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Abstract

This thesis explores the growth of optical transport networks using a novel Re-
configurable Optical Add-Drop Multiplexer (ROADM) design that incorporates a
photonic integrated multi-band Wavelength Selective Switch (WSS). This sophis-
ticated technology was designed specifically to greatly improve the capability and
effectiveness of multi-band optical transport networks. It achieves this by facili-
tating operations across the S, C, and L bands, hence enabling transfers ranging
from 400G to 1.2T. The architecture utilizes the existing fiber infrastructure and
incorporates real-world network topologies from different countries such as Ger-
many, Italy, Spain, and the USA. It aims to demonstrate the practical advantages
of transitioning from traditional C-band only systems to more flexible multi-band
configurations. This change not only attempts to enhance network performance and
capacity, but also effectively decreases capital costs by decreasing the requirement
for further fiber deployments.

In addition to enhancing this study, machine learning methods are used to fore-
cast control and routing states in the photonic switching systems, enabling the
dynamic administration of network traffic. These algorithms are specifically devel-
oped to be independent of network topology and technology, allowing them to be
applied in various network contexts and improving their effectiveness in controlling
switch planes in real-time. The machine learning technique enhances data flow
efficiency and enhances the Quality of Transmission (QoT) by evaluating viable
pathways and improving network element design.

Comprehensive network simulations and performance assessments have shown
that the utilization of the multi-band method, coupled with the WSS amd WBSS,
not only fulfills but surpasses the limits of traditional networks. This technique
effectively manages higher volumes of data traffic with improved efficiency and de-
creased operational expenses. The findings of this study emphasize the significant
and revolutionary effect of incorporating advanced photonic and machine learn-
ing technology into optical networking. The results emphasize the most effective
network setups that optimize both performance and capacity, providing a future-
oriented viewpoint on network administration. This study lays the foundation for
future progress in optical networking technology, with a focus on scalability and
efficiency in situations with high demand. It also offers useful insights into the
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strategic implementation of next-generation optical transport systems.
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Chapter 1

Introduction

In recent years, optical communication systems have experienced revolutionary
progress, with notable improvements in their capacity, reliability, and adaptability.
The development of these systems has been closely connected to breakthroughs
in optical fiber technology and progress in photonic devices, both of which are
crucial in manipulating light to enhance signal integrity. This thesis explores the
potential of utilizing a more comprehensive knowledge of photonic technologies and
their influence on signal quality to optimize the design and efficient expansion of
optical network capabilities. The optical network infrastructure, which is essential
for transmitting data, is presently facing an unprecedented level of strain due to
the increasing need for greater bandwidth.

This demand is driven by a wide range of applications that require large amounts
of data: from the exchange of terabytes of data between research institutions, to
the movement of enterprise services and data storage to the cloud, the transfer of
high-definition medical images between hospitals, to the increasing use of advanced
educational technologies, among other examples. These advancements are coming
together to form an intricate problem marked by escalating expenses and heightened
network intricacy. Data transmission relies on the extensive, pre-existing network
of optical fibers. Instead of investing a lot of money and inflexibly expanding the
physical network infrastructure, an alternate approach may entail integrating tech-
nologies that improve the efficiency of the current fiber network, without making
any changes to the existing infrastructure. An excellent method to enhance network
performance is to tap into underutilized optical spectrum bands, hence increasing
capacity and providing a cost-effective solution. This thesis explores these options,
analyzing their impact on network performance and assessing them from both an
energy consumption and a techno-economic perspective.
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1.1 Motivation

In recent years, there has been a significant and steady annual increase in inter-
net traffic, with a growth rate above 30%. This growth may be attributed mostly
to the increasing number of devices linked to the internet. Projections indicate
that there would be a sustained rise in the demand for communications network
capacity on a global scale. The driving forces behind this include cloud comput-
ing, high-definition video streaming, immersive virtual reality experiences, and the
emergence of 5G/6G technology.

Optical communication technologies have played a crucial role in the fast ex-
pansion of data traffic. Nevertheless, they are already approaching the theoretical
maximum information capacity referred to as the nonlinear Shannon limit [1]. This
limit represents the maximum achievable data rates for point-to-point fiber optic
transmission. As a result, optical systems are facing difficulties in keeping pace
with the rapid increase in IP traffic. This is a major problem for the telecommu-
nications sector, as it has to find cost-efficient methods to fulfill the surging need
for bandwidth. This difficulty is exacerbated by the fact that telecommunications
operators have been seeing a decrease in income over the past decade, and it is
expected that expenses per bit will soon surpass operator revenues.

Telecom businesses are forced to choose between supporting more traffic and
successfully handling their finances. It is important to assess the impact of pho-
tonic communication technologies on network capacity expansion, improved net-
work management, and the cost-effectiveness. Operators are required to select the
appropriate technologies for designing and improving network topologies, while sup-
pliers must decide on their priorities for future product development. Typically, the
impact of transmission layer technology is evaluated for point-to-point connections
that are running at maximum capacity, which is considered the most favorable sit-
uation. Due to limitations such as wavelength and spectrum competition, it is not
possible to fully utilize all of the available spectrum in fiber networks.

Developing sustainable and economically viable methods to manage the growing
traffic in the optical transport network while simultaneously decreasing energy con-
sumption is of utmost importance. Wavelength Division Multiplexing (WDM) is
proposed as an effective approach for managing the fast increase in traffic in optical
communication networks [2]. WDM improves the effectiveness of fiber infrastruc-
ture by enabling many data streams to be transmitted simultaneously across a
single optical connection. This optimizes the utilization of available bandwidth
and leads to cost reduction. This is accomplished by partitioning the available
frequency spectrum into narrower WDM channels, which enhances the efficiency
of fiber utilization and streamlines network investments [3]. Telecommunication
operators often operate within a WDM bandwidth of 4.8 THz, commonly in the
optical fiber’s C-band frequency range [4]. Multi-band transmission (MBT) is a
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strategic approach that can fulfill capacity requirements without necessitating sub-
stantial modifications to existing optical fiber networks. This approach involves use
a broader range of wavelengths, namely inside the low-loss zone of the frequently
used single-mode optical fibers, specifically the ITU-T G.652.D variant. This en-
ables the possibility of transmitting data at a bandwidth of around 50 THz [4, 5].
Multiple studies have clarified the effectiveness of MBT in different ranges of wave-
lengths, ranging from the O-band to the L-band [6, 7, 8]. Commercial solutions for
MBT in the C+L-band have already been shown [9]. Consequently, studies have
focused on these specific frequency ranges in order to obtain improved data transfer
speeds and increased transmission lengths.

One major benefit of using MBT for network improvement is the use of existing
fiber infrastructure, which leads to a substantial reduction in Capital Expenditure
(CAPEX) compared to other upgrade options [10, 11]. However, managing several
spectral bands presents challenges for the telecom sector. This is because it requires
integrating extra optical devices for each band, and each device has its own distinct
operational characteristics across different bands and frequencies.

The objective of this thesis is to do a thorough examination of MBT in optical
transport networks. This study analyzes the physical layer to the network layer in
disaggregated optical networks, with focus on the network capacity enhancements
for various network elements.

1.2 Outline of the thesis

This thesis presents a comprehensive analysis at the networking level to evaluate
multi-band transmission systems, focusing on detailed modeling of propagation
impairments and the capabilities of multi-band switching devices. These elements
are crucial for understanding the capacity limitations and the options available for
expanding network capabilities.

Chapter 2 delves into the optical network architecture, discusses multi-band sys-
tems, and explores physical layer propagation modeling. This provides the founda-
tional knowledge needed to assess the impact of multi-band technologies on network
design and performance.

In Chapter 3, we explore a machine learning framework designed to predict
control states and the quality of transmission within switching architectures. This
chapter highlights how machine learning can enhance the management and effi-
ciency of optical networks.

Chapter 4 details the simulation tools used and provides a comprehensive
networking-level performance analysis under various network conditions. It
includes a thorough comparison of network capacities enabled by multi-band
technologies, offering insights into the benefits and limitations of these systems.
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Chapter 5 concludes the thesis and discusses potential avenues for future re-
search. This final chapter summarizes the findings and underscores the implications
for future developments in optical network technologies.
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Chapter 2

Optical network architecture and
modelling

2.1 Optical network structure

Figure 2.1 visually represents the complete hierarchical structure of communi-
cation networks. The highest tier encompasses the long-haul or backbone optical
networks, which typically span hundreds to thousands of kilometers [12]. These
networks are tasked with transmitting high-capacity optical communications over
extensive distances ( in some cases between countries or continents). Long-haul net-
works employ Dense Wavelength Division Multiplexing (DWDM) to concurrently
transport multiple data streams over a single fiber optic cable. Each data stream
is allocated a unique wavelength within the DWDM system. As a result, long-
haul networks have achieved remarkable capacity, with certain networks capable of
transmitting terabits of data per second over a single fiber.

The second tier is the regional optical networks. Regional optical networks
are the foundation of modern communication infrastructure, enabling the smooth
transfer of data between metropolitan areas and rural communities in a certain
geographic region. These networks serve as crucial connections that link long-haul
networks covering large distances with metropolitan networks catering to heavily
populated regions. Regional networks efficiently handle data transfer using ad-
vanced optical transport technologies including optical amplifiers and wavelength
selective switches to provide maximum performance and reliability. Utilizing ad-
vanced optical technology in regional networks allows them to attain unparalleled
efficiency and capacity. Optical amplifiers increase signal strength to extend data
transmission lengths without degradation, while wavelength selective switches pro-
vide accurate routing of data streams to their designated destinations. These net-
works are crucial for facilitating smooth communication and promoting economic
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Figure 2.1: Communication network structure

growth within different areas by reducing delays, maximizing capacity, and main-
taining reliable connectivity across regional centers. The third tier, Metro optical
networks, also known as metropolitan area networks, play a crucial role in facili-
tating communication across densely populated urban areas. Located in urban ar-
eas, these networks serve as crucial connections linking regional networks to access
networks, thereby playing a key role in the overall communication infrastructure.
Metro networks utilize advanced optical technology such as Reconfigurable Opti-
cal Add-Drop Multiplexers (ROADMs) to facilitate adaptable and dynamic traffic
routing. This flexibility enables the optimum use of network resources, providing
optimal reliability and performance even in dynamic metropolitan settings. Metro
optical networks are designed to prioritize low latency, high scalability, and effec-
tive traffic grooming to satisfy the increasing demand for high-bandwidth services
in metropolitan settings. Low latency is crucial for applications like video confer-
encing and online gaming that need real-time engagement by minimizing delays in
data transfer. Metro networks can successfully handle growing data traffic because
to their high scalability. Efficient traffic grooming helps optimize network resources,
resulting in enhanced performance and cost-effectiveness. Metro optical networks
are the fundamental framework of urban communication infrastructure, facilitat-
ing continuous connectivity and meeting the varied requirements of contemporary
metropolitan communities [13].

Access optical networks are essential as the last stage in the optical network
architecture, acting as the gateway point for end-users, enterprises, and residential
areas. The networks serve as the final link in providing high-speed internet access,
video streaming services, and other communication solutions directly to individ-
ual buildings. Access networks utilize passive optical networks (PONs) [14, 15]
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and Ethernet-based solutions to cater to customers’ different demands and provide
efficient and reliable access [16]. Access optical networks play a crucial function
but encounter distinct challenges that demand creative resolutions. The hurdles
are deploying fiber optics to individual premises, power budget constraints, and
the continuous requirement for cost-effective solutions. To overcome these issues,
strategic planning, infrastructure investment, and the deployment of sophisticated
technologies are necessary to improve network performance and provide access to
high-speed broadband services. Optical networks are crucial for reducing the dig-
ital gap and providing broad access to the advantages of current communication
technology.

2.2 Advancements in Software-Defined

Networking and Open Optical Networks

The emergence of Software-Defined Networking (SDN) addresses these chal-
lenges by introducing programmable network architectures that enable dynamic and
centralized control over network resources. SDN separates the control plane from
the data plane, allowing network administrators to centrally manage and configure
network behavior through software-based controllers. This paradigm shift empow-
ers optical communication systems to achieve greater flexibility, transparency, and
adaptability. By decoupling control functions from hardware, SDN facilitates more
efficient traffic engineering, enables on-demand network reconfiguration, and sup-
ports the seamless integration of new technologies. In essence, SDN revolutionizes
optical communication systems by providing the foundation for agile, scalable, and
programmable network infrastructures capable of meeting the evolving demands of
modern communication networks. SDN architecture consists of data plane, control
plane and management plane, illustrated in Fig. 2.2

2.2.1 SDN layers

• Dataplane: In the architecture of Software-Defined Networking (SDN), the
data plane comprises two distinct sublayers: the network infrastructure and
the southbound interface. The network infrastructure handles the actual for-
warding of packets within the network, while the southbound interface spec-
ifies the instructions for packet forwarding and defines the network protocol
utilized to facilitate communication between the control plane and the data
plane.

– Network infrastructure: SDN design includes conventional network
components like routers and switches. In SDN, the traditional capability
to independently program various network components is relinquished.
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Figure 2.2: SDN schematic diagram

Flow control is centralized and overseen by a unified logical entity in-
stead. This centralization simplifies network components into basic data-
forwarding parts that function according to predefined principles. SDN
data forwarding mechanism utilizes a sequence of flow tables. Flow ta-
bles store rules that are compared to incoming packets and determine
the actions to be executed when a match is found.

– Southbound interface: The southbound interface in the architecture
of SDN serves as the conduit for communication between the control
plane and the data plane. It plays a pivotal role in promoting interop-
erability among forwarding devices sourced from diverse vendors within
the SDN ecosystem.

