0.6733 0.9031 0.6279 0.7714
SE 2% ✓ 0.6814 0.8979 0.6324 0.7748
SE × ✓ 0.6976 0.8955 0.6451 0.7843
SE × ✓ ✓ 0.7173 0.8893 0.6585 0.7941
ME × ✓ ✓ 0.7319 0.8794 0.6652 0.7989

Table 4.4: Incremental performance improvements achieved by incorporating DEM
data, entropy-weighted sampling (EWS), and a multi-encoder (ME) architecture,
compared to the single-encoder (SE) baseline. The pixel ratio threshold (τ) varia-
tion is also reported here to compare its impact on the model’s performance.

τ EWS Precision Recall IoU F1

0% × 0.4118 0.2274 0.1717 0.2930
2% × 0.6733 0.9031 0.6279 0.7714
5% × 0.6301 0.9097 0.5930 0.7445
0% ✓ 0.6976 0.8955 0.6451 0.7843
2% ✓ 0.6700 0.9024 0.6247 0.7690
5% ✓ 0.6486 0.9096 0.6094 0.7573

Table 4.5: Hyperparameter study examining the impact of the flood pixel ratio
threshold (τ) and the effectiveness of EWS on the model’s performance. The ex-
periments reported here were executed on the single-encoder (SE) variant.

Our initial experiments focus on establishing a set of baseline results by eval-
uating the performance of different combinations of encoders and decoders on the
MMFlood dataset. Table 4.3 presents the average Precision, Recall, IoU, and F1
scores achieved by each model variant on the test set, considering only the SAR
imagery as input and applying a flood threshold τ = 2% to improve the training
stability (see Section 4.2.4).

The results indicate that the choice of encoder has a more significant impact
on the model’s performance than the decoder. ResNet variants, namely ResNet50
and TResNet, consistently outperform other encoder architectures, achieving mean
IoU scores of 0.62 and 0.59, respectively. In contrast, EfficientNet and DenseNet
variants yield suboptimal results, with a maximum IoU of 0.56 for DenseNet121,
despite their increased complexity.

Among the decoders, UNet and DeepLabV3+ demonstrate comparable perfor-
mance, attaining an average IoU of 0.77. Although PSPNet slightly lags behind
with a 1% performance gap, it exhibits the most stable results across all exper-
iments. Compared to the Otsu thresholding baseline, deep learning approaches
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basins, often visible and well-defined in the DEM, play an important role. The per-
formance gain is further amplified by the introduction of EWS, which guides the
sampling of the most informative labels during training. With the combination of
DEM and EWS, the model attains an IoU of 0.65, demonstrating the effectiveness
of this approach in addressing class imbalance. The impact of EWS is particularly
evident in terms of precision, which increases from 0.67 to 0.71 when compared to
the baseline model. Finally, we evaluate the ME architecture, which achieves the
highest IoU score at 0.66. While numerically comparable to the SE variant, the
qualitative results in Fig. 4.4 reveal that the ME setup exhibits greater resilience
to terrain changes, where shadows on mountain ranges or large permanent water
basins could be erroneously classified as floods by other model configurations. This
observation suggests that the careful fusion of SAR and DEM data during training,
despite the limited loss in recall, allows for more precise output with an effective
utilization of the visual information provided by the DEM modality.

Hyperparameter Study. To gain further insights into the effectiveness of dif-
ferent sampling procedures, we conduct a hyperparameter study on the influence
of an efficient sampling at training time, as presented in Table 4.5. We evaluate
four downsampling thresholds (τ ∈ {0%, 2%, 5%}) to assess the impact of reducing
the training set size on the model’s performance. Additionally, we examine the in-
fluence of EWS on each variant, effectively combining oversampling of informative
inputs with downsampling of tiles containing mostly background pixels. In this
context, the results highlight that, without any kind of oversampling mechanism
(i.e., with EWS disabled), the optimal threshold for this task is τ = 0.02, as lower
values hinder the model’s performance, while higher values introduce a bias to-
wards flooded areas, leading to less precise predictions. In fact, the precision start
lowering above the τ = 0.02 threshold, while the gain in terms of recall becomes
negligible.

Considering now the last three rows in Table 4.5, the inclusion of EWS yields
a substantial performance boost in the absence of downsampling, improving the
baseline IoU by 4.5% to reach 0.64. However, the benefits of EWS are diminished
in the threshold-based approaches, likely due to the reduced number of training
samples.

In summary, these results suggest that EWS is most effective when applied to
the entire dataset, as it can fully exploit the available data by providing a more
diverse set of samples in a more guided way, while a threshold can still be effective
when no particular sampling technique is applied.

Discussion. Our experiments on the MMFlood dataset demonstrate the effective-
ness of deep learning techniques for flood delineation, particularly when combined
with additional modalities such as DEM data and class balancing strategies like
EWS. The multi-encoder architecture emerges as the most promising approach,
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leveraging the complementary information provided by SAR and DEM data to
achieve robust and accurate flood segmentation. However, we acknowledge certain
limitations that could be addressed in future works. First, MMFlood primarily fo-
cuses on SAR imagery, which, although advantageous in terms of cloud penetration
and day-and-night operation, may not always provide the highest resolution or the
most comprehensive view of the flood situation. Additional optical or radar sources
could greatly improve the mapping quality. Second, while the inclusion of DEM and
hydrography data proved beneficial, the static nature of these modalities may not
fully capture the dynamic changes in terrain and water levels during flood events,
therefore limiting the performance improvements. Introducing ground sensor data,
time-varying elevation information (e.g., LiDAR or InSAR information), or simply
a time series of acquisitions, may better represent the evolving scene during the
event. Last, the current benchmark evaluation focuses on a relatively narrow set of
deep learning architectures and training strategies: future research could explore a
wider range of models, including state-of-the-art Vision Transformers. Moreover,
the investigation of advanced training techniques, such as self-supervised learning,
could help in improving the robustness and generalization capabilities of the models
on these specific downstream tasks, in presence of limited labeled data.

4.3 Scale Unbalance in Aerial Images
Another main issue affecting the performance of semantic segmentation models

in remote sensing is the scale imbalance of the objects present in the scene. In
particular, especially when considering very high resolution (VHR) acquisitions,
the ratio between object sizes and the level of detail can vary by several orders
of magnitude. This phenomenon can be observed in many real-world scenarios,
where objects of interest may appear at different scales within the same image.
For instance, in medical imaging, entities to be delineated can have vastly different
sizes depending on the target. This is true also in remote sensing, where buildings
and roads can span hundreds of pixels, while smaller objects such as cars or trees
may only occupy a few dozen pixels [242]. Scale imbalance poses a significant
challenge for semantic segmentation models, as they need to accurately classify
objects at all scales while maintaining a high level of spatial resolution. To address
this issue, several approaches have been proposed in the literature, from multiscale
architectures, such as PSPNet [270] or DeepLab [39], to a combination of local
and global processing, in order to gather information about details and the overall
context. This can be achieved through a two-stage pipeline, where the first stage
identifies candidate regions containing objects of interest, and the second stage
refines the segmentation within those regions [42].

In this section, we tackle the scale imbalance problem in the specific case of PV
panel segmentation, where this issue is particularly relevant due to the wide range of
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installation sizes encountered. Large industrial plants can cover entire fields, while
smaller agricultural or domestic installations may only partially cover roofs. This
variability in scale can make it difficult for a single model to accurately segment
all types of panels, leading to poor performance on either large or small plants. To
mitigate this issue, we propose a multiscale training approach, based on represen-
tation consistency between global and local features [42]. Specifically, we process
each input tile at two different resolutions: a local scale, where the image is split
into smaller patches, and a global scale, where the entire tile is downsampled to a
lower resolution. The model is then trained to produce consistent predictions across
both scales, encouraging it to learn features that are robust to changes in object
size. This is achieved through a consistency loss that penalizes differences between
the local and global predictions, acting as a regularization term during training.
We evaluate the effectiveness of our approach on a custom dataset of VHR aerial
imagery, specifically created for the task of PV panel segmentation. The dataset
covers a large area in Italy, specifically in the Piedmont region, and includes manual
annotations for over 9,000 PV panels, ranging from large industrial installations to
small domestic ones. Our experiments show that the proposed multiscale training
strategy significantly improves the performance of semantic segmentation models,
particularly in terms of their ability to handle the scale imbalance present in the
data. Moreover, we demonstrate that incorporating additional information from
the infrared band can further boost the accuracy of the segmentation, especially
for challenging object categories.

In this section, inspired by previous works such as GLNet [42], and regular-
ization such as Augmentation Invariance, presented in Chapter 3, we propose a
multiscale regularization approach to improve the consistency between local and
contextual features. Second, we demonstrate the effectiveness of this technique
on a custom aerial dataset, purposely constructed for the PV panels delineation
task. Last, we also explore the use of domain-specific priors to further refine the
output and produce more meaningful results for downstream analysis. We re-
lease the constructed benchmark dataset and the code to reproduce the results at
https://github.com/links-ads/access-solar-panels.

4.3.1 Related Works
Multiscale feature extraction. In recent years, deep learning-based approaches
have achieved remarkable success in semantic segmentation tasks, especially con-
sidering Convolutional Neural Networks (CNNs) that learn hierarchical features
from the input image and produce dense pixel-wise predictions. However, one of
the main challenges in aerial segmentation is capturing contextual information at
multiple scales, which is crucial for accurately classifying objects of different sizes
and resolving ambiguities in local regions.

To address this issue, various multiscale feature aggregation techniques have
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been proposed in the literature. One popular approach is to use an encoder-decoder
architectures, where the encoder progressively downsamples the input image to
extract high-level features, while the decoder gradually upsamples the feature maps
and combines them with lower-level features to recover spatial details. The U-Net
[197] is the reference example of this design, which has been widely adopted and
extended in many subsequent works [77, 59, 72]. Another common strategy is
to employ pyramid pooling modules that capture context information at multiple
scales. The Pyramid Scene Parsing Network (PSPNet) [270] introduces a pyramid
pooling module that aggregates features from different regions of the feature map
using adaptive average pooling, followed by upsampling and concatenation. This
allows the network to incorporate global context information and improve its ability
to handle objects of various sizes. Similarly, the DeepLab family of models [39, 40]
utilize atrous spatial pyramid pooling (ASPP) to capture multiscale context by
applying convolutional filters with different dilation rates.

Attention mechanisms have also been explored as a means of selectively fo-
cusing on relevant features and suppressing irrelevant ones, both in channel and
space dimensions. The Dual Attention Network (DANet) [77] introduces a dou-
ble attention module that captures dependencies along both spatial and channel
dimensions, allowing the network to adaptively integrate local features with their
global dependencies. The Criss-Cross Network (CCNet) [100] proposes a criss-cross
attention module that computes the attention weights between each pixel and its
surrounding pixels in a criss-cross path, enabling the network to capture long-range
dependencies more efficiently.

More recently, transformer-based architectures have gained popularity in seman-
tic segmentation due to their ability to model long-range dependencies and capture
global context. The Vision Transformer (ViT) [61] adapts the self-attention mecha-
nism from natural language processing to computer vision tasks, treating an image
as a sequence of patches and learning relationships between them. Subsequent
works such as the Swin Transformer [131] and Segmenter [215] or SegFormer [255]
have further improved upon this design by introducing hierarchical architectures
and integrating convolutional layers. Similarly, CNNs have also benefited from the
design improvements, with efficient and effective architectures such as ConvNext
[133].

While these techniques have shown impressive results on standard benchmarks
on natural images, they often yield suboptimal performances when applied in sce-
narios where objects exhibit significant scale variations. This is particularly evident
in applications such as remote sensing, where the resolution of satellite and aerial
imagery can vary greatly depending on the sensor and acquisition parameters. In
the specific use case of photovoltaic (PV) panel segmentation from aerial imagery,
the scale imbalance between large industrial installations and small domestic panels
poses a major challenge for existing methods. To tackle this issue, some works have
proposed multiscale training strategies that process the input image at different
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resolutions and encourage the model to learn scale-invariant features. For example,
GLNet [42] introduces a collaborative global-local network that consists of a global
branch that captures context information from a downsampled version of the input
and a local branch that processes the full-resolution image in a patch-wise man-
ner. The two branches are jointly optimized using a consistency loss that enforces
similar predictions across scales.

Dataset Images Annotations Area (km2) Resolution (cm)

DOTA [252] 2,806 188,282 5,261 15-150
California [23] 601,095 19,863 1,698 30
ISPRS [199] 23 4,488 3.2 7.5-15
Ours 105 9,462 2,940 30

Table 4.6: Comparison of our dataset with a non-exhaustive list of similar aerial
image datasets for object detection and segmentation. While our dataset is focused
on PV panel detection, it is comparable in scale to other large-scale datasets like
the California PV panels dataset and DOTA, which is instead designed for general
object detection tasks.

Delineating PV panels. In the context of PV panel segmentation, deep learning
techniques have shown great promise in this regard, especially thanks to CNNs
due to their resource efficiency and ability to learn hierarchical features directly
from the input imagery. Several early works [28] propose CNN-based methods for
segmenting PV panels from aerial imagery, demonstrating the effectiveness of deep
learning for this task. The DeepSolar framework [259] presents a comprehensive
approach for mapping PV installations across the United States using a combination
of satellite imagery and deep learning, resulting in a database covering over 1 million
PV installations. Subsequent works have explored various strategies for improving
the performance and efficiency of deep learning-based detection methods, such as
incorporating additional information from other data sources [81] or employing
transfer learning techniques to leverage pre-trained models and reduce the amount
of labeled data required for training [107].

Given the increasing application of deep learning techniques on downstream
tasks, there has been growing interest in the development of large-scale datasets
and benchmarks for PV panel detection. These datasets cover a wide range of
geographical areas and vary in terms of their size and resolution. However, the most
extensive datasets, both in terms of the number of annotations and the total surface
area covered, primarily focus on the United States. Notable examples include the
California dataset [23] and the DeepSolar framework [259], which provide large-
scale annotations for PV installations across multiple cities and states. While
these datasets provide undoubted valuable resources, their applicability to other
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geographical regions may be limited due to differences in visual characteristics, such
as landscapes, vegetation types, and building architectures. These variations can
significantly impact the performance of automatic detection systems trained on data
from a specific region. When considering the European continent, the availability
of large-scale PV panel datasets is relatively limited compared to the United States.
Existing studies have primarily focused on smaller geographic areas, such as the
Netherlands [108, 183] or Switzerland [33], and have relied on a combination of
satellite imagery and aerial photography. The scarcity of extensive datasets for
Europe can be attributed to the higher costs associated with acquiring very high
resolution (VHR) aerial and remote sensing imagery, which is essential for accurate
PV panel detection and delineation. In contrast, open data sources like Sentinel
satellite imagery, while freely available, may not provide sufficient spatial resolution
for this task. In this work, we attempt to bridge this gap by creating a high-quality
PV panel dataset specifically focused on the Piedmont region of Italy. As shown
in Table 4.6, our dataset is comparable in scale to existing resources such as the
California dataset [23], providing over a hundred VHR images across two large
provinces in the region, along with thousands of manually annotated PV panels.

4.3.2 Dataset

Figure 4.5: Examples tiles extracted from the dataset, together with their anno-
tations. Starting from the left, the first two images show the smaller domestic
installations, while the last two illustrate larger industrial plants.

We construct our dataset focusing on the Piedmont region, in Italy. The study
area for our dataset comprises the provinces of Asti and Alessandria in Piedmont,
which have the highest concentration of PV installations in the region. Piedmont
itself ranks fourth among Italian regions in terms of the total number of PV panels
and first in terms of energy production from photovoltaic sources as of 2022 [62]. By
focusing on this area, we ensure that our dataset is representative of a wide range
of panel types and installation scenarios, including both urban and rural settings,
as well as large-scale industrial plants and smaller agricultural and residential in-
stallations. The aerial images used in our dataset were sourced from the Terraitaly
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Figure 4.6: Schematic describing the annotation pipeline, from the selection of the
areas, to the acquisition of the VHR imagery, to the manual annotations, stored in
a single vector file.

catalog provided by the Compagnia Generale di Riprese aeree (CGR) s.p.a, an
Italian company specializing in high-resolution aerial imagery 1. We selected the
most recent orthorectified photo archive from 2018, which offers a spatial resolution
of 30cm/pixel, consistent with the resolution of other aerial datasets such as the
California dataset [23]. This level of detail is sufficient for accurately detecting and
delineating individual PV panels, including smaller domestic installations, while
also providing a manageable data volume for processing and analysis. In total,
our dataset includes 105 very high resolution (VHR) images in RGB-NIR format
(i.e., visible spectrum and Near-infrared (NIR)), with 60 images covering the Asti
province and 45 images covering the Alessandria province. Each acquisition covers
an average area of 18 km2, with dimensions of approximately 20,000×16,000 pixels.
The images are provided as georeferenced TIFF files, using the Universal Transverse
Mercator (UTM) zone 32N Coordinate Reference System (CRS), corresponding to
the EPSG code 32632, to minimize distortion from the map projection. The anno-
tation process, displayed in Fig. 4.6, involved not only identifying and outlining the
boundaries of PV panels but also assigning metadata information to each annotated
instance. This task was performed by a team of domain experts, who exhaustively
labeled all registered large-scale industrial plants using their known addresses or ap-
proximate coordinates, while agricultural and domestic installations were annotated
by manual lookup with a uniform spatial distribution to avoid geographical bias. In
this last case, the presence of every possible annotation is not guaranteed on every
tile. In addition to the geometric outline of each panel, the annotations include

1https://www.cgrspa.com/
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several attributes, such as a unique identifier for the panel and the associated plant
(in the case of industrial or agricultural installations), the main area they reside
into (either Asti or Alessandria), orientation, estimated power output, installation
type (industrial, agricultural, or domestic), and PV technology (monocrystalline
or polycrystalline). The inclusion of PV technology type is particularly relevant
for estimating the energy production of a plant, as monocrystalline panels offer
higher efficiency and durability compared to polycrystalline panels, despite their
higher cost [154]. The final dataset contains a total of 9,462 manually annotated
PV panels, with 8,967 polycrystalline and 495 monocrystalline installations. The
annotations were compiled into a single shapefile to facilitate integration with the
aerial imagery and other geospatial data sources. Fig. 4.5 presents a sample of the
dataset, illustrating the diversity of installation types and settings covered, from
large industrial plants to small domestic systems.

4.3.3 Method
From a machine learning point of view, the problem of delineating PV panels

represents a standard semantic segmentation task, where each pixel is classified as
either monocrystalline, polycristalline, or background. The challenge arises from
the wide range of scales at which PV installations can be found, from large indus-
trial plants, to domestic systems covering a few square meters. To address this issue,
we propose a multiscale framework that leverages both global and local context to
accurately segment PV panels at different scales while maintaining a manageable
computational complexity. Our approach incorporates a multiscale regularization
technique that encourages consistency between the predictions at different resolu-
tions, ensuring that the segmentation is coherent across scales. This is achieved
by introducing a loss term that penalizes discrepancies between the downsampled
local predictions and the global predictions. To make the segmentation output
more useful for practical applications, we also introduce a polygonization post-
processing step. This involves converting the pixel-wise segmentation map into a
set of vectorized polygons representing individual PV panels. The polygonization
process consists of instance identification, minimum bounding rectangle fitting, and
boundary refinement stages, providing a compact and meaningful representation of
the detected PV installations.

