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Abstract

Artificial Intelligence (AI) is considered the great revolution of the modern era. After
the industrial revolution that took place over a century ago, other technologies such
as computers and the World Wide Web have drastically changed the world, but none
of them has unnerved humanity like AI. In reality, artificial intelligence is nothing
more than a technology like any other, with great potential and great risks. Like
every new discovery and invention, it must be regulated, and we must learn to use it
correctly to harness its full potential.

Contrary to its name, AI has nothing truly intelligent about it; it is simply an
evolution of mathematical statistics. Thanks to the computing power of modern
computers and state-of-the-art software, AI enables us to do things that, until recently,
only humans could do. The significant change introduced by AI is hidden from the
eyes of most people. AI has simply changed the paradigm of how we have always
thought about solving problems. Until now, we thought that by having an equation
( f (x)) and its solution, i.e., the output (y), we could obtain the input (x) by solving
the equation mathematically. What AI does is change this paradigm, allowing us to
find very complex equations, which we couldn’t find with simple calculations, by
examining not only the outputs but also the input variables. It’s no longer a matter of
finding the x of equations studied in school; with many x and y, we need to find the
equation that connects them. This is the true revolution of AI.

However, like all major technologies, AI has its risks and dangers. What I will
show in this thesis is an example of the most classic problems and risks associated
with AI. Specifically, we will address privacy and security, providing examples in
various fields to understand how sometimes a small manipulation can cause enor-
mous damage, sometimes unintentionally, and other times with declared malicious
intentions. In the following chapters, we will delve into the details of two cases, one
related to security and the other to privacy, which I personally dealt with during my



iv

Ph.D. I will present some possible solutions that I found together with my research
group. In conclusion, I would like to emphasize that it will not be AI dominating
us but our intelligence deciding whether to remain masters of ourselves or choose
self-destruction.
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Chapter 1

Security and Privacy

As Machine Learning (ML) [1–3] continues to advance and permeate various aspects
of our lives, it brings with it a host of security and privacy challenges [4]. One
significant concern is the vulnerability of ML models to adversarial attacks. Adver-
sarial attacks involve manipulating input data in subtle ways that are imperceptible
to humans but can lead to misclassification by ML models. These attacks pose seri-
ous threats across various domains, including image recognition, natural language
processing, and autonomous vehicles.

Moreover, the widespread collection and use of personal data for training ML
models raise privacy issues. Organizations often gather vast amounts of sensitive
information from individuals, such as personal preferences, health records, and
financial data. If not handled properly, this data can be susceptible to unauthorized
access, leading to breaches of privacy and potential misuse.

Furthermore, the deployment of ML models in critical systems, such as health-
care, finance, and transportation, introduces concerns about reliability and safety.
Flaws or biases in the models can lead to incorrect decisions with far-reaching con-
sequences, underscoring the need for robustness and accountability in ML systems.

Addressing these security and privacy challenges requires interdisciplinary efforts
involving experts in ML, cybersecurity, ethics, and policy-making. Strategies such
as robust model training, data anonymization, encryption techniques, and regulatory
frameworks are essential to mitigate risks and ensure the responsible development
and deployment of ML technologies.



2 Security and Privacy

In this Chapter 1, we will provide a general analysis of some common issues
in the field of security and privacy, along with the existing techniques to address
these problems. Subsequently, in Chapters 2 and 3, we will examine two practical
examples of research aimed at improving some of these issues:

• Chapter 2 - Security Problem - Accelat: Fast Adversarial Training of DNNs.

• Chapter 3 - Privacy Problem - Spyking: Homomorphic Encryption on DNNs
and SNNs.

1.1 Security in Artificial Intelligence

The security problem [5] in ML concerns the protection of models, data, and re-
sults of the ML process from external threats that may compromise the integrity,
confidentiality, and reliability of the system [6].

Some of the most common cases include adversarial attacks [7], which we will
delve into further in Chapter 2. For example, external malicious intrusions can
deceive models with potentially disastrous consequences. Consider autonomous
vehicles [8]; in the event of an external attack, they may fail to recognize road signs
and fail to adjust the cruise speed, significantly increasing the risk of accidents.
Similarly, in healthcare applications [9], corrupted models may misclassify medical
data of some patients, leading to potentially fatal misdiagnoses.

Among the various types of attacks are data misclassification, injection of ad-
versarial data, or removal of correct data. However, there are also types of attacks
that exploit existing biases in the models themselves because they were trained on
datasets already influenced by human bias. Consider the gender bias [10]; many
models, for example, classify doctors as men and nurses as women. Similarly,
models often struggle to identify or create data on the Black population because
they were underrepresented in training data [11]. There have been cases in the past
where biometric recognitions struggled to distinguish between the faces of Black
individuals because they could not capture their main characteristics as they did on
lighter faces. As one can imagine, these cases can have serious consequences in
terms of security in unauthorized access to data or influencing model outcomes.
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Finally, security also concerns all the infrastructures that we use every day,
and in cases of external attacks, they may experience malfunction or total service
interruption. For example, in the management of traffic at major airports, train
stations, commercial ports, or energy industries.

To address these issues, it is necessary to implement robust security measures
throughout all stages of the ML lifecycle, including data collection, model training,
testing, and deployment. This may involve the use of encryption techniques, data
validation, model diversification, and training personnel on best security practices.

1.1.1 Adversarial Attack

Adversarial attack is a technique [7] used to deliberately manipulate Artificial Intelli-
gence (AI) models. The goal of an adversarial attack is to deceive the model into
producing incorrect or undesired results by including malicious or imperceptibly
modified inputs.

A common example of an adversarial attack occurs in the context of image
classification [12]. Suppose we have a deep learning model trained to recognize
objects in images, specifically distinguishing between images of cats and images of
dogs. An attacker could create an image of a cat that appears normal to the human
eye, but add small imperceptible perturbations to the model. These perturbations are
designed to deceive the model and cause it to incorrectly classify the image as a dog
instead of a cat.

Another example of an adversarial attack could occur in the context of text
classification [13]. Suppose we have a ML model trained to classify movie reviews
as positive or negative. An attacker could deliberately manipulate the words or
structure of a review to cause it to be incorrectly classified as positive instead of
negative, or vice versa.

In both examples, the attacker’s goal is to exploit weaknesses or vulnerabilities
in the ML model to achieve undesired results. Adversarial attacks raise concerns
about the security and reliability of ML models, especially when used in critical
contexts such as cybersecurity, medical diagnosis, or autonomous driving.

The most common method to generate an adversarial attack advx on data x
with label y is by adding a small perturbation ε to the original image according to
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the formula presented in Equation (1.1), where Δx is the gradient function and Θ
represents the weights of the loss function J.

advx = x+ ε · sign(∆xJ(Θ,x,y)) (1.1)

Adversarial attacks will be further explained and utilized in the research project
of Chapter 2.

1.1.2 Model Inversion Attack

Model inversion attacks [14] are a class of privacy attacks designed to extract
sensitive or private information about individuals using a trained ML model. The
basic idea of a model inversion attack is to use the model itself, along with a set
of public or background data, to invert or recover personal information about the
individuals used to train the model. In practice, this means that an attacker uses the
model to infer or guess the characteristics or personal data of an individual based on
the model’s predictions and other public information.

For example, suppose we have a ML model that classifies facial images as
smiling or notsmiling. An attacker could use this model to attempt to determine if
a particular person is smiling based on an image of their face. The attacker might
repeatedly feed the model with different images of the person’s face, observing the
model’s predictions and using this information to infer whether the person is smiling
or not.

In a broader context, model inversion attacks can be used to recover other
sensitive information about individuals, such as sexual orientation, religion, political
preferences, or other personal characteristics. This type of attack raises significant
privacy concerns, as it can be used to violate people’s privacy and jeopardize the
security of their personal information.

1.1.3 Model Extraction Attack

Model extraction attacks [15], also known as model learning attacks, are a category
of attacks where an attacker seeks to extract or replicate a trained ML model from
another party. The main goal of a model extraction attack is to obtain an approximate
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copy or representation of the ML model used by another party without having
direct access to the model itself. This type of attack can be executed by leveraging
information obtained from the responses of the trained model to certain inputs.

Here’s an example to better explain the concept: imagine you work for a company
that has developed a highly accurate ML model for detecting malware in files. The
model has been trained on a large dataset and has proven to be effective in detecting
various forms of malware. A malicious competitor wants to develop a similar model
but does not want to invest the time and resources required to collect and annotate
a large dataset of malware for model training. Instead, the attacker could execute
a model extraction attack to obtain an approximate copy of the malware detection
model developed by the company. The attacker could send a large number of files
to the company’s model and carefully observe the model’s responses for each file,
along with details about the files themselves. Using this information, the attacker
could gather a set of input-output pairs, i.e., the input files and the corresponding
predicted output labels from the company’s model. With a sufficiently large number
of input-output pairs, the attacker could use ML techniques to train a new model that
approximates the behavior of the company’s model. Once trained, the attacker’s new
model could be used to detect malware with a similar accuracy to the original model
developed by the company, without the need to collect its own training data. In this
way, the attacker has effectively extracted the company’s malware detection model,
gaining a competitive advantage without having to invest resources in training a
model from scratch. This is just one of many scenarios where model extraction
attacks can be used to compromise the security and intellectual property of ML
models.

1.1.4 Membership Inference Attack

Membership inference is a privacy attack technique [16] in which an attacker seeks
to determine whether specific data belongs to the training set of a ML model or
not. The main objective of a membership inference attack is to determine whether
a particular data point, known as a query, was used to train a ML model without
having direct access to the model itself or the training set.

Here’s membership inference explained with a practical example: imagine you
have a ML model trained to classify emails as spam or non-spam. The model has
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been trained on a large dataset of emails labeled as spam or non-spam. However,
you do not have access to the actual training set used to create the model. Now,
suppose you have a series of emails that you want to classify using the ML model.
However, you are concerned that some of these emails may have been used during
the training of the model itself. To determine whether a particular email was used
during the training of the model, you could perform a membership inference attack.
In this attack, you send your query email to the model and carefully observe the
model’s response. Subsequently, you slightly modify your query email and send
it to the model again, observing the response once more. If the model’s responses
change significantly when you send slightly modified versions of your query email,
it may indicate that your query email is similar to those used during the training of
the model. In this way, you could infer that your query email is part of the model’s
training set. In this example, the attacker uses the membership inference attack to
determine whether a particular email belongs to the training set of the ML model or
not, leveraging the model’s responses to the queries sent.

1.1.5 De-Anonymization

De-anonymization is a technique [17] by which anonymized data is correlated or
linked to specific identities, making them effectively no longer anonymous. This
process can be used to identify or trace individuals behind data that was previously
considered devoid of personally identifiable information.

Suppose we have a dataset of anonymized health records containing information
about patients with a particular disease. Initially, personally identifiable information
such as names, surnames, or identification numbers has been removed or replaced
with generic unique identifiers. However, a malicious researcher might attempt to
de-anonymize the dataset by trying to correlate the information contained in it with
other sources of public or private data. For example, the researcher could acquire
another dataset containing demographic information from a specific geographic area,
such as age, gender, and postal codes. By using this demographic information along
with the anonymized data in the health dataset, the researcher could try to identify
individual patients. If the health dataset contains detailed enough information and
if the researcher has sufficient knowledge or tools, they might be able to link the
anonymized information to specific identities in the real world. In this example,
de-anonymization jeopardizes the privacy of patients, as their initially anonymized
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information is exposed and can be used to identify them. Such practice is often
considered a privacy violation and can have serious consequences for the individuals
involved.

Another well-known case of de-anonymization is related to the Netflix Prize
mentioned in Section 1.2.

1.2 Privacy in Artificial Intelligence

Nowadays, we are increasingly concerned about our lack of privacy [18], and while
on one hand, we make all our data available by posting the details of our daily lives
on social media, on the other hand, we also worry about keeping some sensitive data
confidential, but why?

The answer is quite simple, but not to be taken for granted. For example, if we
let everyone know where we live and what our usual working hours are, we could
allow malicious individuals to choose the right day to burglarize our home. This is a
classic example, but why are we often asked to consent to the processing of personal
data, and why are there so many laws about it?

Home burglary is a trivial example, but many other implications could arise
from the dissemination of our data without us realizing it. For instance, a hospital
could collect data on its cancer patients [19] to try to conduct statistical studies
to implement new treatments. However, to conduct this study, it needs to have
this data analyzed by an external company, and this is where problems could arise.
The hospital cannot pass on that data without anonymizing it; otherwise, it could
easily end up in the hands of third parties, such as companies that provide health
insurance. Upon learning about the health conditions of some patients, they might
refuse to provide insurance, or worse still, they might do so by requiring a much
higher premium than normal. At this point, one might think that anonymizing the
data is sufficient, but are we sure?

The most emblematic case of data deanonymization is that of the Netflix Prize
of 2009. Netflix at the time decided to award $1 million to those who managed to
improve the algorithm recommending new films to users by over 10%. To do so, they
released an anonymized dataset containing lists of films, reviews, and users. The
films and users did not appear as names but as integers; they had been anonymized.
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However, some researchers [20] managed to deanonymize a large part of the dataset,
compromising the users’ privacy. They used a simple statistical technique that
allowed them to compare the Netflix dataset with IMDB review data. By comparing
data from both sources, they were quickly able to find the names of users who had
reviewed on both sites and consequently also discovered the names of the films. This
example shows that anonymizing data is not sufficient to maintain privacy. Living in
a world where the boundary between public and private is becoming increasingly
blurred, we need to seek, find, and exploit increasingly sophisticated anonymization
techniques.

Anonymity, and consequently privacy, derive from uncertainty and not just from
data camouflage. Nowadays, to privatize data, it is no longer enough to simply
hide it, but one must always introduce a certain amount of uncertainty so that it
becomes practically impossible to understand which data are real and which are
not. Unfortunately, however, it is necessary to always consider that there is a trade-
off between the quality of usable data and their anonymization (see Figure 1.1).
Sometimes data with too much noise are now useless, and those with too little
noise are not anonymous enough. The purpose of the privacy-preserving techniques
[21–23] that we will see in this Section 1.2 is precisely to overcome these issues by
finding the right balance between privacy and utility.

High utility
No privacy

High privacy
No utility

Fig. 1.1 Trade-off between privacy and utility.

1.2.1 Homomorphic Encryption

Homomorphic Encryption (HE) is a cryptographic technique [24] that allows oper-
ations to be performed on encrypted data without the need to decrypt it. In other
words, it enables computations to be carried out on encrypted data, yielding en-
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crypted results that, once decrypted, correspond to the results that would be obtained
if the operations were performed on unencrypted data. This is particularly useful for
data privacy and security, as it enables sensitive data to be processed without ever
revealing it in unencrypted form.

HE can take various forms, allowing computations at various levels. For example,
a partially HE of the multiplicative type allows for the multiplication of two encrypted
numbers, resulting in an encrypted outcome that, once decrypted, corresponds to the
product of the original numbers. This type of HE is especially useful in applications
such as salary computation or medical data analysis, where complex operations need
to be performed without compromising data privacy.

We will delve deeper into this type of cryptography in Chapter 3, where we will
apply it to a real research case.