• Control plane: The control plane has been designed specifically for the
administration of network traffic. The centralized software component is re-
sponsible for managing network traffic. Centralizing logical control instead
of physical control is based on the efficiency and resilience it provides. Cen-
tralized physical control poses a risk of a single point of failure that might
compromise the entire network, while centralized logical control guarantees
resilience and fault tolerance. SDN includes backup controllers to reduce the
chance of failures by allowing them to take over control efficiently in case of
a breakdown [17]. Following are the sublayers of control plane.
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– Network hypervisor: Network hypervisors play a crucial role in fa-
cilitating the sharing of hardware resources among multiple virtual ma-
chines within a shared cloud infrastructure. By leveraging network hy-
pervisors, SDN enables efficient resource utilization and cost reduction
by abstracting physical network infrastructure into virtualized entities.
This virtualization concept, originally derived from the software indus-
try, has been adapted to networking through SDN, enabling the creation
of virtualized network environments that operate independently of the
underlying physical hardware.

– NOS: The network operating system (NOS) serves as a centralized
control plane, orchestrating network-wide traffic management and con-
trol. This innovative concept introduces a novel approach to networking
by providing abstractions and a unified development environment for
network engineers. The primary functions of NOS include abstracting
underlying network infrastructure, providing a common programming
interface, and facilitating centralized logical control over network re-
sources. By centralizing control and management functions, NOS en-
hances network agility, simplifies management tasks, and enables seam-
less integration of diverse network services and applications.

– Northbound interface: The northbound interface serves as a crucial
communication link between the underlying network infrastructure and
the applications and business requirements in the upper layers. While
the southbound interface handles communication with the data plane,
the northbound interface is responsible for facilitating communication
with external applications and services. Although northbound APIs are
not yet standardized, they are expected to provide a software environ-
ment distinct from the hardware-focused southbound interface

• Management plane: The management layer in network architecture con-
sists of three sub-layers: language-based virtualization, programming lan-
guages, and network applications.

– Language-based virtualization abstracts network modules to preserve
structural integrity and protection, ensuring efficient resource utilization
and network security.

– Programming languages facilitate defining network abstractions, empha-
sizing portability and enabling dynamic implementation of user-defined
requirements for flexible network configurations.

– Network applications define logic executed by underlying layers, aligning
network operations with business objectives and serving as an interface
between management layer and network infrastructure.
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2.2.2 Enabling technology of SDN

DSP-based transceivers revolutionized optical communication systems by signif-
icantly enhancing their operating capabilities, especially in enabling multilevel mod-
ulation formats using coherent technology [18, 19]. Before DSP-based transceivers
became prevalent, optical communication systems mostly used direct-detection
(DD) transceivers, which had limited flexibility. DD transceiver implementations
limited optical network links to rigid data pipelines, lacking the flexibility needed to
support different configurations [20, 21]. As a result, the inflexibility caused major
constraints on the ability to carry out transparent lightpath (LP) routing, requiring
fixed setups to be established at the network design stage. Moreover, due to the
inherent technological limitations of DD transceivers, optical-electrooptical (OEO)
traffic regeneration was necessary in nodes. This hindered the achievement of de-
sired transparency and elasticity at the logical network layer, presenting significant
challenges to network scalability and adaptability.

Advancements in dynamic digital-to-analog (DAC) and analog-to-digital (ADC)
converters, as well as improvements in DSP modules, have greatly improved the
flexibility of optical transmission systems in the past ten years [22]. By utilizing
electronic dispersion correction (EDC) [23, 24] and DSP-enabled equalization [25],
receivers are able to reduce linear propagation effects like chromatic dispersion (CD)
and polarization mode dispersion (PMD). The progress made has established the
groundwork for the design of DSP-based transceivers, signaling the beginning of
a new era in optical transceiver technology [26, 27]. The transceivers are capable
of handling different modulation formats and eliminating Dispersion compensat-
ing units (DCUs) from optical lines without incurring any additional penalty [28].
The removal of DCUs has significantly improved flexibility, enabling transparent
wavelength routing and resulting in significant improvements in the design of Re-
configurable optical add-drop multiplexers (ROADMs) [29]. The integration of
DSP-based transceivers into optical networks has initiated a substantial revolution
in the architecture of ROADMs, allowing them to offer flexible and transparent
optical networking. By eliminating DCUs from optical connections, ROADMs can
now offer seamless and efficient wavelength routing, revolutionizing the flexibility
and adaptability of optical networks. This transformative attribute enhances the
efficiency of the network and simplifies administration by allowing real-time adjust-
ments to meet evolving bandwidth requirements. The implementation of Digital
signal processing-based transceivers resulted in a new era of flexibility and efficiency
in optical communication systems, facilitating the creation of enhanced network
architectures capable of addressing the evolving demands of modern telecommuni-
cations and the concept of software-defined networking.
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Figure 2.3: Optical networks structure

2.2.3 Open optical networks

Disaggregated optical networks in the field of SDN revolutionize the adminis-
tration and control of optical communication infrastructure. These networks adopt
the concept of disaggregation, which allows for independent management of distinct
network elements (NEs) from different vendors, such as amplifiers, ROADMs, and
transceivers. The disaggregation can take place at two levels: complete disaggre-
gation, where each individual network element is managed individually, or partial
disaggregation, where whole OLSs are controlled independently. This technique
enables enhanced flexibility and interoperability inside the network, since it allows
for the smooth integration and management of equipment from several suppliers
utilizing protocols that are not exclusive to any particular vendor. Vendor-agnostic
protocols in disaggregated optical networks provide for centralized control and man-
agement of various system implementations from numerous suppliers. Interoper-
ability guarantees that the central optical network control can effectively manage
and regulate both hardware devices and the whole network. This includes tasks
like configuration, performance monitoring, and alert management. Fig. 2.3 demon-
strates the operational concepts of both partially and fully-disaggregated networks,
providing a practical representation of how these networks function. By utilizing
the interoperability of these technologies, the central optical network control may
offer full management and control capabilities, ultimately resulting in more effective
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resource use and easier network administration.
In this study, we assume a fully-disaggregated optical network, where all the

configurations of the OLS are set and maintained by a unified control plane. This
method provides a multitude of benefits, such as increased adaptability, expand-
ability, and impartiality towards vendors. Organizations may enhance their optical
communication infrastructure and easily react to changing network requirements by
adopting the notion of disaggregated optical networks within the context of SDN.

2.3 Multi-band transmission systems

The growing adoption of technologies like the Internet of Things (IoT) and
Machine-to-Machine (M2M) communication, along with progress in fixed and wire-
less access technologies, is putting considerable pressure on optical transport net-
works [30]. The increasing need for bandwidth among end-users and the con-
centration of traffic in backbone networks provide unique issues such as capacity
constraints and system congestion. Innovative solutions are necessary to improve
the scalability and efficiency of optical transport networks in order to address these
difficulties.

The implementation of Elastic Optical Networks (EONs) has greatly improved
the efficiency of spectrum usage in the C-band. EONs strive to achieve transporta-
tion rates beyond 100G, with the ultimate objective of attaining single-wavelength
1 Tb/s line rates. Nevertheless, these progressions come with inherent limitations.
EONs mainly aim to increase the capability of direct connections while optimizing
spectral efficiency. Two main techniques to increase line-rates to 200G/400G or
800G within EONs are using higher baud-rates or implementing higher modulation
formats. Operating at faster speeds requires more optical bandwidth by using more
spectral slots. This reduces the number of spectral slots available for connecting
nodes, requiring a decision between node connection and channel capacity [30].
Despite improvements DSP enhancing QoT performance, reaching greater single
channel rates results in lower reach, which further limits inter-node connection.
Accommodating fluctuating traffic patterns and optimizing the cost-effective use
of high-capacity connections presents obstacles. The problems highlight the neces-
sity for creative solutions to meet the changing requirements of optical transport
networks [31].

This work examines Multi-Band Transmission (MBT) options, which have been
extensively researched for many years and provide different alternatives as well as
issues [32, 33, 34]. The primary objective of MBT is to broaden the spectrum
use of fiber transmission beyond the conventional C-band systems prevalent during
the past two decades [35]. C-band systems usually span a range of 35 nanometers
(nm), as shown in Fig. 2.4. Recent improvements have enabled the creation of
systems that use a broader spectral range, incorporating transmission in both the
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Figure 2.4: Optical spectral bands (ITU-T)

C-band , L-band (60 nm) and S-band (≈ 70 nm). This method can span a spectral
range of up to 165 nm, greatly increasing the bandwidth for optical communication.
MBT solutions offer a spectrum scenario that includes both C-band and L-band
transmission (95 nm) [36, 37], and it is currently available for commercial use and
has been deployed in recent years [38]. The extended spectral range provides more
flexibility and capacity in optical transmission systems to meet the rising need for
higher data rates and to support a wider variety of applications and services.

Figure 2.5: Loss profile of SSMF

Fig. 2.5 depicts the low-loss spectral range of standard single-mode fiber
(SSMF), which extends from the U-band to the O-band with a loss of approxi-
mately less than 0.4 dB/km, and L- to S-bands with a loss of around 0.2 db/km.
This spectral range spans over 16 THz in total, showcasing substantial capacity
potential without requiring the installation of new fiber [39, 40].

Since optical fibers currently experience the least amount of signal loss in the
C-band, they are often utilized in metro, long-haul, ultra-long-haul, and subma-
rine optical transmission systems. They are frequently combined with WDM and
erbium-doped fiber amplifier (EDFA) technologies. The L-band is a suitable alter-
native when the C-band lacks sufficient bandwidth. WDM and EDFA technologies
are also suitable for use in the L-band. Optical fibers in the S-band show lower loss
than those in the O-band. The S-band is commonly utilized as the downstream
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Figure 2.6: Dispersion and non-linear co-efficient profile of SSMF

wavelength in several PONs technologies. Expanding capacity beyond the C+L-
band with DWDM transmission in terrestrial optical networks is another area of
growing interest. [41]

Effectively predicting optical fiber properties across the entire spectrum utilized
poses a fundamental challenge in MBT systems. Parameters such as the attenuation
profile (α), chromatic dispersion (D), and nonlinear coefficient (γ), depicted in Fig.
2.5 and Fig. 2.6, must be accurately defined to forecast the performance of MBT
systems reliably.

Modeling the propagation in MBT systems necessitates consideration of Stimu-
lated Raman Scattering SRS, the primary nonlinear effect in these systems [42, 43].
SRS significantly influences signal propagation and must be precisely incorporated
into the modeling framework. Furthermore, precise simulation of MBT systems re-
lies on appropriately scaling the Raman gain across the frequency spectrum. This
ensures an accurate representation of the Raman effect across the entire bandwidth
utilized in MBT systems.

Finally, it is essential to include the influence of SRS while calculating NLI
in MBT situations. The degradation of signal quality in optical communication
systems is significantly influenced by NLI, and correctly assessing its impact neces-
sitates considering the SRS effect. In order to tackle these modeling difficulties, we
have utilized the Generalized Gaussian Noise (GGN) model [44] in our simulations.
This model has exhibited outstanding precision in estimating NLI, even in diverse
situations, making it an excellent option for modeling MBT systems and reliably
predicting their performance [42].

An important challenge for MBT systems is the limited availability of compo-
nents that can operate well across several spectral bands. There are two methods
for transceivers. An effective approach is to develop dedicated transceivers designed
for certain bands or frequency ranges. This approach entails the development of
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Figure 2.7: Optical node architecture for single and multiband WDM system

several elements such as tunable lasers, dual-polarization IQ modulators, and coher-
ent receiver front end [45]. These customized transceivers are not currently on the
market. Some researchers have investigated employing C-band transceivers in other
spectral bands as a temporary solution [46, 47, 48]. These findings are intriguing,
but more research is required to comprehend any extra performance limitations.

The wavelength-selective switch (WSS) is a vital component for MBT systems
since it is necessary for the construction of ROADM nodes. Researchers are now
creating broader devices to enhance the flexibility of multi-band network nodes
[49], but C+L-band WSS are already on the market. In this work, we have used
the photonic WSS device which is capable of handling three bands (C, L, and S),
explained in [50].

EDFAs are commonly utilized for C- and L-bands in amplification applications
because of their dependable performance and effectiveness and can acheive 6 Thz
of spectral range [51]. Thulium-Doped Fiber Amplifiers (TDFA) have been studied
as alternative amplifiers for the S-band [52]. The amplifiers are designed for certain
spectral ranges, providing possible solutions for MBT systems.

Fig. 2.7 demonstrates the node architecture from a C-band to an MBT sys-
tem, incorporating C, L, and S bands. It is crucial to take into account extra
consequences for band separation needed for particular amplification. We analyze
the performance and effects of MBT on the network level by considering elements
such as fiber transmission impairments and device characteristics in the upcoming
chapters.
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Figure 2.8: ROADM architecture enabled by multiple WSS modules

2.3.1 Multi-band enabled WSS device

The network component, such as Wavelength selective switch (WSS), is cru-
cial since it provides independent management and routing of each input channel
to a fiber output of the WDM comb. WSS systems are often built utilizing so-
phisticated and large-scale technologies such as Liquid Crystal on Silicon (LCoS)
and Microelectromechanical Systems (MEMS) [53]. This thesis use the multi-band
WSS implementationusing Photonic integrated circuit (PIC) technology, originally
explained in [50] and [54]. This method differs from current large and cumbersome
WSS systems that rely on MEMS and LCoS technologies. The WSS features a
modular architecture, as seen in Figure 2.8, enabling operation throughout a wide
optical spectrum encompassing the C, L, and S bands. It provides the capacity
to handle more output fibers and channels while taking up less space compared to
conventional MEMS-based solutions.

The underlying design principles of the PIC have been chosen to allow modu-
larity and scalability of the structure, allowing the architecture to be adapted and
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simulated for various applications, envisioning different amounts of ports, chan-
nels, and spectral characteristics. This is achieved through a "divide and conquer"
approach, splitting the demultiplexing and switching operations into separate sec-
tions while implementing the required functionalities through cascades of simpler
integrated components. The device architecture is depicted in Fig. 2.9, which high-
lights both the general structure, the filtering cascade, and the switching network
structures [55].