Multi-Scale Regularization

To address this challenge of scale variability, we draw inspiration from GLNet
[42] and introduce a multiscale training approach with a consistency regularization
across scales. While the prohibitive size of our aerial images precludes the direct
application of a complete global-to-local or local-to-global regularization [42], we
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Figure 4.7: Semantic segmentation framework with multiscale regularization. The
input is processed at global and local scales, and the extracted features are fused to
produce pixel-wise predictions. A consistency loss term regularizes the multiscale
learning process.

propose a context loss that compares larger image portions with smaller crops ex-
tracted from the same region to carry out a similar task. We recursively subdivide
each training tile into quadrants by splitting vertically and horizontally for a spec-
ified number of times S. This results in a hierarchy of 4S local tiles at the finest
level. We process these local tiles independently to extract features at different
scales. To introduce contextual information, we define a downscaled version of the
input image, which we refer to as the contextual image xc. We extract contex-
tual features from this downscaled image using a shared encoder. The contextual
features are then compared with the local features extracted from the patches to en-
force consistency. Formally, let ϕθ(xl) be the reconstructed local features, obtained
by providing the model each i-th local full-resolution patch xi

l obtained from the
input tile, and let xc be the downscaled contextual image. We define the multiscale
context loss as:

Lctx = |ϕθ(xl)− ϕθ(xc)|22 (4.5)
where ϕθ represents the model output before the final Softmax activation. This

loss penalizes the discrepancy between local and contextual features, encouraging
the model to learn scale-invariant representations. During training, the multiscale
context loss is added to the standard semantic segmentation loss as a regularization
term. By enforcing consistency between local and contextual features, we aim to
improve the model’s robustness to scale variations commonly present in real-world
applications. A visual representation of this framework is shown in Fig. 4.7
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Polygonization

Figure 4.8: Key steps of our polygonization algorithm for regularizing the segmen-
tation output of photovoltaic panels, from left to right: (a) conversion of the raw
mask into a coarse polygon, (b) alignment of edges with the dominant orientations
of the Minimum Bounding Rectangle, (c) merging of close parallel edges, and (d)
computation of the final regularized polygon. Our approach leverages the typical
rectangular shape of PV panels to generate clean, rectilinear polygons that more
accurately delineate the panels while removing noise and artifacts.

In order to provide a more practical and usable output for further analysis and
downstream tasks, the raw predictions generated by semantic segmentation models
often require additional processing. Two key aspects need to be addressed: first,
the raster-based segmentation output should be converted into a vectorized poly-
gon representation, ensuring that the generated shapes maintain a regular structure
without noisy or overlapping boundaries. Second, in the case of semantic segmen-
tation, an additional step is needed to transform the pixel-wise classifications into
a more meaningful instance-level representation. We tackle the latter challenge
by applying Connected Components Labeling (CCL) [94] to extract individual PV
panel instances from the semantic segmentation output. CCL is an algorithm that
assigns distinct numerical labels to each connected component in a binary image.
To prevent the panel category from interfering with the instance extraction process,
we first apply CCL on a binarized version of the segmentation output. We then iter-
ate over each connected component, discarding instances with a surface area below
a minimum pixel threshold t and assigning a single class label to each panel based
on majority voting over the pixels within the component. Once we have obtained
an instance-level representation of the PV panels, we focus on converting the raster
output into a more compact and regularized polygon format. Our polygonization
procedure draws inspiration from previous work [247], adapting it to the specific
characteristics of PV panels. The visual representation of each step is visible in
Fig. 4.8. We start by assuming that PV panels have a rectangular shape or, in the
case of more complex installations, that they are composed of rectangular subcom-
ponents. The goal of our algorithm is to regularize the edges of each polygon such
that the internal angles are always 90 degrees, while minimizing deviations from the
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original shape. The first step in our polygonization pipeline is to convert the raster
instance mask into an initial polygon using the Douglas-Peucker algorithm [202],
with a low tolerance value to avoid oversimplification. From this coarse polygon, we
extract the oriented Minimum Bounding Rectangle (MBR), defined as the rectangle
with the smallest area that fully encloses the original shape and is not constrained
to be axis-aligned. Given the typically rectangular structure of PV panels, we con-
sider the MBR to be the best approximation of the panel’s orientation. We leverage
this information to further regularize the edges of the coarse polygon. Each edge is
aligned with the direction of the MBR edge that is closest to its current orientation.
This step ensures that all edges are either parallel or perpendicular to each other,
while preserving the dominant orientations of the original shape. However, rotating
the edges independently introduces discontinuities along the polygon’s perimeter.
To address this, we perform a simplification step before reconnecting the edges. We
remove consecutive edges that are parallel (i.e., lie on the same side of the polygon)
if the length of the edge connecting their endpoints is below a threshold T . This
threshold is defined as T = α ·L, where α is a scalar factor between 0 and 1, and L
is the length of the polygon’s longest edge. Essentially, this step discards edges that
contribute the least to defining the object’s boundary. Finally, we reconstruct the
regularized polygon by computing the intersection points between the lines defined
by the remaining edges. The complete polygonization procedure is summarized in
Appendix A.

4.3.4 Experiments
In this section, we first provide a detailed description of our experimental setup,

including the dataset preparation, model configurations, and training procedures.
We then discuss the quantitative results obtained by our method, comparing its
performance against baseline models and highlighting the impact of our key con-
tributions, such as the multiscale context loss and the polygonization algorithm.

Implementation Details

To assess the performance of our semantic segmentation approach, we employ
the custom PV panel dataset introduced in Section 4.3.2. The dataset provides ac-
curate pixel-wise annotations for over 9,000 PV panels, and we focus on a multi-class
segmentation problem. distinguishing between monocrystalline or polycrystalline
panels. The original images, each measuring approximately 20,000 × 16,000 pixels,
are divided into smaller tiles of 512 × 512 pixels with an overlap of 256 pixels to
ensure that all relevant context is preserved, and border pixels eventually become
center pixels in the subsequent block. Due to the sparsity of the problem at hand,
this process results in a total of 696 tiles containing PV panels, which we further
split into subsets for training (404 tiles), validation (123 tiles), and testing (169
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tiles). For a more robust evaluation and testing procedure, first we split training
and validation based on the solar plant, so that different installations belong to
different splits, then we further select all the tiles belonging to the Asti province
as test set. As an attempt to introduce additional variation, we also train on an
extended version of the dataset, obtained by applying a copy-paste augmentation
strategy [83]. We randomly sample PV panels from the training set and paste them
onto background tiles, ensuring that the pasted panels do not overlap with exist-
ing ones. This process allows us to generate an additional 10,000 training tiles,
effectively increasing the dataset size and diversity. We refer to this augmented
dataset as the extended dataset in our experiments. Additionally, we perform the
experiments on both RGB-only and RGB-NIR inputs, to assess the performance
improvements introducing the extra band.

Given the focus on lightweight and deployable solutions, we experiment with U-
Net based models [197]. Specifically, we adopt the residual variant (ResUNet) [59]
as our decoder, which incorporates residual skip connections to aid convergence.
For the encoder, we experiment with standard ResNet backbones [92] as well as the
recently proposed ConvNext [133], which introduces architectural modifications to
narrow the gap with transformer-based models while preserving high throughput.
Because of the aerial setting, we adopt weights pretrained on DOTA [252] for the
encoders. Our semantic segmentation models are implemented using the PyTorch
deep learning framework [178]. All models are trained using the AdamW optimizer
with an initial learning rate of 2.5× 10−3, a momentum of 0.9, and a weight decay
of 1×10−4. We employ a batch size of 4 and train the models for 80 epochs. During
training, we apply a combination of photometric and geometric data augmentations,
including random flipping, rotation, scaling, brightness and contrast adjustments,
and Gaussian noise and blur, to improve the models’ robustness and generalization
capacity.

Results

To evaluate the performance of our semantic segmentation models, we employ
the Intersection over Union (IoU) metric. Considering the class imbalance present
in the dataset, we report both the macro-averaged IoU (MIoU) as in Eq. (2.3) and
micro-averaged IoU (mIoU) as in Eq. (2.4) to provide a comprehensive overview
of the model’s performance. The results, summarized in Table 4.7, highlight the
challenges associated with detecting monocrystalline PV panels. When training
on the base dataset, which only includes the original annotated tiles, we observe
that the semantic segmentation approach already surpasses the delineation capa-
bilities of the instance-based model in two out of three categories. The available
input information is sufficient to distinguish between background and polycrys-
talline pixels, which constitute the majority of installations. However, the model
struggles or completely fails to delineate monocrystalline plants. The inclusion of
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Encoder Bands Dataset Backgr. Mono. Poly. MIoU mIoU

ResNet50 RGB ext. 93.19 0.00 57.59 50.26 87.24
ConvNext RGB ext. 94.12 5.14 58.34 52.53 88.76
ResNet50 RGB-NIR ext. 94.78 0.00 68.74 54.51 90.85
ConvNext RGB-NIR ext. 95.21 5.95 70.05 57.07 91.05
ResNet50 RGB base 94.97 0.00 82.71 59.23 91.25
ConvNext RGB base 95.62 0.00 85.08 60.24 92.17
ResNet50 RGB-NIR base 96.32 36.46 86.01 72.93 93.41
ConvNext RGB-NIR base 97.24 45.90 86.83 76.66 94.37
ResNet50 RGB base-ms 97.34 37.50 81.46 59.48 93.84
ConvNext RGB base-ms 97.32 24.74 83.03 53.88 94.06
ResNet50 RGB-NIR base-ms 98.25 58.88 85.69 80.94 96.57
ConvNext RGB-NIR base-ms 98.17 62.49 85.53 82.86 96.53
ConvNext RGB-NIR ms+post 98.63 74.12 86.91 86.55 97.34

Table 4.7: Semantic segmentation results using ResUnet with various combinations
of encoders, bands, and datasets. The last row provides an assessment of the best
segmentation model with additional post-processing.

an additional infrared band during training proves to be highly beneficial for the
monocrystalline category, improving its class IoU to 45.90, as well as for the other
categories, with improvements of at least one point each. Contrary to our expec-
tations, dataset extension through copy-paste augmentation is detrimental for the
semantic segmentation task. The model achieves good results only on the easier
polycrystalline class, reaching a maximum MIoU of 57.07, which does not improve
upon the baselines. We hypothesize that this is due to label contamination [171]
introduced by the copy-paste mechanism. While pixels entirely inside or outside
the PV panels correctly represent their respective classes, the copy-paste mecha-
nism introduces strong discontinuities in the visual patterns along these borders,
which can adversely affect the pixel-wise prediction mechanism of semantic seg-
mentation approaches. Our best results, and the overall best performance across
all experiments, are obtained using multiscale training, denoted by the ms en-
tries in Table 4.7. The introduction of this consistency regularization across scales
leads to a +6.2 MIoU improvement over the best baseline, with the most signif-
icant contribution coming from the monocrystalline class, which reaches an IoU
of 62.49 without further post-processing. The additional infrared band once again
proves crucial for accurately defining this category, while the polycrystalline and
background classes exhibit comparable results. As a final test, we assess the effec-
tiveness of our post-processing algorithm by extracting regularized polygons from
the raw predictions and subsequently converting them back to raster tiles for eval-
uation. With the application of this procedure alone, we observe a substantial
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improvement in the monocrystalline category, achieving an IoU of 74.34, an in-
crease of +11.63 from the highest raw value obtained. The improvements over the
raw predictions can be visually observed in Fig. 4.9, where the regularized polygons
are compared with the raw output and the original ground truth. When examin-
ing large-scale installations (columns (a) and (b) in Fig. 4.9), we note that the
segmentation approaches provide excellent results. However, for smaller industrial
and agricultural plants, they may experience a performance decline: while models
provide precise localization, they may lose parts of the panel surface, or misclassify
the panel type due to brightness and contrast differences. This is especially visible
the case in smaller domestic installations, where noise and variety are much higher.
Interestingly, both approaches are able to identify additional panels that were not
present in the ground truth annotations, due to installations not yet registered or
mapped, as evident in columns (d) and (e) in Fig. 4.9. In conclusion, our experi-
ments demonstrate the effectiveness of the semantic segmentation task in PV panel
detection, particularly when utilizing ad-hoc measure such as multiscale training
and post-processing techniques. The inclusion of an infrared band proves highly
beneficial, especially for the challenging monocrystalline category. While the copy-
paste augmentation did not yield the expected improvements, it provided valuable
insights into the challenges of dataset extension for semantic segmentation tasks.

4.4 Summary
In this chapter, we explored two significant challenges in remote sensing: class

imbalance and scale imbalance. To address class imbalance in flood delineation from
satellite imagery, we constructed the MMFlood dataset comprising SAR imagery,
DEM data, and hydrography maps. We evaluated various deep learning models
and techniques on this dataset, including Entropy-Weighted Sampling (EWS) to
focus training on more informative samples, and multi-encoder architectures to ef-
fectively fuse the different data modalities. The results demonstrated the benefits
of these approaches in improving flood delineation accuracy, especially when deal-
ing with the inherent class imbalance between flooded and non-flooded areas. For
tackling scale imbalance, we focused on the task of photovoltaic (PV) panel seg-
mentation from VHR aerial imagery. We constructed a custom dataset covering
the Piedmont region in Italy with over 9,000 annotated PV panels. We introduced
a multiscale regularization approach to encourage consistency between local and
global features during training. Experiments showed that this technique, using
of the multispectral input, significantly improved performance on the PV panel
dataset, especially for the challenging monocrystalline category. Moreover, we de-
veloped a post-processing algorithm to refine the segmentation output and generate
cleaner polygonal representations of the detected panels. The main findings and
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(a) (b) (c) (d) (e)

Figure 4.9: Qualitative results on different scenarios: large-scale installations (a,
b), industrial and agricultural plants (c, d), and domestic installations (e). The
rows present the raw semantic segmentation output, the post-processed regularized
polygons, and the ground truth annotations. The model accurately delineates PV
panels in large-scale installations, while providing precise localization in smaller
scenarios. The post-processing step improves the delineation of monocrystalline
panels, resulting in more visually appealing polygons. Notably, the model identifies
additional panels not present in the ground truth annotations (fourth and fifth
columns).

conclusions of this chapter can be summarized as follows. First, class and scale im-
balance are common challenges in remote sensing applications that necessitate the
development of specialized methodologies. The experimental results demonstrate
that techniques such as EWS and multi-encoder architectures are valuable tools
for mitigating the effects of class imbalance. Furthermore, the adoption of mul-
tiscale training paradigms and the integration of domain-specific post-processing
algorithms can yield substantial improvements in segmentation performance, par-
ticularly for objects exhibiting significant scale variability, such as photovoltaic
panels. Future works could be aimed at addressing some shortcomings observed
in these works. For instance, the MMFlood dataset could be further enhanced
by incorporating additional modalities and time series data, potentially leading to
more comprehensive and accurate flood delineation models. Similarly, the PV panel
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dataset currently covers a relatively limited geographical area, and expanding its
scope to include a wider range of regions and landscapes could improve the gen-
eralization capabilities of the trained models. Moreover, exploring more advanced
training techniques, such as self-supervised learning, may be promising for future
research in these domains, given the scarcity of ad-hoc labels in specific tasks.

89



90



Chapter 5

Domain Robustness and Weak
Supervision

5.1 Introduction
In every application scenario, the effectiveness of deep learning models heavily

relies on the availability of large-scale, high-quality annotated datasets, which are
often time-consuming and expensive to obtain. This is especially true in the context
of semantic segmentation in remote sensing, where two of the major challenges that
hinder the performance and generalization of models are the domain shift problem
and the scarcity of annotated data. Domain shift occurs when models trained on
one dataset fail to generalize well to another dataset with different characteristics
[71], such as different sensors, resolutions, or geographical locations. This issue is
particularly prevalent in remote sensing applications, where the data can exhibit
significant variations in terms of spectral, spatial, and temporal properties. On
the other hand, the limited availability of high-quality annotated data can limit
the performance of supervised learning methods, as obtaining such annotations
is often time-consuming and expensive. To address the domain shift problem and
improve the overall robustness of the models to real-world scenarios, in this chapter
we investigate four different techniques: Unsupervised Domain Adaptation (UDA),
semantic segmentation from sparse labels, multitask learning, and applying recent
Vision Foundation Models (VMFs) for automated annotations. In the UDA task, we
have access to labeled data from a source domain and unlabeled data from a target
domain, and the goal is to adapt the model trained on the source domain to perform
well on the target domain without using any labels from the target domain. Recent
techniques typically carry out this objective using self-training techniques with a
teacher-student paradigm, where the former produces stable and confident pseudo-
labels for the latter to learn from [96, 223]. In this section, we propose a novel
framework called HIUDA (Hierarchical Instance Mixing for Unsupervised Domain
Adaptation) that introduces two key components: (1) a new mixing strategy called
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HIMix (Hierarchical Instance Mixing) that extracts connected components from
the semantic masks and mixes them according to a semantic hierarchy, and (2) a
twin-head architecture that produces finer pseudo-labels for the target domain. By
addressing the shortcomings of existing domain mixing strategies in aerial imagery,
HIUDA aims to improve the domain robustness of semantic segmentation models.

To tackle the limitations of annotated data, both in terms of extent and reli-
ability, we explore techniques for learning from weak labels, such as scribbles or
sparse annotations. In this context, our objective is to expand the sparse labels to
a dense map, effectively assigning a semantic category to every pixel in the image.
We reformulate this task in a manner that closely resembles UDA), by treating the
labeled pixels as our source domain and the unlabeled pixels as our target domain.
We propose a framework called SPADA (SParse Annotations with DAformer) that
leverages sparse annotations and self-training to improve semantic segmentation
performance. SPADA utilizes a teacher model to generate pseudo-labels on the tar-
get domain, which are then mixed with the sparse ground truth labels to train the
student model in a self-supervised manner. By effectively exploiting both labeled
and unlabeled pixels during training, SPADA aims to enhance the performance of
semantic segmentation models in scenarios with limited annotated data.

In addition to domain adaptation and weak supervision, we also investigate the
potential of multitask learning to improve the robustness and performance of mod-
els in remote sensing applications. In Section 5.4 we focus on the task of burned area
delineation, which aims to identify and delineate areas affected by wildfires from
satellite imagery. The main challenges in this task arise from two primary sources.
First, we observe an inherent imbalance in the pixel distribution between burned
and unburned regions, as wildfires typically affect a relatively small portion of the
total area. Second, the geographical locations of wildfires introduce an unavoid-
able bias in the data, as these events occur more frequently in temperate forested
regions. These challenges, similar to those encountered in Section 4.2, can hinder
the performance and generalization of models trained for burned area delineation.
To mitigate these issues, we propose RoBAD (Robust Burned Area Delineation),
a multitask learning framework that incorporates land cover classification as an
auxiliary task to guide the training of the burned area delineation model towards
more robust and generalizable features. By learning shared representations between
the two tasks, we demonstrate that the multitask approach yields more stable and
robust performance compared to single-task learning, especially in the absence of
pretrained solutions. This highlights the potential of multitask learning to improve
the generalization and robustness of models in remote sensing applications.

Finally, we investigate recent machine learning advances in addressing the chal-
lenges of large-scale annotation in remote sensing. The emergence of foundation
models in computer vision [112, 267] has opened new possibilities for transfer learn-
ing and generalization across diverse tasks. These models, trained on extensive and
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varied datasets, have shown remarkable adaptability to different domains with min-
imal additional training [267]. Building on this progress, we develop FMARS (Foun-
dation Model Annotations in Remote Sensing), an approach that exploits state-of-
the-art vision models to automate the annotation process for high-resolution satel-
lite imagery. FMARS combines VFMs and existing large-scale datasets to generate
detailed labels for key elements in disaster-prone areas, such as buildings, trans-
portation networks, and vegetation. By applying this method to imagery from
numerous disaster events worldwide, we demonstrate its potential to rapidly pro-
duce large datasets for training specialized models. Furthermore, we show how
techniques like UDA can be adopted to effectively train smaller models on these
automatically generated annotations, allowing for more efficient and scalable solu-
tions.

In summary, our work addresses the challenges of domain robustness and weak
supervision in semantic segmentation for remote sensing. We propose novel tech-
niques for unsupervised domain adaptation (HIUDA), learning from sparse annota-
tions (SPADA), multitask learning (RoBAD), and automated annotations (FMARS)
which aim to improve the generalization and performance of models in real-world
scenarios. The contents presented in this chapter derived in the following publica-
tions:

• E. Arnaudo, A. Tavera, C. Masone, F. Dominici and B. Caputo, “Hierarchical
Instance Mixing Across Domains in Aerial Segmentation”, in IEEE Access,
vol. 11, pp. 13324-13333, 2023.