1.2.2 Garbled Circuit

The term garbledcircuit refers to a cryptographic technique [25] used to perform
computations on encrypted data so that the results are accessible only to those who
possess the correct decryption keys. This technique is widely used in the field of
cybersecurity and privacy protection. In simple terms, a garbled circuit allows two
parties to compute a result without revealing their input data to each other. It works
by encrypting logical circuits, such as those used in mathematical calculations, so
that the values of the data are hidden. Only authorized parties can interpret the data
and obtain the correct result.

Suppose A and B want to compare their salaries but do not want to reveal the
specific details to their respective employers. Using a garbled circuit, they can
compare their salaries without disclosing the exact figures. A and B agree on a
garbled circuit protocol and generate an encrypted logical circuit that performs the
operation of comparing their salaries. A and B encode their salaries so that they
are represented by encrypted data within the circuit. The garbled circuit performs
the comparison so that only A and B can interpret the results. The result of the
comparison is returned only to A and B, while their employers cannot access the
original data. In this example, the garbled circuit allows A and B to perform a
comparison operation on their salaries without revealing the exact figures to their
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employers. This technique is useful in scenarios where it is necessary to protect the
privacy of data during encrypted computations.

1.2.3 Differential Privacy

Differential privacy [26] is one of the most commonly used techniques to attempt to
anonymize a group of data. To achieve this goal, differential privacy adds random
noise so that it is not possible to revert to the original data, but without statistically
altering the dataset.

Differential privacy can formally be defined according to the formula presented
in Equation (1.2), where the parameters are as follows:

• M - random algorithm.

• S - the predictable outputs of M.

• Pr - the probabilty.

• x - data from the dataset.

• y - data from the parallel dataset.

• ε- the maximum distance between the same data in the two databases.

• δ - the probability that information is leaked.

Pr[M(x) ∈ S]≤ exp(ε)Pr[M(y) ∈ S]+δ (1.2)

For example, with an anonymous questionnaire directed at a group of people,
each person’s profile could be reconstructed based on the answers given, narrowing
down the circle of possible authors for each response. What differential privacy does,
in this case, is to add random noise to each response so as not to be able to reliably
reconstruct the original profile of the respondent. For instance, if a single question
is asked with only two answers, yes and no, the respondent can answer whatever
they want, but before recording their answer, they flip a coin. If it lands heads, yes is
recorded, otherwise, the coin is flipped again. At this point, if heads come up, no is
recorded, otherwise, if the coin is flipped again, the correct answer is recorded.
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By doing so, it is obvious that the cases of authentic replies recorded are reduced
to 25% of the total, but it also ensures that it becomes practically impossible to trace
the authors of the replies. The truth is that the useful answers are not 25%, but almost
100%, contrary to what one might think. Since the coin toss is statistically random,
we should obtain 50% false yes answers, 25% false no answers, and 25% true
answers. Knowing this data, we can analyze our data in relation to these percentages
and thus obtain correct studies as if the noise had not been introduced. The problem
with this technique is that to anonymize the data, sometimes we tend to insert too
much noise, risking significantly to decrease the amount of useful data. There is
always a trade-off to consider between the goodness of the data and their anonymity.

Another critical point is the amount of data present. Being a random noise
technique, it works better on a large amount of data, while it risks having significant
errors on small datasets.

1.2.4 Federated Learning

With federated learning [27], the underlying method of operation in ML changes. As
the word itself suggests f ederated, in this case, it’s not about a single super-model
built based on the data sent and accumulated in a single dataset with the help of high
computing power. Instead, in this case, it’s the algorithm that is sent to the small
devices containing the data. In federated learning, unlike what happens in distributed
learning, data is not requested from users, who can be private individuals, but also
large companies, such as banks. Instead, it’s the algorithm that is sent/installed on
the local server to perform calculations on the local dataset. Once the calculations
are completed, only the weights that characterize the model are sent to the central
server to improve global learning.

From a technical standpoint, the objective function is given by Equation (1.3),
where K represents the number of nodes among which the model is divided, xi

represents the weights of each individual model, and f is the local objective function
of each individual node.

f (x1, ...,xK) =
1
K

K

∑
i=1

fi(xi) (1.3)
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In federated learning, much less computing power is needed, and therefore more
limited results are derived since it is carried out on local servers/computers. Fur-
thermore, the amount of data available is not always homogeneous and is often
intermittent due to the lack of connection with the central server. All these aspects
might lead us to think that federated learning is useful only to maintain data pri-
vacy; however, it has several applications, and one of the best-known is that of the
smartphone autocorrector that we all use every day.

The autocorrector indicates to us every term that it considers wrong according
to its model, but it also suggests the most probable words that could appear after
the one already written, and this function is personalized for each individual. The
algorithm slowly learns to use the terms we use most often but does not share them
with others. If we often use a name that it does not know, then over time that name
will automatically appear on our smartphone, but not on that of others, maintaining
privacy. At the same time, however, it learns grammar better and better, and this
helps everyone because it is implemented in the central model.

1.2.5 Secure Multiparty Computation

This is a very efficient technique [28] for preserving privacy when multiple parties
with similar data are involved. With secure multiparty computation, all the parties
involved only partially know the data of their partners, but they cannot go back to
the original data in any way.

To better understand how it works, we can give a practical example. Let’s say
we want to analyze the data of the major social networks users, take for example
Facebook, Twitter, Instagram, TikTok, and YouTube. Let’s assume that these compa-
nies have no relations with each other and there are no internal data exchanges, as
happens in reality between Facebook and Instagram. Everyone’s goal is to profile
their users compared to the average users who take advantage of the major social
networks (see Equation (1.4)).

f (x1,x2, ...,xn) = avg(x1,x2, ...,xn) (1.4)

Everyone, therefore, wants to understand if compared to the average it has more
male, female, young, elderly users, coming from certain areas of the world, etc. For
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simplicity, let’s take a single datum: that is, every company wants to understand
if its users have more males or more females than the average. Now let’s assume
that the percentage of males out of the total for each social network is the following:
Facebook 70%, Twitter 60%, Instagram 85%, TikTok 35%, and YouTube 60%. With
secure multiparty computation, none of them will have to tell the exact percentage to
the others, but everyone will be able to know what the total average is. In practice,
each company takes its data and divides it into smaller percentages for the total
number of companies. In the case of Facebook where we have placed 70% of males,
we divide the data into 5%, 10%, 15%, 15%, 25%. The sum of the percentages thus
divided makes 70% again, but this does not know anyone outside of Facebook itself,
at this point, all the companies do the same thing and distribute every single part of
the total to each of the other companies. In doing so, each company has a fragment
of the data of the other companies. Then, each company calculates the sum of the
percentages received and makes it public. Now you can make an average of the data
without any of the companies knowing exactly what the precise percentages of the
others are because each has obtained only a part of the data of all the others.

1.2.6 Secret Sharing

The secret sharing scheme, or secret sharing, is a cryptographic technique [29]
used to divide a secret into multiple parts, called shares, so that the secret can be
reconstructed only when a sufficient number of these parts are combined together.

The secret sharing process involves three main phases:

• Secret generation - in this phase, the secret to be shared is generated. It can be
any type of sensitive information, such as a cryptographic key, a password, or
financial data.

• Secret division - the secret is divided into multiple independent parts, each
of which contains a portion of the original information. These parts are dis-
tributed among different participants, called sharers, using a specific division
algorithm.

• Secret reconstruction - to reconstruct the original secret, a sufficient number
of parts must be collected. Generally, reconstruction can occur only when a
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certain minimum number of participants collaborate together and combine
their parts of the secret using a combination algorithm.

For example, imagine three friends want to share a safe containing valuable
items, but they want to ensure that none of them can access the safe alone. They
decide to use a secret sharing scheme.

• Secret generation - they decide to use a four-digit code as the secret to open
the safe.

• Secret division - using a secret sharing scheme, the code is divided into three
parts, each containing two digits of the code. Each friend then receives one
part of the code, without knowing the other parts.

• Secret reconstruction - to open the safe, all three friends must come together
and combine their parts of the code. Once each friend has correctly entered
their part of the code, the safe opens.

In this way, no single friend is able to access the safe alone, but the secret can be
reconstructed only when all three collaborate together.

1.2.7 Private Set Intersection

Private set intersection is a cryptographic technique [30] used to determine the
intersection between two sets of private data held by two different parties without
revealing any information beyond the intersection itself. In other words, it allows
two parties to compare their sets of data without disclosing the specific details of the
elements in their respective sets.

An example of private set intersection could involve two organizations wanting
to compare their customer lists to identify any overlaps without revealing sensitive
information about the users. Suppose Organization A has a customer list containing
unique IDs associated with each customer, and Organization B has a similar list.
Both organizations want to identify the customers that are present in both lists
without revealing the names of the customers or other personal data. To perform the
private set intersection, the two organizations adopt a cryptographic protocol. Firstly,
Organization A encrypts its customer list so that only Organization B can interpret it.



1.2 Privacy in Artificial Intelligence 15

Similarly, Organization B encrypts its own customer list so that only Organization A
can interpret it. Subsequently, the two organizations exchange the encrypted data
with each other. Using the private set intersection protocol, each organization can
compare the other organization’s encrypted data with its own encrypted data without
ever revealing the specific details of individual customers. At the end of the process,
both parties obtain only the list of customer IDs that are present in both sets without
knowing any other details.

In this way, private set intersection allows two parties to compare their data with-
out compromising the privacy of the individuals represented in the data themselves.

1.2.8 Zero-Knowledge Proof

Zero-knowledge proofs are a type of cryptographic protocol [31] that allows an
entity to prove knowledge of specific information without actually revealing that
information. In other words, the entity can demonstrate possession of certain knowl-
edge without having to disclose what that knowledge is. This concept is extremely
powerful for ensuring the privacy and security of information during communications
and transactions.

Zero-knowledge proofs are used in various applications, such as authentication
without revealing a password or proving knowledge of a private key without disclos-
ing it. For example, suppose A wants to prove to B that they know the password to
access a website, but without revealing the password itself.

• B sends a sequence of random challenges to A.

• A uses their secret password to respond to B’s challenges.

• B verifies A’s responses and confirms that they are all correct, demonstrating
that A possesses knowledge of the password.

Despite B being confident that A knows the password, they have not actually learned
anything about the password itself because A’s responses contain no information
about the password. This example illustrates how zero-knowledge proofs allow for
proving knowledge of a password without revealing it. It is important to note that
zero-knowledge proofs are designed to ensure that no useful information can be
deduced from the provided responses, thus protecting the user’s privacy.
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Zero-knowledge proofs are applied in numerous scenarios, including financial
transactions, authentication systems, identity verification procedures, and much more,
helping to ensure a high level of security and privacy in digital communications and
transactions.

1.2.9 Privacy Preserving Record Linkage

Privacy preserving record linkage is a technique [32] used to securely and privately
link information from different sources without revealing sensitive or identifying
data. The goal is to identify records that refer to the same entity across separate
datasets without compromising the privacy of the data itself.

The are several phases:

• Pre-processing - before linkage, the data is preprocessed to ensure that there
are no direct identifying information and to apply anonymization or encryption
techniques.

• Tokenization - a cryptographic representation or token is created for each piece
of data, so that the linkage can be performed based on these tokens without
revealing sensitive information.

• Linkage - the data tokens are compared between datasets to identify matches.
This linking occurs without the need to reveal the original data.

• Post-processing - after linkage, additional privacy protection techniques may
be applied to remove any redundancies and ensure the security of the results.

Suppose we have two datasets, one containing people’s names and their postal
codes, and the other containing people’s phone numbers and their respective postal
codes.

• Pre-processing - before linkage, the datasets are anonymized by replacing
people’s names with unique identifiers and encrypting phone numbers.

• Tokenization - for each name and postal code in the first dataset and for each
phone number and postal code in the second dataset, cryptographic tokens are
generated.
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• Linkage - the tokens from the two datasets are compared to find matches
between people who share the same postal code.

• Post-processing - after linkage, additional privacy protection techniques, such
as removing duplicates or adding noise to hide any identifiable patterns, may
be applied.

In this way, privacy preserving record linkage allows for identifying matches between
records in the two datasets without directly revealing personal information such as
names and phone numbers. This ensures the privacy of the individuals involved and
protects sensitive data during the linkage process.



Chapter 2

AccelAT

Machine Learning (ML) [33] has experienced rapid growth and widespread adoption
in recent years, primarily due to advancements in hardware efficiency, particularly
GPUs. However, training sophisticated and complex ML models often requires
significant computational resources and time. Consequently, accelerating ML pro-
cesses with fast training techniques allows for optimizing calculations and improving
GPU management, even in large data centers. On the other hand, over the last
decade, it has become evident that ML models are susceptible to external attacks not
identifiable by humans. Hence, there is a growing need for ML models to possess
robustness [34–36] against such attacks [37], especially when used in safety-critical
applications [38].

In this work [39], we aimed to create models that are fast and robust to adversarial
attacks [40–42], laying the groundwork for the future models [43].

In the flowchart presented in Figure 2.1, you can see a schematic of how the
research work was conducted, divided into an initial phase of analysis and evaluation
of existing models, followed by the study and development of new fast adversarial
training techniques.

2.1 Adversarial Attacks

An adversarial attack [40, 44, 45] is a technique used to intentionally manipulate the
input data into a ML model in order to induce errors in its classification or operation.
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Fig. 2.1 A summary flowchart of the AccelAT research project.

Adversarial attacks are designed to exploit vulnerabilities in ML models, which may
be susceptible to small, imperceptible perturbations that can significantly influence
the model’s output. Adversarial attacks can be employed to deceive ML models,
compromise their security, or cause malfunctions. For example, in cases where facial,
voice, or fingerprint recognition is used to unlock certain services, an external attack
can have serious consequences [46]. Complex Deep Neural Network (DNN) models
are highly vulnerable to external attacks, with their accuracy potentially dropping
from nearly 100% to about 0% in worst-case scenarios [47]. Consequently, there
is a desire for DNN models to be robust against such external attacks. To counter
these attacks, it is necessary to develop and implement robust models capable of
maintaining high accuracy in the presence of such malicious variations.

2.1.1 Adversarial Examples

For an adversarial attack [40] to work, it’s necessary to create modified data that is
imperceptible to a human but can deceive DNN models and result in fatal outcomes.
Randomly generated attacks wouldn’t be effective because the data would be illegible
even to a human, halting the entire process. However, targeted attacks can bypass
human scrutiny and target the DNN model directly. In the case of image data, as
shown in Figure 2.2, attacks focus on modifying images by adding small adversarial
perturbations, resulting in an image that appears nearly identical to the original but
is interpreted differently by the model.

In Figure 2.2, we can observe how an image initially classified as an eagle with
over 90% accuracy is misclassified as a chicken with just the addition of some noise
[48]. The noise image shown has been amplified 1000 times to make it visible. Thus,
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Fig. 2.2 An example of adversarial attack, where an eagle is misclassified as a chicken after
adding specific noise to the original image.

while the initial and final images may appear identical to a human, every single pixel
has been modified according to the noise pattern shown in the center of Figure 2.2.

There also exists the reverse scenario where images are attacked to yield com-
pletely wrong results for a human observer but are correctly classified by an Artificial
Intelligence (AI) model. However, this latter case isn’t critical as it wouldn’t pass
human scrutiny. Henceforth, when referring to external attacks, we mean those
resulting in misclassification by DNN models.