Figure 2.9: WSS architecture

2.3.1.1 Filtering section

In this first step, the input signal is split into its individual channels and guided
into separate pathways while keeping losses and interference to a minimum. This is
done using a series of filters arranged in stages. The process begins by separating
the main bands of operation (C+L+S in this case) before moving to finer filtering.
This initial stage is crucial for reducing losses and interference between bands, which
helps optimize the design of subsequent components. Each spectral sub-region is
then further separated using a cascade of filtering elements. There are two main
devices used for this: Contra-Directional Couplers (CDCs) for band separation
and Micro-Ring Resonator (MRRs) based filters for channel separation, shown in
Fig. 2.10. CDCs work by engineering their gratings to allow coupling between the
forward and backward propagating modes of different waveguides.

The primary design parameters, as illustrated in Fig. 2.11, revolve around the
geometry of the waveguides and gratings. Tuning the waveguide’s unperturbed
effective index, determined by its width (W1,2 and height, along with the per-
turbed effective index (∆W1,2), in conjunction with adjusting the gap G between
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Figure 2.10: Operational stages of WSS

the waveguides, enables the suppression of direct coupling and the maximization of
the contra-directional effect. Additionally, through meticulous engineering of the
grating periodicity (Λ1,n), it is possible to finely adjust the effect to target spe-
cific bandwidths and central frequencies, thereby optimizing the performance of

Figure 2.11: Contra-Directional Coupler filter: (a) schematic and (b) frequency
response. [56, 55]

18



2.3 – Multi-band transmission systems

the system.

Figure 2.12: Device schematic for the two-stage ladder MRR filter [56, 55]

MRRs function based on the interference principle where certain frequencies
experience constructive interference as light circulates within the ring structure.
MRRs may selectively transfer specific wavelengths to a second waveguide while
without impacting the remaining spectrum. Single-ring structures have limitations
in terms of spectral flatness and stop-band attenuation, but these may be improved
by using multiple rings in more intricate structures, as shown in Fig. 2.12. MRRs
structure are mainly designed based on two key parameters: the coupling coeffi-
cients (K11,12,21,22 and the radius (R) of the rings. Adjusting the radii allows for
choosing the desired channel, whilst the coupling coefficients determine the overall
frequency response.

CDCs and MRRs have different operating principles, leading them to fulfill
slightly different objectives. CDC structures are effective in isolating the central
operating region due to their broad flat-top characteristics and abrupt stop-band
transitions. Although CDCs have a bigger footprint than other filtering systems,
they are crucial parts of multi-band applications because they can be tailored to
cover extremely wide operating bands. MRRs are commonly used for channel
separation in add-drop filtering systems. They are more appropriate for channel
filtering but are unable to attain extremely wide filtering bandwidths.

Each channel in the design in is filtered using a two-stage ladder MRRs filter.
This setup guarantees a flat-top response, a quick stop-band transition, and a high
extinction ratio, which helps minimize inter-channel crosstalk and decrease trans-
mission penalties. To overcome aliasing problems in MRR-based solutions, devices
have been created and tested using intricate grating-assisted coupling architectures.
These couplers help decrease the necessary number of filtering elements, removing
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the requirement for extra anti-aliasing components used in prior versions. This
enhancement allows for more accurate tuning of the coupling value based on the
specific wavelength, to counteract the inherent periodic behavior of the MRR-based
device. This method results in an element that is free from free spectral range (FSR)
and does not cause channel aliasing. After demultiplexing, the next step is to direct
signals to the desired output port.

2.3.1.2 Switching section

Following the filtering stage, each channel is directed through a specialized
switching network to be routed to the proper output fiber. The network depicted
in Fig. 2.10 omprises a cascade array of 1 × 2 programmable Optical Switching
Elements (OSEs). The switching network is designed for a certain number of target
output fibers (N) and consists of N − 1 optical switch elements OSEs organized in
log2 N phases.

Figure 2.13: 1×2 Mach-Zehnder Interferometer Switch - schematic and frequency
response [56, 55]

The benefit of obtaining a large, flat response is provided by the Mach-Zehnder
Interferometer (MZI) switch in the OSE used in these sub-networks. Their essen-
tially frequency-independent switching function makes them ideal for MBT applica-
tions [56, 57, 58, 59]. Fig. 2.13 illustrates the overall structure of the MZI, empha-
sizing the essential physical design parameters and the switching control section.
The device may switch between two routing states (UP or DOWN) by adjusting
the temperature of the specified arm of the MZI using a suitable electrical control
signal. The electrical control system and pads are designed to fulfill the necessary
switching performance and technological requirements [56, 60]. Fig. 2.13 illustrates
the frequency response for the off state (UP) in the C-band, highlighting the area
where the target 8 channels are located. The device shows a consistent response at
the central frequency of the design, allowing for frequency-independent switching
operation, with comparable results in the L- and S-bands. After switching, the next
step is to cross and multiplex the outputs from the previous switching network to
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Figure 2.14: Crossing stage circuit topology [56, 55]

link and integrate them into the egress waveguide of each output port. In the final
segment of the structure, passive waveguide crossings and wavelength combiners are
utilized to consolidate all connections to the target output port. These structures,
depicted in Fig. 2.14, serve as passive lossy elements in the model. Reference val-
ues for these components are sourced from literature documenting experimental and
state-of-the-art devices for crossings [61, 62, 63], as well as integrated wavelength
combiners [64, 65]. The active routing section culminates with the switches.

2.3.2 Multi-band enabled WBSS device model

In today’s telecommunications industry, ROADMs and OXCs primarily func-
tion utilizing a wavelength-path level of detail and are equipped with WSS that
can handle up to 35 ports. In anticipation of future networks embracing extensive
spatial parallelism, which requires increased port counts, it is imperative to connect
numerous WSSs in a cascading manner to fulfill these requirements. The number of
these cascaded WSSs in a node is approximately equal to the square of the degree of
the ROADMs / OXCs [66]. This configuration results in higher transmission losses
at each step, necessitating the use of extra amplifiers to offset these losses, thereby
leading to the introduction of more noise into the system. The administration
of dynamic network services in SDN, which include capabilities such as dynamic
optical path allocation, switched optical paths/circuits, and optical burst/packet
services, becomes more complicated as their range and complexity develop. The
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Figure 2.15: Wavelength enabled node architecture

Figure 2.16: Waveband enabled node architecture

increase in complexity and the resulting expenses are substantial as the optical
transmission systems progress towards MBT and greater SDM systems in prepa-
ration for 6G communications [67]. In order to tackle these difficulties, there has
been a thorough investigation on the deployment of an extra optical layer, known
as the waveband (WB) path layer [68, 69, 70, 71]. The purpose of this layer is
to combine numerous wavelength lines into groups and route them together as a
single unit. This architectural approach minimizes the requirement for individ-
ual optical control of each node, which is commonly found in single-layer systems.
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Figure 2.17: Wavelengths arrangement to form waveband

Within a multi-layer design, only WB ending nodes require signaling to build or
release wavelength pathways. This greatly simplifies the signaling and control op-
erations, resulting in reduced delays and costs associated with path management
and signaling. Moreover, implementing a multilayer design can greatly decrease the
amount of hardware needed for constructing OXC. In the era of extensive SDM,
where OXCs need to support multiple multicore fibers and parallel single mode
fiber links, the current architecture based on wavelength granularity would require
the use of multiple expensive WSSs to remain feasible. This is because commercial
WSSs can only handle a capacity of slightly more than 35 ports. WB switching is
a practical and economical alternative to this method. It has been shown in recent
research to streamline the network structure. The conventional wavelength-based
(WL-based) switching system utilizes granular wavelength routing methods and
consists of a major component called WSSs, which is responsible for both switch-
ing and add/drop features, as shown in Fig. 2.15. On the other hand, the WB
routing system, shown in Fig. 2.16 utilizes a coarse granular approach that con-
sists of many essential steps: Initially, the optical routes of the incoming fibers are
organized into a certain number of WBs based on the requirements of maintain-
ing continuity and contiguity shown in Fig. 2.17. Subsequently, these wavelength
bands are individually directed to their assigned fiber ports for transmission. Fi-
nally, the incoming WBs at a specific fiber port are connected together to enable
their transmission to other outgoing fibers, making the whole process more efficient
and improving the system’s effectiveness.

2.4 Physical layer modeling

Fig. 2.18 depicts an Optical Line System (OLS) comprising several key com-
ponents. Initially, N transmitters convert electrical signals into optical signals for
transmission via optical fibers, with each signal at a unique frequency for multiplex-
ing. The multiplexed signals then traverse a ROADM node for fiber interconnec-
tion. Subsequently, the transmission path incorporates optical amplifiers, EDFA or
TDFA, to mitigate signal attenuation, and fiber segments to facilitate signal trans-
mission over specific distances. In the final stages, the signals are either directed
through additional fibers connected to the main ROADM node or demultiplexed
and dispatched to N receivers, where they are converted back into digital signals.
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Figure 2.18: Optical line system (OLS) and its key components

2.4.1 Coherent transceiver technology

Coherent transmitters and receivers in modern optical communication systems
allow for the use of multi-level modulation schemes, improving the efficiency and
capacity of optical networks. These devices increase data throughput by encoding
information into several dimensions of the light wave by modulation of in-phase (I)
and quadrature (Q) components across two orthogonal polarizations (X and Y) of
an optical carrier.

(a) Transmitter (b) Receiver

Figure 2.19: Coherent transceiver structure

• Coherent transmitter
Fig. 2.19a depicts the structure of a coherent optical transmitter, which con-
sists of a laser source, polarization beam splitters (PBSs), and Mach-Zehnder
modulators (MZMs). The initial stage involves the generation of a coherent
laser beam, which acts as the optical carrier for the transmitted information.
The beam is split into two separate polarized directions, vertical and horizon-
tal, by PBSs. This distinction is essential for the dual-polarization approach,
enabling the separate control of the in-phase and quadrature components for
each polarization. The polarized beams are then modified using MZMs to
encode the I/Q components of the signal onto the light. This is achieved
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through the precise control of the optical phase and amplitude of the car-
rier wave, corresponding to the encoded digital data. After modulation, the
polarized beams are combined using another PBSs, merging the separately
modulated signals into a unified composite optical signal. The laser frequency
is adjusted to allow for the centered transmission of the signal at a certain
frequency (f), which makes it easier to use WDM methods [72]. This ap-
proach enables the concurrent transmission of many channels using a single
optical fiber, greatly increasing the system’s capacity.

• Coherent receiver The coherent receiver, shown in Fig. 2.19b, is responsi-
ble for precisely demodulating the incoming optical signal in the transmission
system. The receiving procedure starts by subjecting the incoming signal
to a PBSs, which separates the signal into its individual polarizations [73].
Each polarization component is combined with a reference signal from an
optical local oscillator (OLO) using a 90-degree optical hybrid. The optical
hybrid, a passive device consisting of 3 dB couplers and a 90-degree phase ro-
tator, combines the incoming optical signal with the local oscillator reference
to enable the extraction of the I/Q components of each polarization. The
process involves sending the combined optical signals to balanced photode-
tectors (BPDs), which then transform the optical signals into electrical sig-
nals representing the in-phase and quadrature components. Electrical signals
are converted into a digital format by analog-to-digital converters (ADCs)
for processing by DSP units [72]. The DSP stages are precisely crafted to
extract the phase and amplitude details from the received signals, as well
as to correct for different transmission issues including chromatic dispersion
and polarization-mode dispersion [74]. This advanced processing guarantees
the precise reconstruction of the sent data, highlighting the effectiveness and
dependability of coherent transmission systems in contemporary optical com-
munications.

2.4.2 Modeling of propagation impairments

2.4.2.1 Attenuation in optical fibers

Attenuation, which refers to the decrease in signal intensity as it travels through
an optical fiber, is an important factor to consider when designing optical transmis-
sion systems. This phenomenon is caused by several reasons, including as Rayleigh
scattering, absorption in the ultraviolet and infrared ranges, peaks in hydroxyl (OH-
) ion absorption at wavelengths approximately 1.25 µm and 1.39 µm, and absorption
due to the presence of phosphorous in the fiber core [75]. The fiber’s attenuation
properties are determined by these factors. These qualities are represented by the
attenuation coefficient (α), which is often measured in dB/km [76].
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When using WDM technology in applications that cover a wide frequency range,
it is very important to comprehend the attenuation dynamics of the fiber. The
frequency dependency of the attenuation coefficient, denoted as α(f), emphasizes
the need of modeling attenuation as a function of frequency in order to precisely
understand its effect on signal transmission.

The mathematical framework to assess optical power output, taking into ac-
count the frequency-specific attenuation, is formulated as:

Pout(f) = Pin(f)e−2α(f)Ls (2.1)

Here, Pin and Pout denote the optical power at the input and output, respectively,
for a signal at frequency f , while Ls indicates the fiber’s length. This equation elu-
cidates the exponential decrease in optical power as influenced by the fiber’s length
and the attenuation coefficient’s frequency dependence, serving as a fundamental
tool for evaluating the optical transmission system’s efficiency in mitigating fiber
attenuation. Incorporating a detailed understanding of fiber attenuation into the
design and analysis of optical networks is indispensable for the accurate prediction
of system performance.

2.4.2.2 Polarization mode dispersion

Polarization-Mode Dispersion (PMD) is a significant issue that affects the qual-
ity of signals in optical transmission systems. It is mainly caused by the natural
birefringence present in optical fibers. This phenomenon is seen as a difference in
temporal delay between two light modes that have orthogonal polarization as they
pass through the fiber. This condition is present even in single-mode fibers [77].
PMD is mostly caused by little deviations from perfect cylindrical symmetry in the
fiber, usually resulting from random variations in the geometric form of the core
along its length. The irregularities cause disturbances in the uniform propagation
circumstances, resulting in the differentiation between the two polarization modes
and initiating their interaction and blending [76].