• M. Galatola, E. Arnaudo, L. Barco, C. Rossi and F. Dominici, “Land Cover
Segmentation with Sparse Annotations from Sentinel-2 Imagery”, IGARSS
2023–2023 IEEE International Geoscience and Remote Sensing Symposium,
Pasadena, CA, USA, 2023, pp. 6952-6955.

• E. Arnaudo, L. Barco, M. Merlo and C. Rossi. “Robust Burned Area Delin-
eation through Multitask Learning”, European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases ECML
PKDD 2023, MACLEAN workshop (Best paper award).

• E. Arnaudo, J. L. Vaschetti, L. Innocenti, L. Barco, D. Lisi, V. Fissore,
C. Rossi, “FMARS: Annotating Remote Sensing Images for Disaster Man-
agement Using Foundation Models”, IGARSS 2024–2024 IEEE International
Geoscience and Remote Sensing Symposium, 2024.
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5.2 Unsupervised Domain Adaptation in Aerial
Settings

While significant advances have been made in semantic segmentation, partic-
ularly with the advent of deep learning models [197, 39, 270], most of these ap-
proaches rely on the availability of large amounts of annotated data. However,
collecting such pixel-level annotations is an extremely time-consuming and costly
process [52]. This limitation becomes even more pronounced in the context of aerial
and remote sensing imagery, where the scenes can be vast and complex, and the
cost of acquiring labeled data is prohibitively high. To address this challenge, we
focus on the problem of unsupervised domain adaptation (UDA) for aerial semantic
segmentation, a task that can be seen as a form of transfer learning. The aim is to
adapt a model trained on a labeled source domain to perform well on an unlabeled
target domain, by leveraging the unlabeled data from the target domain during
training. In our setting, we assume access to a set of labeled aerial images from a
source domain, as well as a collection of unlabeled aerial images from a target do-
main that we wish to segment. The goal is to learn a segmentation model that can
accurately predict the semantic labels of the target domain images, without requir-
ing any manual annotations from this domain. However, applying UDA techniques
to aerial semantic segmentation poses several unique challenges. First, there can
be a significant disparity in the pixel-level class distributions between the source
and target domains. For instance, the source domain may contain mostly urban
scenes with buildings and roads, while the target domain may be predominantly
rural with large expanses of vegetation and water bodies. This class imbalance can
lead to a domain shift that is difficult for the model to overcome. Secondly, unlike
in other applications such as autonomous driving [52], aerial scenes often lack a
consistent structural layout. In driving scenarios, for example, the images typically
have a regular arrangement with the road at the bottom, buildings on the sides,
and sky at the top. This consistent structure is often preserved across different
domains. In contrast, aerial scenes can have objects and regions arranged in arbi-
trary configurations, which makes it harder to transfer knowledge from the source
to the target domain. To tackle these challenges, we propose a novel framework for
UDA in aerial semantic segmentation, called HIUDA (Hierarchical Instance Mix-
ing for Unsupervised Domain Adaptation), introducing two technical improvements
over standard solutions. First, we propose a new domain mixing strategy called
HIMix (Hierarchical Instance Mixing). HIMix operates at the instance level by
extracting connected components from the semantic labels of both the source and
target images. It then mixes these instances in a hierarchical manner based on
their pixel counts, placing the smaller objects on top of the larger regions. This
approach preserves the semantic structure of the objects and mitigates the class im-
balance between the domains, generating more realistic and coherent mixed images
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for training. Second, we introduce a twin-head architecture for the segmentation
network, where two separate decoder heads are trained in a contrastive manner.
The two heads share the same encoder backbone but receive differently augmented
versions of the input images. By enforcing consistency between the outputs of the
two heads, the model learns more robust and invariant features that can better gen-
eralize to the target domain. Additionally, the agreement between the two heads
is used to generate reliable pseudo-labels for the target domain images, providing
additional supervision during training.

We evaluate our HIUDA framework on the LoveDA dataset [242], one of the few
benchmarks for UDA in aerial semantic segmentation. Our experiments demon-
strate that HIUDA outperforms existing state-of-the-art UDA methods on this
dataset, achieving significant improvements in segmentation accuracy on the target
domain. We also provide detailed ablation studies to analyze the impact of our
proposed components. In summary, in this section we provide the following contri-
butions: (i) we identify and analyze the key challenges in applying UDA techniques
to aerial semantic segmentation, namely class imbalance and lack of structural
consistency, (ii) we present a novel UDA framework, HIUDA, which introduces a
hierarchical instance mixing strategy (HIMix) and a twin-head architecture to ad-
dress these challenges, and (iii) we carry out an extensive set of experiments on the
LoveDA dataset, including an ablation study, and demonstrate the improvements
of HIUDA over existing UDA methods for aerial semantic segmentation.

5.2.1 Related Works
Segmenting Aerial Images Semantic segmentation in aerial imagery presents
unique challenges that require tailored solutions, despite sharing some common
features with other domains. While encoder-decoder architectures [135, 39, 270,
197] and recent vision Transformers [61, 131, 215, 255] have shown promising re-
sults, aerial scenes often contain a large number of entities with complex spatial
relationships. These can be modeled, for instance, through the use of attention
mechanisms [164] or relation networks [163] to capture long-range dependencies.
In the context of unsupervised domain adaptation (UDA), ensuring feature consis-
tency across domains is crucial for effective training. Aerial images pose additional
challenges due to their top-down perspective and lack of reference points common
in natural images. As described in Chapter 3 and Chapter 4, some works have al-
ready exploited this peculiarity by learning rotation-invariant features [91, 218] or
employing regularization techniques [8]. Here, we argue that invariance to a broad
range of geometric and photometric transformations is also beneficial for general-
ization in the UDA setting. Similar to the previously described methods, with the
twin-head architecture we aim to extract comparable features from the same image,
although augmented in different ways, following a contrastive-like approach. Fur-
thermore, aerial images often exhibit significant class imbalance, with small objects
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like cars positioned on top of large portions of land. Although techniques such
as class-balanced sampling and weighting [96] or specialized loss functions [110]
can help mitigate this issue, this is not enough in the context of domain-adaptive
segmentation. To address this challenge, we propose HIMix, a hierarchical mix-
ing approach that aims to balance the class distribution and respect the relative
depth ordering of objects. By ensuring that smaller objects appear on top of larger
ones during mixing, HIMix prevents large surfaces from overwhelming less frequent
categories, enabling fairer training.

Domain-Adaptive Segmentation. Domain Adaptation (DA) is a challenging
problem in semantic segmentation, where models trained on one domain often fail to
generalize well to new domains with different data distributions. The main objective
of DA is to bridge the domain shift between the source and target domains, enabling
effective knowledge transfer and improved performance on the target task. Early
DA approaches focused on minimizing statistical measures of divergence between
the source and target feature distributions. For example, DAML [82] proposed
a metric learning approach to align the domains in a shared feature space, while
similar work [136, 227] utilized Maximum Mean Discrepancy (MMD) to measure
and reduce the distribution mismatch. In past years, adversarial training emerged
as a prominent approach for domain adaptation in semantic segmentation [224,
139, 258, 219]. These techniques involve training a discriminator to differentiate
between source and target features, while the segmentation network aims to deceive
the discriminator by aligning the feature distributions. However, aligning features
at a global level can occasionally result in mismatches between classes, causing
semantically distinct samples to be mixed in the feature space. Another line of
work explores image-to-image translation for domain adaptation, represented by
methods like CyCADA [95], DCAN [251], and FDA [258]. The goal of these ap-
proaches is to generate source-like images from the target domain or vice versa,
therefore minimizing the discrepancies in low-level visual characteristics between
domains. However, they do not often directly tackle the potential mismatches in
the texture and semantic content of classes across the datasets. More recently, self-
training techniques have demonstrated promising results for unsupervised domain
adaptation. These methods exploit the source model’s predictions on unlabeled
target data to generate pseudo-labels for fine-tuning. For example, PyCDA [125],
CBST [274], and IAST [150] employ highly confident pseudo-labels to gradually
adapt the model to the target domain. However, a potential drawback of these
approaches is confirmation bias, where the model becomes overconfident in its pre-
dictions for easily adaptable classes while struggling to learn harder or less frequent
classes. Current state-of-the-art methods, such as DACS [223] and DAFormer [96],
integrate self-training with image mixing strategies to mitigate the impact of noisy
pseudo-labels and enhance class balance during adaptation. These techniques have
proven highly successful on datasets with consistent scene structure, like driving
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scenarios [52]. By randomly copying objects from source to target images guided
by the predicted segmentation masks, these methods drive models towards learn-
ing domain-invariant features and prioritize semantic content over low-level domain
discrepancies. Despite their success in driving scenes, we argue that these mixing-
based UDA methods face several challenges when applied to aerial imagery. Firstly,
as discussed in Chapter 4, aerial scenes typically comprise objects with significantly
varied scales. This peculiarity can in turn lead to severe class imbalance in the
mixed images if not properly addressed. Secondly, aerial images lack the strong
structural regularities found in driving scenes, meaning that naive mixing can pro-
duce semantically inconsistent or unrealistic object arrangements. HIMix aims to
mitigate these issues, by overlaying objects on top of each other based on their size,
maintaining consistency and pixel balance across categories.

5.2.2 Method
In this section, we present our proposed framework HIUDA, which addresses

the limitations of existing approaches, further narrowing the domain gap between
source and target datasets. Our methodology combines two key components: (i) a
novel hierarchical instance mixing strategy (HIMix) that balances the class distribu-
tion and preserves the semantic consistency of mixed images, and (ii) a twin-head
architecture that enhances the quality and consistency of pseudo-labels for self-
training. We first provide details on the HIMix strategy, describing how it carries
out the instance-based mixing from the source and target segmentation masks, bal-
ances the class distribution, and composes the mixed images while respecting the
relative depth ordering of objects. Next, we describe the twin-head architecture
and its role in improving the pseudo-label quality and consistency through con-
trastive learning. Last, we present the overall training procedure, which integrates
the HIMix strategy and the twin-head architecture into a unified UDA framework.

Problem Statement

We focus on Unsupervised domain adaptation (UDA) in semantic segmentation
applied to aerial imagery. UDA is a subfield of transfer learning that aims to adapt
a model trained on a source domain, where labeled data is available, to a target
domain, where only unlabeled data is accessible. By addressing this problem, we
try to enhance the performance of aerial semantic segmentation models in novel
scenarios with limited annotated data. Formally, let X denote the set of images
(in this case RGB), each composed of a set of pixels I, and let Y represent the
corresponding set of semantic masks, which assign a class label from the set of
semantic classes C to each pixel i ∈ I. In the UDA setting, we have access to two
distinct datasets during training: (i) a labeled source domain dataset XS = (xS, yS),
where xS ∈ X and yS ∈ Y , and (ii) an unlabeled target domain dataset XT = (xT )
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Figure 5.1: Overview of our proposed training framework: (i) The model undergoes
standard supervised training on the source domain using the source image (xS)
and its corresponding ground truth label (yS), optimizing the segmentation loss
Lseg(BS). (ii) For the target domain, pseudo-labels ŷT are generated from the target
image (xT ) by encoding it with the shared backbone g and performing majority
voting between the outputs of the two segmentation heads (h1 and h2). (iii) The
source and target samples are then combined using the Hierarchical Instance Mixing
(HIMix) strategy, resulting in a new pair of mixed samples xM and yM . (iv) Finally,
the segmentation loss Lseg(BM) is computed on the mixed pairs to optimize the
model for domain adaptation.

(i.e., without labels yT ) with NT images, where xT ∈ X . Our objective is to learn
a parametric function fθ that maps an input image to a pixel-wise probability
distribution over the semantic classes, i.e., fθ : X → R|I|×|C|. Once obtained, the
goal is to apply this function on unseen images from the target domain and achieve
high segmentation accuracy. We denote the model’s output probability for pixel
i and class c as pc

i(x) = fθ(x)[i, c]. In line with common semantic segmentation
approaches [135, 39, 96], we train the model parameters θ by minimizing a standard
categorical Cross-Entropy (CE) loss:

L(x, y) = − 1
|I|

∑︂
i∈I

∑︂
c∈C

yc
i log(pc

i(x)), (5.1)

where yc
i is the ground truth label for pixel i and class c. Although other loss

functions, such as the combination of CE and Dice loss [242], could potentially
improve performance in aerial settings, our primary focus in this work remains on
the UDA problem itself. Therefore, we adopt the CE loss as it provides a fair and
consistent comparison with other state-of-the-art methods [96].

Hierarchical Instance Mixing

One main component of our framework is the Hierarchical Instance Mixing
strategy (HIMix), which addresses the limitations of existing mixing techniques like
ClassMix [171] in the aerial image domain. We observe that directly superimposing
source domain instances onto the target domain without considering their semantic
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Figure 5.2: Visual representation of the Hierarchical Instance Mixing (HIMix)
strategy. HIMix involves four steps: (i) extraction of the connected components
(instances) from the source ground truth and target pseudo-label, (ii) random se-
lection of a subset of source instances to be mixed, (iii) hierarchical merging of
the selected source instances with the target instances based on their size, placing
smaller instances on top of larger ones, and (iv) generation of a binary mask M to
create the final mixed image xM and its corresponding label yM .

hierarchy can lead to unrealistic compositions, such as large fields appearing on top
of buildings, or roads superimposed on houses. In this context, given pairs (xS, yS)
and (xT , ŷT ), where ŷT = fθ(xT ) are pseudo-labels derived from model predictions
on the target domain, our goal is to create a new pair (xM , yM). This pair integrates
content from both the source and target domains using a binary mask M . HIMix
carries this out in two key steps: (i) instance extraction, and (ii) hierarchical mixing.

For the instance extraction phase, we note that aerial images often provides uni-
form land cover, with multiple instances of the same category within a single image.
In the absence of explicit instance labels, we can leverage this characteristic to seg-
ment semantic annotations into connected components. By definition, a connected
component consists of pixels with the same semantic label, with paths between any
two pixels entirely within this set [85]. This is visible in Fig. 5.2, where, for in-
stance, two semantically equivalent areas displaying a forest are segmented into two
separate components by a road. This method increases the number of selectable
regions for mixing, helping balance the pixel distribution between source and target
domains in the final mixed sample. This procedure is applied to both source and
target labels, so that the different layers can be shuffled with more variation.

For the mixing phase, we argue that, in aerial imagery, objects exhibit an inher-
ent hierarchy dictated by their semantic categories. For instance, land cover types
like barren or agricultural generally form the background relative to instances like
roads or buildings. In addition, the former usually cover a larger surface than
the entities of top of them. In our mixing process, we attempt to maintain this
hierarchy when combining source and target instances, as illustrated in Fig. 5.2,
simplifying the sorting phase using the raw per-entity pixel count. First, we encode
both sets of instance labels into a one-hot representation, producing separate mask
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layers for each component. We then merge and sort these layers by the amount of
pixels equal to 1, positioning larger layers at the bottom. Finally, a reduction from
top to bottom projects the 3D tensor into a 2D binary mask M , where positive
values indicate source pixels, and null values indicate target pixels. In summary,
HIMix constructs mixed images that maintain the semantic hierarchy of the visual
elements, thus improving the efficacy of UDA training in aerial segmentation tasks.

Twin-Head Architecture

To complement our HIMix procedure, we introduce a twin-head segmentation
framework aimed at overcoming the limitations of existing self-training UDA strate-
gies. While teacher-student approaches like DAFormer [96] aim to improve the
temporal consistency of pseudo-labels, they do not directly address inconsistencies
in geometry or style. The twin-head architecture directly addresses these short-
comings by generating more stable pseudo-labels. As illustrated in Fig. 5.1, our
framework comprises a shared encoder g followed by two parallel lightweight seg-
mentation decoders, h1 and h2. The model is trained end-to-end, leveraging labeled
source data and online pseudo-labels computed on the target images.

For source training, we feed the two heads with contrastive variations of each
source image to encourage the learning of augmentation-invariant representations.
Similar to the Augmentation Invariance approach presented in Section 3.2, at each
iteration, given a source image xS and its ground truth yS, we apply a random
sequence of geometric transformations Tg (horizontal flipping, rotation) and photo-
metric augmentations Tp (color jitter) to obtain an augmented pair x̃S = Tp(Tg(xS))
and ỹS = Tg(yS). The concatenated augmented batch BS = (xS

⨁︁
x̃S, yS

⨁︁
ỹS) is

passed through the shared encoder g to extract features, which are then split and
fed into the two heads to obtain outputs h1(g(xS)) and h2(g(x̃S)). A standard
cross-entropy loss is computed on both outputs, as reported in Eq. (5.1). By
operating independently on different image variations, the two heads can evolve
differently while optimizing the same objective, while sharing the encoder yields a
contrastive-like feature extraction that is more robust to perturbations, which is
key for generating stable and accurate pseudo-labels.

For the mixed training, the twin-head architecture is explicitly designed to gen-
erate refined pseudo-labels, however the two heads produce independent outputs
that need to be merged consistently. Given an unlabeled target image xT , we com-
pare the probabilities σ(h1(g(xT ))) and σ(h2(g(xT ))) obtained by forwarding the
image to both heads and passing them through a Softmax function σ to normalize
them, and select the more confident value between the two. Once the probability pc

i

is derived for every pixel i and class c, the pseudo-label ŷT necessary for the mixing
strategy is generated for each target input xT through the following formula:

ŷ
(i,c)
T = [c = argmaxc pc

i(xT )] (5.2)
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Once a pseudo-label is obtained, it can be mixed with the source label using
HIMix. The mixed pairs (xM , yM), respectively composed of source and target
samples, are computed by extracting the connected components, sorting and rear-
ranging the labels, as described in previous section. To further improve the gener-
alization abilities of the model, a batch composed of the original mixed images and
their transformed versions BM = (xM

⨁︁
x̃M , yM

⨁︁
ỹM) is generated using compara-

ble geometric and photometric transformations Tg and Tp, then fed to the model to
compute L(BM). To reduce the impact of low-confidence areas, a pixel-wise weight
map wM is generated following the approach proposed in previous works [96]. For
each pixel i, wM is computed as the percentage of valid points above a threshold:

wi
M =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, i ∈ yS

mτ

|I|
, i ∈ ŷT

(5.3)

where mτ represents the Max Probability Threshold [123] computed over pixels
belonging to the pseudo-label:

mi
τ = 1[argmaxc pc

i (xT )>τ ] (5.4)
In practical terms, each pixel in the mixed label receives a weight of 1 if it origi-

nates from the source domain. For pixels derived from the target domain, the weight
is calculated based on the proportion of pixels exceeding the confidence threshold,
normalized by the total number of pixels. Once this map has been produced, it can
be directly applied to the loss computation by pixel-wise multiplication. The full
training process described here is documented in Appendix B. This is not applied
in multiple steps, but rather in one forward pass block, with a single backward pass
on the accumulated losses.

5.2.3 Experiments
In this section, we present a comprehensive evaluation of our proposed HIUDA

framework for unsupervised domain adaptation in aerial image semantic segmenta-
tion. We first describe the dataset, evaluation metric, and implementation details
used in our experiments. We then compare the performance of HIUDA against
various state-of-the-art UDA methods on the LoveDA benchmark [242] in every
provided settings. Additionally, we conduct an ablation study to analyze the con-
tribution of each component in our framework.

Implementation Details

We evaluate the performance of our proposed HIUDA framework on the LoveDA
benchmark, designed for domain adaptation methods in remote sensing semantic
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segmentation. Following the protocol outlined in the original paper, we conduct ex-
periments in two settings: rural→urban and urban→rural adaptation. Bot the rural
and urban splits provide labels and an individual subdivision into training and test
sets. However, in this case, we have access to labeled training data from the source
domain and training data without labels from the target domain. The model’s
performance is then assessed on the separate test set from the target domain, con-
sidering the available ground truth for the evaluation. The LoveDA dataset is, to
the best of our knowledge, the only publicly available large-scale remote sensing
dataset designed for evaluating unsupervised domain adaptation (UDA) methods
in land cover semantic segmentation. It comprises both urban and rural scenes
from 18 different regions in China, with 1156 urban and 1366 rural training im-
ages. Each image is provided as a 1024×1024 pixel tile with annotations for seven
land cover categories, namely background, building, road, water, barren, forest, and
agriculture. LoveDA poses challenges for UDA due to the presence of multiscale
objects, complex background samples, and inconsistent class distributions between
the domains, as clearly visible in Fig. 5.3.