2.1.2 Attack Methods

Given that the classification of data by DNN models does not occur as it does in the
human brain, adversarial attacks have been devised considering how models tend
to proceed to distinguish one class from another [49, 45]. In the specific case of
image classification, for example, there are various techniques to deceive the model,
including: variation of recurring patterns in images, modification of a single pixel
[50] and variation of the decision boundary between two or more classes [51, 52].

The most common case is based on computing the separation line between two
classes. In Figure 2.3a, we can see how in a simple case with two classes, there is an
imaginary line that separates the features of one class from those of another class. To
deceive the model, it is possible to slightly perturb the data by shifting the boundary
features slightly beyond, as shown in Figure 2.3b, so that the data is not too altered
but enough to be misclassified with the nearest similar class. Another scenario could
involve shifting the entire demarcation line as depicted in Figure 2.3c, causing all
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boundary features to fall into the contiguous class, resulting in misclassification of
the data. These are just some simplified examples of how an adversarial attack can
perturb data and almost nullify the accuracy of a DNN model.

(a) Separation line. (b) Feature moving. (c) Line moving.

Fig. 2.3 Two ways of fooling a classifier using the separation line between two different
classes.

2.1.3 White-Box Attacks

There are mainly two types of attacks, white box [53] and black box [54] (see Fig-
ure 2.4). The main difference lies in the fact that in white box attacks, the internal
structure of the model is known, enabling a more targeted and powerful attack to
be designed. On the other hand, in black box attacks, only the input and output are
known, making them more complex and requiring more time to execute. In this work,
only targeted white box attacks were conducted, knowing all the internal parameters
of the attacked model.

           

           INPUT OUTPUT

INPUT OUTPUT

WHITE BOX

BLACK BOX

Fig. 2.4 Difference between a white box attack and a black box attack.
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2.1.4 Adversarial Training

Adversarial training [55] involves training a model to be robust [35, 36] against
external attacks. Various techniques can be exploited to obtain robust models [37],
such as control with a second model, fine-tuning hyperparameters [56], and data
augmentation [57].

The control method leverages two DNN models. One of the models, the sec-
ondary one, checks the other, namely the main one, to verify whether the analyzed
data is adversarial or not. This technique uses an externalguard logic, but its actual
effectiveness is still under study.

Hyperparameter tuning, such as weight decay, Learning Rate (LR), or batch size
adjustment, is useful for countering external attacks, but it rarely leads to acceptable
results.

The most widely used method is certainly data augmentation with the addition
of adversarial samples [58]. Therefore, during training, the model utilizes both
clean images, i.e., correct ones, and those with added noise, i.e., already attacked or
generated with other models based on desired attacks. This latter technique leads
to significant increases in accuracy against external attacks, but as a drawback, the
performance towards clean images decreases. Additionally, this robustness comes at
the expense of computation times, which inevitably become longer, proportional to
the adversarial samples added to the training and the attack models against which
robustness is desired.

2.1.5 Foolbox Library

Among the various existing libraries that allow implementing various types of
attacks, we chose to use Foolbox [59]. This library stands out for its comprehensive
documentation, features, and support for the TensorFlow [60] library, which was used
in this work. With Foolbox, it is possible to execute a wide range of customizable
attacks, which easily enable adversarial training.
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2.2 Fast Training

The fast training is a technique [61] used in ML model training aimed at accelerating
the learning process by reducing the time required for model training, without
excessively compromising the performance or quality of the model itself. This can
be particularly important in scenarios where training models on large datasets or
in real-time is necessary, where learning speed is crucial. For example, popular
websites like Google, YouTube, and Facebook need to manage continuous streams
of incoming data [46], and being able to train data quickly is a necessity. On the
other hand, using large amounts of data leads to significant energy consumption,
which is unsustainable for small-scale applications with limited resources.

These improvements can be achieved through various strategies, including opti-
mization of learning algorithms, the use of specialized hardware such as GPUs or
TPUs to perform parallel computations, reducing the number of training data used,
or optimizing learning parameters.

In this work, we aimed to expedite the training of robust models through hyper-
parameter [56] fine-tuning. Some of these parameters include epochs, batch size,
weight decay, momentum, LR, etc. Among these, the most crucial is the LR, and to
set it optimally, it’s essential to first find the maximum usable LR.

2.2.1 Learning Rate Finder

The Learning Rate Finder (LRF) is a method used to determine the highest usable
LR during training. To understand it better, one can imagine that most training
models attempt to optimize results by seeking the deepest minimum within the
search function. For this search, the crucial parameter is the LR, which determines
how quickly the model will find a local minimum, ideally as close as possible to
the absolute minimum. A too-small LR results in excessively long training times or,
worse, sometimes leads to unacceptable convergence because the model gets stuck
within a very small local minimum, resulting in very low accuracy. Conversely, a
too-high LR risks preventing the model from finding the minimum as it continually
overshoots it due to its high LR. Therefore, finding the optimal LR helps identify the
upper limit for this hyperparameter, which can then be gradually reduced as the model
converges and achieves adequate accuracy. This technique is particularly useful
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during the training phase of DNN models, where the LR is a critical hyperparameter
that affects the speed and stability of the learning process.

The LRF automates the process of finding the optimal LR, avoiding the trial-
and-error part that would otherwise need to be done manually. The most intuitive
implementation of the LR finder involves using an exponential LR during a trial
training session while simultaneously evaluating the model’s loss [62]. For effective
results, it is reasonable to vary the LR by at least ten orders of magnitude, and if the
other parameters have been properly normalized, then the LR will typically range
from 0.001 to 10. Therefore, it’s advisable to cover this range of values during
training. At the end of training, the optimal LR can be easily identified by examining
the model’s loss graph.

For example, looking at Figure 2.5, where the LR is exponentially increased
and plotted on a logarithmic scale, it can be observed that for low LR values, the
loss is relatively stable. From a certain point onwards, the loss begins to decrease
significantly until it reaches a minimum, after which it diverges definitively. Conse-
quently, the usable LR values are all those preceding the point of minimum loss. It is
generally recommended to use a maximum LR value at least one order of magnitude
less than that used during the loss minimum, ensuring that the model does not diverge.
In conclusion, as evident from Figure 2.5, the optimal LR should be chosen from the
point of loss descent to approximately one order of magnitude before the absolute
minimum.
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Fig. 2.5 LR finder executed on the ResNet50 model for the CIFAR10 and CIFAR100 datasets.
The LR is plotted in logarithmic scale and the best LR is just before the loss minimum.
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2.2.2 Fast Training Techniques

The most commonly used fast training techniques [63] involve varying the LR and
other hyperparameters. Among these, the most advanced ones found in the literature
include:

• One cycle policy

• Cyclical policy

• Warm restarts

Each of these proposes a different technique for modifying the shape of the LR
during training, and later on, we will see how each of them performs in a real-world
scenario. Since these are all regularization techniques, to avoid interference, it is
generally necessary to reduce other types of regularization for optimal results.

One Cycle Policy

The one cycle policy [64], as the name suggests, applies a single cycle throughout
the entire training to both the LR and momentum. In Figures 2.6a and 2.6b, the
shapes of LR and momentum during the one cycle policy are depicted, and it can
be immediately observed that they have inverse shapes. This is because when LR
increases, it is preferable to decrease the regularization brought by the momentum,
and vice versa.
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(b) Momentum shape, inverse of that of the LR,
with a final constant value of 0.95.

Fig. 2.6 One cycle policy.

To set up the one cycle policy, one starts with the LRF. After finding the optimal
LR, LRMAX, the initial LR value is set to 1/10 of the LRMAX (see Figure 2.6a). For
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the remaining 90% of the time, the LR shape becomes triangular, meaning it linearly
increases from the initial value to the maximum LRMAX at 45% of the total time,
and then linearly decreases back to the initial LR in the other 45% of the time. In the
last part of the training, the LR transitions from the initial value, which was 1/10 of
the maximum, to approximately LRMAX/1000. In practice, in the last 10% of epochs,
the LR value decreases rapidly by a factor of 100. This final part aims to reach the
deep of the local minimum found and must be properly set, as if it lasts too long, it
would lead to overfitting, whereas if it is too short, the accuracy would remain low.

For the momentum, the same rule as LR is applied but in the opposite direction
(see Figure 2.6b). Typically, a maximum value of 0.95 and a minimum value of
0.85 are used, resulting in an intermediate value of 0.90, which is commonly used
for momentum. The only difference from LR is that in the final part, in the last
10% of epochs, the momentum remains constant at the value of 0.95 without further
variation.

Cyclical Policy

The cyclical policy [64] (see Figures 2.7a and 2.7b) is based on a logic similar to
that of the one cycle policy but is cyclical, meaning the shape of the LR oscillates
multiple times between a maximum and a minimum value. This strategy can be
useful when the training process of the DNN model is characterized by numerous
local minimum points. The use of a cyclical LR allows the training to explore deeper
minima, consequently improving the overall accuracy of the model. Additionally,
the cyclical variation of the LR can help avoid issues such as overfitting or stagnation
in suboptimal local minima.
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(b) A triangular shape with fixed lower boundary.

Fig. 2.7 Cyclical policy.
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The length of each cycle is defined as a multiple of one training epoch. During
each cycle, the LR gradually increases from a minimum value to a maximum value,
and then decreases back to the minimum value. This cycle is repeated multiple times
during the training of the model. For optimal results, it is advisable to choose cycle
lengths ranging from 4 to 20 times an epoch and perform at least 3-5 cycles during
training to observe significant improvement compared to a constant LR. Excessive
increase in the number of cycles may compromise the usefulness of the cycle itself,
as the training would not have time to adapt to the variations in the LR.

The choice of maximum and minimum values of the LR is important for the
success of the training. It is recommended to use the maximum LR found through
techniques like the LRF (see Figure 2.8), approximately 1/10 before the minimum
loss value, and set the minimum LR to a reasonable value within the loss descent
region, i.e., after the initial plateau.
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Fig. 2.8 LR boundary on the loss plot for the cyclical policy.

A variant of this technique involves creating cycles of equal length but with a
decreasing maximum value, as shown in Figure 2.7b, to find deeper minima in local
minima.

Warm Restarts

The warm restart [65, 66] (see Figures 2.9a and 2.9b) involves cyclically resetting
the LR update process during training, but with sudden restarts from minimum
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to maximum, allowing the model to explore different optimization spaces more
effectively.
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(b) Accordion-like sinusoidal shape.

Fig. 2.9 Warm restarts policy.

In practice, the LR value is regularly updated using a cyclic function, but instead
of maintaining the LR’s cyclic shape constantly, the warm restart technique involves
periodically restarting the LR’s cyclic function, bringing it back to its initial value
or a predefined value. Once again, using an LR with warm restart prevents the
model from getting stuck in suboptimal minima and enhances the model’s ability to
generalize to new data, reducing the risk of overfitting.

Other fast training methods

By altering the configurations of the hyperparameters or combining the techniques
discussed earlier, it becomes feasible to devise novel training strategies for the LR
that could potentially be more efficient than the original methods.

2.3 Datasets

For this research, two datasets were utilized: CIFAR10 [67] and CIFAR100 [68],
which are similar but with a significant difference: the number of classes. Indeed, in
this way, the effectiveness of the models in being trained on datasets with increasing
learning difficulty was tested, where misclassifying classes is very simple, thus
enabling the real testing of the model’s robustness. The main characteristics of these
two datasets are presented in Table 2.1.



2.4 TensorFlow 29

Table 2.1 Summary of the main characteristics of the 2 datasets used.

Datasets CIFAR10 CIFAR100

Total images 60000 60000
Train-set 50000 50000
Test-set 10000 10000
N° Classes 10 100
Dimensions 32x32 32x32
Colours 3 - RGB 3 - RGB
Classes Type Objects Objects

2.3.1 CIFAR10

CIFAR10 [67] (see Figure 3.6) consists of 60,000 color images sized 32x32 pixels,
divided into 10 different classes, each containing 6,000 images. The 10 classes
represent common objects such as airplanes, automobiles, birds, cats, deer, dogs,
frogs, horses, ships, and trucks. The dataset is split into 50,000 training images
and 10,000 test images. It is one of the most commonly used datasets for testing
low-resolution image classification algorithms.

2.3.2 CIFAR100

CIFAR100 [68] is similar to CIFAR10 but contains 100 classes instead of 10. Each
class contains 600 images. The 100 classes are divided into 20 superclasses, each
containing 5 classes. For example, one of the superclasses could be pets, which
includes classes like cats, dogs, and birds. Other superclasses include wildanimals,
f ruitsandvegetables, vehicles, etc. CIFAR-100 is designed to test classification
algorithms that require greater variety and complexity in classes.

2.4 TensorFlow

TensorFlow [60] is an open-source library developed by Google for ML and AI. It is
one of the most popular libraries for developing ML models, particularly for neural
networks [69] and deep learning algorithms [70].
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Its architecture is based on a computational graph, where nodes represent mathe-
matical operations and edges represent tensors (or multidimensional arrays) flowing
between operations. This approach makes TensorFlow highly efficient in terms
of parallel and distributed execution across various hardware platforms, including
CPUs, GPUs, and TPUs.

TensorFlow offers a wide range of functionalities, including model construction,
training, evaluation, inference, and optimization. Additionally, it supports the Ten-
sorBoard tool, which allows for the visualization of data and many other parameters
useful for optimizing workflow.

Furthermore, TensorFlow is highly flexible and supports a wide range of program-
ming languages, including Python [71], C++, Java, and others, enabling developers
to easily integrate TensorFlow into their existing projects.

2.5 Free Adversarial Training

In the first part of this research activity, we studied and tested the feasibility of
fast adversarial training on an existing model, and we chose the Free Adversarial
Training (FAT) [72].

In this model, there are two main parameters:

• m - also known as f ree−m, a parameter of FAT itself, indicating how many
times a perturbation is applied for each minibatch. Setting m to 1 results in
standard training.

• ε - the adversarial perturbation, which is the noise added to the data. Values
that are too small are ineffective, while values that are too large would distort
the data so much that it becomes recognizable even to a human.

First, the FAT model was analyzed to evaluate its baseline performance. Then,
training was performed on the FAT ResNet50 [73, 74] model using the CIFAR10
and CIFAR100 datasets. The anticipated attack in the original paper is the Projected
Gradient Descent (PGD) with a constant ε of 8.0. The model was trained on both
natural and adversarial images for 80,000 epochs, and the final accuracy and loss
[62] achieved for natural images is shown in Table 2.2.
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Table 2.2 Final accuracy and loss on the original FAT.

Datasets CIFAR10 CIFAR100

Accuracy 84.34% 59.89%
Loss 0.00562 0.01459

As shown in Figure 2.10, the training on CIFAR100 performs less effectively both
in terms of accuracy and loss. This is due to the higher complexity of CIFAR100,
which has 100 classes instead of 10. In both cases, however, the robust models
manage to achieve fairly acceptable results on natural images, surpassing 50%
accuracy.
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Fig. 2.10 Original FAT accuracy and loss on natural images.

2.5.1 Hyperparameters Setup

In Figure 2.11, you can see the shape of the original LR of FAT. As you can notice,
it’s not constant but has already been optimized as it follows a step function pattern
outlined in Table 2.3.