The effects of PMD are significant in high-speed, long-haul optical networks,
where even small variations in the arrival timings of polarization states can cause
signal distortion and a decrease in the bit-error rate (BER). Nevertheless, in the do-
main of coherent optical communication systems, the obstacle presented by PMD is
greatly reduced by implementing advanced digital signal processing (DSP) tech-
niques at the receiver. When advanced DSP techniques are used with adaptive
equalization approaches, they create a strong and effective strategy to counteract
PMD. These methods enable the realignment of orthogonally polarized light com-
ponents into a coherent signal form by dynamically correcting temporal dispersion
effects caused by PMD. The effectiveness of DSP in counteracting PMD depends on
its ability to adapt in real-time to the changing dispersion properties of the fiber,
which can be influenced by ambient circumstances and physical factors.
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The operational threshold for PMD tolerance in optical transceivers is a crucial
design parameter. It is carefully determined by manufacturers via thorough sys-
tem assessments and performance criteria. The PMD criteria are crucial for the
system’s design, since they guarantee that the transmission quality remains within
acceptable limits under expected operational situations. Therefore, it is extremely
important to follow these requirements closely while deploying the system. This
will enable the establishment of reliable communication lines that can handle the
specified data rates and transmission lengths without any compromise.

2.4.2.3 Chromatic dispersion

Chromatic dispersion is a critical factor affecting the performance of optical
transmission systems, characterized by the temporal spreading of optical pulses
as they travel through a fiber [76]. This phenomenon occurs because the fiber’s
refractive index varies with wavelength, causing components of a pulse at different
wavelengths to propagate at slightly different speeds. Such dispersion results in
pulse broadening, which can constrain the system’s maximum data transmission
rates and reduce the effective transmission distance [78].

Mathematically, the influence of chromatic dispersion on an optical signal can
be quantified through the Taylor series expansion of the propagation constant (β),
which is fundamentally related to the phase velocity of light in the fiber and varies
with the angular frequency (ω). For a signal of frequency (f), where ω = 2πf , the
propagation constant can be expressed as follows:

β(f) = β0 + 2πβ1(f − f0) + 2π2β2(f − f0)
2 +

4

3
π3β3(f − f0)

3 (2.2)

Here, f0 is the reference frequency chosen for the Taylor series expansion. The coef-
ficients in this expansion (β0, β1, β2, and β3) serve different roles in the propagation
of the signal. β0 and β1 and correspond to phase offset and linear propagation de-
lay, respectively, which generally do not impact the QoT directly. However, the
coefficients β2 and β3 , which are responsible for the second and third-order ef-
fects of group-velocity dispersion (GVD), significantly affect pulse broadening and
hence, the QoT. The second-order dispersion coefficient β2, quantified in ps2/km,
is directly linked to the dispersion parameter D, also expressed in ps/(nm·km),
through the relationship:

β2(f) = −
c

2πf 2
D(f) (2.3)

In this equation, c denotes the speed of light in a vacuum. The sign and magnitude
of D indicate the nature of chromatic dispersion within the fiber; positive values
of D cause longer wavelengths to propagate more slowly than shorter wavelengths,
leading to pulse broadening. Conversely, negative values result in pulse compression
due to shorter wavelengths moving slower.
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Furthermore, the third-order dispersion coefficient β3 is associated with the
dispersion slope S, which indicates how the dispersion parameter D changes with
frequency. It is given by:

β3(f) =
c

2πf 2
S(f) −

2cf

β2(f)
(2.4)

Optical fiber manufacturers typically specify the zero-dispersion slope S0 in their
datasheets, providing essential information for designing systems with minimal dis-
persion impacts [42].

In high-performance coherent optical systems, chromatic dispersion, including
its higher-order effects, can be effectively compensated using DSP techniques at
the receiver. This compensation is crucial for maintaining signal integrity over
long distances and high data rates, ensuring that the system operates within the
maximum tolerable chromatic dispersion limits specified by the transceiver design
[79].

2.4.2.4 Stimulated Raman scattering

Stimulated Raman Scattering (SRS) is a non-linear optical process wherein an
incident photon with frequency ωp interacts with a medium’s molecular vibrations,
leading to the generation of a new photon at a shifted, lower frequency ωs, known as
the Stokes frequency. This process can be mathematically represented and under-
stood through its impact on light propagation in optical fibers, particularly within
the framework of WDM systems. The frequency shift (∆ω) between the pump (ωp)
and the Stokes (ωs) waves is defined by the vibrational frequency of the medium’s
molecules, expressed as ∆ω = ωp − ωs.

The Raman gain spectrum, GR(∆ω), dictates the efficiency of this frequency
shift, typically extending around 40THz below the pump wave frequency in optical
fibers like SSMF The peak gain occurs at a shift ∆ωmax, typically around 13.2 THz
for silica fibers, where the Stokes wave experiences the maximum amplification.
Fig. 2.20 illustrates the Raman gain spectrum for a SSMF. The power transfer
from the pump to the Stokes wave can be described by the coupled differential
equations governing the evolution of the pump (Pp(z)) and Stokes (Ps(z)) powers
along the fiber length z.

dPp(z)

dz
= −gR(∆ω)Pp(z)Ps(z) (2.5)

dPs(z)

dz
= gR(∆ω)Pp(z)Ps(z) (2.6)

where gR(∆ω) is the Raman gain coefficient, which is a function of the frequency
shift ∆ω and represents the efficiency of power transfer from the pump to the Stokes
wave.
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Figure 2.20: Normalized Raman efficiency vs the frequency shift for SSMF. [80]

In high-power situations, the efficiency of power transfer to the Stokes wave
increases significantly, which can be quantified by the exponential growth of the
Stokes power as a function of the fiber length and the input pump power. Under
such conditions, nearly all of the pump power can be transferred to the Stokes
wave, leading to a significant alteration in the signal propagation characteristics
within the fiber. In MBT systems, SRS effects can lead to power imbalances across
different wavelength channels. Shorter-wavelength channels (higher frequency) may
lose power to longer-wavelength (lower frequency) channels within the Raman gain
spectrum, necessitating careful power management across channels to minimize
losses and ensure system performance [81, 82]. This involves maintaining channel
powers below a critical level to prevent excessive power transfer via SRS, described
as Pch < Pcritical, where Pch is the power on each channel and Pcritical is the threshold
power above which SRS-induced losses become significant.

2.4.2.5 Amplified spontaneous emission (ASE) noise

ASE noise is a critical source of signal degradation in optical communication
systems, primarily resulting from the inherent properties of optical amplifiers. In
the context of EDFA, ASE noise originates from the spontaneous emission occur-
ring within the gain medium as it amplifies an optical signal. This noise can be
precisely modeled as additive White Gaussian Noise (AWGN) with a bilateral PSD,
encompassing effects from both polarization modes due to the amplifier’s operation
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[83, 84]. The ASE noise power, denoted as GASE, is quantified using the formula:

GASE = 2hf0nsp(G − 1) (2.7)

where, h is the Planck’s constant, f0 is the carrier frequency of the optical signal
being amplified, G denotes the amplifier gain expressed in linear terms, nsp is the
spontaneous emission factor or inversion factor, with nsp > 1, indicating the ratio
between populations in the excited and ground states of the Erbium ions within
the amplifier [83]. This factor is crucial as it directly influences the amplifier’s noise
performance by indicating the efficiency of the spontaneous emission process relative
to the stimulated emission. The noise figure (NF), F , a parameter indicative of
the noise performance of an amplifier, is mathematically linked to the spontaneous
emission factor as follows:

F = 2nsp (2.8)

Substituting nsp in the expression for GASE with F/2 yields a reformulated equation
for ASE noise power:

GASE = hf0F (G − 1) (2.9)

This relationship underscores the interplay between the noise figure, the gain, and
the carrier frequency in determining the ASE noise output of an amplifier.

For TDFA, which operate effectively in the 2 µm wavelength region, ASE noise is
a significant consideration as well. The ASE noise generation mechanism in TDFAs
is analogous to that in EDFAs, with the spontaneous emission factor nsp indicating
the ratio of populations in excited and ground states specific to the Thulium ions.
However, the specific atomic transitions and energy level schemes of Thulium ions
necessitate tailored-modeling to accurately describe ASE noise in TDFAs. The
optimization of TDFAs for minimal ASE noise involves careful management of the
dopant concentration, pump wavelength, and optical cavity design, among other
factors, to enhance the SNR and overall system performance in the 2 µm band,
a region of growing interest for next-generation optical communications due to its
lower loss and scattering characteristics compared to traditional bands.

2.4.2.6 Non-linear Kerr effect

The Kerr effect is a fundamental nonlinear optical phenomenon characterized
by a change in the refractive index of a material proportional to the intensity of
the light traversing it [85, 86]. In the context of WDM optical communications,
particularly within MBT configurations where signal power varies across different
bands, the Kerr effect plays a critical role in determining the QoT of the transmitted
signals. A key parameter for quantifying the Kerr effect in optical fibers is the
nonlinear coefficient, denoted as γ, which is typically measured in units of W −1 ·
km−1. This coefficient is instrumental in calculating the extent to which the Kerr
effect influences signal propagation through an optical fiber. The magnitude of γ
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directly correlates with the intensity of the Kerr effect: a higher γ value signifies a
stronger influence of the Kerr effect on the optical signal.

The Manakov equation is a crucial tool for fully comprehending the distortions
caused by the Kerr effect in WDM systems. This equation represents the pro-
gression of WDM signals in optical fibers, assuming that the propagation constant
is not affected by polarization, which means that the analysis may disregard the
impact of birefringence. The Manakov equation is expressed as follows:

∂E(z, t)

∂z
= −αE(z, t) − j

β2

2

∂2E(z, t)

∂t2
− jγ

8

9
E ∤(z, t)E(z, t)E(z, t) (2.10)

In this equation, the β0 and β1 coefficients are omitted as they represent con-
stant phase shifts and propagation delays, respectively, which are typically con-
sidered negligible for the analysis of Kerr effect-induced distortions. Similarly, the
dispersion slope term β3 is excluded for simplification. The equation comprises
three main terms: the first represents field loss, the second accounts for chromatic
dispersion, and the third, crucially, denotes the Kerr effect term, which is a function
of the WDM signal power.

The WDM signal field, E(z, t), can be represented as a Jones vector,

[

Ex(z, t)
Ey(z, t)

]

,

encapsulating the signal’s polarization components, with |E(z, t)|2 indicating the
signal power where ∤ symbolizes the Jones vector conjugate transpose. In WDM
systems, the Kerr effect manifests through phenomena such as Self-Phase Modu-
lation (SPM), Cross-Phase Modulation (XPM), and Four-Wave Mixing (FWM),
each contributing to signal distortion and degradation:

• Self-Phase Modulation: This effect results in pulse broadening due to a self-
induced phase shift proportional to the instantaneous power of the pulse itself,
altering the pulse’s phase spectrum and leading to temporal spreading.

• Cross-Phase Modulation: XPM induces a phase shift in a signal caused by
the intensity of another co-propagating signal, leading to interaction between
channels that can distort signal integrity.

• Four-Wave Mixing (FWM): FWM is a phenomenon in which interactions
among two or more different wavelengths generate new frequencies. This can
lead to unwanted spectral components, causing crosstalk and signal degrada-
tion in WDM systems.

2.4.3 Amplification modelling

Optical Amplifiers (OAs) are important components in modern optical trans-
mission systems, serving to amplify light signals directly in the optical domain,
thus eliminating the need for conversion to electrical signals. These amplifiers are
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strategically positioned within the OLS to optimize performance and mitigate sig-
nal degradation over long distances. Their deployment is categorized based on their
operational location and function within the network:

• Booster Amplifiers: Positioned immediately after the ROADM, booster am-
plifiers are designed to compensate for signal losses incurred through ROADM
processing. By boosting the signal power at the outset of transmission,
these amplifiers help to maintain optimal signal levels as the light propagates
through the fiber.

• Inline Amplifiers (ILAs): These amplifiers are deployed at regular intervals
along the fiber link to counteract the gradual attenuation of the optical signal
during its journey through the fiber. By restoring signal power, ILAs extend
the reach of the transmission without compromising signal integrity.

• Pre-amplifiers: Located just before the signal reaches the receivers, pre-
amplifiers play a crucial role in enhancing the SNR and detection sensitivity
of the receiving devices. This enhancement is vital for ensuring the accu-
rate and reliable detection of the incoming optical signals, particularly after
traversing long distances.

In this context, three primary types of amplifiers are employed to address power
loss and signal degradation:

• Semiconductor Optical Amplifiers (SOAs): SOAs are active devices fabricated
from semiconductor materials. They amplify optical signals through current
injection, leveraging the gain medium’s properties to boost signal strength
[87]. SOAs are valued for their versatility and wide applicability in various
optical networking functions, including switching and signal regeneration.

• Doped Fiber Amplifiers (DFAs): The most prevalent amplifiers in long-haul
optical transmission, DFAs utilize a length of optical fiber doped with rare-
earth elements (e.g., Erbium or Thulium) as the gain medium [88]. Ampli-
fication is achieved via stimulated emission, where an external pump laser
excites the dopant ions, which then release their stored energy as additional
photons coherent with the signal light, thereby amplifying it.

• Raman Amplifiers: Raman amplification harnesses the SRS effect, where
power from a high-intensity pump laser is transferred to the signal light within
the transmission fiber itself, effectively amplifying the signal [89]. This tech-
nique is especially beneficial for extending the effective transmission distance
and improving the overall system performance by leveraging the fiber’s non-
linear properties.
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A critical aspect of modeling and understanding the performance of these optical
amplifiers involves the consideration of ASE noise. ASE noise is generated due
to spontaneous emission in the amplifier’s gain medium, contributing to the noise
background and potentially degrading the SNR of the system [42]. The ASE power
for a channel centered at frequency f is a function of the amplifier’s gain G(f) and
noise figure NF (f), and can be expressed mathematically as:

PASE(f) = hf(G(f) − 1)NF (f)Bref (2.11)

Here, h is Planck’s constant, and Bref represents the reference noise bandwidth,
which typically corresponds to the channel’s symbol rate Rs(f) or a predetermined
value. Accurate modeling of ASE power is essential for assessing the SNR and,
by extension, the overall performance of optical transmission systems, enabling
the design of networks that maximize signal integrity and capacity over extended
distances.