Figure 5.3: Class-wise and pixel-wise distributions across the urban and rural do-
mains.

Following standard procedure [242], we adopt the mean Intersection over Union
(mIoU) metric reported in Eq. (2.2) to evaluate the segmentation accuracy across all
experiments. We compare our HIUDA approach to various state-of-the-art UDA
methods. First, we include a baseline trained solely on the source domain: this
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should provide a lower bound and set the limit for what’s achievable without spe-
cific countermeasures. In terms of domain-adaptive solutions, we compare our ap-
proach to MMD metric-based method [227], adversarial training approaches such as
AdaptSegNet [224], FADA [237], CLAN [139], and TransNorm [244], as well as self-
training techniques like CBST [274], PyCDA [125], IAST [150], DACS [223], and
DAFormer [96]. Our HIUDA framework is implemented using the PyTorch-based
mmsegmentation library [158]. We adopt the MiT-B5 [255] backbone, pre-trained
on ImageNet, as our shared encoder, and the SegFormer head [255] as the seg-
mentation decoder. The hyperparameters concerning the standard teacher-student
self-training pipeline are set following the current state of the art, identified with
DAFormer [96]. Specifically, we train for 40k iterations using the AdamW optimizer
with a learning rate of 6× 10−5, weight decay of 0.01, and betas of (0.9, 0.99). We
employ a polynomial learning rate decay with a factor of 1.0 and a warm-up phase
of 1500 iterations. Given the possible fluctuations in score in the UDA setting, we
repeat each experiment three different times with three different seeds, then report
the average results for better comparison. During training, we perform additional
data augmentation by applying random resizing (scale range [0.5, 2.0]), horizontal
and vertical flipping, 90-degree rotations (with probability p = 0.5), and photomet-
ric distortions (brightness, saturation, contrast, and hue). The confidence threshold
τ for pseudo-labeling is set to 0.968 [223, 96]. All experiments are conducted on
an NVIDIA V100 GPU with 32 GB of memory. Concerning the evaluation on the
available test set, we do not apply any additional test-time augmentation.

Results

The results of our experiments are reported in Table 5.1 for the Rural→Urban
setting, while in Table 5.2 for the Urban→Rural scenario.

Considering Rural→Urban scenarios first, the source domain primarily consists
of large-scale natural objects with a limited presence of man-made structures. Nev-
ertheless, the UDA methods under consideration effectively transfer the acquired
knowledge to the target urban domain, even for underrepresented categories. Sim-
ilar to previous settings, self-training approaches exhibit better performance than
adversarial methods, with an average improvement of +9.1 over the source-only
baseline, while adversarial techniques achieve comparable results. The two top-
performing self-training models and the closest competitor outperform the source-
only model by +6.0 and +15.2 in terms of mIoU, respectively. HIUDA attains
a remarkable gain of +17.4 over the lower bound baseline, surpassing DACS and
DAFormer by +11.4 and +2.2, respectively. The qualitative results, displayed in
the bottom row of Fig. 5.4 showcase the ability of our framework to differentiate
between rural and urban classes. While DACS fails to recognize buildings and
DAFormer partially misclassifies them as agricultural land, our model effectively
minimizes bias towards categories with larger spatial extents, yielding results that
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Table 5.1: Experimental results for the UDA task in the Rural→Urban setting. The
table reports the per-class IoU and the mean IoU (mIoU) for each method. Methods
marked with an asterisk (*) were replicated using the original implementation to
ensure a fair comparison. The best result for each class and the overall mIoU are
highlighted in bold.

Method Backg. Building Road Water Barren Forest Agric. mIoU

Source Only 43.3 25.6 12.7 76.2 12.5 23.3 25.1 31.3
MCD [227] 43.6 15.4 12.0 79.1 14.3 33.1 23.5 31.5
AdaptSeg [224] 42.4 23.7 15.6 82.0 13.6 28.7 22.1 32.6
FADA [237] 43.9 12.6 12.8 80.4 12.7 32.8 24.8 31.4
CLAN [139] 43.4 25.4 13.8 79.3 13.7 30.4 25.8 33.1
TransNorm [244] 33.4 05.0 03.8 80.8 14.2 34.0 17.9 27.7
PyCDA [125] 38.0 35.9 45.5 74.9 07.7 40.4 11.4 36.3
CBST [274] 48.4 46.1 35.8 80.1 19.2 29.7 30.1 41.3
IAST [150] 48.6 31.5 28.7 86.0 20.3 31.8 36.5 40.5
DACS* [223] 46.0 31.6 33.8 76.4 16.4 29.3 27.7 37.3
DaFormer* [96] 49.2 47.7 55.2 86.6 16.5 39.5 30.8 46.5
HIUDA 49.3 55.0 55.4 86.0 17.1 41.2 36.9 48.7

Table 5.2: Experimental results for the UDA task in the Urban→Rural setting.
The table presents the IoU for each class and the mean IoU (mIoU) achieved by
the different methods. Approaches marked with an asterisk (*) were reproduced
using the original implementation to ensure a fair comparison. The highest IoU for
each class and the best overall mIoU are denoted in bold.

Method Backg. Building Road Water Barren Forest Agric. mIoU

Source Only 24.2 37.0 32.6 49.4 14.0 29.3 35.7 31.7
MCD [227] 25.6 44.3 31.3 44.8 13.7 33.8 26.0 31.4
AdaptSeg [224] 26.9 40.5 30.7 50.1 17.1 32.5 28.3 32.3
FADA [237] 24.4 33.0 25.6 47.6 15.3 34.4 20.3 28.7
CLAN [139] 22.9 44.8 26.0 46.8 10.5 37.2 24.5 30.4
TransNorm [244] 19.4 36.3 22.0 36.7 14.0 40.6 03.3 24.6
PyCDA [125] 12.4 38.1 20.5 57.2 18.3 36.7 41.9 32.1
CBST [274] 25.1 44.0 23.8 50.5 08.3 39.7 49.7 34.4
IAST [150] 30.0 49.5 28.3 64.5 02.1 33.4 61.4 38.4
DACS* [223] 20.1 50.5 35.9 60.6 09.9 35.4 17.5 32.9
DAFormer* [96] 29.5 57.9 41.8 67.1 07.6 35.3 48.1 41.0
HIUDA 31.5 59.6 51.5 68.1 08.2 37.4 53.9 44.3

closely resemble the ground truth.
Focusing instead on Urban→Rural, the scores highlight the challenging nature

of the task. The source domain is predominantly composed of urban scenes with a
high density of man-made structures like buildings and roads, but few natural ele-
ments. This inconsistent class distribution leads to negative transfer when adapting
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to the target rural domain, as evidenced by the performance of adversarial training
and self-training methods, which is similar to or even worse than the Source Only
baseline. The best-performing adversarial method, CLAN [139], achieves only a
limited improvement of +1.8 over the source-only model. This limited improve-
ment can be attributed to the difficulty in aligning features between domains with
drastically different class distributions using adversarial training. Self-training ap-
proaches prove to be more effective, with DACS [223] and its class mixing strategy
improving upon the baseline by +1.2 points. By generating pseudo-labels on the
target domain and mixing them with source samples, DACS can partially mitigate
the class distribution mismatch. However, the mixing strategy in DACS does not
explicitly account for the large disparities in sizes between categories in remote
sensing, limiting its effectiveness. DAFormer [96], which employs a Transformer
backbone alongside the same mixing technique as DACS, surpasses the baseline
by +9.3 mIoU. Its ability to capture long-range dependencies and the attention
mechanism provided by Transformers contribute to its improved performance in
this challenging scenario. Nevertheless, DAFormer still struggles with underrep-
resented classes and fails to fully exploit the hierarchical relationships between
objects. Our proposed HIUDA framework, combining the twin-head architecture
with the novel hierarchical instance mixing (HIMix), significantly outperforms the
source-only model by a substantial margin of +12.6 and exceeds the performance of
its closest competitor, DAFormer, by +3.3 points. As visible from the qualitative
results in Fig. 5.4, HIUDA excels at boosting performance on underrepresented ru-
ral classes such as agriculture. By explicitly considering the hierarchical structure
of objects during mixing, HIUDA ensures that smaller, less frequent objects like
buildings are not overwhelmed by larger, more dominant classes like agriculture or
forest. This enables our model to better capture the patterns and boundaries of
these underrepresented categories. Compared to DACS and DAFormer, our method
more accurately delineates object contours and classifies challenging categories like
water, despite their scarcity in the source domain. The hierarchical mixing in HI-
UDA allows for the preservation of fine-grained details and the correct placement
of objects within the scene, leading to more precise segmentation maps. HIUDA
also demonstrates superior performance on classes with diverse visual appearances
across domains, such as road, which can be paved or unpaved.

To evaluate the effectiveness of the twin-head architecture, we compare it against
the traditional single-head structure, which relies on a secondary teacher network
derived from the student model using an exponential moving average for generat-
ing pseudo-labels. Additionally, we investigate the potential benefits of the HIMix
strategy when combined with both single-head and twin-head training. In Table 5.3,
we report the results of the ablation study using the MiT-B5 [255] as main back-
bone for every experiment. Our findings indicate that the twin-head design, even
when paired with the standard class mixing strategy (Table 5.3, ID 3), outperforms
the single-head architecture (ID 1). This suggests that the twin-head approach is
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Figure 5.4: Qualitative results obtained in the Urban→Rural setting (top) and
Rural→Urban scenario (bottom), with a sample image from the target domain.

Row ID Twin-Head ClassMix Inst. Mix H. Sort. mIoU (U2R) mIoU (R2U)

1 ✓ 41.0 ± 0.33 46.5 ± 0.41
2 ✓ ✓ 43.4 ± 0.76 47.6 ± 0.10
3 ✓ ✓ 42.9 ± 0.35 47.1 ± 0.34
4 ✓ ✓ 43.2 ± 0.35 47.4 ± 0.16
5 ✓ ✓ ✓ 44.3 ± 0.39 48.7 ± 0.06

Table 5.3: Ablation study on the components of our HIUDA framework, namely
the twin-head architecture and the HIMix strategy, demonstrating their individual
and combined contributions to the overall performance.

more effective at generating accurate pseudo-labels with precise class boundaries,
as also highlighted by the qualitative results in the first row of Fig. 5.5. The HIMix
strategy enhances segmentation performance even when coupled with a single-head
architecture (ID 2). This improvement is particularly evident for categories with
smaller spatial extents, which are typically obstructed by larger classes when using
the standard class mixing approach. As a result, in the top-right image of Fig. 5.5,
the single-head model with standard mixing fails to capture the semantics of these
underrepresented classes, incorrectly classifying buildings as agricultural land. In
contrast, HIMix with a single segmentation head allows the model to accurately
distinguish buildings (Fig. 5.5, bottom-right), despite the lack of precision in de-
lineating the boundaries. The optimal results are achieved when the twin-head
architecture’s capacity to generate refined segmentation maps is combined with the
ability of HIMix to preserve the hierarchical semantic structure of the scene (ID
5). This combination yields the highest accuracy and produces segmentation maps
with the finest level of detail, as illustrated in the bottom-left quadrant on Fig. 5.5.
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To further understand the individual contributions of the components in HIMix, we
incrementally activate the instance extraction and hierarchical sorting phases. Our
tests reveal that the connected components extraction effectively provides more
variety during training, albeit with minimal improvements, while the hierarchical
mixing step consistently improves upon the instance extraction stage, resulting in
mIoU gains of +1.1 and +1.3 in the Urban→Rural and Rural→Urban scenarios,
respectively. This demonstrates the importance of considering the hierarchical re-
lationships between objects when mixing instances from different domains.

Figure 5.5: Qualitative comparison of single-head and twin-head architectures using
standard class mixing or our proposed HIMix strategy.

5.3 Learning from Sparse Annotations — Land
Cover Mapping

Land cover (LC) segmentation is a crucial task in remote sensing, with a wide
range of applications. Accurate and up-to-date LC maps provide valuable infor-
mation for many fields of application, from urban planning [199] to disaster man-
agement [64], studying the propagation and impact of calamities such as wildfires
and floods. For instance, these maps can enable the distinction and delineation of
highly flammable areas, like forests and shrubs, from urban borders, like buildings
and roads. However, generating high-quality delineations is complex and time-
consuming, requiring the expertise of multiple expert annotators and frequent up-
dates to reflect environmental changes.

107



Domain Robustness and Weak Supervision

One major challenge in producing efficient and reliable maps is the trade-off
between spatial resolution and coverage. Large open datasets at the European scale,
such as Corine Land Cover (CLC) [53], typically offer lower spatial resolution than
necessary for certain applications. On the other hand, higher resolution products
like Urban Atlas (UA) are only available on a subset of regions and limited in their
classification taxonomy, due to the significant effort needed for their production.
The more effort and resources invested in increasing accuracy and validation, the
sparser the ground truth data becomes. This issue is evident in data sources like the
Land Use/Cover Area frame Survey (LUCAS), which, despite offering consistent
and reliable land use and cover data for the entire EU through manual in situ
surveys, results in observations from a very limited number of points.

To exploit the characteristics of every source at our disposal, we propose a selec-
tive combination of all these Copernicus datasets, namely CLC, UA, and LUCAS,
so that the composition can leverage the strengths of each data source. By merg-
ing these datasets, we obtain a sparse ground truth that benefits from the high
resolution and accuracy of UA in urban areas, the detailed land cover information
of CLC, and the reliable point-wise observations of LUCAS. However, the sparsity
of the resulting annotations presents a significant challenge for training semantic
segmentation models effectively. Despite the improved quality and diversity of the
merged dataset solves a key limitation in existing sources, the presence of sparse
ground truth labels introduces a new challenge for an optimal model performance.
Similar to Domain Adaptation techniques described in Section 5.2, this issue re-
quires the application of specific approaches that can efficiently learn from limited
labeled data while exploiting the available unlabeled information.

In this section, we introduce SParse Annotations with DAformer (SPADA),
a novel framework for semantic segmentation that addresses the problem of land
cover mapping with sparse annotations. Given the similarities, our approach em-
ploys Unsupervised Domain Adaptation (UDA) techniques within a teacher-student
paradigm, while the main difference resides into the concept of source and target
datasets. In this case, the teacher model generates robust pseudo-labels to augment
the sparse ground truth annotations across the full input space. These pseudo-labels
are then mixed with the processed sparse labels through a series of steps. First,
the former are filtered based on a confidence threshold to ensure that only high-
quality predictions are considered. Next, the filtered pseudo-labels are weighted
according to their prediction confidence, giving more importance to labels with
higher certainty. This weighting scheme helps to mitigate the impact of potential
errors in the self-generated ground truth. Finally, the weighted pseudo-labels are
combined with the sparse ground truth labels, effectively expanding the labeled
data available for training the student model. This approach is comparable to the
techniques used in DACS and DAFormer [96], which instead leverage two different
sources altogether and adapt the model to a target domain. In practice, in this case
we consider the labeled pixels as our source, and the unlabeled pixels as the label,
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effectively applying the UDA pipeline on the same image with a different purpose
at each step.

To assess the effectiveness of SPADA, we conduct a thorough evaluation using
the only two reliable ground truth datasets at our disposal: LUCAS and Urban
Atlas, assessing the performance of our proposed technique against state-of-the-art
semantic segmentation approaches and third-party products Our results demon-
strate the effectiveness of the proposed technique, with SPADA outperforming even
robust third-party products such as S2GLC [142]. In summary, the main contri-
butions of this section are twofold: first, we propose and evaluate SPADA, a novel
framework for generating land cover maps from Sentinel-2 imagery, combining vi-
sion transformers with all the information at our disposal, including labeled and
unlabeled pixels during training. Second, we publicly release the dataset and code
used in this work at https://github.com/links-ads/igarss-spada, including
the input data and sparse annotations used to train the segmentation model, to
foster further research in this area.

5.3.1 Related Works
Supervised aerial semantic segmentation presents several unique challenges com-

pared to traditional computer vision tasks. These challenges include the high di-
mensionality of input data, with images often containing multiple spectral bands,
the large size of the images, and the top-down viewpoint, which differs from the per-
spective of most computer vision datasets. Additionally, the availability of ground
truth annotations is often limited, making it difficult to train models effectively.
To address the challenge of high-dimensional input data, researchers have proposed
various approaches. One common strategy is to include additional spectral bands
by introducing multiple encoders or expanding the input layers of the model [177].
This allows the model to exploit the rich spectral information present in remote
sensing imagery, with sources such as Sentinel-2. Another approach is to leverage
the large input dimensions and top-down viewpoint to implement additional regu-
larization techniques, as mentioned in previous sections. For example, GLNet [42]
proposed a multiscale regularization approach that takes advantage of the spatial
structure of the imagery, while ReDet [91] introduced invariance to rotation. When
facing the challenge of limited ground truth annotations, weakly-supervised learn-
ing approaches are often proposed. These methods aim to reduce the reliance on
precise, pixel-level labels by leveraging less accurate but readily available ground
truths. A typical technique is the simple use of Class Activation Maps (CAM) or
attention mechanisms to identify discriminative regions within an image. By fo-
cusing on these salient areas, labels can be propagated from the most informative
pixels to the entire object, effectively expanding the annotated regions [4]. Other
approaches explore the concept of semantic affinities between neighboring image
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regions. Methods like AffinityNet [4] and its extensions [165] train models to pre-
dict the similarity between adjacent pixels or patches based on their semantic con-
tent. By encouraging consistency among neighboring regions and penalizing those
with divergent semantics, these approaches can propagate labels more accurately
and produce more coherent segmentations. Sparse annotations, such as scribbles,
present a unique set of challenges in semantic segmentation. Unlike dense pixel-
wise labels, scribbles provide only a partial and approximate representation of the
objects’ boundaries. The goal in this setting is to expand the sparse ground truth
to cover the entire object while maintaining semantic consistency. Various tech-
niques have been proposed to tackle this problem, each with its own strengths and
limitations. ScribbleSup [127] employs a graph-based propagation approach, where
the scribbles serve as initial seeds, and labels are iteratively diffused to neighboring
pixels based on their similarity. On the other hand, Tree Energy Loss [126] takes
a more global perspective by constructing a minimum spanning tree among pixels
based on their pairwise affinities. By enforcing consistency along the tree edges,
this approach can propagate labels to distant regions while preserving semantic
boundaries. FESTA [99] introduces a novel unsupervised neighborhood loss that
encourages consistent predictions among nearby pixels. By leveraging the inherent
spatial structure of the image, FESTA can expand the sparse annotations to cover
the entire object without relying on additional labeled data. Building upon these
sparse annotation approaches, we propose to carry out the label expansion process
adjusting self-training UDA methods, such as DAFormer [96], to address the chal-
lenge of limited labeled data. We treat the sparsely annotated pixels as the source
domain and the unlabeled pixels as the target domain, effectively casting the prob-
lem as a domain adaptation task. This formulation allows us to leverage both the
available sparse annotations and the abundant unlabeled data during training. The
model learns to expand the sparse labels to cover the entire image while benefiting
from the pseudo-labels to improve its generalization capability.

5.3.2 Dataset
To train and validate our framework, we construct a comprehensive dataset by

combining multiple data sources from the Copernicus program. The core of our
dataset consists of Sentinel-2 Level-2A (L2A) cloud-free mosaics, which provide
high-resolution, multi-spectral imagery covering the entire study area. These mo-
saics serve as the primary input for the models, offering spectral information across
12 bands at various spatial resolutions. Given our application scenario focusing
on fuel map generation for wildfire management, we concentrate our study on the
Mediterranean region, where wildfires are more frequent and intense. A visual rep-
resentation of our training and testing areas is provided in Fig. 5.6. The ground
truth for each training region consists of two types of annotations: scribble labels
and point-wise labels.
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Figure 5.6: Geographical distribution of the train and test areas across Europe.
Focus was given to regions with high wildfire occurrence during the years. Over-
lapping areas are removed during the offline tiling process to guarantee disjoint
sets.