To find the best LR, we used the LRF, resulting in the following maximum LR
values for each dataset:

• CIFAR10 - 0.15

• CIFAR100 - 0.12
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Fig. 2.11 FAT original 3-steps LR shape.

Table 2.3 FAT original 3-steps LR values during the training.

Epochs LR

0 - 40.000 0.1
40.000 - 60.000 0.01
60.000 - 80.000 0.001

These values are higher than those of the original FAT, and will allow us to
achieve better results as we’ll see later on.

Regarding momentum, we chose to keep the constant value of 0.90 for all fast
training techniques and to keep it variable, following the pattern shown in Figure 2.6b,
between 0.85 and 0.95 only for the one cycle policy. For regularization and due to
computational constraints of our computer, we set a value of 0.0002 for weight decay
and 128 for batch size. The remaining hyperparameters were left unchanged from
the original FAT to ensure the most similar conditions, aiming to speed up the model
while maintaining robustness.

2.5.2 Optimization Results

In Figures 2.12 and 2.13, various LR optimization techniques applied to FAT with
the CIFAR10 and CIFAR100 datasets can be seen.

All tests were conducted with models robust to PGD attacks and tested on
the natural images of the datasets. To perform the tests, a Tesla K40c GPU was
used, which takes about 5 hours to run 10,000 epochs. The original FAT lasted
80,000 epochs, equivalent to 40 hours of training. With the implemented fast training
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Fig. 2.12 FAT adversarial training of ResNet50 on the CIFAR10 and validation on natural
images dataset with different LR techniques.

techniques, it can be seen how the same final accuracy of the original FAT is achieved
in half the epochs. For a more comprehensive comparison, we also conducted a
test with constant LR, which obviously performed less well than the 3-steps LR
of the original FAT. Among the various techniques, the one cycle policy probably
performed best in terms of accuracy and will therefore be used in the subsequent part
of the research. From these results, it is clear how fine-tuning hyperparameters can
lead to super-convergence in both standard training on natural images and adversarial
training [43] without affecting the accuracy and robustness of the original models
[75].

2.6 AccelAT Framework

The AccelAT framework was implemented to reduce model setup time. In fact, to
use existing fast training techniques, one must spend a considerable amount of time
setting all the parameters and conducting various tests to obtain the best configuration.
This initial setup phase is not considered in the training time but is a considerable
part of the total time to create a robust model. With the AccelAT framework, the
model itself will decide when to adjust the LR for more efficient training, achieving
equivalent or better results than existing fast training techniques.



34 AccelAT

0 10 20 30 40 50 60 70
Epochs x1000

0

10

20

30

40

50

60

A
cc

ur
ac

y 
%

Constant - Worst Case
Original FAT - 3 Steps
One Cycle
Linear Decay
Exponential Decay
Linear Warm Restarts
Warm Restarts

Fig. 2.13 FAT adversarial training of ResNet50 on the CIFAR100 and validation on natural
images dataset with different LR techniques.

Looking at Algorithm 1, you can see how AccelAT works. With the LRF, we find
the maximum usable LR, LRMAX, and set the initial LR to that value. During training,
if the accuracy does not improve for a certain period of time, the LR decreases to
search for deeper minima, i.e., we calculate the gradient of accuracy to decide the
value of the next LR. This process is repeated whenever accuracy stagnates in a
plateau zone for a certain number of epochs, until the desired accuracy is reached
(see Figure 2.14). Here’s a step-by-step explanation of the framework:

• Search for LRMAX with the LRF.

• Set the LR to the previously found LRMAX.

• Training begins with the LRMAX set.

• Calculate accuracy, and if it continues to increase, proceed without further
modifications.

• If accuracy stagnates on a plateau, i.e., does not increase by a predetermined
Δacc for a certain number of epochs n, then the LR is reduced by a percentage
with a fixed coefficient p.

• Once the LR reaches a predetermined minimum value, LRmin, decided in
advance, the remaining training continues with this LR value.
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Algorithm 1 AccelAT
Require: Maximum LR - LRMAX, minimum LR - LRmin, accuracy delta - Δacc,
percentage reduction - p, number of cycles of interest - n, accuracy - acc, previous
average accuracy - accpre

1: LR← LRMAX
2: for e in epochs do
3: if (acc(e,e−n)−accpre)< ∆acc then
4: LR← LR · p
5: end if
6: if LR < LRmin then
7: LR← LRmin
8: end if
9: accpre← acc(e,e−n)

10: end for

• If accuracy reaches an optimal value, then training terminates.

For instance, let’s consider a value n of ten epochs to evaluate accuracy and a
Δacc of 1%. Suppose we’ve determined a maximum LR of 0.01 and want to reduce
it by approximately p = 10% each time we encounter a plateau area. We then initiate
training for 100 epochs. We monitor the accuracy increase rate at each epoch. For
example, in the first 40 epochs, if the accuracy increase is greater than or equal to 1%
compared to the last ten epochs, then the LR remains fixed at 0.01. At the 41st epoch,
if the accuracy hasn’t increased by at least 1% in the last ten epochs, we reduce the
LR by 10%, multiplying it by 0.9, thus obtaining a value of 0.009. We then resume
training, and accuracy begins to rise again. Around the 70th epoch, if another plateau
area is encountered, we again reduce the LR by 10%. Training continues until the
end of the 100 epochs. At the end, the LR is lower than the maximum LRMAX,
allowing us to increase accuracy by delving deeper into the found local minimum.
With our AccelAT framework, we obtain an adaptive LR based on the specific type
of training we’re conducting, i.e., based on the accuracy gradient, enabling us to
overcome the limitations of a fixed LR, thereby ensuring more efficient training.

Utilizing the AccelAT framework does not yield a defined shape for the LR,
but rather varies from training to training based on the model, dataset, and various
parameters. Since the LR is reduced by a percentage, it can be said to assume a
form similar to a scale, albeit logarithmic, as it decreases less and less as the value
becomes smaller. Calculating the gradient each time during training slightly slows
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Fig. 2.14 AccelAT workflow.

down the process, but for cases with complex datasets, it allows for optimal LR to
achieve the best results. Conducting preliminary analyses to choose the values of p,
n, and Δacc enables obtaining the best efficiency of the AccelAT framework.

2.7 AccelAT Setup

To test the AccelAT framework, we attempted to recreate an environment similar
to that used for FAT. We used pre-trained ResNet50 [73, 74] and MobileNet [76]
models on ImageNet [77–79] and attacked them with LinfPGD and DeepFool [7]
from the Foolbox library to make them robust, while CIFAR10 and CIFAR100 were
used as datasets for training.

We tested all combinations of network/dataset/attack with each of the three
different types of LR policy: constant, one cycle, and AccelAT. Thus, a total of 24
trainings were performed to verify the effectiveness of AccelAT, with each training
taking approximately 2 hours with the available hardware. Using the LRF, we found
a value of LRMAX ranging from 0.001 to 0.0001 for all simulations, and the other
hyperparameters were set to the following optimal values:
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• Momentum - 0.9

• Batch size - 128

• Weight decay - 0.0002

The number of epochs was set to 50, using the logic of early stopping. In this
way, we avoided overfitting [80] while still maintaining an adequate accuracy value.
Finally, we set a value of 0.01 for the ε , the perturbation budget, and the algorithm
iterated the process until fooling the DNN.

Figure 2.15 shows a summary diagram of the experimental setup for the AccelAT
project, where the software, hardware, and parameters used are displayed.

Software
DNN: ResNet - MobileNet

Dataset: CIFAR10 - CIFAR100
Attack: LinfPGD - DeepFool

Code: Python - TensorFlow - Foolbox

Hardware
GPU: NVIDIA Tesla K40c 12GB

CPU: Intel® Xeon® Gold 6134 @ 3.20 GHz
RAM: 16 GB

Experimental Setup
LR type: Constant - One Cycle - AccelAT

Maximum LR: 0.001 - 0.0001
Momentum: 0.9
Batch size: 128

Weight decay: 0.0002
Total epochs: 50

Perturbation budget ε: 0.01

Results
Total runs: 24 training

Duration: ~2 hours each training

Fig. 2.15 AccelAT experimental setup.

2.7.1 Models

The ResNet50 and MobileNet models are two convolutional models with different
purposes. Indeed, the former is a state-of-the-art Deep Neural Network (DNN) used
for complex applications, while the latter is a lighter network suitable for deployment
on portable devices, as the name suggests.

ResNet

ResNet [73, 74] is a family of DNNs developed by Microsoft Research. It introduces
the concept of skipconnection or shortcutconnection, which involves adding direct
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connections that skip one or more layers instead of passing through them. These
connections enable the direct flow of gradients during the backpropagation process,
facilitating the training of very DNNs. The key idea is to address the problem of
network degradation, where performance deteriorates when additional layers are
added to the network. Thanks to skip connections, ResNet can train neural net-
works with hundreds of layers, achieving better performance compared to shallower
architectures.

MobileNet

MobileNet [76] is another family of convolutional neural networks developed by
Google, primarily designed for computer vision applications on mobile and embed-
ded devices, where computational resources and energy are limited. The architecture
of MobileNet is based on the idea of separating standard convolutions into depthwise
convolutions and pointwise convolutions. Depthwise convolutions apply a sepa-
rate kernel to each input channel, significantly reducing the number of operations.
Pointwise convolutions are 1x1 convolutions that combine the results of depthwise
convolutions to create more complex representations. This design allows MobileNet
to achieve a good trade-off between accuracy and computational efficiency, making
it ideal for devices with limited resources.

2.7.2 Attacks

The LinfPGD and DeepFool attacks were implemented using the Foolbox library,
and in both cases, they were optimized to deceive the model without the perturbed
data being identifiable by a human subject.

LinfPGD

LinfPGD [81] is an algorithm used in attacking ML algorithms, particularly in the
contexts of adversarial attacks. This algorithm employs projected gradient descent
to generate ℓ∞ perturbations, meaning perturbations bounded by the ℓ∞ norm, which
represents the maximum deviation allowed for each pixel in the image. The goal of
LinfPGD is to modify the input in order to deceive the ML model, causing it to make
an error in classifying the image.
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DeepFool

DeepFool [82] is an algorithm used to generate adversarial attacks on neural networks.
The approach of DeepFool is based on the idea of finding the direction in which
a small perturbation of the input can move the input instance across the decision
boundary of the model, i.e., the hyperplane separating the different output classes.
The algorithm iteratively computes the minimum perturbation required to move the
input instance beyond the decision boundary, thus producing an image that looks
very similar to the original but induces a misclassification by the model. DeepFool is
designed to be efficient and produces minimal perturbations that are imperceptible
to humans but can easily deceive ML models.

2.7.3 Resources

The hardware used to conduct all the tests consisted of a NVIDIA Tesla K40c 12
GB GPU, an Intel® Xeon® Gold 6134 @ 3.20 GHz CPU, and 16 GB of RAM.

The AccelAT code was entirely written in Python with the help of libraries such
as TensorFlow and Foolbox and can be found at the following GitHub address:
https://github.com/farzadnikfam/AccelAT.

2.8 Results

In Figures 2.16 to 2.18, 9 out of the 24 conducted tests are shown, featuring different
combinations of network/dataset/attack. The simulations were carried out by training
the models on adversarial images and then evaluating them on the natural training-
set, natural test-set, adversarial training-set, and adversarial test-set. Since the
obtained results were proportionally comparable, only those tested step by step on
the adversarial training set were reported in Figures 2.16 to 2.18.

https://github.com/farzadnikfam/AccelAT
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Fig. 2.16 ResNet model trained on the CIFAR10 dataset, attacked with DeepFool and tested
on the adversarial training-set.

2.9 Discussion

As evident from the graphs in Figures 2.16 to 2.18, our AccelAT framework yields
results similar to those of the one cycle policy, which, as seen in Section 2.5.2, had
results similar to other fast training techniques.

In certain situations, AccelAT performs even better than one cycle, such as in the
early epochs in Figures 2.17 and 2.18. In fact, with MobileNet being a less complex
model than ResNet, a high initial value of LR, as in AccelAT, allows for quickly
reaching deeper minima before delving deeper with lower LR values. On the other
hand, with complex models like ResNet (see Figure 2.16), AccelAT exhibits more
difficulty in the initial part of training, then effectively surpasses the constant LR. In
this case, starting with lower LR values, as done by the one cycle method, to evaluate
the presence of multiple local minima allows the model to learn more rapidly.

AccelAT remains a promising method that should be further developed in the
future, as it still has some limitations. It performs well on simple models but still
requires slightly longer computational calculations compared to other methods,
as it needs to compute the accuracy gradient each time. Additionally, the initial
setup to find LRMAX, LRmin, and especially the decay factor p and the Δacc, is
not straightforward. Despite these limitations, AccelAT can still serve as a solid
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Fig. 2.17 MobileNet model trained on the CIFAR10 dataset, attacked with LinfPGD and
tested on the adversarial training-set.

foundation for future research in the field of fast training, especially in fast adversarial
training.

2.10 Conclusion

Nowadays, robustness is crucial for DNNs; however, achieving fast and robust
training still poses a challenge. This research has demonstrated that advanced fast
training techniques can also be applied to adversarial training, yielding significant
improvements with similar robustness. Additionally, the AccelAT framework has
been introduced to adjust the LR during training based on the accuracy gradient.
Experimental results have shown that AccelAT performs on par with other LR-
based fast training techniques, surpassing not only training with a constant LR,
which usually reaches a sub-optimal local minimum, but also optimized techniques
like the one cycle policy under certain conditions. AccelAT is also effective for
training with large datasets, where a variable LR during execution is essential to
better adapt the DNN model and enable more effective learning. However, there
are still some challenges, especially regarding the initial setup and training with
complex models like ResNet, where the presence of many local minima can create
difficulties. Therefore, future work will aim to further develop AccelAT and explore
its combination with the optimization of other hyperparameters such as momentum.
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Fig. 2.18 MobileNet model trained on the CIFAR100 dataset, attacked with DeepFool and
tested on the adversarial training-set.

While some hyperparameters, such as batch size [83], are determined by hardware
conditions, optimizing others can lead to significant advantages during training. In
conclusion, this work has demonstrated the feasibility of robust and fast models that
are likely to be widely adopted in the near future.



Chapter 3

SpyKing

This work [84] aims to present a comparison between Deep Neural Networks (DNNs)
and Spiking Neural Networks (SNNs) in the field of Homomorphic Encryption (HE).
As seen before, various techniques exist to maintain the privacy of the processed data,
and one of the oldest, evolving over time with mathematics, is encryption. In this
case, we specifically used Fully Homomorphic Encryption (FHE) to encrypt the data
and DNN and SNN models of LeNet5 to compare the performance of the results with
unencrypted data, as well as between standard [85] and spiking [86] models. The
findings of this work indicate that privacy preservation [21–23] through encryption is
computationally expensive, but the results are satisfactory. Especially under certain
conditions, SNNs [87] can outperform DNNs. This example of maintaining the
privacy of sensitive data represents an essential part of a niche sector that is gradually
expanding, considering the increasing need for protected data in various application
domains in the future [88].

Figure 3.1 shows a summary diagram of the research work carried out for
SpyKing, from the inputs used to the results obtained.