2.4.4 Quality of Transmission (QoT) metric

The precise modeling of signal propagation within an optical fiber, particularly
in MBT configurations, necessitates a thorough understanding of how fiber parame-
ters such as attenuation and chromatic dispersion vary with frequency. For instance,
in SSMF, the attenuation coefficient typically remains below 0.2 dB/km within the
C- and L-bands but can escalate to approximately 0.22 dB/km in the S-band, as
depicted in Fig. 2.5. Furthermore, SRS as described in Sec. 2.4.2.4, a nonlin-
ear optical effect facilitating power transfer from higher to lower frequency signals
[90], becomes a critical factor in MBT systems due to their expansive transmission
spectrum. While SRS might be negligible in systems confined to the C-band, its
influence is pronounced in MBT configurations, exacerbating the inherent higher
fiber loss in the S-band and consequently diminishing the QoT across this band.

The QoT for each channel in an optical fiber span, indexed by i, is quantitatively
assessed by computing the Generalized Signal-to-Noise Ratio (GSNR), represented
as:

GSNRi =
PS,i

PASE,i + PNLI,i

= (OSNRi
−1 + SNRNLI,i

−1)−1 (2.12)

where PS,i denotes the span input power, OSNRi is the optical signal-to-noise ra-
tio, and SNRNLI,i is the nonlinear signal-to-noise ratio. This model presupposes
that the primary factors degrading optical performance are ASE noise and NLI
noise—emanating from optical amplifiers and fiber propagation, respectively. Both
types of noise are approximated as Gaussian disturbances for a broad range of
transmission scenarios. The ASE noise power PASE,i is derived from the estab-
lished equation, while the NLI power contribution PNLI,i is calculated using the
Generalized Gaussian Noise (GGN) model [91]. This model accounts for the effects
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of spectral and spatial variations in fiber loss and SRS-induced inter-channel power
crosstalk.

In a disaggregated view of the physical layer [92, 93], the total QoT for a LP l
is determined by aggregating the inverse of the GSNR values for each fiber span s
traversed by the LP:

GSNRi,l =
1

∑

s∈l(GSNRi,s)−1
(2.13)

This methodology, implemented in the open source GNPy [94] library, allows
for an accurate estimation of QoT in MBT systems, which necessitates a tailored
approach to optical amplification due to the limited bandwidth and maximum
output power of existing amplifiers. Specifically, EDFAs are employed for the C-
and L-bands, while TDFA is proposed for amplification in the S-band. The choice of
amplifier technology is driven by performance considerations across different bands,
with average NFs of 4.3 dB, 4.7 dB, and 6.5 dB assumed for the C-, L-, and S-band
amplifiers, respectively. The higher NF in TDFAs is attributed to the relatively
nascent state of this technology.

Figure 2.21: GSNR profile of MBT system

Moreover, MBT configurations necessitate the separation and combination of
transmission bands before and after amplification, introducing additional insertion
losses. These losses, which are not present in single-band systems, are estimated
to be 1 dB for each multiplexing and demultiplexing operation. The cumulative
effect of these parameters and system configurations on the GSNR and, by ex-
tension, the QoT, is exemplified through a simulated transmission over a 75 km
span of ITU-T G.652D optical fiber, shown in Fig. 2.21. This simulation, which
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incorporates modeled attenuation (Fig.2.5) and chromatic dispersion (Fig. 2.6)
characteristics highlights the intricate balance required to optimize MBT systems
for high-performance optical transmission.

2.5 Network layer abstraction

The integration of DSP-based coherent transmission technologies, alongside ad-
vancements in optical amplifiers and ROADM, has ushered in a paradigm shift in
the field of optical networking. These technological advancements facilitate the
realization of elastic and transparent optical networks, particularly within unified
network domains, thereby significantly transforming operational dynamics. This
evolution towards an all-optical network architecture is marked by enhanced flex-
ibility, scalability, and efficiency in handling optical signals directly in the optical
domain without necessitating conversion to electrical signals for amplification or
switching purposes. An essential advancement facilitating this change is the in-
troduction of transceivers that can handle hybrid modulation formats and provide
adaptable rate modifications. These transceivers enable networks to dynamically
create and change optical channels. The capacity to adapt is essential for adapting
changing traffic patterns in real-time, guaranteeing that the network can effectively
manage bandwidth and optimize resource allocation according to current demands.

When considering WDM transport layers, it is crucial to comprehend the con-
straints of the physical layer in order to construct LPs between network nodes. To
guarantee optimal performance, it is necessary to thoroughly evaluate the physical
parameters of the network due to the dynamic nature of optical channel design,
which is made possible by the transceivers discussed earlier. After obtaining the
specific information about the GSNR for each wavelength in single-band or MBT
situations over different bands, the network topology is simplified and represented as
a weighted graph. In this abstraction, the weight assigned to each link corresponds
to the GSNR value for the relevant wavelengths, which serves as a measurable indi-
cator of QoT throughout the network. This model reduces the inherent complexity
of optical network topologies to a more understandable form by representing them
as a set of light routes, each with a distinct GSNR value. A greater GSNR leads
to better signal integrity and lower noise levels, resulting in increased transmission
quality and the possibility for higher data throughput. One method of RWA in
this framework involves using waveplanes. Waveplanes function as virtual repre-
sentations of the wavelengths that can be used for transmission, providing a visual
depiction of possible routing choices. This visualization assists network engineers in
choosing the most optimal routes for building light lines, considering characteristics
such as latency, throughput, and network dependability.

The utilization of optical network abstraction, which includes the assessment of
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Figure 2.22: Network abstraction model

light path quality using GSNR values and the strategic implementation of wave-
planes for RWA, offers a strong approach for constructing, analyzing, and improv-
ing the performance of high-speed optical networks. An example that demonstrates
this method may be observed in the simplification of an optical network structure,
depicted in Fig. 2.22. The diagram visually represents the network, with Optical
Line Systems (OLS) indicating the distance between the source and destination
nodes, such as DA→B measured in kilometers. By assessing the GSNR for each
channel and subsequently for all LPs between source and destination nodes, a com-
prehensive collection of waveplanes is generated for each wavelength/channel (λ1,
. . . , λn). This set of waveplanes provides a detailed plan for optimizing network
configurations based on current and expected traffic requirements.

2.5.1 Lightpath establishment

In optical networks, a Light Path (LP) represents a dedicated optical channel
established between two ROADMs or network nodes. Functionally analogous to
a circuit in electronic networks, LPs play a pivotal role in managing optical com-
munication by providing a specified path for light to travel between nodes. This
dedicated connectivity ensures the absence of bandwidth contention, a critical as-
pect for maintaining high network performance and reliability.

LPs are instantiated over specific wavelengths, leveraging the WDM technology
to multiplex multiple optical carrier signals on a single optical fiber by using dif-
ferent wavelengths (colors) of laser light. This technique enables the simultaneous
transmission of various signals over the same medium, significantly enhancing the
network’s capacity. In scenarios where the network’s spectral resources are heavily
utilized, and no single wavelength is free across the entire desired path, the RWA
algorithm is challenged to leverage the existing spectral capacity more creatively.
Under such circumstances, it may opt to utilize the residual capacity of already
established LPs sharing the same source and destination nodes.
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2.5.2 Routing and wavelength assignment (RWA)

Routing and Wavelength Assignment (RWA) [95, 96] is a vital procedure in the
administration of optical networks, especially when it comes to establishing data
connections between two nodes. This procedure entails choosing a suitable LP for
transmitting data by assigning spectral resources along a predetermined path for
an optical signal. The RWA process consists of two primary stages: the calculation
of routing space and the assignment of wavelengths.

• Routing space computation:

The routing space refers to the set of possible routes that can be taken between
the source and destination nodes. The k-shortest path approach is used in this
study to identify the routing space [97]. This algorithm produces a collection
of k possible pathways sorted by length, from shortest to longest. The process
of selecting a path is carried out on a graph that has assigned weights to its
edges. These weights might change depending on different metrics.

– Uniform Weight: Assigns a uniform weight (e.g., weight = 1) to every
link, aiming to distribute the network traffic evenly. This approach tends
to minimize wavelength contention by reducing the number of traversed
ROADM nodes.

– Link Length: Utilizes the physical length of the links as the weight. This
method prioritizes minimizing the total distance traveled by the signal,
thereby reducing latency.

– GSNR Degradation: Focuses on the degradation of GSNR as the weight.
An impairment-aware RWA strategy employs this metric to maximize
the GSNR along the paths, enhancing the capacity and quality of each
LP [98, 99].

• Wavelength assignment strategies: Once the routing space is established,
the next step is to assign a specific wavelength for the connection. Various
strategies exist for this purpose [95], with the most notable being:

– First-Fit Strategy: Wavelengths are considered in ascending order from
lowest to highest frequency. This method is favored for its simplicity
and does not require comprehensive knowledge of the network’s current
state.

– Most-Used Strategy: Prioritizes wavelengths based on their usage fre-
quency within the network, from most to least utilized. Although this
can optimize the use of network resources, it contrasts with the first-fit
strategy by necessitating a global overview of the network’s wavelength
usage.
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Despite the various strategies available, they tend to offer comparable perfor-
mance outcomes. However, the first-fit strategy retains a notable advantage
in operational simplicity and the lack of requirement for global network state
information [95].

• Wavelength assignment constraints

– Wavelength continuity, a critical feature of the RWA algorithm in opti-
cal networks, mandates the uniform use of a specific wavelength for the
entire length of a connection between two nodes. This principle is pri-
marily applied to avoid the need for wavelength converters, which would
indeed improve RWA flexibility at the cost of additional equipment. The
RWA algorithm simplifies network construction and operational admin-
istration by maintaining a consistent wavelength over all segments of a
light route. In order to maintain this consistency, the RWA algorithm
searches for an available wavelength within the specified spectral range
that matches the wavelength used in previous segments. In situations
where all available wavelengths are being used, the algorithm identifies
the wavelengths that are presently in use and ensures that their selec-
tion does not cause any interference with the existing connections. This
strategy not only simplifies network administration but also enhances
the efficiency of using bandwidth, hence improving the performance and
scalability of optical communication systems.

– Wavelength contiguity refers to the arrangement of multiple wavelength
channels in a way that they are closely spaced without significant gaps in
the spectrum. This ensures efficient use of the optical spectrum, allowing
for high data transmission rates and improved network performance.
Contiguous wavelengths help to maximize the data-carrying capacity of
optical fibers and facilitate easier wavelength management and allocation
in the network.

The implementation of the RWA algorithm within this work is structured as
follows:

• Pre-Computation of Routing Space: Initially, the network’s routing space is
calculated and established, as described in section 2.5.2.

• Dynamic LP Allocation: Upon receiving a new connection request, the algo-
rithm attempts to allocate an LP, starting from the shortest path and pro-
gressing to longer ones based on the first-fit wavelength availability strategy.

• LP Allocation Decision: If the required network resources are available (avail-
ability of wavelengths keeping the constraints explained in check) and the
chosen path is deemed feasible based on the signal quality (GSNR), the LP
is allocated. If not, the connection request is blocked.
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2.5.3 Traffic distribution and grooming

In analyzing network traffic distributions, two distinct models—uniform and
nonuniform—are employed to progressively simulate network load scenarios. In a
uniform traffic distribution, the Joint Probability Distribution Function (JPDF)
for all node pairs is identical, reflecting an even distribution of traffic across the
network. Conversely, the nonuniform distribution tailors the JPDF based on the
population sizes of the nodes (cities) within the network, introducing a realistic
variability in traffic patterns.

For uniform traffic distribution, the probability P (s, d) that a specific source-
destination pair is selected is uniformly distributed, calculated as:

P (s, d) =
1

N(N − 1)
(2.14)

where N represents the total number of nodes in the network. The equation 2.14
assumes that lightpath requests are directional.

In the case of nonuniform traffic distribution, P (s, d) is determined by the rel-
ative populations of the source and destination nodes, formalized as:

P (s, d) =
pops · popd

∑

(i,j)∈A popi · popj

(2.15)

Here, popx denotes the population associated with node x, and the summation
in the denominator accounts for all possible source-destination node pairs (i, j) in
the network, encapsulated by A.

Traffic grooming in optical networks is a process aimed at enhancing band-
width utilization by aggregating multiple lower-rate traffic streams into fewer high-
capacity wavelengths. This technique is pivotal in optimizing the use of network
resources, significantly reducing the necessity for multiple wavelengths and, conse-
quently, diminishing the infrastructure costs associated with deploying additional
network capacity. Within the framework of RWA, traffic grooming plays a critical
role in determining the most efficient path and wavelength allocation for diverse
traffic streams, with the overarching objective of minimizing the wavelength count
while fully accommodating the traffic demands [100].

In a typical optical core network scenario, various independent traffic streams
coexist, each with distinct bandwidth requirements that can be expressed as frac-
tions of a full wavelength’s capacity (denoted as λ). For instance, traffic streams
may necessitate bandwidth allocations equivalent to xλ, where x can be from 0
to 1. In networks without traffic grooming functionalities, this would necessitate
allocating entire or multiple wavelengths to each traffic stream, potentially leading
to underutilization of link capacities due to the granular nature of demand versus
wavelength capacity. The introduction of traffic grooming capabilities transforms
this scenario by allowing for the consolidation of several smaller traffic streams into
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a composite signal that occupies a single wavelength or a minimal set of wave-
lengths. This consolidation process is facilitated by traffic grooming nodes within
the network, which aggregate traffic streams in such a manner that maximizes the
payload of each wavelength, thereby achieving substantial bandwidth savings [101].
As a result, the network can transport the same aggregate volume of traffic using
fewer wavelengths, enhancing efficiency and reducing operational costs.

Traffic grooming optimizes the distribution of routes and wavelengths in order
to meet high traffic needs and improve the efficiency and cost-effectiveness of optical
network infrastructure. This technique highlights the significance of traffic groom-
ing in optical networks, especially in situations that need high data throughput and
effective bandwidth control.
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Chapter 3

Machine Learning for photonic
devices

This chapter focuses on the utilization of machine learning methods to create
switching structures and evaluate their controlling states and QoT. This research
has been conducted in collaboration with Synopsys, Inc. and the research team
associated at Politecnico di Torino, Italy. The findings have been reported in [102,
103]. Through this collaboration, we explore innovative approaches to enhancing
the efficiency and reliability of optical network switching structures, leveraging the
predictive and analytical capabilities of machine learning to optimize performance
and QoT.