Category CLC ID LUCAS ID Color
Artificial surfaces 111 112 121 122 123 124 131 132 133 142 7
Bare surfaces 331 332 335 6
Wetlands 411 412 421 422 423 –
Water 511 512 521 522 523 8 9
Grasslands 211 231 321 3
Agricultural fields 212 213 221 222 223 241 242 243 244 1 2
Broadleaved veg. 311 4*
Coniferous veg. 312 4*
Shrubs 322 323 324 333 5
Ignored 141 313 334 999 –

Table 5.4: Mapping of CLC and LUCAS class IDs to the shared land cover taxon-
omy. The table shows the correspondence between the original class IDs from CLC
and LUCAS datasets and the aggregated classes used in the SPADA dataset. The
color column indicates the RGB values assigned to each category for visualization
purposes. Asterisks indicate labels that underwent disambiguation.

To build a reliable ground truth for training and evaluation, we integrate sev-
eral existing land cover and land use sources. First, we include the Corine Land
Cover (CLC) dataset, a pan-European land cover classification dataset that pro-
vides consistent information on land cover and land use across 39 countries. CLC
offers a comprehensive, dense hierarchical classification system with 44 land cover
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classes, making it a valuable resource for our task thanks to its detailed taxon-
omy. However, the relatively poor precision of the labels (e.g., each polygon has a
minimum mapping unit of 25 hectares) may limit its usability for certain applica-
tions requiring finer spatial resolution. To complement CLC and provide a more
detailed representation of land cover, we incorporate the Land Use and Coverage
Area frame Survey (LUCAS) dataset. LUCAS is a European-wide survey that col-
lects harmonized data on land use and land cover through direct field observations.
While LUCAS provides only point-wise annotations, the available data has been
manually validated, ensuring high accuracy and reliability. Given its precise albeit
local information, we leverage LUCAS for both training and validation purposes,
especially considering the soil classification performance.

In addition to CLC and LUCAS, we include the Urban Atlas (UA) dataset,
which focuses specifically on land cover and land use within large urban areas across
Europe. UA offers a higher spatial resolution compared to CLC, with a minimum
mapping unit of 0.25 hectares for urban classes and 1 hectare for other classes.
However, UA covers a limited number of classes and is available only for selected
urban areas. Despite these limitations, we also exploit the detailed delineations
provided by UA for training and validation purposes, focusing on the segmentation
performance in this case.

Figure 5.7: Overview of the sparse label generation process. (1) CLC classes are
grouped into the target classes. (2) The grouped CLC classes are filtered using the
High Resolution Layer (HRL) and spectral indices to remove potentially mislabeled
pixels. (3) Large contiguous areas are eroded to create sparse labels. (4) Urban
areas from the CLC map are replaced with more precise annotations from Urban
Atlas (UA). (5) LUCAS points are disambiguated, rasterized and combined with
the sparse labels from CLC to produce the final ground truth.

Starting from the aforementioned sources, the sparse label generation pipeline
constructs two separate ground truth labels: a set of scribble annotations that
exploit CLC as main source, referred to as scribble labels from now on, and the ras-
terized LUCAS annotations, named point-wise annotations for clarity. The overall
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process is displayed in Fig. 5.7 and simplified to convey the main steps and the
final results.

The pipeline for the scribble labels starts at the CLC dataset, which undergoes
a series of processing functions to convert the original classes into the required tax-
onomy. The workflow starts with the adoption of a custom simplified taxonomy
to cope with the differences among datasets. To accommodate the diverse sources
and maintain a focus on vegetation, we consolidate the detailed CLC hierarchy
into a consistent taxonomy consisting of 9 categories:, namely: artificial surfaces,
bare surfaces, wetlands, water, grassland, agricultural fields, broadleaved vegetation,
coniferous vegetation, and shrubs. It is important to note that the wetlands cate-
gory is absent from the LUCAS dataset, while UA does not differentiate between
broadleaved and coniferous vegetation in forested areas. To address these discrep-
ancies during the evaluation phase, we exclude the wetlands category when testing
on LUCAS data and combine the broadleaved and coniferous vegetation classes
into a single forest type when assessing performance on UA. The final aggregation
is detailed in Table 5.4.

Second, following previous work [142], we filter vegetation-based classes using
the Normalized Difference Vegetation Index (NDVI), the Normalized Difference
Water Index (NDWI), and HRL for Impervious Surfaces, defining independent
thresholds for each one of them to eliminate potentially mislabeled pixels. In prac-
tical terms, when NDVI or NDWI are lower than nominal values, or the pixel is
confidently labeled as impervious surface, we remove the point from the ground
truth, assigning the ignored label.

Third, we acknowledge that the boundaries in CLC are approximate, but we
assume that the labels themselves provide a reasonable indication of the overall
land cover within each delineated area. Building upon this assumption, we pro-
cess the filtered CLC labels using Connected Components Labeling (CCL) [94] to
identify and separate individual contiguous regions. Subsequently, these connected
components are eroded by a relative percentage to create a buffer zone around
the boundaries. The eroded regions are then subjected to morphological skele-
tonization, which reduces the thick, approximate semantic labels to thin, simplified
lines. This transformation process effectively converts the precise contours and
well-defined boundaries of the original CLC labels into sparse, indicative scribbles.
These scribbles serve as a coarse guide, suggesting the likely presence of specific
land cover categories in each area without providing exact delineations. As a last
step, we further apply morphological dilation with a fixed-size kernel to each com-
ponent in order to increase their thickness and transform the skeletons into actual
scribbles. To enhance the precision of urban area delineations, we additionally
overlay the artificial surfaces from UA on top of the scribble annotations, where
available. Although UA does not provide comprehensive coverage, it offers more
detailed and accurate annotations for urban regions, as illustrated in Fig. 5.7 (step
n.4).
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The point-wise annotations, on the other hand, are generated by rasterizing
the LUCAS manual observation within the study area and assigning the closest
class from the unified taxonomy to each point. This process results in a set of
precise point-level labels that provide valuable information for training and valida-
tion. Since LUCAS data only provides latitude and longitude coordinates without
specifying the spatial extent of each observation, we empirically determine an ap-
propriate point size of 5×5 pixels to represent each LUCAS point in the rasterized
dataset.

To further enhance the land cover information in our dataset, we incorporate the
Dominant Leaf Type HRL product as a disambiguation source for forest locations
in LUCAS. This layer provides a distinction between broadleaved and coniferous
tree cover, enabling a more detailed characterization of forested areas. However,
it is important to note that the HRL product itself is derived through an auto-
mated machine learning process. Consequently, we refrain from using the HRL
data directly as ground truth. Instead, we employ it as a reliable auxiliary source
for disambiguation and filtering purposes, leveraging its information to refine and
improve the accuracy of our land cover labels.

To construct the final dataset, we acquire Sentinel-2 Level-2A cloudless mosaics
spanning from April to August 2018, aligning with the most recent release of the
datasets employed in our study. These mosaics are obtained through the Microsoft
Planetary Computer platform [214] and encompass all 12 available spectral bands
at 10m/pixel resolution (i.e., the maximum resolution for this source). To handle
processing and training more easily, we divide each area of interest from Fig. 5.6
into non-overlapping macro-tiles of 2048×2048 pixels, utilizing the EPSG 3035 CRS
to ensure consistent spatial representation across the dataset. From the macro-tiles
designated for training, we further allocate 20% of the tiles for validation purposes.
This results in a dataset comprising a total of 538 images for training, 135 images for
validation, and 394 images for testing. Each image in the dataset is accompanied by
two distinct sets of labels: scribble annotations and point-wise labels. The scribble
annotations, derived from the processed CLC dataset, provide coarse indications
of land cover categories, while the point-wise labels, obtained from the rasterized
LUCAS observations, offer precise ground truth information at specific locations.

5.3.3 Method
In this section, we present our methodology by first formally defining the prob-

lem statement and the associated challenges. Next, we introduce the DAFormer
baseline, the state-of-the-art UDA framework that serves as the foundation for our
proposed approach. Finally, we describe SPADA, our novel framework that ex-
tends DAFormer to effectively leverage sparse annotations for accurate and dense
predictions.
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Problem Statement

In this work, we address the task of semantic segmentation for fuel mapping
using sparsely annotated data. The challenge arises when only a small subset of
pixels in an image are labeled with their corresponding class, while the majority of
the pixels remain unmarked. Let X denote the set of multi-spectral input images,
where each image x comprises a set of pixels I. We define Y as the set of semantic
annotations that assign a class label from the set C to each pixel j ∈ J , where the
number of labeled pixels is significantly smaller than the total number of pixels,
i.e., |J | ≪ |I|. As described in Section 5.3.2, our dataset consists of two types
of sparsely annotated maps: (i) a set of scribble annotations, denoted as YS, and
(ii) a set of point-wise annotations, referred to as YP . The scribble annotations
provide coarse, incomplete labels for a portion of the image, while the point-wise
annotations offer precise, albeit even sparser labels at specific locations. The goal
is to learn a parametric function fθ that maps a multi-spectral image to pixel-
wise probabilities, i.e., fθ : X → R|I|×|C|, and evaluate its performance on unseen
images. In line with previous work [96], the model parameters θ are optimized
using a standard categorical cross-entropy loss, as detailed in Eq. (5.1). The main
challenges in this problem setting include: (i) dealing with the limited and sparse
nature of the annotations, which cover only a small portion of the image pixels,
(ii) leveraging both the scribble and point-wise annotations effectively to guide
the learning process, and (iii) generating accurate and dense predictions for the
entire image, including the unmarked regions, based on the sparse annotations. To
address these challenges, we propose a framework that combines the strengths of
UDA and self-training techniques, as described in the following sections.

DAFormer Baseline

DAFormer [96] is a state-of-the-art UDA framework that combines a powerful
network architecture with effective training strategies. Starting from SegFormer
[255] as reference point, the architecture of DAFormer consists of a Transformer-
based encoder and a context-aware fusion decoder, specifically designed to im-
prove domain adaptation performance. For the encoder, DAFormer employs the
Mix Transformer (MiT) [255], a recently proposed variant of Vision Transformer
(ViT) backbone [61] tailored for semantic segmentation. The choice of using a
Transformer-based encoder is motivated by their demonstrated superior perfor-
mance and robustness compared to traditional CNN-based architectures in various
computer vision tasks, including semantic segmentation. The MiT encoder is de-
signed to generate multi-level feature maps at different resolutions, allowing to
capture both high-level semantic information and fine-grained details. The fea-
ture maps are progressively downsampled using overlapping patch merging, which
preserves local continuity and reduces computational complexity. On the decoder
side, DAFormer drops the simple MLP head from SegFormer, and introduces a
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context-aware fusion module that aggregates multi-level features from the encoder.
Unlike previous works that only consider context information at the bottleneck
features, DAFormer leverages context across features from different encoder levels.
This approach is motivated by the observation that earlier features provide valu-
able low-level concepts at higher resolutions, which can also offer important context
information for semantic segmentation. The context-aware fusion module employs
depth-wise separable convolutions with varying dilation rates, inspired by the ASPP
module [39], to capture multiscale context while maintaining a low number of pa-
rameters. The MiT encoder brings robustness and the ability to capture global
context, while the context-aware fusion decoder effectively aggregates multi-level
features and incorporates multiscale context information. The DAFormer training
strategy is based upon DACS (Domain Adaptation via Cross-Domain Sampling)
[223], a self-training framework based on a teacher-student paradigm, where the
teacher network provides robust and consistent pseudo-labels on the target do-
main. DACS also introduces ClassMix, a mixing strategy to combine source and
target information into a single image and label pair. ClassMix can be seen as a
data augmentation technique that mixes two images and their corresponding labels
based on the semantic classes present in the images, creating a new augmented
sample that preserves the semantic context of the original images. In this case, one
pair is composed of source image and source ground truth, while the second pair
comprises the target image and a pseudo-label, generated by the teacher network.

To further enhance the domain adaptation performance, DAFormer introduces
three key training strategies: (i) Rare Class Sampling (RCS) to address the class
imbalance in the source dataset and improve the quality of pseudo-labels for rare
classes; (ii) Thing-Class ImageNet Feature Distance (FD) to regularize the model
by distilling knowledge from ImageNet features, focusing on thing-classes; and (iii)
learning rate warm-up to gradually increase the learning rate, facilitating better
feature transfer from ImageNet pretraining. In our framework, we drop the Im-
ageNet feature distance given the remote sensing setting, while we maintain the
sampling strategy and the warm-up scheduler for the experiments.

SPADA Framework

Our proposed framework, SPADA (SParse Annotations with DAformer), ex-
ploits the DAFormer architecture and training strategy to effectively leverage sparse
annotations for semantic segmentation. Similarly, SPADA also combines the MiT
encoder with a context-aware fusion decoder to take advantage of short and long
range dependencies in remote sensing images. Drawing inspiration from self-training
UDA strategies, the SPADA framework is composed of three main components.
First, a student network fθ is trained on a combination of ground truth scribbles,
dense pseudo-labels, and point-wise annotations. Second, a teacher network gϕ is
obtained as an exponential moving average (EMA) of the student model, tasked
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Figure 5.8: Visual representation of the SPADA framework. (i) the teacher model gθ

generates the pseudo-labels, (ii) the sparse ground truth is mixed with the pseudo-
labels to obtain a dense mask to learn from, (iii) the total loss is computed as
sum of LS and LP , (iv) the teacher weights are updated with the student weights
through EMA.

with generating robust and consistent pseudo-labels from the target inputs. Last,
a label mixing strategy comparable to ClassMix is employed to combine the scrib-
ble annotations with the generated pseudo-labels, leveraging the strengths of both
types of annotations.

The training process of SPADA, as illustrated in Fig. 5.8, involves several key
steps. First, the teacher network gϕ generates pseudo-labels from the target domain
inputs, providing an initial set of annotations for the unlabeled target data. Follow-
ing UDA standards [223, 96], these pseudo-labels are then filtered based on a fixed
confidence threshold to obtain a set of reliable pseudo-labels, ensuring that only
high-quality annotations are used in the subsequent steps. Next, the scribble anno-
tations, which provide sparse but accurate labels, are fused with the filtered pseudo-
labels to obtain the mixed labels yM . This fusion process is formally defined as a
composition of the pseudo-labels ŷT and the scribble annotations yS, represented
by the equation yM = ŷT ⊙ yS. In contrast with UDA techniques where the source
labels are randomly chosen with varying probability, here we always select all the
available labels due to their sparsity. By combining the two types of annotations,
SPADA leverages both the dense coverage of the pseudo-labels and the enhanced
precision of the scribble annotations. The student network fθ is then trained using
a combination of the mixed labels yM and the more reliable point-wise annotations
yP , which serve as additional regularization. The training objective is defined as a
weighted sum of two categorical cross-entropy losses: LS = LS(ŷ, yM)+λLP (ŷ, yP ).
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Here, ŷ represents the predicted label, λ is a weighting factor that balances the con-
tribution of the two losses, and LS and LP are the losses computed for the mixed
labels and point-wise annotations, respectively. This training objective ensures that
the student network learns from both the dense mixed labels and the precise point-
wise annotations. Finally, to maintain stability and consistency in the pseudo-label
generation process, the teacher network gϕ is updated using an Exponential Mov-
ing Average (EMA) of the student network’s weights. This EMA update allows
the teacher network to gradually incorporate the knowledge learned by the student
network while mitigating the impact of noisy or inconsistent pseudo-labels. By
iterating through these steps, SPADA progressively refines the pseudo-labels and
adapts the student network to the target domain, effectively leveraging the sparse
annotations to guide the domain adaptation process.

5.3.4 Experiments
We evaluate our approach on four distinct test areas, distributed across South

Europe, as shown in Fig. 5.6, namely Catalonia in Spain, Liguria, and Sardinia
in Italy, and Macedonia in Greece. In the following paragraphs, we provide the
implementation details and experimental configurations tested, as well as the results
obtained on the available test data.

Implementation Details

As introduced in Section 5.3.2, we utilize the Sentinel-2 L2A product as input for
every experiment, obtained as cloudless mosaic from spring 2018, effectively align-
ing with the available ground truth Copernicus datasets employed in this study (i.e.,
CLC, UA, LUCAS, HRL). This temporal alignment also enables a fair compari-
son with state-of-the-art products like the Sentinel-2 Global Land Cover (S2GLC)
[142]. S2GLC is itself an automated land cover classification using a combination
of complex data processing, with rule-based and Random Forest models at its core.
It was obtained through a fully automated workflow using multi-temporal Sentinel-
2 imagery, with an overall accuracy of 86.1% for the pan-European land cover
map. For fairness, we acknowledge that the most recent S2GLC map dates back to
2017, while our solution and baselines are trained and compared against 2018 data
sources. At the same time, this third-party product benefits from the use of a time
series of Sentinel-2 images and fully supervised training to enhance its accuracy,
while our approach exploits sparse annotations from a single image. These factors
certainly reduce the performance on categories such as the vegetation types, where
the seasonality is a key factor to consider. Nevertheless, we adopt S2GLC as our
current state of the art for lack of better alternatives in terms of taxonomy and
geographical extension. The comparison against S2GLC highlights the robustness
of our approach in handling sparse annotations and leveraging domain adaptation
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techniques to achieve competitive performance in land cover segmentation tasks.
Among the 12 available regions, the selected 8 training areas are further parti-

tioned into training and validation sections, each measuring 2,048 × 2,048 pixels,
with an 80%/20% split. Subsequently, all data is further tiled into 512× 512 over-
lapping chips, resulting in a final set of 20,398 tiles for training, 5,100 for validation,
and 394 full sections for testing, which are divided into tiles at runtime.

We compare SPADA against various semantic segmentation baselines, specifi-
cally UNet [197], OCRNet [262], PSPNet [270], DeepLabV3+ [39] and third-party
products, including S2GLC [142] and the original CLC. The baseline models are
trained on the available ground truth without additional measures, while CLC and
S2GLC are remapped to match the uniformed land cover classes. Due to the ab-
sence of dense, manually validated annotations, we assess the performance using
the only two reliable ground truth sources at our disposal: LUCAS and UA. First,
we use the LUCAS observations available in the test areas to assess the classifica-
tion accuracy of the model, in terms of F1 score (Eq. (2.5)). Second, we exploit the
finer segmentation labels provided by UA to focus the assessment on the segmen-
tation quality, using the standard IoU metric (Eq. (2.2)). Each model undergoes
training for 160,000 iterations. Similar to DAFormer, we use an AdamW optimizer
with linear warm-up of 1,500 iterations, learning rate of 1×10−4, and weight decay
of 0.01. Considering the UDA-based components, we maintain the EMA update
parameter α = 0.99 and the pseudo-label threshold τ = 0.968 [223]. Concerning
the weighting factor λ, we employ a fixed value of 1 throughout our experiments.
Preliminary tests with higher values (i.e., up to 10) highlighted that the loss con-
tribution did not bring additional performance gains. However, the critical aspect
was maintaining the point-wise loss at least on par with the scribble loss. For both
comparison and practical deployment consideration reasons, we adopt a MiT B3
[255] backbone for both the SegFormer baselines and our SPADA framework. Dur-
ing training, we further augment the available chips with transformations such as
horizontal and vertical flips, or affine transforms, and color jitter or Gaussian blur
to obtain more diverse inputs.

Results

The results on the LUCAS and UA test sets are presented in Table 5.5 and
Table 5.6 respectively. Here, we compare against each baseline mentioned above,
and S2GLC as strongest competitor. Additionally, we include the performance of
the raw CLC layers, the reference land cover product at European scale, against the
two selected ground truths as a lower bound. While, on one hand, these additional
evaluations provide context on the agreement between the employed sources, they
also give further insights on the low accuracy of CLC labels as ground truth for
fully supervised training.

Table 5.5 presents the F1 scores computed on the LUCAS dataset. In this case,
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Method Agric. Grassl. Broadl. Conif. Shrubs Bare Artif. Water mF1 Acc.