3.1 Spiking Neural Network

A SNN [86, 89], or pulse neural network, is a type of neural architecture inspired
by the functioning of biological neurons in the brain. Unlike traditional neural
networks, such as DNNs, SNNs use a communication model based on pulses or
spikes, representing signals sent by neurons (see Figure 3.2).
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Fig. 3.1 A summary flowchart of the SpyKing research project.
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Fig. 3.2 An example of a spiking neuron that activates only after receiving the necessary
charge to surpass the threshold, undergoing a refractory period before returning to a resting
state.

In traditional models, artificial neurons, after receiving input, apply a transforma-
tion using an activation function and produce a continuous output. In spiking neurons
[90], communication occurs through discrete pulses or spikes [91]. Each neuron
accumulates input signals (see pointer 1 - Figure 3.2) over time and generates a
spike when a certain threshold is exceeded (see pointer 2 - Figure 3.2). Synapses,
the connections between neurons, are determined by weights that can change during
the learning process, increasing or decreasing the probability of a neuron firing. The
activation of each neuron is based on both spatial and temporal factors. Each neuron
depends on its position and connections with nearby neurons, and its activation is
influenced by the time of charge before firing, which typically cannot be less than a
certain threshold. When a neuron releases a spike (see pointer 3 - Figure 3.2) after
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its potential reaches the threshold, its charge is reset, and the neuron enters a passive
waiting phase, the refractory period (see pointer 4 - Figure 3.2) before the resting
state (see pointer 5 - Figure 3.2).

This construction allows SNNs to closely mimic the real and biological function-
ing of the human brain. Considering the latency times between spikes due to charge
times, SNNs also enable more energy-efficient models [92].

3.1.1 Leaky Integrate-and-Fire

In the context of SNNs, Leaky Integrate-and-Fire (LIF) is a specific type of spiking
neuron model. To better understand how it works, here’s an explanation of the
acronym LIF:

• Integration - the LIF neuron accumulates input over time. Each time it receives
a spike, its charge increases. This accumulation of charge represents how the
neuron integrates information over time.

• Firing - when the neuron’s charge reaches a certain threshold, the neuron f ires
a spike. This simulates the idea of activation in the context of neural networks.

• Leak - the Leak indicates that, over time, the neuron’s charge tends to dissipate
or lose energy. This process of charge loss over time is implemented to
simulate the dynamic and adaptive nature of biological neurons.

So, the LIF model is essentially a way to describe how a spiking neuron accumu-
lates and releases energy over time, reflecting some features of biological neurons. Its
simplicity makes it computationally efficient, and the addition of the leak component
makes it more adaptable and realistic compared to some more basic spiking neuron
models.

There are other SNN neuron models, such as Hodgkin-Huxley [93], which are
based on very complex differential calculations, making it challenging to construct
large computational models due to lower efficiency. Considering the trade-off
between efficiency and reliability, the LIF neuron model was chosen for the creation
of SpyKing.
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3.1.2 Norse Library

Norse [94] is a Python [71] library that leverages the advantages of bio-inspired
neural components. Norse extends the PyTorch [95] library for implementing DNN
with primitives for biologically inspired neural components.

With Norse, it is possible to start with basic PyTorch DNN models and create their
spiking versions. As we will see later in this work, the Lenet5 model, implemented
in PyTorch, was used, and with the use of Norse, the spiking version, Spiking-Lenet5
[96–100], was created.

LIF Parameters

The LIF parameters within Norse are specific configurations that define the behavior
of LIF neurons in SNNs. These parameters include:

• τ−1
syn - represents the inverse of the synaptic time constant, determining how

quickly the synaptic input decays over time.

• τ−1
mem - represents the inverse of the membrane time constant, influencing the

rate of decay of the neuron’s membrane potential without input.

• vleak - specifies the leak potential of the neuron, indicating the resting potential
of the membrane when there is no synaptic input or other stimuli.

• vth - defines the threshold potential of the neuron. An action potential is
generated when the membrane potential reaches or exceeds this threshold.

• vreset - represents the reset potential of the neuron. After firing an action
potential, the membrane potential is reset to this value.

These parameters play a critical role in determining the dynamics of the LIF neuron
in the SNN. They govern how the neuron integrates and responds to incoming
synaptic input, as well as when it generates an action potential. The specific values of
these parameters can be adjusted to achieve the desired behavior, providing control
over the firing rate and responsiveness of the neuron within the network.
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Encoders

SNNs require an encoder as they process temporal data represented as spikes. Since
most ML datasets lack a temporal representation, adding an encoding phase is
essential to provide the necessary temporal component. The encoder transforms
input data into sequences of spikes, subsequently processed by the SNN as tensors
with binary values. The Constant Current LIF encoder, found in the Norse library,
is an encoding method that transforms constant input into constant voltage spikes.
During a specified time interval, known as seqlength, spikes are simulated based on
the input current. This approach allows Norse to operate on sparse input data as
a sequence of binary tensors, optimizing the SNN’s processing efficiency. If the
potential reaches the required threshold during seqlength, the spike is released.

Simply put, seqlength represents the number of iterations a SNN needs to bio-
logically simulate the human brain. Consequently, the seqlength value serves as a
temporal multiplier. For example, if a DNN takes time x to be trained or evaluate
data, the corresponding SNN model will take a time equivalent to x multiplied by
seqlength. This poses a temporal efficiency challenge intrinsic to SNNs, and this
temporal factor that elongates computation times cannot be eliminated. The only
solution to address this issue is to choose a seqlength value that is balanced, accurately
simulating SNNs without excessively extending computation times.

3.2 Homomorphic Encryption

HE [24] is an advanced form of cryptography that enables operations on encrypted
data without the need for prior decryption. This technique is particularly useful when
preserving data privacy [101] during processing in environments where security
is crucial, such as in cloud computing. Examining Figure 3.3 provides a clearer
understanding of how HE works. Initial data is encrypted with a public key [102,
103] that anyone can obtain. Once encrypted, the data is sent to the server where
it undergoes manipulation and specific computations. Finally, the results, still
encrypted, are sent back to the client, who is the only entity capable of decrypting
them using a secret key known only to them. In this manner, the entire data processing
is kept secret, and only the client knows the original data and the final results.
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The security of HE relies on the strength of the encryption algorithm and the
secrecy of the keys. Unfortunately, there are limitations because computations on
encrypted data are much more time, memory, and energy consuming, and therefore
are only executed when necessary.

The term homomorphic indicates that operations performed on encrypted data
correspond to the same operations executed on unencrypted data. Homomorphism
can take various forms, including partially HE [104], somewhat HE [105] and fully
HE (FHE) [106–110]. Each of these allows different levels of computation on
encrypted data.

In
pu

t
da

ta
O

ut
pu

t
da

ta En
cr

yp
te

d
da

taPu
bl

ic
ke

y
Pr

iv
at

e
ke

y

C
lie

nt

Se
rv

er

O
pe

ra
tio

ns

Fig. 3.3 A HE scheme with a clear separation between client and server, where the data and
results in plaintext are visible only to the client.

3.2.1 Fully Homomorphic Encryption

FHE [106–110] is the most comprehensive form of HE, as it enables both addition
and multiplication operations on encrypted data. One of the widely used schemes
in this field is the Brakerski/Fan-Vercauteren (BFV) scheme, which we utilized in
our framework. To better understand its functioning, equations from Equation (3.1)
to Equation (3.7) illustrate a simplified example of how achieving the same result is
possible even after a transformation. In this example, the structure of the functions
has been designed to only preserve addition, but in FHE, the same logic applies to
multiplications.
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Let’s consider the Equation (3.1) and apply a homomorphic transformation (en-
cryption) as depicted in Equation (3.2). To verify if the transformation occurred
homomorphically, we choose two random values for x and y, as represented in Equa-
tion (3.3). Adding our values to Equation (3.1), we obtain Equation (3.4), from
which, by performing the calculations, we arrive at Equation (3.5). At this point,
we introduce the transformation from Equation (3.2), as mentioned earlier, result-
ing in Equation (3.6). By performing the last simple calculation, we can observe
in Equation (3.7) that the result is equal on both sides, despite the transformation
in between. Hence, we can conclude that this transformation was homomorphic
concerning additions.

FHE applies the same logic to encryption with more complex calculations,
making both additions and multiplications homomorphic. Unfortunately, in the case
of non-linear calculations, FHE is not supported. Data must be decrypted before
proceeding with the computation; otherwise, there is a risk of obtaining completely
incorrect and unreadable results.

f (2x+3y) = f (2x)+ f (3y) (3.1)

f (z) = 6z (3.2)

x =−2

y =+4
(3.3)

f (2 · (−2)+3 · (+4)) = f (2 · (−2))+ f (3 · (+4)) (3.4)

f (+8) = f (−4)+ f (+12) (3.5)

[6 · (+8)] = [6 · (−4)]+ [6 · (+12)] (3.6)

+48 =+48 (3.7)
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3.2.2 Pyfhel Library

Pyfhel [111] is a Python [71] library that allows encryption using various schemes
and a wide range of data while maintaining limited computational capabilities based
on the chosen data type. It supports the BFV scheme and implementation on neural
networks. Unfortunately, it was not designed exclusively for the field of ML. Despite
being usable for neural networks, it has not been optimized for this purpose and only
leverages the CPU, not utilizing the hardware acceleration possible with the GPU.
Considering that encryption is already inefficient and computationally intensive, the
inability to use the GPU on large datasets, such as those in Artificial Intelligence
(AI), inevitably leads to very long computing processes.

HE Parameters

The implementation of the BFV scheme in Pyfhel relies on three key elements:

• m - represents the degree of the polynomial modulus, impacting computational
capabilities and the security level of the encryption system.

• t - denotes the plaintext modulus, determining the size and precision of the
ciphertext values for the plaintext.

• q - represents the ciphertext modulus, influencing the size of the ciphertext val-
ues and affecting the security and computational performance of the encryption
scheme.

Balancing security and computational efficiency in FHE operations becomes possible
by selecting appropriate values for these parameters. Pyfhel provides an easy-to-use
interface for working with the BFV scheme, enabling encryption, computation, and
decryption of data with concise and comprehensible code.

Another crucial element to consider is the Noise Budget (NB), which denotes
the maximum amount of disturbance or error that can be introduced during the
encryption and computation process without compromising the accuracy of the
results. In operations performed on encrypted data, activities such as addition and
multiplication can accumulate disturbance, putting at risk the accuracy of the results
when decrypted. The NB sets a limit on how much disturbance can be tolerated
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before the decrypted results become unreliable. It is imperative to carefully manage
and continuously monitor the NB throughout the entire computation process to
ensure the security and integrity of cryptographic operations.

3.3 Datasets

The MNIST [112], FashionMNIST [113], and CIFAR10 [67] datasets are popu-
lar datasets used in the ML community for training and evaluating algorithms in
computer vision. Table 3.1 shows the main characteristics of each dataset.

Table 3.1 Summary of the main characteristics of the 3 datasets used.

Datasets MNIST FashionMNIST CIFAR10

Total images 70000 70000 60000
Train-set 60000 60000 50000
Test-set 10000 10000 10000
N° Classes 10 10 10
Dimensions 28x28 28x28 32x32
Colours 1 - Grayscale 1 - Grayscale 3 - RGB
Classes Type Number 0-9 Clothes Objects

3.3.1 MNIST

MNIST [112] is one of the most widely used datasets in ML. It consists of grayscale
images of handwritten digits from 0 to 9. It represents a standard among ML datasets
and is often used for basic testing. Accuracy on this dataset can easily reach high
values close to 100%. In Figure 3.4, there are examples extracted from the dataset
representing all 10 classes. The images appear pixelated as they are in a very small
format, namely 28x28 pixels.

3.3.2 FashionMNIST

FashionMNIST [113] is a dataset containing images of clothing items. It was created
as a more complex alternative to the MNIST dataset, as it maintains the same
structure but instead of handwritten digits, it features grayscale images of clothing
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Zero One Two Three Four

Five Six Seven Eight Nine

Fig. 3.4 An example for each class of the MNIST dataset.

items. Similarly, the dataset contains 70,000 images, divided into 60,000 for the
training set and 10,000 for the test set, with a size of 28x28 pixels as seen in the
examples in Figure 3.5.

T-shirt/top Trouser Pullover Dress Coat

Sandal Shirt Sneaker Bag Ankle boot

Fig. 3.5 An example for each class of the FashionMNIST dataset.

3.3.3 CIFAR10

CIFAR10 [67] is an RGB color image dataset with dimensions of 32x32 pixels,
which are slightly larger than those in the MNIST group, and consists of 10 classes
of common objects and animals (see Figure 3.6). Among the datasets we used, this
is the most complex, and indeed, the accuracy of various models on this dataset
generally falls well below 90%. In terms of total size, it is slightly smaller than
MNIST, with 50,000 images for the training set, 10,000 for the test set, totaling
60,000 data points.
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Airplane Automobile Bird Cat Deer

Dog Frog Horse Ship Truck

Fig. 3.6 An example for each class of the CIFAR10 dataset.

3.4 PyTorch

PyTorch [95] is an open-source library for ML developed by Facebook. It is designed
to provide a flexible and scalable platform for developing AI models and is fully
compatible with the Python [71] programming language.

One of PyTorch’s key features is its support for automatic gradient computation,
which significantly simplifies the implementation of algorithms by allowing users to
modify the network structure during program execution.

PyTorch offers various tools such as data loading and preprocessing, neural
network creation, GPU training support, and integration with third-party libraries,
such as Norse, which allows the creation of SNNs.

The syntax of PyTorch is clear and intuitive, making it a popular choice among
ML developers. PyTorch is widely used in both academic and industrial settings
for various applications, including image classification, natural language processing,
computer vision, and more. Given its widespread adoption, PyTorch is continuously
growing and evolving.

3.5 LeNet5 Model

LeNet5 is a Convolutional Neural Network (CNN) model developed by Yann LeCun
and his team at Bell Labs in the 1990s [114]. It was one of the first CNN models
to be widely used for image classification and played a crucial role in the early
advances of deep learning. Since then, LeNet5 has served as a foundational model
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for the development of more advanced CNN architectures and has found applications
in various domains, including character recognition, object detection, and facial
recognition.

LeNet5 is composed of convolutional, pooling, and fully connected layers. The
convolutional layers extract features from the input images using convolutional
filters. The pooling layers reduce the dimensionality of the extracted features while
preserving their essential information. Finally, the fully connected layers classify
the features and produce the output predictions. During training, the LeNet5 model
utilizes error backpropagation to update the weights of the convolutional filters and
fully connected layers in order to minimize the loss function [62] and improve the
network’s performance.

In Figure 3.7, there is a 3D reconstruction of LeNet5 for the classification of the
FashionMNIST and MNIST datasets. Each color represents the various layers of
the model and their respective matrix dimensions, from the input image to the final
output classification. In Figures 3.8 and 3.9, you can see the 2D models with an
explanation of the various steps for the MNIST dataset family and for CIFAR10.

Fig. 3.7 LeNet5 model for the FashionMNIST and MNIST datasets. Each color represents a
layer and the squares are the matrices dimensions during the training. For a better explanation
see Figures 3.8 and 3.9.