3.1 Introduction

Artificial Intelligence (AI) is a crucial tool that allows us to create computer
devices or systems that can imitate human cognitive processes and behaviors. This
emulation involves the ability of computers to perform a wide range of logical op-
erations that require complex cognitive processes, including perception, learning,
and deductive reasoning. AI systems function using a three-phase approach: gath-
ering and organizing knowledge, applying this knowledge to tackle complex prob-
lems, and continuously improving its knowledge base through experiential learning
over time. AI-driven applications cover a wide range of specialized sub-disciplines,
such as Machine Learning (ML), computer vision and natural language process-
ing (NLP). Machine learning (ML), which is a crucial component of AI, allows
computer systems to improve their performance on specific tasks by autonomously
learning from data, rather than relying on explicit instructions. This process of
inductive learning allows these systems to apply the garnered insights for the pur-
poses of classification, prediction, and executing various decision-making protocols
based on previously unseen data [104].
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Currently, ML is experiencing rapid expansion and is being integrated into a
multitude of applications across various sectors, significantly impacting both every-
day consumer experiences and specialized industry practices. ML algorithms are at
the core of several ubiquitous platforms and services such as Google Maps for route
optimization, Google Assistant for natural language processing and task execution,
Facebook’s content recommendation engines, Amazon’s personalized shopping ex-
periences, Netflix’s predictive analytics for viewer preferences, YouTube’s video
suggestion algorithms, and many more. Beyond these consumer-oriented applica-
tions, ML’s deployment extends to critical real-world domains, offering advanced
solutions and enhancing efficiency and accuracy. In healthcare, ML algorithms as-
sist in diagnosing diseases by analyzing medical images and patient data, thereby
aiding in early detection and tailored treatment plans [105, 106]. Traffic manage-
ment systems leverage ML for predicting congestion patterns, optimizing traffic
flow, and improving safety in automated driving technologies [107]. In the financial
sector, ML algorithms are utilized for predictive analysis in stock market trading,
enabling informed decision-making based on historical data trends. Email services
employ ML for spam detection, filtering out unwanted communications with high
precision. Furthermore, ML plays a pivotal role in developing speech recognition
systems, facilitating user interaction with technology through voice commands, and
in computer vision, enabling machines to interpret and understand visual informa-
tion from the world around them. These applications underscore ML’s versatility
and its capacity to revolutionize various aspects of both daily life and specialized
professional fields.

3.2 Machine Learning Techniques for Photonic

Device Optimization

In the field of optical networking, the increasing growth in internet traffic, driven
by bandwidth-intensive applications and the emerging Internet of Things (IoT)
ecosystem, requires higher degrees of adaptability across all network levels. SDN
integration is a crucial approach for efficiently addressing these objectives. The use
of the SDN framework enables the complete virtualization of network architecture
and operational activities under a single network operating system. This shift in
paradigm allows for an unparalleled degree of programmability and control over
network resources. Furthermore, the introduction of sophisticated coherent opti-
cal transmission methods in WDM networks, together with the implementation of
ROADMs, brings about substantial improvements in optical transport capabilities.
These advancements establish the foundation for expanding the scope of SDN to
the physical layer, enabling the real-time dynamic routing of wavelengths and the
optimization of optical pathways.

In order to smoothly integrate SDN down to the optical physical layer [108], it is
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Figure 3.1: Software-defined Open Optical Networks [110]

essential to abstract important network aspects and transmission operations. The
process of abstraction entails defining the attributes of optical signals, network
devices, and their operating statuses in a format that can be programmatically
modified. The use of abstraction is crucial in accurately measuring and reducing
the impact of QoT impairments, such as signal weakening, dispersion, and non-
linearities, by employing intelligent control mechanisms. To achieve a high degree
of SDN implementation, a complex optical network controller is required. This
controller must be capable of coordinating all network elements and transmission
operations [109]. This controller must have the capability to intelligently allo-
cate resources in response to real-time network conditions, demand predictions,
and QoT needs. By utilizing extensive network data, the controller may employ
predictive algorithms and ML models to enhance network performance, guaran-
tee stability, and enable quick scaling in accordance with changing traffic patterns
and service requirements. The sophisticated SDN design highlights the promise
of software-defined optical networking to handle the rapid increase in data traffic
and the complexity of next-generation internet applications. Photonic Integrated
Circuits (PICs) play a crucial role in performing complex tasks in modern smart
optical networks and data centers. Large-scale photonic switches and WSS are now
essential components because of their wide bandwidth capabilities, low latency,
and energy-efficient operation. These characteristics greatly improve the practi-
cality and implementation of PIC-based network components, especially photonic
switches, which in turn drives the requirement for a standardized software-driven
architecture to manage control states and measure degradation in QoT. This cri-
terion enables thorough governance through a centralized network control unit, as
seen in Fig. 3.1.

This thesis introduces a model that utilizes ML to build photonic devices in
optical networks, based on the framework of SDN. This approach allows for the
software-based management of any N×N photonic switching system, regardless of
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its physical arrangement or level of complexity. The proposed model utilizes an
ML-based inverse design technique to derive control parameters that maximize the
operational states of photonic switches, even without previous knowledge of their
physical design features. Furthermore, we introduce a direct design method within
the same ML framework to accurately predict the QoT degradation attributable to
the intrinsic and extrinsic switching elements. Predictive capability is essential for
preserving optimal signal integrity throughout the network and guaranteeing the
strength of communication links. This optimization process improves performance
and reduces penalties in quality of transmission across large and complex photonic
switching structures.

3.2.1 Routing states

The study aims to assess a management model that utilizes ML and is applied
to advanced switching networks. Specifically, the focus is on multistage crossover
switches that share structural similarities with Banyan and Clos networks. These
networks are constructed using a collection of basic 2×2 crossbar switches, system-
atically arranged over numerous layers to enable the routing of a certain number
N of input signals to a predetermined output configuration. The dynamic reconfig-
uration capabilities of these networks are controlled by modulating control signals
that are aimed at each of the M optical switching elements (OSEs), which together
decide the network’s output configuration, shown in Fig. 3.2.

Figure 3.2: Generic N × N optical switch fabric [111]

An essential topological characteristic of these optical switching networks is
their innate ability to handle any possible output arrangement required by the
input signals without causing internal routing conflicts. This feature divides the
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networks into two main categories: non-blocking and blocking networks. Non-
blocking networks are characterized by their capacity to allow the routing of any
possible input combinations to their corresponding outputs without any obstacles,
ensuring a continuous flow of data. On the other hand, networks that are being
blocked may experience internal disputes in how they route data, which can result
in delays in transmitting data or need the implementation of alternative routing
algorithms. This analysis focuses specifically on non-blocking networks due to their
greater operational efficiency and the extensive topological complexity they possess
in comparison to blocking networks. Non-blocking networks are a more relevant
area of research for implementing management models based on machine learning.
This is because they include intricate routing mechanisms and a greater need for
efficient and conflict-free paths for transmitting data. This focus is in line with the
main goal of improving the performance of optical networks by using intelligent
control strategies driven by machine learning. These strategies take advantage
of the advanced routing capabilities and flexible configurations of non-blocking
multistage crossover switch architectures.

Non-blocking switching structures

The foundational element in constructing these networks is the 2×2 CrossBar
switch, a two-state device controlled by a signal M, toggling between bar and cross
states. In the bar state (M = 0), inputs are propagated straightforwardly (λ1 to
λ1 and λ2 to λ2), and in the cross state (M = 1), the outputs are swapped (λ1 to
λ2 and λ2 to λ1). This switch serves as the core component in network designs and
can be realized through technologies such as MRRs or MZI, each offering distinct
advantages for either wavelength-agnostic or wavelength-specific applications. The
control of these switches, typically achieved via electrical signals in OSEs, adheres
to a binary model that, despite physical implementation differences, provides a uni-
versally applicable framework for evaluating routing paths in a device-independent
manner.

The arrangement of crossbar elements into a certain topology is crucial in the
design of a N×N switch architecture. It has a basic impact on the switch’s routing
efficiency and the amount of components needed. The analysis focuses exclusively
on a certain subset of switching networks, specifically Rearrangeable Non-Blocking
networks. These networks have the intrinsic capability to enable any combination
of input signals to be sent to their corresponding output ports without causing any
internal conflicts, even while taking into account existing input-output (I/O) con-
nections. Reconfigurable Non-Blocking networks have the ability to efficiently di-
rect any combination of inputs to the required outputs. Nevertheless, this capacity
is subject to the condition that current I/O connections may require reconfiguration
in order to support new routing demands. The need for dynamic reconfiguration
emerges due to the network’s structure, which does not guarantee path availability
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in situations where the network is already handling traffic. This feature highlights
a major disadvantage when compared to non-blocking architectures, which provide
path availability without requiring any changes to established I/O linkages.

3.2.2 Quality of Transmission

In this section, we expand on the previous section that explained how to deter-
mine control states for a Photonic Integrated Circuit PIC N×N photonic switching
system. We use a ML inverse design methodology, which is described in [112]. This
approach is completely independent of the circuit’s topology. This first model, al-
though robust, requires more refining to completely capture the consequences of
switch operations on the physical layer of the photonic network. In order to fill
this void, we propose the implementation of an additional machine learning net-
work. This network will be designed using a straightforward approach and will
be specially tailored to accurately forecast the deterioration of QoT caused by the
operational changes of the switching element. It is vital to have this predictive
capacity in order to comprehend and alleviate the negative impacts that the switch
may have on signal integrity and overall network performance.

Figure 3.3: Routing states and QoT evaluation model [112]

This synergistic operational framework is made possible by the integration of
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these two ML networks, shown in Fig. 3.3, which specialize in different areas of
switch design and performance evaluation. This framework not only enhances the
control and administration capabilities of N×N optical switches but also incorpo-
rates QoT awareness into the system. This comprehensive management system is
essentially driven by software, providing a versatile and dynamic approach to opti-
mizing optical networks. Moreover, the suggested model is conceptualized in a way
that facilitates easy expansion and adjustment, hence enabling the assessment of
the N×N optical switch’s influence on more comprehensive network layer measure-
ments. The ability to extend this capacity is crucial for expanding the model to
support different network topologies and operating circumstances, therefore offering
a complete set of tools for analyzing and optimizing photonic networks.

3.3 Machine learning for predicting routing

control states

The current framework in ML enables the interpretation of complex character-
istics of systems that are intrinsically difficult to assess directly. Machine learning
models develop a deep understanding of complex data patterns by using advanced
algorithms. These sophisticated algorithms condense the subtle data characteristics
into decision-making frameworks that are mostly active during the testing phase.
Thoroughly trained advanced cognitive models improve the real-time operation of
systems by enabling them to make intelligent inferences and respond autonomously.

The development of the suggested machine learning architecture consists of
three main parts: pre-processing, training, and testing modules, shown in Fig. 3.4.
The primary function of the pre-processing module is to normalize the dataset,
preparing it for further actions. The training module utilizes the improved dataset
to impart information to the machine learning models. After the training process
is finished, the models is evaluated in the testing module using a specific subset
of the total dataset. The usage of high-level Python Application Programming

Figure 3.4: Machine learning model
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Interfaces (APIs) supplied by two well-known open-source libraries—TensorFlow
(TF)[113] and Scikit-Learn [114]—enables the development of ML engines. Both
libraries are well-known for their extensive range of features that are essential for
building data-driven models. Those features encompass a wide range of advanced
tools for data preparation and noise filtration, which are crucial preliminary stages
before feeding the data into the machine learning models. In this work, we have
used DNN model, depicted in Fig. 3.5.

Figure 3.5: DNN model

DNNs are advanced machine learning models that replicate the structure and
functionality of the human brain for data processing. They are made up of nu-
merous layers of artificial neurons, which include an output layer, multiple hidden
layers, and an input layer. Each layer in the network processes the incoming data
to create a more abstract and composite representation, allowing the network to
understand intricate patterns in extensive datasets. DNNs are employed in several
domains, including picture and speech recognition, natural language processing,
and autonomous vehicle systems, since they possess the capability to comprehend
and represent complex connections within data. The effectiveness and precision
of DNN rely on their structure, which includes the number of layers (depth), the
number of neurons per layer (width), and the selection of activation functions that
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induce non-linearities throughout the learning process.

3.3.1 Beneš switching network

This section provides an explanation of the composition of Beneš networks,
which are a specific type of Clos networks distinguished by their use of 2×2 ba-
sic switching components. Beneš networks are designed to function with a certain
number of inputs, denoted as N = 2k, where k is a positive integer and belongs to
the set of natural numbers. Despite this limitation, the Arbitrary Sized Beneš (AS-
Beneš) [115] networks expansion allows for the adaptation to unlimited number of
inputs (N) while maintaining the network’s core characteristics. Beneš networks
are characterized by their reconfigurable non-blocking design. Unlike non-blocking
networks that need modifications to current paths for establishing new connec-
tions, Beneš networks enable any output permutation by reconfiguring paths. This
characteristic guarantees that although all necessary input-output links may be es-
tablished, existing connections may need to be rerouted through different paths to
satisfy additional demands.

The analytical foundation for Beneš networks is centered on two crucial param-
eters: (i) the number of distinct output arrangements, which may be calculated
as N !, where N denotes the number of inputs. (ii) the number of network config-
urations in a strict-sense Beneš network may be characterized by the exponential
function 2M , where M = N log2(N) − 2

N
. Recursive computation is required for

AS-Beneš networks since the parameter depends on the non-fixed nature of N [115].
Beneš topologies typically provide different routing pathways for identical out-

put permutations due to the significant difference in the number of unique output
permutations and the total network configurations. The diversity in equivalent
routing paths varies based on the specific output permutation sought, averaging
2M
N !

alternative routes for each permutation.
In order to emphasize the capabilities of our proposed machine learning ap-

proach to handle networks of different complexities, we examine two different Beneš
network configurations with variable sizes, especially for N=8 (Fig. 3.6) and N=10
(Fig. 3.7). The number of 2×2 switching components in these designs is M=20
and 26, respectively. The figures represent the dimensions of the control vector,
which is used as the labeling framework for the machine learning agent. This re-
search seeks to clarify the effectiveness of machine learning approaches in handling
the operational dynamics of Beneš networks, thereby providing insights into their
potential for enabling more efficient and flexible photonic switching systems.