CLC 55.72 24.71 66.49 68.51 33.55 60.63 52.71 63.40 55.53 52.54
UNet 57.94 28.40 72.30 68.33 34.72 34.47 55.98 73.01 58.00 55.62
OCRNet 59.39 26.25 70.71 65.17 33.77 33.81 53.88 68.73 56.87 54.38
PSPNet 58.51 18.69 66.38 64.56 31.66 52.87 52.88 68.18 55.04 52.10
DeepLabV3+ 60.64 17.30 67.56 63.62 32.25 55.45 54.39 67.06 55.84 53.42
SegFormer 75.71 22.62 69.91 69.47 34.75 59.30 54.43 68.58 62.19 60.72
S2GLC 69.39 36.06 75.22 70.60 34.15 61.62 55.71 75.99 64.07 62.14
SPADA (Ours) 77.72 39.36 76.78 74.19 38.08 63.64 58.54 70.49 67.93 66.99

Table 5.5: Results obtained on the LUCAS test set in terms of classwise F1 scores,
macro-averaged F1 (mF1) and macro-averaged Accuracy (Acc.).

Method Artif. Bare Wetl. Water Grassl. Agric. Forest mIoU Acc.

CLC 58.86 14.78 32.44 58.68 14.62 36.56 45.69 37.37 49.81
UNet 51.06 1.83 25.10 32.00 11.77 39.88 53.67 30.76 49.04
OCRNet 53.15 2.39 34.36 30.79 12.57 39.34 50.59 31.88 48.15
PSPNet 55.12 3.85 34.12 30.68 11.81 38.72 46.57 31.55 47.64
DeepLabV3+ 54.09 5.60 30.06 31.25 10.74 41.31 48.45 31.64 47.55
SegFormer 56.77 15.69 23.01 55.41 7.19 52.60 49.89 37.22 56.06
S2GLC 40.55 7.12 4.00 66.97 14.19 46.09 65.95 34.98 52.49
SPADA (Ours) 64.36 13.56 27.27 65.95 10.01 54.3 64.56 42.86 58.11

Table 5.6: Results obtained on the Urban Atlas test set in terms of classwise IoU
scores, macro-averaged IoU (mIoU) and macro-averaged Accuracy (Acc.).

given the sparse ground truth, we assign as prediction for each ground truth obser-
vation the majority class in a window N × N centered on the LUCAS point. We
empirically set N = 1 (i.e., one-shot), as in practice bigger windows did improve
on the final result. The UNet and SegFormer baselines achieve good results, with
SegFormer being the stronger of the two. S2GLC proves to be a competitive base-
line, proving the effectiveness of its fully supervised training. However, SPADA
manages to outperform all tested baselines, including S2GLC, achieving a +3.86
increase in average F1 score. This improvement is highlighted also in the class-wise
results, where SPADA consistently outperforms every other solution, except for the
water category.

Notably, SPADA obtains high scores both on artificial surfaces, with a +2.83
points with respect to S2GLC, and more challenging vegetation categories such as
shrubs, with a +3.93 increment. The raw CLC layers, as expected, have significantly
lower accuracy compared to the other methods, highlighting the limitations of using
coarse-resolution land cover products for detailed analysis.

Table 5.6 reports instead the IoU scores computed on the Urban Atlas dataset.
In this case, given the similarities between these two products, the CLC baseline
outperforms most of the baseline in terms of average IoU. S2GLC again proves to
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(a) Sentinel-2 (b) UNet baseline

(c) S2GLC (d) SPADA

Figure 5.9: Qualitative comparison of the outputs from (a) Sentinel-2 input, (b)
UNet baseline, (c) S2GLC, and (d) SPADA. Best viewed zoomed in.

be a competitive baseline, demonstrating its ability to generate accurate segmen-
tation maps. However, SPADA obtains comparable or substantially higher results
on average for most classes, with an IoU increment of +7.88 compared to S2GLC.
This significant improvement in IoU scores demonstrates the framework’s ability to
generate more precise and coherent segmentation maps, especially for classes such
as artificial surfaces, agricultural fields. It is worth noting that the performance
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Row ID CLC LUCAS Mix DAF. Head F1 (L) mIoU (UA)

1 D 58.63 36.24
2 ✓ 53.22 36.90
3 ✓ ✓ 62.19 37.22
4 ✓ ✓ ✓ 65.13 40.44
5 ✓ ✓ ✓ ✓ 67.93 42.86

Table 5.7: Ablation results with different combinations of datasets, strategies and
architectures. D represents the dense version of the CLC ground truth (i.e., before
scribble processing).

on some categories, such as bare and grassland, may be affected by the inherent
challenges in distinguishing these classes from others with similar spectral char-
acteristics, as well as classification errors in the original ground truth. However,
the overall improvement across most categories highlights the effectiveness of our
approach in capturing the subtle differences between land cover types.

Fig. 5.9 provides a qualitative comparison between the outputs of the Sentinel-
2 input, a UNet baseline, which remains the best performing model among non-
Transformer models, S2GLC, and SPADA. The UNet baseline (top right) produces
uniform results, but the boundaries between different land cover types appear too
approximate and lack precision. S2GLC, while visually appealing at first glance,
exhibits significant noise and inconsistencies when zoomed in. This limitation is
probably due to the pixel-based classification, that completely disregards contex-
tual information. In contrast, SPADA demonstrates the ability to maintain a good
level of detail for the boundaries while effectively reducing noise, thanks to the
Transformer-based architecture and context-aware segmentation head. The maps
generated by SPADA exhibit smoother and more coherent transitions between dif-
ferent land cover types, preserving the intricate patterns.

The ablation study, presented in Table 5.7, provides insights into the contri-
butions of each component in our framework. In the first row, we observe that
training with the dense version of the CLC ground truth (denoted as D) leads to
suboptimal performance, with an F1 score of 58.63 on LUCAS. This highlights
the importance of using sparse annotations, as the dense CLC labels may intro-
duce noise and imprecise boundaries. When using only the LUCAS dataset for
training (row 2), the performance drops slightly compared to the dense CLC train-
ing, achieving an F1 score of 53.22. This suggests that while the LUCAS dataset
provides valuable information, its sparsity may not be sufficient to carry out a seg-
mentation task. Combining the sparse CLC labels with the LUCAS dataset (row
3) leads to a significant improvement, with an F1 of 62.19. This suggests that the
sparse CLC labels provide a broader context, while the LUCAS dataset offers more
precise information on the underlying class. Introducing the DACS mixing strategy
(row 4) further enhances the performance, achieving an F1 score of 65.13. Finally,
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replacing the simple SegFormer head with the more advanced DAFormer head (row
5) yields the best results, with an F1 score of 67.93 and a mean IoU of 42.86.

5.4 Learning from Multiple Tasks — Burned Area
Mapping

Multitask learning is emerging as a powerful tool to improve the robustness and
generalization capabilities of deep learning models [268]. By training models to
simultaneously solve multiple related tasks, this paradigm allows them to capture
more comprehensive and transferable features that can better adapt to variations
in input data. In the context of domain robustness, multitask learning can provide
several key benefits. In this particular case, the shared representations learned
through multitask learning can act as indirect regularization, preventing overfitting
to individual tasks or domains and promoting better generalization.

In this section, we address the problem of burned area delineation through a
multitask learning approach. Wildfires have become an increasingly pressing issue
in recent times, with their growing frequency and intensity posing significant threats
to the environment, wildlife, and population. To effectively manage and respond to
these events, it is crucial to accurately map the extent of the affected areas. How-
ever, due to the many challenges of this specific domain, traditional approaches
based on binary segmentation often fall short in terms of robustness and gener-
alization, especially when trained from scratch. In fact, burned area delineation
inherently presents challenges of limited labels and domain shifts. The scarcity of
large-scale, diverse datasets for this specific task, as mentioned earlier, naturally
creates a low-resource scenario. Moreover, the varying landscapes and geographical
locations where wildfires occur introduce significant domain shifts, making it dif-
ficult for models to generalize across different environments. Existing datasets[51,
184], often have limitations in terms of geographic coverage or variability, which
can negatively affect the performance of models when applied to different scenarios.
Moreover, the inherent bias and class imbalance in this task, with wildfires typically
happening in forested areas and cover a relatively small portion of the input image,
further exacerbate this problem and hinders the model generalization abilities.

To overcome these limitations, we propose a two-fold approach. First, we con-
struct a dataset specifically tailored for burned area delineation, leveraging infor-
mation from the Copernicus Emergency Management System (EMS), Sentinel-2
satellite imagery, and the ESA WorldCover 2020 land cover on global scale [264].
Our dataset encompasses a comprehensive set of samples, focusing primarily on Eu-
ropean landscapes, and includes annotations for both burned area delineation and
a more general purpose land cover segmentation tasks. By incorporating this last
information as an auxiliary learning objective, we aim to improve the contextual
understanding of the models and enhance their robustness in handling the burned
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area delineation task, which remains our primary target.
Second, we develop a multitask learning framework for Robust Burned Area

Delineation (RoBAD) that integrates the land cover classification task alongside
the primary objective. By training the model to simultaneously predict both the
extent of the burned regions and the underlying land cover categories, we enable
it to learn shared representations and exploit the complementary nature of these
tasks. This approach not only enriches the semantic understanding of the models
but also helps to mitigate the challenges posed by limited data and class imbalance.

To evaluate the effectiveness of our multitask learning framework, we con-
duct extensive experiments with state-of-the-art segmentation models, including
UPerNet [254] concerning convolutional-based networks, and SegFormer [255] for
Transformer-based solutions. We compare the performance of these models in both
single-task and multitask settings, considering various configurations such as train-
ing from scratch and leveraging pretrained weights. Our results demonstrate the
superior performance and robustness of the multitask approach, highlighting its po-
tential to enhance the accuracy and generalization capabilities even in the presence
of pretrained backbones. The code and dataset associated with this work are pub-
licly available at https://github.com/links-ads/burned-area-segmentation.

5.4.1 Related Works
The majority of current semantic segmentation approaches rely on convolu-

tional encoder-decoder architectures (CNNs), which employ various strategies to
capture both global context and fine-grained details within the scene. Works such
as Fully Convolutional Networks (FCN) [135] and U-Net [197] introduced the con-
cept of using bottleneck components to encode pixel information into semantically
meaningful representations, combined with skip connections to integrate lower-
level features with higher resolution. Subsequent approaches, including DeepLab
[39] and PSPNet [270], expanded upon these ideas by incorporating multiscale
feature extraction and fusion techniques, where inputs are processed using vary-
ing kernel sizes and dilations to simultaneously capture local and global context.
More recent architectures often combine these concepts to generate more robust
and informative features [254]. However, the application of semantic segmentation
to aerial and remote sensing imagery presents several unique challenges that of-
ten require domain-specific solutions. Unlike traditional image segmentation tasks,
satellite data usually provides additional bands beyond the visible spectrum, such
as Near-Infrared (NIR) or Shortwave Infrared (SWIR), which can be integrated in
various ways, such as additional input channels [177] or through the use of spe-
cialized encoders for feature fusion [228]. Moreover, aerial images are typically
denser, containing numerous entities against complex backgrounds and exhibiting
wider spatial relationships. To effectively capture these long-range dependencies,
attention mechanisms have been widely adopted to model pixel-level similarities
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across larger distances [164]. Consequently, transformer-based architectures and
their segmentation variants [255] have become increasingly popular in this domain,
leveraging their inherent ability to extract long-range relationships. In the specific
context of burned area delineation, a wide range of techniques have been proposed
to accurately map the extent of affected regions from remote sensing data. Tra-
ditional approaches often rely on spectral indices to distinguish between burned
and unburned areas by combining information from multiple spectral bands. The
most widely used indices include the Normalized Burn Ratio (NBR) [50] and the
differenced Normalized Burn Ratio (dNBR) [153], which are frequently employed in
conjunction with other indices, such as the NDVI, that provides information about
the underlying vegetation [249]. Additionally, specialized indices have been devel-
oped to better adapt to specific satellite sensors, such as the Burned Area Index
for Sentinel-2 (BAIS) [76]. While index-based methods are still widely used to this
day, they often produce noisy results when not applied correctly and require fur-
ther manual refinement. Moreover, certain indices, such as dNBR, necessitate the
availability of pre-wildfire images to compare the same regions before and after the
event, limiting their applicability in certain scenarios. In the last decades, machine
learning and deep learning techniques have shown remarkable results on this task,
reducing the need for manual intervention while achieving good performance. Stan-
dard supervised classification algorithms, such as Support Vector Machines (SVM)
and Random Forests (RF), have been extensively utilized for burned area mapping
[191, 114]. These approaches operate on a per-pixel basis and remain effective on
lower-resolution imagery, such as MODIS. However, their lack of contextual infor-
mation may lead to suboptimal results when applied to higher-resolution data, such
as Sentinel-2 [114]. More recently, convolutional neural networks (CNNs) have been
extensively applied to burned area mapping with success, particularly when con-
sidering post-wildfire images alone. U-Net-based segmentation architectures [160,
114] have become the standard approach in this domain. Furthermore, transformer-
based architectures have demonstrated their effectiveness in various remote sensing
tasks [218], including burned area segmentation [27]. These architectures leverage
self-attention mechanisms to capture long-range dependencies and global context,
which are crucial for segmentation in complex remote sensing scenes. Despite the
progress made in burned area delineation using semantic segmentation techniques,
the limited availability of large-scale, diverse datasets specifically tailored for this
task remains a significant challenge. Existing datasets often suffer from limited ge-
ographic coverage or lack variability in terms of land cover types and characteristics
[51, 184]. This scarcity of comprehensive training data can hinder the generalization
capabilities of segmentation models and their ability to adapt to different scenarios
encountered in real-world applications. Among other tools, Multi-Task Learning
(MTL) has emerged as a promising approach that aims to leverage commonalities
and differences among related tasks to improve generalization performance on all
the tasks [231, 201]. Several works have explored MTL for dense prediction tasks
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like segmentation or depth estimation, in applications such as autonomous driving
[228], or even remote sensing [120, 246, 86]. Architecturally, most MTL approaches
for segmentation employ some form of feature sharing. Encoder-focused architec-
tures typically share backbones across tasks and use task-specific decoders or heads
to generate the output [156, 144, 109]. This allows for efficient parameter shar-
ing while still providing flexibility to adapt to each task, however the gain from
the shared learning remains limited. On the other hand, decoder-focused architec-
tures introduce information sharing at multiple scales within the decoder [256, 269,
230]. In terms of optimization, a key challenge in MTL is balancing the influence
of each task during training. Uncertainty weighting [109] and gradient normaliza-
tion [43] are popular strategies to adaptively adjust task weightings based on their
homoscedastic uncertainty or gradient magnitudes. Other approaches formulate
MTL as a multi-objective optimization problem [206] or explicitly learn the task
weightings and branching structure [87]. In this work, we adopt a decoder-focused
MTL architecture, exploiting the same feature maps to carry out both the burned
area delineation as a primary task and an auxiliary land cover mapping. Given the
complementary nature of these objectives (i.e., burned areas effectively change the
underlying land cover) and our focus on burned area mapping, we simply combine
their losses with a weighted sum, without introducing further complexity.

5.4.2 Dataset

Figure 5.10: Geographic coverage of wildfire events in our dataset, categorized into
training (red), validation (blue), and testing (yellow) subsets, focused on Europe
(left), and displayed on a global scale (right).

To first tackle the problem at its root, we construct a comprehensive dataset
specifically tailored to burned area delineation, with additional land cover informa-
tion, attempting to address the limitations of existing resources [51, 184, 26]. The
core of our dataset consists of a collection of 171 wildfire events, sourced from the
Copernicus Emergency Management Service (EMS) [64], providing valuable infor-
mation and resources for disaster management and emergency response. Within
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the EMS, the Rapid Mapping module plays a vital role by offering a curated set
of Areas of Interest (AoI) associated with each event. These AoIs have undergone
a precise and manual analysis by a team of experts, resulting in the generation
of precise burned area delineations for the affected regions. To ensure a compre-
hensive representation of each wildfire event, we gather and harmonize data from
multiple sources. For each AoI, we retrieve the corresponding Sentinel-2 satellite
imagery, which serves as the primary input for our deep learning models. Sentinel-2
captures high-resolution multispectral data across 12 spectral bands, with spatial
resolutions ranging from 10 to 60 meters. In this study, we focus on the Level-2A
(L2A) product, which provides Bottom-of-Atmosphere (BoA) reflectance values,
derived through atmospheric correction. In addition to the Sentinel-2 imagery, we
incorporate the EMS burned area delineation maps, to serve as the ground truth
labels for the primary task. These maps are generated by field experts using a
combination of manual interpretation and semi-automated techniques, ensuring a
high level of accuracy and reliability1. The EMS provides three different incremen-
tal products, which provide a gradually refined map of the event, in vector format.
First Estimate Products (FEP) are produced as quickly and as soon as possible
therefore, as the name suggests, the resulting delineation usually provides approx-
imate boundaries. On the other hand, the Delineation (DEL) and Grading (GRA)
products offer a much more refined output, comprising the precise borders of the
event for the former case, and an additional subdivision by damage estimate for the
latter. For these reasons, we keep and rasterize the best product available, starting
from the grading as primary source, and falling back to delineation first, and FEP
after, if no other option is available. To enable multitask learning, we integrate
land cover information from the ESA WorldCover dataset [264], a global land cover
map that provides detailed information on land cover classes at a spatial resolution
of 10 meters. It covers the entire Earth’s landmass and offers a comprehensive set
of 11 land cover classes, including natural vegetation (i.e., tree cover, shrubland,
grassland), cultivated areas, built-up areas, bare soil, and water bodies. Through
this additional data, we aim to provide models with additional context and enable
them to learn the relationships between burned areas and different land cover types,
as well as mitigate recurring errors such as dark water pixels classified as burned.

We retrieve Sentinel data through the SentinelHub services [212], which provide
efficient access and processing capabilities. Considering the input requirements
of the deep learning models, we impose a minimum dimension of 512 pixels on
each side of the image, expanding the region until the requirement is satisfied for
every AoI for areas that do not meet this criterion. Conversely, we divide larger
areas into multiple subsections with a maximum size of 2,500 × 2,500 pixels to
facilitate practical usage and computational processing costs. In order to obtain

1https://emergency.copernicus.eu/mapping/ems/quality-control
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Figure 5.11: Dataset samples, each consisting of a Sentinel-2 satellite image (left),
its corresponding land cover map (middle), and the associated burned area delin-
eation (right).

the clearest possible images, minimizing the presence of smoke or large cloud cover,
we consider a time frame of up to 30 days following the reported event date for
the catalog queries. Within this window, we select the Sentinel-2 acquisition with
the least cloud coverage, ensuring the highest quality input data for our models.
Despite these precautions, the presence of clouds in the final image samples cannot
be completely avoided. To address this, we employ a cloud segmentation model
derived from CloudSen12 [14] to generate a validity map that identifies cloudy
pixels in the imagery. During the training process, we apply this additional mask
to exclude cloud-covered pixels from the loss computation, preventing them from
affecting the learning process. We retrieve instead the corresponding raster layers
for ESA WorldCover through the Microsoft Planetary Computer platform [214].
The land cover maps undergo minimal processing, primarily involving a direct
remapping of the original ESA taxonomy to a contiguous list of categories indexed
from 0. Pixels that lack a specific land cover category are assigned a value of 255
to distinguish them from valid classes. To ensure that all the layers in our dataset
are aligned, we resample each band and rasterize vector layers at a resolution of
10m/pixel, matching both Sentinel-2 most resolved bands, and ESA WorldCover.
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An example of the final results obtained after this process is visible in Fig. 5.11.
Fig. 5.10 illustrates the geographic distribution of the wildfire events included in

our dataset, categorized into training (red), validation (blue), and testing (yellow)
subsets. The map on the left depicts the global distribution of events, while the map
on the right focuses specifically on Europe, where the majority of the events are
concentrated. This visual representation highlights the diversity and comprehensive
coverage of our dataset, encompassing wildfire incidents across different regions
and continents. The resulting dataset comprises a total of 433 samples with varied
sizes, spanning from 2017 to the early months of 2023. As previously mentioned, the
events are primarily concentrated in Europe, with additional samples from Australia
and the American continent. It is worth noting that our dataset effectively extends
the coverage of previous EMS-based sources [51]. To facilitate direct comparisons
with prior work and assess the generalization and performance of our proposed
approach, we maintain all the activations present in previous sources as a testing
subset, while the remaining events are utilized for training and validation purposes.