3.5.1 Spiking-LeNet5 Model

The Spiking-LeNet5 model [96–100] was built based on the standard LeNet5 model.
We then integrated the Norse python library with the PyTorch library to obtain the
spiking version. The LeNet5, which processed each dataset differently, was modified
by replacing the Rectified Linear Unit (ReLu) activation commands with the LIF
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Fig. 3.8 LeNet5 model with each layer and matrix size for FashionMNIST and MNIST
training.
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Fig. 3.9 LeNet5 model with each layer and matrix size for CIFAR10 training.

activation from the Norse library, and the entire model was then placed in a timed
sequence controlled by seqlength to allow for neuron firing.

In Figure 3.10, you can see how an image from the dataset appears during
the spiking temporal sequence with seqlength set to 30, in this case it is the Ankle
Boot, label 9 in the FashionMNIST dataset (see Figure 3.5). You can observe how
the image only appears in certain parts because only some neurons fire at a time.
In Figure 3.11, there is a comparison between the original image and the sum of
the previous timed images. The final result is not identical, but it can be noted that
during the temporal sequence, more or less all neurons fire, allowing the image to
still be recognized.

3.6 Training Phase

For the training phase, we set the parameters optimally to increase accuracy. The
PyTorch library was chosen for defining the model, as the Norse library relies on
PyTorch, allowing us to create both the LeNet5 and the Spiking-LeNet5 models
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1 2 3 4 5 6 7 8 9 10

11 12 13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28 29 30

Fig. 3.10 In the Spiking-LeNet5 the neurons fire randomly during the seqlength and the result
is each time a portion of the total image, in this case it is the Ankle Boot, label 9 in the
FashionMNIST dataset (see Figure 3.5).

Standard image Time sequence sum

Fig. 3.11 On the left we have the native Ankle Boot (Label 9 in the FashionMNIST dataset
(see Figure 3.5)) image, while on the right there is the sum of the temporal sequence seqlength
of Figure 3.10.

based on PyTorch. The selected parameters can be seen in Table 3.2, and Figure 3.12
provides a summary diagram of the experimental setup for the SpyKing project. The
learning rate was chosen using the learning rate finder technique, while the number
of epochs was selected using early stopping to prevent overfitting.

In Figure 3.13, we can observe the accuracy and loss [62] for each epoch during
the training on the FashionMNIST dataset, comparing LeNet5 and Spiking-LeNet5
[118]. Additionally, the dashed lines illustrate how, for each model, validation has
slightly lower performance compared to training. Furthermore, we can notice that
the spiking model has slightly lower final accuracy compared to the non-spiking
model, which is due to the intrinsic complexity of the spiking version. Also, the
computation time of the spiking model differs from that of LeNet5; on average, the
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Table 3.2 Training phase parameters.

Parameters LeNet5 Spiking-LeNet5

Learning Rate 0.001 0.001
Epochs 20 20
Batch Size 256 256
Optimizer Adam [115] Adam [115]
Loss Cross Entropy [116] Negative Log-Likelihood [117]
seqlength - 30
τ−1

syn - 200
τ−1

mem - 100
vleak - 0
vth - 0.5
vreset - 0
Encoder - Constant Current LIF

Software
DNN: LeNet5

SNN: Spiking-LeNet5
Dataset: FashionMNIST - MNIST - CIFAR10

Code: Python - PyTorch - Norse - Pyfhel

Hardware
GPU: NVIDIA Tesla P100 PCIe 16 GB

CPU: Intel® Xeon® Gold 6134 @ 3.20 GHz
RAM: 100 GB

Experimental Setup
LR: Constant - 0.001

Batch size: 256
Total epochs: 20
Optimizer: Adam

Loss: Cross Entropy (DNN), 
Negative Log-Likelihood (SNN)

HE scheme: Brakerski/Fan-Vercauteren

Results
Total runs: 126 training

90 FashionMNIST - 18 MNIST - 18 CIFAR10
Duration: from ~30s up to ~7200s per image

Fig. 3.12 SpyKing experimental setup.

spiking model takes the same time as LeNet5 multiplied by the value of seqlength.
The respective training graphs for the MNIST and CIFAR10 datasets are visible
in Figures A.1 and A.2.

As can be observed, the final accuracy achieved by the standard LeNet5 model
varies across the datasets: it’s around ≈99% for MNIST, ≈80-90% for FashionM-
NIST, and ≈60-70% for CIFAR10. This disparity among the datasets arises from
practical reasons; MNIST, being the simplest dataset, exhibits the highest accuracy.
FashionMNIST is similar to MNIST but with slightly more complex classes to
distinguish. Lastly, CIFAR10 is a dataset with 3 RGB channels and consequently
much more complex than the previous two, resulting in lower model accuracy on this
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Fig. 3.13 Accuracy and loss during training and validation of LeNet5 and Spiking-LeNet5
for the FashionMNIST dataset. The figure shows accuracy and loss values across different
training epochs.

dataset as well. Given the differences between the datasets and the repeated trials
for all, to avoid overwhelming subsequent paragraphs, the following discussion will
focus more on the FashionMNIST dataset, which has intermediate complexity, while
the results of the other two datasets can be found in the Appendix A.

3.6.1 Parameters Selection

After training, in order to proceed with encryption, it is necessary to define the
parameters of the BFV scheme: m, t, and q. The parameter m must be a power of
2 greater than 1024 and is directly proportional to the NB. Values of m that are too
high would lead to overly complex computational calculations, while low values
would be too insecure. Values of m equal to 2048 or higher do not significantly alter
the results but exponentially increase computation times. Therefore, we performed
these calculations only on the FashionMNIST dataset, and the results are visible
in Figure 3.14.

The value of t can also vary, but too low values lead to incorrect encryption, while
too high values degrade the results, making them unreadable. For the FashionMNIST
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dataset, we evaluated a variation of t on 15 values between 10 and 500000, noting
that after the value of 5000 there are no significant differences. Consequently, for
the other two datasets, we evaluated the results between 10 and 5000.

The last parameter is q, but it is related to m in determining the value of NB and
is automatically calculated by the Pyfhel library to obtain adequate encryption.

The NB also allows for a certain tolerance in operations before the results
degrade too much, and therefore sometimes it needs to be recharged by decrypting
and encrypting again. However, this did not affect our results because, as we will
see later, due to nonlinear calculations in the models, we were forced to decrypt and
encrypt multiple times. Consequently, the value of NB was replenished each time,
allowing us to perform subsequent encrypted calculations without issues.

3.6.2 Encryption

In Table 3.3, there are comparisons for the computation times for each dataset. As
can be seen, with the hardware available to us and with a value of m set to 1024,
it takes approximately 1 second to encrypt an image from the FashionMNIST and
MNIST datasets for the LeNet5 model, and about 30 seconds for the Spiking-LeNet5
model. After that, it takes another 30 seconds for evaluating the image on the
encrypted LeNet5 model and about 15 minutes on the encrypted Spiking-LeNet5
model. The value of 15 minutes is obtained by multiplying the 30 seconds taken
by LeNet5 by the value of seqlength, which in our case is 30. It can also be noted
that increasing the value of m results in an exponential increase in computation time,
while the variation in the parameter t has no significant effect.

In Table 3.4, there is an estimation of the execution time, based on the same
hardware, for other types of models, considering only the FashionMNIST dataset.
As can be seen, the time is proportional to the number of parameters handled by the
model itself, and even with models slightly more complex than LeNet5, much longer
computation times are obtained.
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Table 3.3 Encryption and execution time for each image with respect to the variation of the
model and the m parameter from 1024 to 4096.

Datasets Time (seconds) LeNet5 Spiking-LeNet5

1024 2048 4096 1024 2048 4096

Fashion
MNIST

Encryption 1 2 8 30 60 240
Plaintext execution 0.03 0.03 0.03 1 1 1
Encrypted execution 30 60 240 900 1800 7200

MNIST
Encryption 1 2 8 30 60 240
Plaintext execution 0.03 0.03 0.03 1 1 1
Encrypted execution 30 60 240 900 1800 7200

CIFAR10
Encryption 2 4 16 60 120 480
Plaintext execution 0.07 0.07 0.07 2 2 2
Encrypted execution 60 120 480 1800 3600 14400

3.6.3 Resources

The hardware resources available for conducting the experiments consisted of a
NVIDIA Tesla P100 PCIe 16 GB GPU, an Intel® Xeon® Gold 6134 @ 3.20 GHz
CPU, and 100 GB of RAM.

The code (available at this GitHub address: https://github.com/farzadnikfam/
SpyKing) was entirely written in Python with the help of various libraries, including
PyTorch, Norse, and Pyfhel.

3.7 Results

In Figure 3.14, all the numerical data in percentage of the results obtained on the
FashionMNIST dataset are presented in the form of a matrix. The simulations were
conducted on 15 variations of t ranging from 10 to 500,000 and with 3 variations
of m: 1024, 2048, and 4096. The calculations were performed for both LeNet5 and
Spiking-LeNet5 models and were divided based on accuracy between plaintext and
encrypted models. Since, as can be seen, the results with m set to 4096 are identical
to those with m set to 2048, for both the standard and spiking models, the case with
m set to 4096 will not be considered from now on.

https://github.com/farzadnikfam/SpyKing
https://github.com/farzadnikfam/SpyKing
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Table 3.4 Prediction time for each image of the FashionMNIST dataset reported in seconds
for each model with m = 1024. The long processing time of encrypted data are due to the
complexity of the encrypted computations and it also depends on the complexity of each
model (N° of parameters).

Time LeNet5 AlexNet VGG16 ResNet50
(seconds) [114] [119] [120] [73, 74]

Complexity 60k 60M 138M 23M

Standard
Encryption 1 60 140 20
Plaintext execution 0.03 30 70 10
Encrypted execution 30 30k 70k 10k

Spiking
Encryption 30 1.8k 4.2k 600
Plaintext execution 1 1k 2.1k 300
Encrypted execution 900 900k 2.1M 300k

In Figures 3.15 to 3.18, the visual representation of the same matrices can be
seen with bar graphs to better understand the results. The results in matrix form
for the MNIST and CIFAR10 datasets are in Figures A.3 to A.6, and the respective
bar graphs have been grouped with those of FashionMNIST in Figure A.7 for better
comparison.

To better understand how to read the matrices and bar graphs, here is an explana-
tion of the colors:

• Blue - both correct - represents the percentage of images classified correctly
by both the plaintext and encrypted models.

• Orange - standard correct - indicates the percentage of data classified cor-
rectly by the plaintext model but not by the encrypted one. It can be noticed
that by adding the percentages of blue and orange colors, the same accuracy
value is always obtained, whether changing m or changing t. This data rep-
resents the accuracy value of validation during training, which in the case
of FashionMNIST corresponds to 89.2% for LeNet5 and 84.3% for Spiking-
LeNet5.

• Green - encrypted correct - this percentage is the inverse counterpart of the
previous one, meaning the images were classified correctly by the encrypted
model but not by the plaintext model. The percentages are generally low and
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almost insignificant, as this occurs because the encrypted model classifies dif-
ferently from the plaintext model, which is incorrect, but by pure coincidence
chooses the correct label. Therefore, this small percentage has no statistical
value but is merely coincidental, as the encrypted model should classify like
the plaintext model, even if the latter is wrong.
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Fig. 3.14 Comparison matrix for t and m variation for the FashionMNIST dataset on en-
crypted LeNet5 and Spiking-LeNet5 models.

• Purple - both wrong but equal - represents the case where the encrypted
model and the plaintext model coincide but have not classified the correct
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label. This data is important because it shows how the encrypted model has
functioned correctly by mimicking the plaintext model, even if the initial
classification was incorrect.

• Red - both wrong and different - this last situation shows the case where
both the encrypted and plaintext models have made mistakes and are different
from each other. So, the label has not been correctly classified by either of the
two models, and furthermore, the encrypted one has not copied the plaintext
one. This percentage represents the worst-case scenario where nothing has
worked as it should.

3.8 Discussion

To better discuss the results obtained in the previous section, we can refer to Fig-
ure 3.19, where the most relevant data has been presented in the form of graphs.
Specifically, we compared, varying t, the accuracy of the LeNet5 and Spiking-LeNet5
models in both plaintext and encrypted versions, with the parameter m set to 1024
and 2048. To simplify, we essentially graphically represented the accuracy previously
marked in Blue - both correct , i.e., when the encrypted model achieved the same
results as the plaintext model and both coincided with the correct labels.

As we can see, both the standard and spiking versions reach approximately
maximum accuracy, that is, the validation accuracy during training, with t values
ranging from 200 to 1000. From this value onwards, the models with m set to 1024
show results that degrade quickly, while models with m set to or higher than 2048
maintain maximum accuracy. Apart from this difference between m set to 1024 and
higher values, there are no other differences in the initial part, but especially high
values of t are not so relevant because they indicate a high level of encryption that
can increase computational costs or degrade data. The most important part is the part
of the graph representing the lower t values, those below 200, where we can see how
the spiking model performs significantly better than the standard model. Of course,
these results are limited by the fact that the final accuracy of the validation of the
spiking model is lower than that of the LeNet5 even in the plaintext version, which
is why we created the graph in Figure 3.20.
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Fig. 3.15 FashionMNIST accuracy on encrypted LeNet5 for t variation with m set to 1024.
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Fig. 3.16 FashionMNIST accuracy on encrypted Spiking-LeNet5 for t variation with m set
to 1024.
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Fig. 3.17 FashionMNIST accuracy on encrypted LeNet5 for t variation with m set to 2048.
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Fig. 3.18 FashionMNIST accuracy on encrypted Spiking-LeNet5 for t variation with m set
to 2048.
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Fig. 3.19 Comparison of FashionMNIST accuracy between plaintext and encrypted versions
of LeNet5 and Spiking-LeNet5 for t variations when both plaintext and encrypted versions
classified correctly.

In Figure 3.20, we no longer compare only the Blue - both correct percentages,
but we add these to those of Green - encrypted correct . In practice, we added
all the cases where the encrypted model correctly provided the same result as the
plaintext model, whether the latter was correct or not. In fact, the goal of this
research was not only to demonstrate the feasibility of encrypted models but also
their reliability, and considering that with certain combinations of t and m, values
close to 100% correctness between the encrypted and plaintext models can be
achieved, I would say that the result has been achieved. Specifically, we can see that
in Figure 3.20, both the standard and spiking models in the encrypted versions reach
100% accuracy in emulating the plaintext versions, maintaining approximately the
same shape as Figure 3.19. This means that even in this case, for low t values, the
Spiking-LeNet5 model performs better than the LeNet5.

In conclusion, SNNs react better to encryption than DNNs, making them more
secure for data encryption. However, they still have some criticalities: first of all, they
have an intrinsic latency time, the seqlength parameter, that significantly lengthens
computation times, and secondly, they generally have lower validation accuracy. The
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Fig. 3.20 Comparison of FashionMNIST accuracy between plaintext and encrypted versions
of LeNet5 and Spiking-LeNet5 for t variations when both plaintext and encrypted versions
coincide in both correct and incorrect classification.

same results can also be viewed for the MNIST and CIFAR10 datasets in Figures A.8
to A.11.