Model implementation and data collection

For routing evaluation purposes, the implementation utilizes a black-box ab-
straction for the essential 2×2 switching element. This abstraction suffices for path
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analysis, where the input-output relationship is depicted as an edge within a perti-
nent graph-based model. In terms of assessing the internal routing configurations
within the network device, a Benes network architecture is deployed. This is real-
ized via a matrix representation that aggregates the permutation vectors from each
individual switching stage. The derivation of the output permutations is contingent
upon specified control states, which dictate the BAR and CROSS configurations for
each of the M switch elements in the matrix. These configurations are encoded in
a binary control vector V , a member of the space R1×M , where a ’0’ in Vi indicates
the BAR state, and a ’1’ indicates the CROSS state. The resultant network routing
configuration for any given control state is captured in a permutation vector of size
N . This model is instrumental in the verification phase of network design, where
predicted control states are subjected to evaluation on a simulated abstraction of
the physical device.

To accurately assess the QoT, a detailed simulation incorporating both the
physical component design and the transmission characteristics is essential. The
device under investigation has been modeled using a second-order MRR switch, as
part of the crossbar architecture. This model was developed following a recursive
definition and implemented within the Optsimľ simulation environment, as refer-
enced. Central to the QoT evaluation is the simulation of the device with realistic
ingress and egress stages, which are respectively connected to a transceiver and a
receiver module. The entire setup enables the simulation of the transmission sys-
tem under practical conditions, employing a PM-64-QAM modulation format. The
transmission operates over central frequencies defined by f = (193.1+0.1×x) THz
for x in the range [1, N ], and a symbol rate Rs of 50 Gbps. For the generation of
training and validation datasets, the OSNR penalties are calculated for a variety
of unique state configurations. These configurations are randomly generated and
tested, aiming for a target BER threshold BERth of 5×10−3. The OSNR penalties
are derived from simulations that propagate the signal through the specified com-
ponent, capturing the impact on the signal quality due to various control states of
the device.

The datasets compiled include OSNR penalties recorded at each port for 1000
random realizations of control states. This extensive simulation effort has been
executed across two different Benes network configurations, specifically the 8x8
and 10x10 structures, shown in Fig. 3.6 and Fig. 3.7.

3.3.2 Machine learning for predicting control states

In the context of controlling photonic switches in optical networks, the goal is
to develop a machine learning (ML) model capable of predicting the control signals
required to configure an N×N photonic switch. The specific task of this ML model
is to map input wavelengths to correct output ports by accurately configuring the
switch’s internal states. The inputs to the machine learning model are binary con-
trol signals, which represent the state of individual 2×2 optical switching elements
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Figure 3.6: Beneš 8x8

Figure 3.7: Beneš 10x10

(OSEs). These control signals are crucial in determining how input wavelengths
(λ) are routed through the switch fabric.

Inputs

• Control Signals: These control the state of each 2×2 switch in the network
(either bar or cross state). Each element of the vector indicates whether a
switch will swap (cross) or directly pass a wavelength through the network.

• Wavelengths (λ): The specific wavelengths that are routed from the input
to the output ports through the switch fabric. Each input wavelength requires
a corresponding control signal configuration to direct it to the correct output.
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Outputs

• Routing Configuration: The predicted configuration of control signals,
which ensures accurate routing of input wavelengths to the desired output
ports. The output is a unique combination of M binary control signals that
define the path each wavelength will take within the photonic switch.

The machine learning model addresses a non-trivial problem, as the same output
can sometimes be achieved by multiple configurations of the M control signals,
making it necessary for the model to learn the optimal or correct configuration for
each scenario.

This collaborative research details the implementation of ML agents which are
tailored to forecast photonic integrated switch control and routing topologies. This
methodology utilizes a machine learning framework that employs a black-box ap-
proach, hence reducing the requirement for a comprehensive comprehension of the
underlying structures of the components involved. The essence of this methodol-
ogy is around a carefully constructed Deep Neural Network (DNN) model, designed
specifically for the TensorFlow© platform. The DNN architecture consists of three
hidden layers, each containing a unique number of neurons, which are specifically
tailored to improve its cognitive skills. The activation function used in all of these
layers is the Rectified Linear Unit (ReLU). The model’s performance is evaluated
using the Mean Square Error (MSE) measure as the loss function. The training
protocol for the DNN consists of 1,000 iterations, with a learning rate established
at 0.01. The dataset is divided between training and testing sets in a 70/30 ratio,
respectively, based on the N-size (N = 8, 10), shown in Fig. 3.6 and Fig. 3.7, of
the Benesˇ topology being studied.

The distinguishing characteristic of this ML model resides in its feature selec-
tion, which specifically targets the different combinations of wavelengths that can
be seen at the output ports. The target labels are equivalent to the values of the
M control signals. The first step in the machine learning process involves creat-
ing a synthetic dataset that accurately replicates the operating properties of the
switch topology being studied. This technique is very adaptable and can handle
different topological configurations, making it suitable for a wide range of black-box
applications without requiring special knowledge of the underlying switch topology.
The machine learning training and testing dataset was generated using a N × N
Benes network. In order to demonstrate the scalability of our suggested strategy,
we analyzed two different situations: N = 8 and 10. These scenarios correspond to
configurations with 20 and 26 internal switches. As shown in Table 3.1, a subset of
the 2M possible control combinations was chosen to create the dataset.

Fig. 3.8 illustrates the impact of varying training data sizes on prediction ac-
curacy for the control states of both 8x8 and 10x10 Benes networks. The x-axis
represents the percentage of training data used, while the y-axis depicts the per-
centage of correct predictions. At approximately 50% of the training data size,
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Network type (NxN) Beneš 8x8 Beneš 10x10
Permutations (N !) 40,320 3,628,800
Switches (M) 20 26
Combinations (2M) 1,048,576 67,108,864
Dataset 100,000 300,000
Neurons per hidden layer 15 35
Training time (hours) 10 37

Table 3.1: Dataset statistics [111]

Figure 3.8: Correct prediction vs. normalized training size

prediction accuracy nears 80% for the 10x10 Benes and 90% for the 8x8 Benes.
When utilizing the full training data set, which constitutes 100% of the selected
subset, prediction accuracy escalates to 90% for the 10x10 Benes and reaches 99.9%
for the 8x8 Benes. This trend demonstrates that the predictive capability of the
machine learning model enhances with larger training data volumes, achieving sub-
stantial accuracy with as little as 50% of the training data.

Fig. 3.9 illustrates the precision of forecasts for each of the two Benes net-
work sizes, shown by blue bars. An impressive level of accuracy (> 89%) was
obtained, while there is a noticeable decrease in predictive performance as the N
values increase: 99.84% for N=8 and 89.39% for N=10. In order to improve the ac-
curacy of the machine learning model’s predictions, we integrated an extra heuristic
phase. This phase was developed by analyzing patterns seen in incorrect config-
urations, where it was commonly found that a single switch was in the incorrect
state. Our heuristic approach entails systematically rectifying a singular switch
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Figure 3.9: Correct predictions with and without heuristics

fault by sequentially toggling individual switches and verifying if the resultant out-
put corresponds to the anticipated output. By combining this rule of thumb with
the machine learning method, the precision levels for the Benes networks of size
8x8 and 10x10 significantly increased to 100% and 99.89%, respectively. A simple
flowchart of the heuristic is shown in Fig. 3.10.

Figure 3.10: ML model configuration validation and correction

This investigation has demonstrated that a machine learning technique can
accurately determine the control states of any N × N photonic switch, regardless
of the underlying network architecture. The machine learning model demonstrates
the capacity to handle greater network sizes (N) while retaining a high level of
prediction accuracy, even when trained on a very small dataset. This suggests
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Figure 3.11: Parallel DNN structure

that the method is resilient and has the potential to be used in intricate photonic
switching systems with higher N values, providing a viable path for future progress
in controlling photonic switches.

3.3.3 Machine learning for QoT

This section examines the architecture and methodology of our ML framework,
which includes the configuration of the primary ML engine, as well as the procedures
for testing and training. The engine’s architecture encompasses the manipulation
and choice of features and labels, as well as the fine-tuning of several hyperparame-
ters. Our framework employs a supervised machine learning methodology within a
self-contained system, relying on extensive training data to develop a model capable
of making decisions without any previous understanding of the internal configura-
tion of the photonic switch. The key part of this approach is the identification of
system features and designations, which correspond to the inputs and projected
outputs of the model.

The training and validation datasets were created by calculating the OSNR
penalty for randomly chosen unique state configurations, with a target BER set
at 5 × 10−3. These OSNR penalties were determined by simulating the signal’s
propagation through the device under test. Each dataset includes the penalty at
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every port of the device for a random selection of 1,000 control state realizations,
as detailed in Tab. 3.2. This simulation was conducted on Beneš structure 8x8.

Benes
switch

Permutations
N !

OSE count
Combinations

2M Dataset
Train
Set

Test
Set

8×8 40320 20 1048576 1000 700 300

Table 3.2: QoT evaluation dataset

The features consist of various combinations of control signals that manipulate
OSE. The label represents the QoT penalty for the k-th output port of the switch.

The ML engine’s cognition is achieved by utilizing a DNN, which takes use of
the TensorFlow library’s comprehensive capabilities for implementing algorithms
and improving datasets. The DNN is carefully configured with optimized hyperpa-
rameters. The training iterations are set to 1000. The ADAGRAD optimizer from
Keras is used with an initial learning rate of 0.01. Additionally, L1 regularization
is set to 0.001 to improve computational efficiency by excluding irrelevant features.

Multiple nonlinear activation functions were assessed, and the Relu function
was finally selected because of its superior performance in predicting accuracy and
computing efficiency. In order to enhance the accuracy of predictions, a parallel
DNN structure is suggested, depicted in Fig. 3.11. The concept of a "parallel
DNN structure" refers to an architectural enhancement designed to improve the
accuracy of predictions. This structure involves using multiple DNNs in parallel to
process different subsets of the data simultaneously. Each DNN is responsible for a
specific portion of the data, allowing the main DNN engine to leverage the extensive
dataset more effectively. This parallel processing not only boosts the predictive
capability of the main DNN engine but also enhances its efficiency by distributing
the computational load. This architecture optimally utilizes the extensive dataset
for each output port, enhancing the main DNN engine’s predictive capability and
efficiency. Prior to validating the main DNN engine, it undergoes training using a
separate subset of the dataset. The dataset is divided into two halves, following
the standard 70/30 split, with 70% of the data used for training and the remaining
30% used for testing. In order to reduce the likelihood of overfitting, the training
process is stopped based on the number of iterations, and the loss function used is
the MSE, which is determined according to the equation.

MSE =
1

n

n∑

i=1

(∆OSNRi)
2 =

1

n

n∑

i=1

(predicted OSNRi − actual OSNRi)
2 (3.1)

where n is the number of test realizations, N is the total number of input/output
ports of the specific N × N switching system, and predicted OSNR − actual OSNR
are the predicted and actual OSNR Penalties for the k-th output port of the con-
sidered topology. The number of iterations was selected to ensure that the model
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Figure 3.12: Probability density functions of ∆ OSNR for each port of the 8×8
Beneš switch

reaches a stable state of learning without overfitting. The convergence was mon-
itored using the MSE, which measures the difference between the predicted and
actual QoT penalties. The model’s performance was periodically validated using
the test set to ensure that the training did not lead to overfitting.

The ML module leverages deterministic switch control states to gauge QoT im-
pairments, delineated as OSNR Penaltyi,k for each port k of the Beneš switch.
A comprehensive case study was conducted to appraise the efficiency of our ML-
guided QoT Penalty estimation model within a photonic switching framework. The
robustness of the ML-enriched QoT model was substantiated via an evaluation of its
performance at each port of the 8x8 Beneš switch. Fig. 3.12 depicts the ∆OSNR

distributions for all the switch’s ports, complete with mean (µ) and standard devi-
ation (σ) statistics.

In Fig. 3.12, ∆OSNR distributions are bisected by a red dotted line at
∆OSNR = 0. The region where ∆OSNRs ≤ 0 is deemed non-critical because the
predicted OSNR Penaltyi,k is at most equal to the actual OSNR Penaltyi,k, sug-
gesting that, although some network capacity might be underutilized, the system’s
operational integrity is maintained. Conversely, instances where ∆OSNRs > 0 are
critical, as the predicted OSNR Penaltyi,k surpasses the actual figure, mandating
the addition of a safety margin above the ML prediction to preserve uninterrupted
system operation. The essential safety margin (δk) for such cases is represented by
a green line for each port k of the 8x8 Beneš. Analyzing the necessary margins,
we recognized the ML model’s notable precision in estimating QoT impairments.
Within the 8x8 Beneš construct, the least optimal prediction was observed at
port 5, with δ5 being under 0.12 dB. Considering the attained level of predictive
accuracy, it is reasonable to infer that in real-world applications, the safety margin
for OSNR Penalty predicated on ML prognostications could potentially be tapered
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to a mere 0.12 dB for the 8x8 Beneš switch.
Prediction discrepancies among ports arise from the inherent randomness and

limited size of the training dataset, leading to varied efficacy in training and predic-
tion for certain signal paths. Despite these constraints, our study found minimal
variation in port predictions, highlighting the potential of our ML approach to
significantly improve QoT when deployed.
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Chapter 4

Network level performance
analysis in multi-band systems

Over the last few years, there have been significant developments in long-haul
network technology, specifically in fiber capacity, optical switching, and optical
reach [116]. This has led to a noticeable transfer of bandwidth and operational
challenges from core networks to metro and access networks. Advancements in
wavelength-division multiplexing (WDM) technology have enabled the spread of
applications that require high bandwidth and strict performance standards to the
network edge. As a result, core networks are expected to experience pressure in
terms of both capacity and flexibility as these technologies become more prevalent
near the network edge.