5.4.3 Method
In this work, we aim to develop a MTL framework to improve burned area

delineation through the help of a more generic land cover segmentation task at
training time only. The method applied here is quite straightforward, foreseeing a
single encoder and decoder, with the addition of two separate shallow linear layers
to map the feature representations into either burned or unburned on one side, and
a specific land category on the other. In the following paragraphs, we formalize the
problem at hand, and we provide details on the underlying architecture.

Problem Statement

We model the problems of burned area and land cover mapping as two separate
tasks, a binary segmentation and a multi-class segmentation objective, respectively.
Our dataset provides a delineation label (yD) and a land cover label (yLC) as ground
truth for each sample. The proposed framework consists of a single encoder and
a single decoder, with two classification heads: hD for burned area delineation
and hLC for land cover classification. The primary objective is to train the model
fθ, parameterized by θ, to accurately predict burned area delineations (ŷD) while
simultaneously learning from the auxiliary task of land cover classification (ŷLC).
The shared representations ϕθ, learned by the decoder, enable the model to capture
common patterns and features relevant to both tasks, potentially improving the
overall segmentation performance.
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Figure 5.12: Visualization of the RoBAD multitask learning framework, where
the model fθ learns shared features ϕθ from the decoder, which are used by both
the primary head hD for burned area delineation and the auxiliary head hLC for
land cover classification during joint training. At test time, the auxiliary head is
dropped, and only the primary head is used for the final burned area prediction

RoBAD Framework

Fig. 5.12 illustrates RoBAD, our proposed MTL framework for burned area de-
lineation. The core idea is to train the full model fθ by simultaneously predicting
burned area delineation and land cover segmentation using the shared representa-
tions ϕθ learned by the decoder. By learning a single set of representations from
both tasks, the model can identify and exploit informative features and patterns
that generalize across the burned area delineation and land cover classification ob-
jectives. These shared features serve as a common foundation, allowing the model
to develop a more comprehensive view of the input data and potentially leading to
an improved segmentation. Throughout the training phase, we optimize the model
using a standard cross-entropy loss for each task, employing the binary variant for
burned area delineation, while utilizing the multi-class formulation for land cover
classification. At training time, we combine these losses with a weighted sum, and
we derive the gradients in a single backward pass, optimizing the network param-
eters in a single step. During inference, we concentrate exclusively on the burned
area delineation task by removing the auxiliary head hLC and applying standard
binary segmentation using the learned features from the decoder. To investigate the
impact of different architectural designs on the burned area delineation task using
this framework, we consider three different segmentation models: we adopt a stan-
dard UPerNet decoder [254] with a Residual Network (ResNet) encoder, UPerNet
with a Vision Transformer (ViT) backbone, and SegFormer as Transformer-only
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solution [255]. The UPerNet decoder stands out as a versatile and robust archi-
tecture, employing a unified perceptual parsing structure that accommodates both
traditional convolutional neural networks (CNNs) and state-of-the-art transformer-
based approaches as encoders. This architectural flexibility allows us to perform an
unbiased comparison between CNN-based and transformer-based backbones within
a consistent framework. On the other hand, SegFormer represents an alternative
end-to-end solution that has demonstrated strong performance on various aerial
image segmentation tasks, including burned area delineation [27, 218]. SegFormer
introduces a novel hierarchical transformer encoder that captures long-range de-
pendencies and multiscale features, coupled with a lightweight MLP decoder. By
comparing the performance of these three model families within our MTL config-
uration, we aim to provide a comprehensive evaluation of different architectural
designs and the effectiveness of the RoBAD framework in this setting.

5.4.4 Experiments
In this work, we test the three combinations of models in two different settings,

considering a training with and without pretrained backbones, evaluating them
on the activations dedicated for testing. In the following paragraphs, we provide
additional details on the implementation and the experimental configurations, as
well as a discussion on the obtained results.

Implementation Details

We split the available activations from our dataset for training and testing,
leaving out those that are already present in existing EMS burned area datasets
[51]. These remaining activations are reserved for testing purposes. This allows
us to establish a fair comparison with previous works and assess the generalization
capabilities of our proposed approach. We further allocate 10% of the training
activations for validation purposes, resulting in a total of 129 wildfire events for
training, 15 for validation, and 27 for testing. To accommodate the variability
in image dimensions across the dataset, we employ different sampling strategies
during training and evaluation. During the training phase, we adopt a standard
random sampling approach that extracts square crops of 512×512 pixels from ran-
dom locations within the input images. In our experiments, we do not employ any
specific weighting or guiding techniques to prioritize the sampling of burned area
regions during training. Instead, we aim to assess the model’s ability to generalize
and leverage the complementary information provided by the dense land cover la-
bels. For validation and testing, we adopt a standard sequential sampling strategy
with a sliding window with overlap to ensure comprehensive coverage of the entire
input image. The predictions for the overlapping tiles are seamlessly merged using
a smooth blending technique based on splines, allowing for the reconstruction of
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the original input dimensions. We conduct two sets of experiments to evaluate the
effectiveness of our multitask learning framework. In the first set, we focus solely
on the task of burned area delineation, training the models in a single-task setting.
The second set of experiments involves multitask training, where we simultane-
ously learn to predict both burned area delineation and land cover segmentation.
In the multitask setting, we apply an additional masking operation to the land
cover annotations, excluding the burned pixels, to avoid any inconsistencies in the
labels. To provide a comprehensive evaluation, we consider three state-of-the-art
segmentation architectures: UPerNet [254] with two widely used encoders, namely
ResNet-50 and ViT-S, and SegFormer [255] with the MiT-B3 encoder, thus ob-
taining a CNN-based, hybrid, and Transformer-based architectures. These models
have demonstrated strong performance in various semantic segmentation tasks and
offer a good balance between accuracy and computational efficiency. In addition
to the architectural choices, we investigate the impact of using pretrained weights
for the backbone networks in both single-task and multitask settings. For UPerNet
with ResNet-50 and ViT-S encoders, we utilize weights pretrained on the large-scale
SSL4EO-S12 dataset [245], which has shown to be effective for remote sensing tasks.
However, due to the lack of suitable pretrained weights for SegFormer, we resort
to using weights pretrained on the ImageNet dataset [255]. Our implementation is
based on the mmsegmentation library [158], which provides a modular and exten-
sible framework for semantic segmentation. We adapt the library to support the
additional input channels required for our multispectral satellite imagery and make
the necessary modifications to accommodate the multitask learning setup. For all
experiments, we train the models on a single NVIDIA A100 GPU for 30 epochs,
using a batch size of 32 tiles. We employ the AdamW optimizer with a learning rate
of 1e-4 and utilize a standard cross-entropy loss function as in Eq. (5.1) for both
tasks. These hyperparameters align with settings commonly used in similar works
[27]. To assess the performance of our models, we adopt two widely used evalu-
ation metrics, specifically binary F1 score as in Eq. (2.5) and binary Intersection
over Union (IoU) Eq. (2.2).

Results

We conduct experiments on single-task learning (STL) and multitask learning
(MTL) approaches using both pretrained and non-pretrained weights for the back-
bone networks, and for each configuration, we perform three separate runs with
different random seeds and average the results. Table 5.8 summarizes the experi-
mental results, reporting the average scores and standard deviations for each model
and setting. Focusing on the experiments conducted without pretrained weights,
we observe that the MTL setting consistently achieves higher scores and exhibits
much lower standard deviation compared to the single-task setting. Except for
SegFormer, which demonstrates the good scores in both STL and MTL variants,
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From scratch Pretrained
Setting Model F1 IoU F1 IoU

STL
SegFormer (B3) 89.01± 1.39 80.22± 2.25 90.79± 0.46 83.13± 0.78
UPerNet (RN50) 82.33± 9.17 70.94± 12.63 91.27± 0.08 83.95± 0.13
UPerNet (ViT-S) 87.65± 2.01 78.08± 3.17 89.20± 1.29 80.53± 2.09

MTL
SegFormer (B3) 90.94± 0.17 83.38± 0.29 90.91± 0.28 83.34± 0.47
UPerNet (RN50) 89.82± 1.76 81.57± 2.87 91.86± 0.30 84.94± 0.51
UPerNet (ViT-S) 89.76± 0.15 81.43± 0.25 90.69± 0.58 82.98± 0.97

Table 5.8: Experimental results comparing single-task (STL) and multitask (MTL)
training, with models trained from scratch or using pretrained encoders. Results
show that MTL generally improves performance, with pretrained models outper-
forming those trained from scratch. UPerNet (RN50) demonstrates the highest F1
and IoU scores when pretrained, while SegFormer (MiT-B3) performs best when
trained from scratch.

Setting Model Time per Ep. Param. (M)

STL
SegFormer (B3) 3h28m 44,6

UPerNet (RN50) 3h20m 64,1
UPerNet (ViT-S) 3h20m 57,9

MTL
SegFormer (B3) 3h40m (+12m) 44,6

UPerNet (RN50) 3h50m (+30m) 64,1
UPerNet (ViT-S) 3h30m (+10m) 57,9

Table 5.9: Analysis of the computational costs in terms of training time over one
epoch, as average of three epochs, and total network parameters. While the training
time increases by a small margin, the parameter increase is effectively negligible
given the shared encoder-decoder structure.

the multitask approach yields a non-negligible improvement of +3.85 in terms of
F1 score and +5.71 in terms of IoU on average, across all models. Moreover, the
results obtained in the multitask configuration are considerably less variable, with
a decrease in standard deviation of −3.51 for F1 score and −4.88 for IoU. This
robustness is also evident in the qualitative results presented in Fig. 5.13, where
the multitask models produce more reliable and accurate segmentation maps. As
expected, when considering the experiments that utilize pretrained weights, the
performance gap between STL and MTL settings becomes less pronounced. The
pretrained models achieve higher and more stable scores even in the STL setup,
which is in line with the effectiveness of large-scale pretraining demonstrated in var-
ious contexts [245]. Nevertheless, multitask training still provides an average overall
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improvement of +0.73 in F1 score and +1.21 in IoU, regardless of the underlying
architecture. Comparing the results obtained with and without pretraining, we
observe that the pretrained models consistently outperform their non-pretrained
counterparts, particularly in the multitask configuration. When examining the
top-performing models from both settings (i.e., SegFormer in the non-pretrained
case and UPerNet-RN50 in the pretrained case), the single-task setting achieves
an improvement of +2.24 in F1 score and +3.72 in IoU, while the multitask set-
ting achieves an average improvement of +0.92 in F1 score and +1.56 in IoU. It
is worth noting that, while SegFormer consistently outperforms UPerNet variants
when training from scratch, in the pretrained settings it falls behind. We argue that
this might depend on the suboptimal pretrained weights derived from ImageNet,
while the SSL4EO weights greatly help.

In addition to the performance evaluation, we also provide an overview of the
computational costs associated with the STL and MTL approaches. Table 5.9
presents a comparison of the training speed and memory requirements for both
settings. Despite the inclusion of an additional segmentation head in the multitask
models, we observe only a modest increase in training time compared to the STL
counterparts, with a marginal difference of approximately 20 minutes per training
epoch. While the multitask models do incur a slight increase in memory usage
due to the additional parameters, this increment remains negligible and does not
significantly impact the feasibility of implementation. It is worth noting that the
multitask setting effectively adds only the parameters of a single pixel classification
head, which can be realized as a 1×1 convolutional layer with |ϕθ| feature channels
as input and 11 categories as output, with a number of additional parameters by the
thousands. Moreover, during inference, the auxiliary head is omitted, eliminating
any computational overhead associated with the auxiliary task.

5.5 Learning from Large Vision Models — Au-
tomating the Annotation Process

In recent years, the field of machine learning has undergone a significant paradigm
shift, moving away from the traditional approach of training models from scratch
on specific downstream tasks. Instead, as briefly observed in Section 5.4, the focus
has shifted towards large-scale pretraining and the development of vision foundation
models, also known as Large Vision Models (LVMs) [239]. These models are trained
on vast amounts of diverse data, often using self-supervised or weakly-supervised
learning techniques, to capture general-purpose representations that can be adapted
to various tasks using minimal finetuning, few-shot or even zero-shot learning [239].
The emergence of foundation models has revolutionized the way we approach ma-
chine learning problems, particularly in the domain of computer vision. Models
such as CLIP [188], GroundingDINO [130], and Segment Anything (SAM) [112]
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Figure 5.13: Qualitative samples of delineation results obtained from UPerNet with
ResNet-50 (our best performing model). We compare the predictions of models
trained from scratch in STL (b) and MTL (c) settings, and with pretrained weights,
again with STL (d) and MTL (e) variants, with the ground truth (f). The red pixels
in the prediction maps indicate misclassified areas compared to the ground truth
delineation

have demonstrated remarkable performance across a wide range of tasks, including
image classification, object detection, and segmentation. These models leverage the
power of large-scale pretraining or billion-samples datasets [112] to learn rich and
transferable representations that can be easily adapted to new domains and tasks
with minimal additional training.

The paradigm shift towards foundation models has significant implications for
various domains, including remote sensing. Remote sensing data, particularly Very-
High Resolution (VHR) imagery, offers a huge amount of information content.
However, the effective utilization of such data with supervised machine learning
techniques often faces challenges due to the limited availability of high-quality an-
notations. In this context, LVMs have the potential to serve as few-shot learners
or robust annotators, enabling the automatic generation of labels for large-scale
remote sensing datasets. Despite their impressive performance on natural images,
the application of foundation models to remote sensing data has just begun, with
only a few studies exploring their potential at scale [235]. This work addresses
this gap by proposing an automated pipeline, named FMARS (Foundation Model
Annotations in Remote Sensing), that combines open data sources with founda-
tion models to generate either instance or semantic segmentation labels, starting
from robust box prompts. In this section, we first introduce the FMARS anno-
tation pipeline, which leverages LVMs to automatically generate annotations for
VHR remote sensing imagery. As an application example, we employ this pipeline
to generate the FMARS dataset, a large-scale dataset with labels obtained from
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pre-event imagery over 19 disaster events worldwide, derived from the Maxar Open
Data initiative [148]. To validate the effectiveness of the annotation approach, we
train state-of-the-art models on the generated labels, employing UDA techniques
[96] [97] to enhance stability over the final results. Finally, we discuss the impli-
cations of our findings and highlight the potential of leveraging LVMs in remote
sensing applications.

5.5.1 Related Works
Computer vision has witnessed significant advancements in a very short span,

especially with the advent of LVMs). These models, pre-trained on vast amounts
of diverse data, have demonstrated remarkable adaptability to various downstream
tasks with minimal to no fine-tuning. Notable examples include CLIP [188], which
leverages natural language supervision to learn transferable visual representations,
and self-supervised models like DINO, or DINOv2 [172], which capture rich visual
features without relying on explicit annotations. Building upon these advance-
ments, recent works have introduced models that excel in specific tasks, such as
object detection and segmentation. GroundingDINO [130] combines the strengths
of DINO with grounded pre-training to enable open-set object detection, while
Segment Anything (SAM) [112] offers a flexible and promptable framework for seg-
menting objects in images. Despite the impressive capabilities of foundation models,
their application to remote sensing data has been relatively limited compared to
natural images. Remote sensing datasets, such as DOTA or its segmentation equiv-
alent iSAID [252] and DIOR [266], provide valuable resources for object detection
and visual grounding tasks, but their scale and scope remain modest compared to
their natural image counterparts [112], as also highlighted in Table 5.11. Moreover,
the unique characteristics of remote sensing imagery, such as varying resolutions,
spectral bands, and viewpoints, pose additional challenges for adapting founda-
tion models to this domain [104]. Nevertheless, recent works have begun assessing
the potential of LVMs in the context of remote sensing. For instance, similar to
our approach, SAMRS [235] leverages SAM to automatically generate annotations
for well-known datasets like DOTA and DIOR, demonstrating the feasibility of
scaling up remote sensing segmentation datasets using LVMs. Other works have
assessed the applicability of foundation models to various remote sensing tasks,
such as building extraction [173] and semantic segmentation [267]. In the context
of disaster management, the xBD dataset [89] represents a notable effort to provide
annotations for building damage assessment from satellite imagery. However, its
focus is limited to the single building category, making it challenging to adapt to
other scenarios. To address this limitation, our work aims to leverage the growing
availability of Very-High Resolution (VHR) remote sensing imagery and the poten-
tial of foundation models as robust annotators to automatically generate labels for
a broader range of objects of interest.
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5.5.2 Method

Figure 5.14: FMARS annotation workflow: for buildings and roads, prompts are
generated from existing open datasets, while for high vegetation, GroundingDINO
is employed to generate bounding box proposals. The prompts are then fed into
SAM to obtain segmentation masks. The resulting masks are processed and merged
to compose the ground truth.

In this work, we employ a combination of two state-of-the-art VFMs, namely
Segment Anything (SAM) [173] and GroundingDINO [130], for the annotation pro-
cess. SAM is a transformer-based segmentation network that has been trained using
the so-called promptable segmentation. Unlike traditional segmentation objectives,
SAM receives two inputs: an image and a prompt. The image is processed using
a robust image encoder, while the prompt is embedded into the decoder using a
prompt encoder and exploited as a query by a lightweight mask decoder to produce
segmentation masks. To handle ambiguities, SAM can predict multiple outputs
with associated confidence scores for the same inputs. The prompts can be highly
flexible, ranging from sparse inputs such as points, bounding boxes, or text, to
dense arrays like binary masks. Points and boxes are encoded as simple positional
embeddings, text can be processed using off-the-shelf models like CLIP [188], and
masks are combined with the encoded image using a series of convolutions and
element-wise sums. In our annotation pipeline, we adopt box prompts for their
robustness and flexibility, which aligns well with the available inputs, including
open data sources for buildings and roads, and box object detections derived from
GroundingDINO. GroundingDINO introduces cross-modal fusion between a text
prompt and an image to provide open-set object detection capabilities. It utilizes
BERT [58] as a text processor and a Swin Transformer [131] as an image encoder.
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While the outputs may be approximate compared to human annotations, Ground-
ingDINO offers substantial flexibility in generating bounding boxes for potentially
any known object, given a text prompt. This allows us to obtain initial estimates
for objects lacking ground truth, such as high vegetation, and leverage Ground-
ingDINO as a prompt generator for the subsequent SAM masking phase [194].

Event name Year Area (km2) Event name Year Area (km2)

Cyclone Mocha 2023 3,446.4 Morocco earthquake 2023 49,901.9
Italy (Emilia) flooding 2023 1,519.1 Canada (NWT) wildfires 2023 468.6
Gambia flooding 2022 391.2 Sudan flooding 2022 249.3
Hurricane Fiona 2022 1,341.8 Afghanistan earthquake 2022 4,180.6
Hurricane Ian 2022 30,743.2 Cyclone Emnati 2022 8,506.0
Hurricane Idalia 2023 12,156.4 Kentucky flooding 2022 1,641.6
India floods 2023 496.3 Pakistan flooding 2022 7,528.7
Indonesia earthquake 2022 1,011.3 Georgia landslide 2023 157.4
Turkey earthquake 2023 2,745.7 South Africa flooding 2022 559.7
Kalehe flooding 2022 89.9

Table 5.10: List of events from Maxar Open Data included in the FMARS dataset,
including the covered area (km2) derived from VHR imagery, and the year it hap-
pened in.