3.8.1 Models Encryption

One of the main problems of FHE is that it can only work with linear calculations
of addition and multiplication. The LeNet5 model, as we have implemented it
in Figure 3.8, also includes non-linear calculations: ReLu activations. Currently, this
part of calculations cannot be achieved with the encrypted model, so every data pass
through the activation layer must be decrypted first and then re-encrypted. Obviously,
these steps lead to a model that is not fully encrypted and to data vulnerability
during the activation phase. In fact, this research aspect falls within future projects
to improve the model.

In Figure 3.21, we can see how the encrypted model actually behaves. The
steps are the same for both the standard and the spiking model and apply to all
datasets. The color codes used are the same as those used in Figure 3.8 for better
understanding. As can be seen, the data must be decrypted and re-encrypted 4 times
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Fig. 3.21 Inside the LeNet5 we need to decrypt and encrypt again four times because the
activation function ReLu is not a linear calculation.

during the entire process, in addition to the initial encryption and final decryption.
Considering that the computation times of an encrypted model are up to 1000 times
slower than plaintext, both in the standard and spiking cases, one can imagine how
impactful these encryption steps due to activations are.

Noise Budget Values

However, these continuous encryptions also have a positive aspect. As mentioned
in the NB section Section 3.2.2, the NB degrades every time linear calculations are
performed, and if it reaches zero, the data would become unreadable. The continuous
encryption during the process allows the NB to be recharged each time, enabling
encrypted calculations without repercussions on the final accuracy.
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Fig. 3.22 NB qualitative variation during the process across the layers.

In Figure 3.22, we can qualitatively see the amount of NB during the various
layers, and it can be observed how it reloads after each activation due to the new
encryption. In Figure 3.23, we can see qualitatively how the NB value is not
independent of t, but rather, for high values of t, i.e., high encryption, the initial NB
value is lower, and therefore fewer calculations can be absorbed, while with low
values of t, the NB is higher with greater manipulation possibilities. Figures 3.22
and 3.23 were extrapolated from the overall graph shown in Figure A.12, where all
numerical data are reported, and it can be noted that NB does not depend solely on t
but also on m. In fact, higher values of m lead to higher NB values, allowing more
calculations, but at the same time, drastically increasing computation time.

3.8.2 Confusion Matrices

In Figure 3.24, the confusion matrices of both the standard and spiking models for
the FashionMNIST dataset are depicted. It can be observed that in both cases, the
matrix is fairly orderly between predicted classes and correct labels. The only class
that creates slight confusion for the models is class number 6, representing the Shirt.
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Fig. 3.23 NB qualitative variation for each t variation.

Now, looking at Figure 3.25, we can see all the confusion matrices of the LeNet5
and Spiking-LeNet5 models in the encrypted case, with all variations of t and m. It
is easy to notice that for m values equal to 1024, the results degrade quickly with
values of t that are too high, mostly resulting in random results equivalent to overly
encrypted and no longer readable data. On the other hand, with m values equal
to 2048 or higher, the results remain constant and unchanged, but obviously the
excessive complexity of encryption makes calculations slower and more difficult.
Instead, for low t values, the results are confusing but less random and tend to
accumulate on certain classes, especially on the Shirt class, as in the plaintext case.
Moreover, it can be noticed that they perform better in the spiking version since the
matrices stabilize for lower values of t. Obviously, the classes on which the results
accumulate depend on the shape and object represented by the class itself. In the case
of FashionMNIST, it can be easily inferred that the Shirt class is the most confusing
for the model, as it can be easily assimilated to other classes.

In Figures A.13 to A.16, the plaintext and encrypted confusion matrices for
the MNIST and CIFAR10 datasets are displayed. In this case, it is evident how
for MNIST, the most confusing class is class 8, which is visually more complex
than all the other numbers and therefore more easily misleads the models, being
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Fig. 3.24 Plaintext confusion matrix for FashionMNIST. The Shirt class is the one that
misleads the model the most.

able to resemble any other number. It should also be noted that all these confusion
matrices reflect the graphs shown in Figures A.3 to A.11 and 3.14 to 3.20, showing
the correspondence of various accuracies and the different behavior for different
values of m and t.

3.8.3 Layer Errors

In the matrices of Figures A.17, A.18, 3.26 and 3.27, the normalized layer-by-layer
errors are represented. Normalization was performed with values ranging from
0 to 1 for each individual matrix. Naturally, for low and high values of t, errors
are much higher, even in the order of tens of times, compared to central t values,
but normalizing each matrix separately served to show the differences between
individual layers and especially between LeNet5 and Spiking-LeNet5. This way,
it is better appreciated which model performs better and which layers accumulate
more errors. Total normalization across all t values would not have allowed to notice
the differences, given the huge difference between the central t values and the most
extreme ones.
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0 0 0 16 0 0 80 0 4 0
0 0 0 17 0 0 82 0 1 0
0 0 0 19 0 0 79 0 2 0
0 0 0 9 0 0 91 0 0 0
0 0 0 16 0 0 83 0 1 0
0 0 0 9 0 0 89 0 2 0
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0 0 1 26 0 13 51 0 9 0
0 1 4 10 0 8 72 0 5 0
0 0 6 22 0 3 52 0 17 0
0 0 1 21 0 9 58 0 11 0
0 0 1 23 0 7 51 0 18 0
0 1 5 16 0 27 35 1 15 0
0 0 3 20 0 8 47 0 22 0
0 0 2 15 0 16 48 1 18 0
0 1 2 20 0 7 41 0 29 0
0 2 5 15 0 25 30 3 20 0
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44 1 2 1 0 22 20 0 10 0
3 19 12 6 0 22 8 0 30 0
2 0 28 2 1 9 18 0 40 0
7 2 7 15 0 16 21 1 30 1
4 0 11 3 8 2 14 1 57 0
1 0 1 0 0 66 10 1 21 0

10 0 8 2 1 7 41 0 31 0
1 0 0 0 1 17 5 13 63 0
0 0 2 0 0 7 8 0 83 0
0 5 3 0 0 48 3 9 23 9
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82 0 0 4 0 2 9 0 3 0
1 79 0 8 0 3 1 0 7 1
4 0 67 2 10 0 13 0 4 0
4 1 4 71 1 4 9 0 6 0
0 0 10 4 67 1 16 0 2 0
0 0 0 0 0 82 1 2 14 1

13 0 7 2 12 0 64 0 2 0
0 0 0 0 0 4 0 81 14 1
4 0 0 0 0 2 2 0 92 0
0 0 0 0 0 3 0 13 2 82
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92 0 0 1 0 0 5 0 2 0
0 97 0 3 0 0 0 0 0 0
3 0 79 1 7 0 10 0 0 0
3 3 0 85 4 0 5 0 0 0
0 0 9 4 81 0 6 0 0 0
0 0 0 0 0 97 0 2 0 1
11 0 6 2 10 0 71 0 0 0
0 0 0 0 0 1 0 95 0 4
3 0 0 0 1 0 2 0 94 0
0 0 0 0 0 1 0 3 0 96
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87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97
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87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97
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74 1 2 3 5 0 9 0 5 1
2 88 0 3 0 0 1 0 6 0
5 3 64 2 6 2 9 2 7 0
4 4 2 78 4 0 6 1 1 0
3 1 12 4 66 1 9 1 3 0
5 1 0 0 1 84 1 6 0 2
11 3 4 3 8 3 61 0 6 1
3 3 2 0 0 2 0 79 6 5
2 0 1 1 5 0 2 0 89 0
3 3 1 0 2 1 0 3 1 86
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15 7 14 12 16 11 4 5 11 5
13 10 9 12 6 10 9 3 20 8
12 11 11 5 12 7 18 4 13 7
15 12 17 7 14 7 11 2 11 4
16 11 10 9 10 9 10 1 17 7
14 10 11 8 13 8 13 5 13 5
13 4 15 14 10 6 8 4 20 6
17 13 16 4 11 7 14 3 13 2
21 8 13 11 10 10 8 3 11 5
18 11 8 7 16 10 9 5 9 7
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10 6 13 11 6 8 27 0 17 2
21 5 11 10 7 3 19 2 22 0
19 1 13 7 5 7 18 0 26 4
24 6 6 9 6 6 18 2 17 6
19 4 15 9 6 4 15 1 18 9
21 3 11 8 6 5 13 0 28 5
11 4 15 7 7 6 16 1 27 6
25 7 9 7 5 6 16 0 21 4
15 4 16 6 7 9 15 0 26 2
20 4 12 5 4 7 13 1 31 3
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23 3 10 10 3 4 20 0 22 5
22 3 12 8 8 4 18 0 22 3
16 8 11 9 6 3 23 1 21 2
21 6 15 2 4 4 22 0 25 1
21 4 10 7 8 3 18 0 27 2
24 4 12 9 3 5 14 1 23 5
21 5 5 5 6 5 21 0 28 4
21 7 14 6 5 3 20 0 18 6
17 5 10 3 5 7 13 0 37 3
16 3 13 9 10 6 14 0 25 4
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22 6 9 8 6 2 23 1 20 3
13 3 7 8 9 9 24 3 19 5
13 6 9 5 14 9 17 1 25 1
17 4 9 4 8 3 26 0 25 4
17 4 10 5 6 7 19 1 28 3
11 3 10 5 6 7 24 0 27 7
27 0 11 2 8 5 14 4 22 7
12 4 6 10 6 10 19 1 30 2
21 8 10 1 9 6 19 0 22 4
20 4 11 8 7 8 20 0 20 2

T-
sh

irt
/to

p
Tr

ou
se

r
Pu

llo
ve

r
D

re
ss

C
oa

t
Sa

nd
al

Sh
irt

Sn
ea

ke
r

B
ag

A
nk

le
 b

oo
t

21 2 11 5 8 7 20 1 21 4
24 3 7 5 9 4 13 2 32 1
15 3 11 6 5 4 15 3 33 5
14 2 21 8 12 3 15 3 20 2
17 2 16 5 10 4 20 0 22 4
26 3 16 2 5 3 12 1 24 8
24 1 6 3 10 10 16 0 26 4
18 6 14 4 7 5 18 1 24 3
22 5 12 7 4 1 25 0 17 7
18 1 6 6 9 14 25 0 18 3
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14 4 13 4 5 5 25 3 24 3
14 7 16 4 8 3 20 1 19 8
17 0 28 4 8 2 13 1 20 7
16 6 13 6 7 4 20 2 21 5
19 4 8 6 9 4 20 1 26 3
21 2 13 4 7 7 16 1 27 2
14 7 9 8 6 7 19 2 23 5
16 2 12 3 10 8 20 1 20 8
16 2 6 4 8 5 27 2 24 6
17 5 23 4 8 0 22 0 20 1
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17 4 17 4 15 3 20 1 15 4
12 1 9 6 19 3 20 4 19 7
12 3 14 3 11 6 27 0 18 6
13 3 6 4 22 1 20 0 27 4
13 3 7 9 23 3 17 0 21 4
13 5 29 1 13 2 18 0 16 3
15 3 16 3 18 4 25 2 11 3
9 7 14 6 19 3 16 4 19 3

10 3 12 7 15 7 24 0 16 6
18 5 16 6 12 2 18 2 18 3

T-shirt/top
Trouser

Pullover
Dress

Coat
Sandal

Shirt
Sneaker

Bag
Ankle boot

36 0 1 7 0 0 39 0 17 0
30 6 0 24 0 0 14 0 26 0
26 0 4 11 0 0 54 0 5 0
34 0 1 16 1 1 25 0 22 0
25 0 0 10 0 0 46 0 19 0
25 0 0 15 0 0 13 0 47 0
24 0 0 16 0 0 46 0 14 0
24 0 0 10 0 0 17 0 49 0
21 0 0 11 0 0 24 0 44 0
22 0 1 18 0 0 20 0 39 0

48 0 0 5 0 0 40 0 7 0
10 1 0 13 0 3 42 1 30 0
28 0 7 4 0 0 55 0 6 0
37 0 0 14 0 0 24 0 25 0
19 0 3 3 1 0 74 0 0 0
24 0 0 0 0 1 14 0 61 0
16 0 0 2 0 0 78 0 4 0
24 0 0 0 0 0 6 1 69 0
23 0 3 4 0 0 14 0 56 0
35 0 3 5 0 2 16 0 39 0

58 1 0 6 4 0 17 1 13 0
0 80 0 12 5 0 3 0 0 0
4 0 53 0 20 0 20 0 3 0
3 1 0 73 5 0 7 0 11 0
0 0 2 1 82 0 9 0 6 0
1 0 0 0 0 83 1 1 11 3
6 0 3 3 23 0 61 0 4 0
2 0 0 0 0 14 0 55 19 10
3 0 1 1 0 0 1 0 94 0
0 0 0 0 0 5 2 1 2 90

73 1 3 2 1 0 15 1 4 0
0 95 0 4 1 0 0 0 0 0
3 0 75 2 5 0 15 0 0 0
4 1 0 84 2 0 9 0 0 0
0 0 4 2 78 0 16 0 0 0
0 0 0 0 0 88 0 3 6 3
7 0 6 3 9 0 74 0 1 0
1 0 0 0 0 3 0 87 1 8
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 2 0 3 1 94

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

41 2 8 3 0 2 6 0 37 1
25 13 2 10 9 4 5 4 28 0
18 0 23 0 0 5 6 0 46 2
28 2 7 8 2 3 7 0 43 0
9 2 10 2 12 1 4 0 60 0
9 1 2 0 1 23 0 1 62 1

18 0 11 1 9 5 9 0 47 0
5 0 4 1 1 9 4 5 70 1

12 1 6 0 0 3 1 0 76 1
6 1 3 0 0 10 3 4 61 12

9 16 5 21 19 0 25 2 0 3
12 20 2 16 18 1 26 2 0 3
3 16 3 36 12 0 24 3 0 3

17 14 8 22 17 0 20 0 0 2
14 17 4 18 15 0 24 2 1 5
13 12 3 16 23 0 26 2 1 4
17 14 3 25 14 0 20 2 1 4
8 11 7 18 20 1 29 2 1 3

19 12 5 14 17 0 26 2 1 4
14 15 3 23 22 1 12 1 0 9

12 32 15 13 3 1 18 0 1 5
10 27 8 17 2 3 25 2 2 4
8 24 10 22 1 4 22 0 1 8

13 28 9 18 1 1 27 0 1 2
12 25 9 19 1 3 24 1 3 3
11 24 8 28 0 2 19 0 2 6
7 29 13 23 1 3 19 0 1 4
9 26 8 21 0 3 25 0 4 4
7 33 7 20 1 2 23 0 4 3
8 33 6 24 1 1 22 0 3 2

11 19 17 13 2 5 21 1 1 10
6 26 8 18 2 5 28 0 2 5
8 29 5 21 1 1 24 1 2 8
9 27 10 14 1 8 20 0 3 8
9 26 9 19 2 7 16 2 3 7
6 31 4 21 1 0 26 1 4 6
5 27 8 30 1 1 21 0 2 5
11 21 4 27 3 4 21 2 1 6
15 30 6 15 2 1 20 3 4 4
6 25 8 22 0 3 25 1 3 7

8 29 7 20 4 1 20 0 5 6
7 27 10 20 1 8 22 1 0 4
4 30 11 17 2 2 20 2 4 8

12 22 9 20 1 7 20 2 3 4
12 38 9 11 2 3 21 0 1 3
7 24 8 19 2 7 22 0 6 5
8 24 10 22 1 5 17 0 3 10
8 20 14 24 0 2 24 0 4 4
9 22 8 24 2 4 22 2 2 5

10 30 6 21 1 5 16 1 3 7

10 20 13 17 0 4 24 1 8 3
9 23 10 25 0 6 13 1 3 10
5 25 11 23 0 7 22 0 3 4
11 29 8 14 3 4 20 0 5 6
8 35 8 21 1 3 13 2 5 4
9 24 7 18 1 3 25 1 5 7

14 25 7 18 3 10 13 0 2 8
9 30 7 22 0 3 17 1 3 8
5 29 2 20 1 6 25 0 8 4
2 25 5 22 0 12 28 0 4 2

8 20 8 20 3 8 21 0 3 9
8 28 9 21 0 3 20 1 3 7
8 34 8 22 2 6 15 0 2 3
11 32 10 16 2 4 19 1 2 3
8 24 7 21 0 4 24 2 3 7

12 23 6 22 1 4 26 2 0 4
10 28 7 21 1 5 19 0 2 7
11 39 9 15 1 1 18 2 2 2
7 24 5 17 5 4 24 1 9 4
7 30 5 24 1 3 18 1 5 6
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9 30 7 20 2 5 22 0 0 5
6 34 7 13 1 3 27 3 2 4
7 21 11 18 3 6 20 1 3 10

14 20 9 15 1 8 23 2 5 3
9 24 10 17 1 7 21 1 4 6
4 27 7 18 1 8 22 0 4 9

13 22 6 21 1 6 26 0 0 5
9 30 8 16 3 3 22 0 2 7

12 21 5 20 1 5 25 0 7 4
2 22 10 29 0 5 22 1 3 6

T-shirt/top
Trouser

Pullover
Dress

Coat
Sandal

Shirt
Sneaker

Bag
Ankle boot

0 0 0 19 0 0 81 0 0 0
0 0 0 12 0 0 87 0 1 0
0 0 0 17 0 0 79 0 4 0
0 0 0 9 0 0 90 0 1 0
0 0 0 16 0 0 80 0 4 0
0 0 0 17 0 0 82 0 1 0
0 0 0 19 0 0 79 0 2 0
0 0 0 9 0 0 91 0 0 0
0 0 0 16 0 0 83 0 1 0
0 0 0 9 0 0 89 0 2 0

0 0 1 26 0 13 51 0 9 0
0 1 4 10 0 8 72 0 5 0
0 0 6 22 0 3 52 0 17 0
0 0 1 21 0 9 58 0 11 0
0 0 1 23 0 7 51 0 18 0
0 1 5 16 0 27 35 1 15 0
0 0 3 20 0 8 47 0 22 0
0 0 2 15 0 16 48 1 18 0
0 1 2 20 0 7 41 0 29 0
0 2 5 15 0 25 30 3 20 0

44 1 2 1 0 22 20 0 10 0
3 19 12 6 0 22 8 0 30 0
2 0 28 2 1 9 18 0 40 0
7 2 7 15 0 16 21 1 30 1
4 0 11 3 8 2 14 1 57 0
1 0 1 0 0 66 10 1 21 0

10 0 8 2 1 7 41 0 31 0
1 0 0 0 1 17 5 13 63 0
0 0 2 0 0 7 8 0 83 0
0 5 3 0 0 48 3 9 23 9

82 0 0 4 0 2 9 0 3 0
1 79 0 8 0 3 1 0 7 1
4 0 67 2 10 0 13 0 4 0
4 1 4 71 1 4 9 0 6 0
0 0 10 4 67 1 16 0 2 0
0 0 0 0 0 82 1 2 14 1

13 0 7 2 12 0 64 0 2 0
0 0 0 0 0 4 0 81 14 1
4 0 0 0 0 2 2 0 92 0
0 0 0 0 0 3 0 13 2 82

92 0 0 1 0 0 5 0 2 0
0 97 0 3 0 0 0 0 0 0
3 0 79 1 7 0 10 0 0 0
3 3 0 85 4 0 5 0 0 0
0 0 9 4 81 0 6 0 0 0
0 0 0 0 0 97 0 2 0 1
11 0 6 2 10 0 71 0 0 0
0 0 0 0 0 1 0 95 0 4
3 0 0 0 1 0 2 0 94 0
0 0 0 0 0 1 0 3 0 96

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97

87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97
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87 0 0 2 0 0 10 0 1 0
0 98 0 2 0 0 0 0 0 0
4 0 83 1 4 0 8 0 0 0
2 3 0 87 3 0 5 0 0 0
0 0 10 4 79 0 7 0 0 0
0 0 0 0 0 95 0 4 0 1
11 0 5 2 6 0 76 0 0 0
0 0 0 0 0 2 0 94 0 4
1 0 0 0 1 0 2 0 96 0
0 0 0 0 0 1 0 2 0 97
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T-shirt/top
Trouser

Pullover
Dress

Coat
Sandal

Shirt
Sneaker

Bag
Ankle boot

36 0 1 7 0 0 39 0 17 0
30 6 0 24 0 0 14 0 26 0
26 0 4 11 0 0 54 0 5 0
34 0 1 16 1 1 25 0 22 0
25 0 0 10 0 0 46 0 19 0
25 0 0 15 0 0 13 0 47 0
24 0 0 16 0 0 46 0 14 0
24 0 0 10 0 0 17 0 49 0
21 0 0 11 0 0 24 0 44 0
22 0 1 18 0 0 20 0 39 0

20

48 0 0 5 0 0 40 0 7 0
10 1 0 13 0 3 42 1 30 0
28 0 7 4 0 0 55 0 6 0
37 0 0 14 0 0 24 0 25 0
19 0 3 3 1 0 74 0 0 0
24 0 0 0 0 1 14 0 61 0
16 0 0 2 0 0 78 0 4 0
24 0 0 0 0 0 6 1 69 0
23 0 3 4 0 0 14 0 56 0
35 0 3 5 0 2 16 0 39 0

50

58 1 0 6 4 0 17 1 13 0
0 80 0 12 5 0 3 0 0 0
4 0 53 0 20 0 20 0 3 0
3 1 0 73 5 0 7 0 11 0
0 0 2 1 82 0 9 0 6 0
1 0 0 0 0 83 1 1 11 3
6 0 3 3 23 0 61 0 4 0
2 0 0 0 0 14 0 55 19 10
3 0 1 1 0 0 1 0 94 0
0 0 0 0 0 5 2 1 2 90

100

73 1 3 2 1 0 15 1 4 0
0 95 0 4 1 0 0 0 0 0
3 0 75 2 5 0 15 0 0 0
4 1 0 84 2 0 9 0 0 0
0 0 4 2 78 0 16 0 0 0
0 0 0 0 0 88 0 3 6 3
7 0 6 3 9 0 74 0 1 0
1 0 0 0 0 3 0 87 1 8
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 2 0 3 1 94

200

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

500

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

1000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

2000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

5000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

10000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

20000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

50000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
8 0 9 3 11 0 68 0 1 0
0 0 0 0 0 2 0 90 1 7
2 0 0 1 0 0 2 0 95 0
0 0 0 0 0 1 0 3 1 95

100000

73 2 2 5 1 0 14 1 2 0
0 93 0 6 1 0 0 0 0 0
5 0 77 1 5 0 12 0 0 0
3 1 0 84 2 0 10 0 0 0
0 0 5 2 77 0 16 0 0 0
0 0 0 0 0 91 0 5 1 3
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Fig. 3.25 Encrypted confusion matrix for FashionMNIST with t and m variation. It can be noticed that for low values of t, the results tend to
concentrate on labels that resemble each other the most. Spiking-LeNet5 is less random than LeNet5 for low values of t.
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Observing the matrices, we can notice that errors mainly accumulate in the
final layers, especially in the linearization layers, precisely because there are more
calculations for reducing large matrices to the final linear array of 10 classes. It can
also be noted that there are not many errors in the activation layers because during
activations, the models are decrypted and there is a lower accumulation of errors.
Furthermore, it is noted that there are no significant differences between the various
classes and more or less all have the same error values in the various layers, with a
greater accumulation in the final linearizations.

To better understand Figures A.17, A.18, 3.26 and 3.27, here is an explanation of
the strips:

• in the first strip (the Red one) there are the errors produced by the encrypted
LeNet5.

• in the second strip (the Blue one) there are the errors produced by the en-
crypted Spiking-LeNet5.

• in the third strip, the difference between the errors of the standard model and
the spiking model was calculated, the normalization in this case was performed
after the calculation of the difference. The Red parts show that there was a
greater error in LeNet5, vice versa the Blue parts show that Spiking-LeNet5
made more mistakes.

Looking at the third strip of Figures A.17, A.18, 3.26 and 3.27, it can be noticed
that it is mainly Red , which means that generally Spiking-LeNet5 performed better.

The sporadic squares much denser than those of other classes or layers generally
show those classes that mislead the models the most under certain conditions. For
FashionMNIST (see Figure 3.26), for example, a dense square can be seen in the
Shirt class with m equal to 1024 and t equal to 1000.
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Fig. 3.26 Errors layer-by-layer with FashionMNIST and m = 1024. The top Red strip represents the errors in the layers of the LeNet5, the
Blue strip in the middle represents the errors in the layers of the Spiking-LeNet5. The last strip at the bottom represents the difference between

the errors in the layers of LeNet-5 and Spiking-LeNet5, where the Red parts indicate that LeNet5 has made more mistakes, while the Blue
parts indicate that Spiking-LeNet5 has mainly made mistakes. It can be noticed that the third strip is predominantly Red , indicating that
Spiking-LeNet5 generally performs better.
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Fig. 3.27 Errors layer-by-layer with FashionMNIST and m = 2048. The top Red strip represents the errors in the layers of the LeNet5, the
Blue strip in the middle represents the errors in the layers of the Spiking-LeNet5. The last strip at the bottom represents the difference between

the errors in the layers of LeNet-5 and Spiking-LeNet5, where the Red parts indicate that LeNet5 has made more mistakes, while the Blue
parts indicate that Spiking-LeNet5 has mainly made mistakes. It can be noticed that the third strip is predominantly Red , indicating that
Spiking-LeNet5 generally performs better.
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3.9 Conclusion

In this work, we aimed to provide a comparison between classical models like DNNs
and the less commonly used and less known SNNs, additionally leveraging FHE to
assess their effectiveness and practicality in realistic scenarios. The final outcome
demonstrated how, under certain conditions, SNNs are indeed more efficient than
DNNs, and how FHE can enable the manipulation of sensitive data without the risk
of intrusions. However, this work needs to be further developed to address some of
its most glaring limitations:

• the inability to use encrypted data in the nonlinear phases of a model [121].

• the slowness attributed to encryption, particularly pronounced in this specific
case since the Pyfhel library operates solely on CPU.

• the latency of SNNs, which precludes the application of these studies to
real-time cases.

Therefore, the next steps in this field involve developing accelerated encryption
models using GPUs and conducting in-depth research to overcome the issue of non-
linear computations. Furthermore, SNNs are still in their infancy, and undoubtedly,
there will be more opportunities for their utilization in the future, especially when
latency becomes less of a factor due to advancements in computing power.
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Appendix A

SpyKing Extras

In this Appendix A, all the results related to the SpyKing research (see Chapter 3)
have been provided, which were not included in the main chapter to avoid over-
burdening the argumentation. Since Chapter 3 mainly contained results for the
FashionMNIST dataset, this Appendix A presents the figures and graphs related to
the MNIST and CIFAR10 datasets. The following images are simply an ordered list
corresponding to Chapter 3, along with their descriptions. For a complete explana-
tion, refer to the text in Chapter 3, which also includes references to the images in
this Appendix A.
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Fig. A.1 Accuracy and loss during training and validation of LeNet5 and Spiking-LeNet5
for the MNIST dataset. The figure shows accuracy and loss values across different training
epochs.
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Fig. A.2 Accuracy and loss during training and validation of LeNet5 and Spiking-LeNet5 for
the CIFAR10 dataset. The figure shows accuracy and loss values across different training
epochs.
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Fig. A.3 Comparison matrix for t variation and m set to 1024 for the MNIST dataset on
encrypted LeNet5 model.
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Fig. A.4 Comparison matrix for t variation and m set to 1024 for the MNIST dataset on
encrypted Spiking-LeNet5 model.
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Fig. A.5 Comparison matrix for t variation and m set to 1024 for the CIFAR10 dataset on
encrypted LeNet5 model.
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Fig. A.8 Comparison of MNIST accuracy between plaintext and encrypted versions of
LeNet5 and Spiking-LeNet5 for t variations when both plaintext and encrypted versions
classified correctly.
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Fig. A.9 Comparison of MNIST accuracy between plaintext and encrypted versions of
LeNet5 and Spiking-LeNet5 for t variations when both plaintext and encrypted versions
coincide in both correct and incorrect classification.



95

10 20 50 100 200 500 1000 2000 5000
t variation

0

10

20

30

40

50

60

A
cc

ur
ac

y 
%

LeNet5 accuracy
Spiking-LeNet5 accuracy
LeNet5  --- m=1024
Spiking-LeNet5 --- m=1024

Fig. A.10 Comparison of CIFAR10 accuracy between plaintext and encrypted versions of
LeNet5 and Spiking-LeNet5 for t variations when both plaintext and encrypted versions
classified correctly.
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Fig. A.11 Comparison of CIFAR10 accuracy between plaintext and encrypted versions of
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Fig. A.12 NB values for each model, dataset, m and t variation.
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Fig. A.13 Plaintext confusion matrix for MNIST. The class 8 is the one that misleads the
model the most.
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Fig. A.14 Plaintext confusion matrix for CIFAR10.
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Fig. A.15 Encrypted confusion matrix for MNIST with t and m variation. It can be noticed that for low values of t, the results tend to concentrate
on labels that resemble each other the most. Spiking-LeNet5 is less random than LeNet5 for low values of t.
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Fig. A.16 Encrypted confusion matrix for CIFAR10 with t and m variation. It can be noticed that for low values of t, the results tend to
concentrate on labels that resemble each other the most. Spiking-LeNet5 is less random than LeNet5 for low values of t.
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Fig. A.17 Errors layer-by-layer with MNIST and m = 1024. The top Red strip represents the errors in the layers of the LeNet5, the Blue
strip in the middle represents the errors in the layers of the Spiking-LeNet5. The last strip at the bottom represents the difference between the
errors in the layers of LeNet-5 and Spiking-LeNet5, where the Red parts indicate that LeNet5 has made more mistakes, while the Blue
parts indicate that Spiking-LeNet5 has mainly made mistakes. It can be noticed that the third strip is predominantly Red , indicating that
Spiking-LeNet5 generally performs better.
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Fig. A.18 Errors layer-by-layer with CIFAR10 and m = 1024. The top Red strip represents the errors in the layers of the LeNet5, the Blue
strip in the middle represents the errors in the layers of the Spiking-LeNet5. The last strip at the bottom represents the difference between the
errors in the layers of LeNet-5 and Spiking-LeNet5, where the Red parts indicate that LeNet5 has made more mistakes, while the Blue
parts indicate that Spiking-LeNet5 has mainly made mistakes. It can be noticed that the third strip is predominantly Red , indicating that
Spiking-LeNet5 generally performs better.