Data Sources. Considering the importance of fine-grained segmentation in dis-
aster management and damage assessment contexts, Very-High Resolution (VHR)
imagery is essential, as lower-resolution satellite sources like Copernicus Sentinel-2
[65] do not provide sufficient image content to characterize objects of interest, such
as buildings or roads. Currently, the largest source of disaster-related VHR im-
agery remains the Maxar Open Data Program [148]. This initiative offers pre- and
post-event images from more than 100 major crisis events worldwide since 2017,
covering a total surface area of over 2.6M km2. We select a subset of resources con-
taining RGB imagery, comprising 19 events spanning from 2022 to 2023, as shown
in Table 5.10, summing up to an area of 127,134 km2. As use case, inspired by
current disaster management datasets [89], we focus our construction process on
infrastructures, namely buildings and roads, which are often the primary focus in
post-event damage assessment, and high vegetation, which typically occludes the
underlying surface. Among open resources providing infrastructure information,
we select Microsoft’s Building Footprints and Road Detection datasets [151], which
contain building footprint polygons and road graphs on a global scale generated by
applying deep learning models to VHR satellite imagery. For buildings, we do not
directly adopt them as ground truth labels, but rather exploit them as trustworthy
yet approximate prompts for the SAM model. In the absence of a reliable source to
derive high vegetation prompts, we employ GroundingDINO as our bounding box
generator for this category [194].

138



5.5 – Learning from Large Vision Models — Automating the Annotation Process

Dataset # Images Image size Res. (cm) Bands # Inst. # Categ. Area (km2)

Vaihingen [199] 33 2,500× 2,500 9 IRRG None 6 1.33
Potsdam [199] 38 6,000× 6,000 5 RGBIR None 6 11.08
iSAID [252] 2,806 4000× 4000 ≥ 50 RGB 655,451 15 11,224

xBD [89] 9,168 1024× 1024 ≥ 50 RGB > 700,000 4 45,000
SAMRS [235] 105,090 Mixed ≥ 50 RGB > 1.6M Mixed Unknown

FMARS 6,896 17,408× 17,408 ≥ 30 RGB > 25M 3 > 125,000

Table 5.11: Comparison of our FMARS dataset with well-known general purpose
VHR datasets available in literature.

Figure 5.15: Four samples derived from the FMARS dataset in different regions.
From left to right: Gambia, USA, Italy, Turkey. Despite the high quality results,
it is possible to observe some omissions, especially concerning vegetation and tree
crown.

Annotation Workflow. Our objective is to generate segmentation labels for
three classes: buildings, roads, and high vegetation. While disaster risk manage-
ment primarily focuses on damage assessment by comparing pre- and post-event im-
ages, we initially concentrate our efforts on delineating infrastructures on pre-event
acquisitions only. This approach aligns with typical damage assessment frame-
works, which first identify relevant entities in pre-event images and then use the
post-event image to determine the sustained damage [208]. For buildings, we gen-
erate box prompts by extracting axis-aligned bounding boxes (AABB) from each
footprint polygon. On the other hand, road graphs pose a challenge for prompt-
based segmentation because their sparse lattice structure does not allow for fine
contour generation. In this case, point-based prompts [112] did not yield satisfac-
tory results. In this case, we opt to rasterize the available vector lines with an
empirically predefined buffer radius of 5m. For vegetation, we derive boxes using
GroundingDINO with simple text queries such as “green trees” or “bushes”. In-
terestingly, we observe better performance on trees with the latter prompts, likely
due to the aerial viewpoint that occludes the tree trunk, which is uncommon in
the context of the natural images on which GroundingDINO was trained on. To
ensure a certain degree of confidence for the generated outputs, we apply a min-
imum box threshold of 0.12 and a text threshold of 0.3 [130]. We further filter
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out noisy outputs by applying non-maxima suppression (NMS) at 0.5, effectively
removing boxes with an aspect ratio lower than 1:2, and a maximum area over 7000
m2. Similar to buildings, we then use the generated boxes as prompts for SAM to
extract segmentation labels. Finally, we store the resulting delineation and its class
as a single vector polygon to allow for both instance and semantic segmentation
tasks. The final FMARS dataset comprises a total of 25,547,189 individual labels
across the three target classes. Specifically, it includes 15,104,779 building foot-
prints, 7,868,086 tree instances, and 2,574,324 road segments. While FMARS may
cover a smaller geographical area compared to some existing large-scale datasets
such as DOTA [252], it provides a higher density of annotations within its scope,
as detailed in Table 5.11 and by the visual samples in Fig. 5.15, offering a rich and
detailed representation of the covered regions. These labels are stored in GeoPar-
quet format, with each entity represented by its own polygon. We note that, in
cluttered environments, the instance-wise separation may not be perfect due to the
limitations of the automated annotation process.

5.5.3 Experiments
As plausible application scenario, we carry out our experiments with the ob-

tained FMARS dataset using state-of-the-art semantic segmentation architectures.
Our primary objective is to evaluate the knowledge transfer ability from the au-
tomatically generated labels to smaller, more deployable models. In the following
paragraphs, we describe the experimental setup, as well as the obtained results.

Implementation Details

Using the dataset annotated with our FMARS pipeline, we can train standard
semantic segmentation models to evaluate the knowledge transfer ability to more
manageable models. In our experiments, we adopt state-of-the-art solutions based
on SegFormer [255]. To counteract the inherent inaccuracies in fully automated
labeling and the consequently lower recall for categories such as high vegetation,
we apply UDA techniques for improved stability during training, as described in
Section 5.2. Specifically, we adopt current state-of-the-art frameworks, namely
DAFormer [96] and Masked Image Consistency (MIC) [97], both based on self-
training in a teacher-student framework paradigm, for benchmarking purposes. We
maintain the original configurations of these models with minimal modifications,
focusing primarily on evaluating their transfer learning capabilities when trained
on our FMARS dataset. This approach allows us to assess the quality and utility of
our automatically generated labels in a standardized setting. We select a separate
full-size image (i.e., 17k× 17k pixels) from each event as our test set based on the
average information content, for a total of 19 images, and we conduct a full training
using pretrained ImageNet weights for the backbone components. To address the
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label noise (i.e., high precision and lower recall of the generated labels, as well as
missing instances) we ignore the background pixels of the FMARS labels during
training, since some objects may have been excluded from the final labels due to
several factors. For instance, GroundingDINO failed to detect the tree crown, or
the building was not present in the original dataset to be provided as prompt. As a
simple background baseline, we apply a confidence threshold to the Softmax outputs
[170], empirically evaluating the optimal cutoff threshold τ = 0.9 for all models.
We conduct every experiment using a tile size of 512 × 512 and random sampling
for 30,000 iterations, using AdamW as the optimizer. For the UDA components, we
maintain their original hyperparameters, except for the removal of the ImageNet
feature distance.

Method Background Roads High Veg. Buildings mAcc. mIoUAcc. IoU Acc. IoU Acc. IoU Acc. IoU

SegFormer (base) 72.91 61.41 0.11 0.10 7.60 1.33 0.00 0.00 20.15 15.71
MIC 44.79 42.47 55.94 29.89 64.45 10.56 82.47 21.33 61.91 26.06
DAFormer 53.06 50.14 55.44 31.79 64.61 16.80 79.91 17.29 63.26 33.07

Table 5.12: Performance comparison of the FMARS test set (automated labels), in
terms of accuracy and IoU score.

Method Background Roads High Veg. Buildings mAcc. mIoUAcc. IoU Acc. IoU Acc. IoU Acc. IoU

FMARS labels 71.34 41.16 68,72 47.03 69.37 58.54 59.47 54.14 67.23 50.22
SegFormer (base) 97.40 27.90 0.06 0.06 8.24 7.68 0.00 0.00 26.44 8.91
MIC 76.59 36.21 44.84 40.15 51.78 48.52 63.54 56.41 59.19 45.32
DAFormer 70.56 38.02 65.97 54.77 56.57 52.64 69.10 60.20 65.55 51.41

Table 5.13: Performance comparison on a manually labeled subsample of the
FMARS test set, including a comparison with the automated labels.

Results

Given the automated pipeline and the low reliability of the obtained labels for
performance measurement, we validate results against the left-out FMARS test set,
as well as a small sample of 45 manually labeled tiles, derived from crops of each
image in the test set. Tables 5.12 and 5.13 present the numerical results in terms of
accuracy and IoU, class-wise and averaged (as in Eq. (2.3)), evaluated against the
automatically generated and manual labels, respectively. The baseline SegFormer
model, trained without domain adaptation, demonstrates poor performance across
all classes, highlighting the challenges of training on automatically generated la-
bels without accounting for domain shift or label noise. In contrast, both UDA
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Figure 5.16: Qualitative results on two example areas: USA (top) and Gambia
(bottom). From left to right: RGB input image, DAFormer prediction, MIC pre-
diction, and FMARS ground truth.

techniques, DAFormer and MIC, show significant improvements over the baseline.
When evaluated against the FMARS labels, MIC achieves a mean IoU of 26.06,
while DAFormer slightly outperforms it with 33.07. Interestingly, when evaluated
against the manually labeled test set, both UDA models demonstrate even bet-
ter performance, with DAFormer achieving a mean IoU of 51.41, surpassing the
original FMARS labels at 50.22 mIoU. This suggests that the UDA techniques
are not only adapting to the domain of the FMARS labels, but also learning to
generalize beyond the noise and inaccuracies present in the automated annota-
tions. The performance across different classes provides further insights. Buildings
and roads show strong segmentation results, especially with DAFormer, indicating
that the FMARS annotations provide a solid foundation for learning these classes.
The high vegetation class proves more challenging, likely due to the reliance on
GroundingDINO for initial detections, yet both UDA models still show reasonable
performance. The background class shows lower IoU scores, which is expected given
the background-aware training approach and the potential for missed annotations
in the automated process. Qualitative results, displayed in Fig. 5.16, confirm these
findings, with both DAFormer and MIC producing accurate segmentation, even in
challenging areas with high vegetation or complex urban structures.

Discussion. In this work, we aimed at proving the potential of leveraging VFMs
for large-scale annotation of remote sensing imagery, by showing that (i) they can
potentially work in a zero-shot paradigm, and (ii) that the resulting annotations
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can be further applied to downstream tasks effectively. The FMARS pipeline can
in fact generate usable annotations in a zero-shot manner, without domain-specific
fine-tuning. While the quality of the annotation could be improved, they provide a
valuable starting point for training smaller downstream models. Using these labels
with appropriate precautions, such as UDA frameworks, it enables smaller models
to achieve reasonable performance, even surpassing the original FMARS labels in
some cases.

Despite the promising results, there certainly is room for further improvements.
The current taxonomy, focusing on three key classes (buildings, roads, and high
vegetation), provides a solid foundation, but it does not cover the full range of
entities present in VHR images. Expanding this taxonomy in future work would
increase the utility of this dataset for a broader range of remote sensing applica-
tions. Additionally, the foundation models employed in this study were primarily
trained on natural images. Adapting these models specifically for remote sensing
data or developing domain-specific foundation models could potentially bridge the
domain gap and improve annotation quality, particularly for challenging classes like
high vegetation. Future works could also focus on improving upon the scalability
of zero-shot approaches, both in terms of accuracy and resources, effectively avoid-
ing further retraining and potentially solving multiple tasks with a more flexible
approach.

5.6 Summary
In this chapter, we have explored four key techniques to address the challenges

of domain robustness, weak supervision, and large-scale annotation in semantic
segmentation for remote sensing applications: Unsupervised Domain Adaptation
(UDA), learning from sparse annotations, multitask learning, and leveraging foun-
dation models for automated annotation.

In the context of UDA, we proposed HIUDA, a novel framework that introduces
a hierarchical instance mixing strategy (HIMix) and a twin-head architecture to
improve domain adaptation performance in aerial imagery. HIMix addresses the
shortcomings of existing mixing strategies by preserving the semantic structure of
objects and balancing the class distribution between domains. The twin-head ar-
chitecture enhances the quality and consistency of pseudo-labels for self-training.
Extensive experiments on the LoveDA dataset demonstrated the superior perfor-
mance of HIUDA compared to state-of-the-art UDA methods designed for natural
images.

To tackle the issue of limited annotated data, we introduced SPADA, a frame-
work that leverages sparse annotations and self-training to improve semantic seg-
mentation performance. SPADA utilizes a teacher model to generate pseudo-labels
on the target domain, which are then mixed with sparse ground truth labels to train
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the student model in a self-supervised manner. By effectively exploiting both la-
beled and unlabeled pixels during training, SPADA achieves improved performance
in scenarios with limited annotated data.

We investigated the potential of multitask learning to improve the robustness
and performance of models in the context of burned area delineation. We proposed
RoBAD, a multitask learning framework that incorporates land cover classification
as an auxiliary task to guide the training of the burned area delineation model. By
learning shared representations between the two tasks, RoBAD demonstrates more
stable and robust performance compared to single-task learning, especially in the
absence of pretrained solutions.

Lastly, we introduced FMARS, an automated pipeline that leverages founda-
tion models like SAM and GroundingDINO to generate large-scale annotations for
VHR remote sensing imagery. FMARS demonstrates the potential of zero-shot an-
notation and the effectiveness of using these labels for training downstream models
with UDA techniques.

While these techniques have shown promising results, there are still limitations
to be addressed. The performance of UDA methods like HIUDA may be affected by
extreme class imbalances or highly dissimilar domains. SPADA’s effectiveness relies
on the quality of sparse annotations and the teacher model’s ability to generate
reliable pseudo-labels. RoBAD’s multitask learning approach may be sensitive
to the selection of appropriate auxiliary tasks and their balance. FMARS, while
effective, could benefit from domain-specific adaptations of foundation models to
improve annotation quality.

Future research directions include exploring more advanced mixing strategies
and architectures for UDA, investigating the integration of multiple heterogeneous
tasks in multitask learning, developing more efficient ways to leverage sparse an-
notations, and improving the scalability and accuracy of zero-shot annotation
approaches. Combining these techniques with domain-specific, large-scale self-
supervised pretraining [112, 172] could potentially lead to more robust and gen-
eralizable models for remote sensing applications.
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Chapter 6

Conclusions

This thesis investigated the unique challenges of semantic segmentation applied
to remote sensing imagery and proposed ad-hoc solutions for each encountered
scenario. By addressing issues such as orientation invariance, class and scale imbal-
ance, domain robustness, and weak supervision, this work provides a comprehensive
overview of grounded problems and practical solutions to tackle them. The main
contributions of this thesis can be summarized as follows. First, we addressed
the challenges posed by the aerial viewpoint by proposing a framework that in-
tegrates Augmentation Invariance (AI) regularization with an Adaptive Sampling
(AS) strategy to address orientation invariance and class imbalance in aerial im-
agery. Additionally, we introduced a Contrastive Regularization and Contrastive
Distillation (CRCD) approach for incremental learning, enhancing model robust-
ness to variations in viewpoint and supporting the integration of new classes without
forgetting previously learned features. Second, we tackled the issues of class and
scale imbalance in remote sensing applications by developing two custom datasets,
MMFlood for flood delineation and a dataset for photovoltaic (PV) panel segmen-
tation. We introduced techniques such as Entropy-Weighted Sampling (EWS),
multi-encoder architectures, multiscale regularization, and post-processing algo-
rithms, demonstrating improved segmentation accuracy and performance in these
specific applications. Third, we explored model robustness through four different
works: HIUDA, SPADA, RoBAD, and FMARS, focusing on unsupervised domain
adaptation (UDA), segmentation with sparse labels, multitask learning, and foun-
dation models (VFM), respectively. HIUDA provides an ad-hoc framework for UDA
that employs hierarchical instance mixing and a twin-head architecture to improve
performance on aerial and satellite images. SPADA leverages sparse annotations
and self-training to enhance semantic segmentation performance under conditions
of limited annotated data. RoBAD, a multitask learning framework, demonstrated
the benefits of incorporating auxiliary tasks to improve model robustness in the
specific application of burned area delineation. Last, FMARS represents a proof
of concept architecture aimed at exploiting large pretrained models for zero-shot
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learning, or large-scale automated annotation for smaller downstream tasks, where
annotations remain scarce.

The approaches presented in this thesis provide insights and practical solutions
for semantic segmentation in remote sensing imagery. However, several open chal-
lenges and research opportunities remain to be carried out in this field. Thanks to
the continuous research efforts and open source contributions, the remote sensing
landscape is frequently updated with new and increasingly larger datasets. Future
work may first focus on evaluating the generalization capabilities of the proposed
techniques on a wider range of remote sensing datasets with different characteristics
and scales. Furthermore, while openly available imagery becomes more accessible
every year, obtaining reliable and dense segmentation labels remains a major issue.
Exploring unsupervised and semi-supervised learning approaches could significantly
reduce the reliance on large-scale annotated datasets by leveraging the vast amounts
of unlabeled remote sensing data available. Developing methods to effectively fuse
and exploit diverse data sources, such as optical imagery, SAR, and LiDAR, could
lead to more robust and accurate semantic segmentation models. Finally, investi-
gating the combination of the proposed techniques with large-scale self-supervised
pretraining could potentially lead to more robust and generalizable models for re-
mote sensing applications, effectively moving towards the use of large foundation
models for multiple and diverse applications.
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Panels Polygonization

147



Panels Polygonization

Algorithm 1: Panel polygonization algorithm. It refines the raw semantic
segmentation output by extracting and simplifying contours, converting
them to polygons, and applying post-processing steps such as removing
small polygons and merging nearby ones.

Input:
R, raster prediction to be polygonized
tA, minimum area threshold
tDP , tolerance for polygonization
α, length factor for edge filtering

Output:
Pr, a set of regularized polygons

Extract polygons from the raster
// binarize the input prediction
B ← Binarize(R)
// extract the set of connected components
C ← CCL(B)
// Discard components with area < tA

C ←MinSurface(C, tA)
// Apply Douglas-Peucker to each component
P ← {}
for c in C do

p← DouglasPeucker(c, tDP )
P ← P ∪ p

end
end
Regularize the extracted polygons

Pr ← {}
for p in P do

// Extract the MBR
mbr ←MBR(p)
// Align edges E with MBR directions
E ← Align(p, mbr)
// Remove unnecessary edges
E ← Filter(E, α)
// Rebuild the final polygon
pr ← Link(E)
Pr ← Pr ∪ pr

end
end
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HIUDA - Pseudocode
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HIUDA - Pseudocode

Algorithm 2: Pseudocode for the HIUDA training procedure. The model
is trained end-to-end on labeled source data and pseudo-labeled target
data obtained via the twin-head architecture. Source and target samples
are mixed using the HIMix strategy to learn domain-invariant features.

Initialize:
Model fθ : X → R|I|×|Y| with encoder g and twin heads h1, h2;
Input: XS source domain with NS pairs (xS, yS), xS ∈ X , yS ∈ Y and
semantic classes C;
XT target domain with NT images xT , lacking ground truth labels;
Output: y = {argmaxc∈Ypc

i}N
i=1, where pc

i the model prediction of pixel i
for class c and Y the label space;

while epoch in max_epochs do
while xS, yS, xT in XS ×XT do

Train on source XS

// Compute augmented source batch
BS = (concat(xS, x̃S), concat(yS, ỹS));

// Train fθ on source labels with Lseg(BS)
end
Mix source and target pairs

// Compute pseudo-labels via majority
// voting ŷT = max (h1(g(xT )), (h2(g(xT ))));
// Extract source instance labels iS = CCL(yS) with instances
∈ KS;

// Extract target instance pseudo-labels iT = CCL(ŷT ) with
instances ∈ KT ;

// Compute one-hot encoded labels,
// sorted by pixel size as:
1m = sorted (concat(1KS

(iS), 1KT
(iT )));

// Reduce z axis to 2D indexed mask m = argmaxz1m(i, j, z);

// Binarize mask ∀i, j ∈ m, M =
⎧⎨⎩1 if m(i, j) ∈ KS

0 if m(i, j) ∈ KT

;

// Compute mixed image and labels as:
xM = M ⊙ xS + (1−M)⊙ xT ;

yM = M ⊙ yS + (1−M)⊙ ŷT ;
// Compute wM as in Eq. 5.3

end
Train on mixed XM pairs

// Compute augmented mixed batch
BM = (concat(xM , x̃M), concat(yM , ỹM));
// Train fθ on mixed samples with
// Lseg(BM), weighted by wM

end
end

end
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