Although backbone networks are currently able to handle current levels and
types of traffic, the expected increase in capacity at the network edge, along with
the rise of on-demand applications, is projected to fuel rapid growth in various
services. This expansion will require a substantial transformation of the funda-
mental network infrastructure. In order to maintain the progress of networking
advancements, it is crucial to have a deep understanding of the advantages and
constraints of current technologies and architectures. It’s essential to determine
the required advancements to meet the demands of future core networks in the
coming years. Currently, the optical network layer is mostly static. However, the
increasing demand for on-demand services requires a much higher level of flexibility
in this layer. Moreover, quick reconfiguration is crucial for network restoration as
important applications depend more and more on the transfer of large amounts
of data. Being able to handle numerous simultaneous failures will be crucial for
maintaining continuous service for essential operations [117].

The capacity of optical systems is currently being improved through the use or
development of a wide variety of technologies in order to fulfill the ever-increasing
demand for information traffic. The use of sophisticated digital signal processing
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techniques makes it possible to compensate for a variety of transmission flaws, in-
cluding chromatic dispersion (CD) and polarization-mode dispersion (PMD) [118].
Moreover, the use of extremely efficient modulation formats that incorporate prob-
abilistic shaping (PS) offers the potential to bring the capacity of fiber transmission
closer to the Shannon limit [119, 120], which is the theoretical limit. These techno-
logical improvements, in conjunction with variable rate transceivers, have resulted
in the development of commercially accessible systems that are capable of trans-
mitting higher rates at each channel [121].

The spatial-division multiplexing (SDM) strategy is another significant devel-
opment. This method makes use of multi-core, multi-mode, and/or multi-fiber
setups in order to enhance the number of network channels that are sent over each
connection. While multi-fiber SDM is presently commercially feasible, based on
existing C-band systems (4.8THz), SDM based on core or modes is still in the re-
search phase, showing great potential via several field testing [122, 123]. The broad
implementation of this technology, on the other hand, would call for upgrades to
the fiber infrastructure that is already in place.

Over the past few years, there has been a growing interest in the investigation of
transmissions that extend beyond the C-band in both the academic and industrial
domain. This technology, which is currently available for commercial use and is
known as ultra-wideband (UWB), band-division multiplexing (BDM), or multi-
band transmission (MBT) [35], significantly enhances the usage of bandwidth from
the C-band to the C+L-bands, thereby doubling the capacity of the fiber to 9.6
THz [124], or even moving towards the C+L+S- bands.

4.1 Optical capacity enhancement

The implementation of advanced technologies (i.e; 5G/6G) represents a sub-
stantial advancement in wireless communication, requiring a substantial and rapid
expansion of the network’s bandwidth capacity. This increase in demand necessi-
tates improvements in all areas of the network, with a specific focus on optimizing
the transmission of data through fiber optic infrastructure to handle the growing
amount of data more effectively. Network operators are therefore compelled to de-
velop techniques that are both cost-effective and capable of expanding the capacity
of their current installations in a scalable and flexible manner. These efforts are
crucial to guarantee the dependable and effective operation of the future Internet.

WDM, which is the most advanced optical infrastructure now available, makes
use of the 4.8 THz bandwidth in the C band. This band functions as the main
channel for transmitting data across different network sizes, ranging from long-
distance and underwater networks to urban networks. One often used approach
in this context is the application of polarization multiplexed rectangular 16-ary
quadrature amplitude modulation (PM-16QAM) schemes. This method enables
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data transfer rates of up to 30 Tbps per optical fiber, demonstrating the vast
capabilities of modern technologies in managing large amounts of data. It is crucial
to acknowledge that increasing the network capacity by installing more fiber is
frequently financially unfeasible, particularly in situations when there is a scarcity
of fiber resources.

Within this particular situation, the utilization of multi-band transmission arises
as a beneficial and advantageous approach. This technology involves transmitting
data across a wider range of low-loss spectral bandwidths in optical fibers. This
helps to maximize network capacity and make better use of the current fiber in-
frastructure. Integrating components that are designed to work beyond the usual
C-band spectrum has the potential to increase network costs significantly, mainly
because specialist amplifiers are quite expensive. In addition, phenomena like SRS
present considerable difficulties, which can lead to a decrease in transmission quality
across several frequency ranges and negatively impact network capacity, particu-
larly in large-scale network setups.

An essential task is to critically analyze and compare the advantages and draw-
backs of integrating multi-band network components in a multi-band transmission
system with the conventional single-band transmission. This evaluation will have
a pivotal influence in establishing the network’s overall performance and capacity
augmentation measures.

In order to tackle these difficulties, two main strategies arise: Spatial Division
Multiplexing (SDM) and Band Division Multiplexing (BDM). SDM exploits the
spatial characteristics of light by employing Multicore (MCF), Multimode (MMF),
or Multiparallel (MPF) fibers to increase the data-carrying capacity of the net-
work. This approach, although showing potential for increasing capacity, requires
a complete restructuring of the current optical transport system. This includes
implementing new fibers and devices specifically designed for this advanced archi-
tecture.

In contrast, BDM aims to broaden the range of operations for optical fibers by
allowing for low-loss transmission across a wider spectrum, including the 54 THz
bandwidth of ITU G.652.D fibers. The advantage of BDM is its potential to en-
hance network capacity without requiring more optical fibers, making it a more
instantly feasible alternative. The main difficulty associated with BDM is related
to optical amplification, which is necessary to meet the requirements of the broad
spectrum. Currently, there is ongoing progress in creating prototype amplifiers
that can function in these expanded spectrum areas. Furthermore, the successful
execution of BDM relies on improvements in clear wavelength routing, which ne-
cessitates the presence of advanced filtering and switching components specifically
designed for this wider range of operations. The initial step in implementing the
BDM technique involves the incorporation of filtering and switching components.
The network component, such as the Wavelength Selective Switch (described in
Chapter 2), is crucial because it provides independent control and routing of each
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input channel to a fiber output of the WDM comb.

4.2 Simulation setup

4.2.1 Statistical Network Assessment Process - tool

Following the evaluation of the GSNR (described in section 2.4.4) utilizing
GNPy [125] as a physical layer QoT metric, we move on to the network layer.
During this phase, we represent the network architecture as a weighted graph, with
each link’s weight indicating its QoT. This modeling methodology offers an intri-
cate analysis of the network’s configuration and its capacity for achieving optimal
performance. Subsequently, we present this simulated network to Statistical Net-
work Assessment Process (SNAP), a specialized tool for network analysis. SNAP
specializes on evaluating the performance of a network, specifically in terms of its
capacity utilization efficiency. The evaluation of network efficiency and dependabil-
ity is done thoroughly by using exact QoT measurements, such as GSNR.

The operational flowchart of SNAP is depicted in Fig. 4.1. This flowchart out-
lines the SNAP tool’s methodology for conducting a statistical analysis of network
performance, utilizing a Monte Carlo (MC) simulation approach.

The initial step involves specifying the input parameters necessary for the tool’s
operation, which include: a detailed description of the network’s physical layer,
a traffic model, and the RWA algorithm to be employed. The network’s physical
structure is delineated as a weighted graph characterized by Nnodes and Nlinks edges.
Here, nodes symbolize ROADMs, while edges signify the optical links between these
nodes. Each edge is assigned a weight wi,j, which quantitatively encompasses both
the ASE noise and the NLI, computed via GNPy’s Quality of Transmission Estima-
tor (QoT-E). The traffic model is articulated as a probability matrix of dimensions
Nnodes × Nnodes, where each element pi,j denotes the likelihood of a connection
request arising between nodes i and j. This probabilistic framework allows SNAP
to generate a series of connection requests in a stochastic manner, reflective of the
matrix-defined probabilities. It’s important to note that the probability of con-
nection requests can vary across node pairs, and is designed to be independent of
historical request patterns. SNAP’s core simulation mechanism executes number
of Monte Carlo (MC) (NMC) iterations, starting each iteration with an unallocated
network (i.e., no Light Paths (LPs) are initially established). Within each itera-
tion, SNAP selects a connection request based on the traffic model, and attempts
resource allocation following the designated RWA algorithm (e.g,; First-fit (FF),
min GSNR, max GSNR etc.). Successful allocations result in the acceptance of the
connection request, with network resources being earmarked for the correspond-
ing LP for the duration of the network’s operational lifespan. The capacity of the
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Figure 4.1: SNAP framework.

LP is then calculated based on its GSNR, with this and other relevant data be-
ing systematically recorded. Conversely, should the RWA algorithm determine the
inability to fulfill a connection request, the request is declined, and the event is
cataloged as a blockage. The process continues, generating and attempting to ac-
commodate subsequent connection requests, until the network attains a saturation
point—defined by specific thresholds for blocking probability and request quantity.
This entire sequence is reiterated across NMC MC iterations, with the outcomes
of these iterations being averaged to produce a comprehensive set of performance
metrics.
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4.2.2 Network topologies

In the subsequent sections, we provide a comprehensive analysis of various net-
work topologies. Specifically, we examine the network structures of Germany (Fig.
4.2a), Italy (Fig. 4.2b), Spain (Fig. 4.2c), the United States (Fig. 4.2d), and a
randomly generated Data Center Interconnect (DCI) topology (Fig. 4.3). Detailed
descriptions of these topologies are presented in the table.

Table 4.1: Summary of network topologies characteristics.

German Italian Spain-E USA DCI

Number of nodes 17 21 30 24 20
Number of links 26 36 52 43 32
Average node degree 3.06 3.43 3.46 3.58 3.2
Average link length 207 km 209 km 60 km 660 km 64 km
Reference figure Fig. 4.2a Fig. 4.2b Fig. 4.2c Fig. 4.2d Fig. 4.3

4.3 GSNR profile

This study employs a thorough span-by-span method to strategically optimize
the input power for the C, L, and S optical bands. The utilization of the Local Op-
timization Global Optimization (LOGO) algorithm in this context aims to greatly
improve the QoT throughout the network. We examine the Gain to Signal-to-Noise
Ratio GSNR profiles for each band configuration across a conventional 75 km fiber
stretch, analyzing them as functions of frequency. The profiles are assessed using
a channel bandwidth of 100 GHz, as depicted in Fig. 4.4. The figure illustrates
the GSNR across different channels and bands. The interaction between different
bands is evident from the variations in GSNR profiles. This variation arises from
the differential gain and noise characteristics of the amplifiers used in each band.
An average GSNR of 30.85 dB is achieved when transmission is limited solely to the
C-band. Upon activating the L-band alongside the C-band (C+L configuration),
the average GSNR slightly decreases with the C-band at 30.43 dB and the L-band
at 30.41 dB. Further expansion to include the S-band (C+L+S configuration) re-
sults in a small increase in GSNR for the C and L bands, recording values of 30.48
dB and 30.46 dB, respectively. However, the S-band underperforms in comparison,
exhibiting a significantly lower average GSNR of 26.69 dB. Balancing the GSNR
across bands involves a trade-off between the amplifier gain profiles and the optical
power levels. Higher amplifier gain can improve GSNR but may also introduce
more ASE noise, degrading overall signal quality.

Furthermore, our study includes detailed analysis of different loading scenarios
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(a) German topology (b) Italian topology

(c) Spain-E topology (d) USA topology

Figure 4.2: Network topologies analyzed in the study (A-D)

within these bands at channel bandwidth of 150 GHz. Here, the network configu-
ration comprises a total of 105 channels distributed as follows: 25 channels in the C
band, contributing approximately 4 THz; 40 channels in the L band, contributing
6 THz; and 40 channels in the S band, also contributing 6 THz. The graphical
representation for GSNR profile of these channel distributions is shown in Fig. 4.5.
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Figure 4.3: E - Random DCI topology (Green dots represent DCs)

Fig. 4.5 depicts the GSNR values across nearly the entire spectrum for the C-
and L-bands and partially for the S-band, marked by dotted lines representing the
averages. For the standalone C-band configuration, the average GSNR is 30.42 dB.
When both C and L bands are activated, the GSNR for the C-band slightly reduces
to 29.7 dB, while the L-band achieves an average of 30.3 dB. Engaging all three
bands (S+C+L), the average GSNR decreases further for the C-band to 29.5 dB,
with the L-band recording 30.15 dB, and the S-band dropping to 25 dB.

Additionally, we investigate the network behavior under a fully loaded C-band
scenario (4 THz) while maintaining a consistent channel count across the other
bands. In this scenario, each band—C, L, and S—is allocated 25 channels, corre-
sponding to roughly 4 THz per band. This GSNR configuration is depicted in Fig.
4.6, which allows us to compare the impact of different loading strategies on the
network’s overall performance. In the C-band only scenario, the average GSNR
remains steady at 30.4 dB. However, in the combined C+L scenario, the average
GSNR for the C-band declines to 29.9 dB, while the L-band averages 30.45 dB.
Activation of all three bands (S+C+L) results in a further decrease in the C-band’s
GSNR to 29.7 dB, whereas the L-band’s GSNR is slightly lower at 30.2 dB, and
the S-band’s average drops to 26 dB.
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Figure 4.4: GSNR vs. frequency for all channels evaluated in each band for all
scenarios (C-band only, C+L and C+L+S).
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Figure 4.5: GSNR vs. frequency for 105 channels (C+L+S- 25+40+40 channels)
for all scenarios (C-band only, C+L and C+L+S).

The observed reduction in GSNR for the C and L bands in the C+L and S+C+L
scenarios, relative to the standalone C-band scenario, can be attributed primarily
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Figure 4.6: GSNR vs. frequency for 25 channels/band for all scenarios (C-band
only, C+L and C+L+S).

to the cumulative impact of Stimulated Raman Scattering (SRS) and Non-Linear
Interference (NLI), which increasingly affect signal integrity as more bands are en-
gaged in the transmission process. Utilizing multiple bands (C+L+S) introduces
more complexity in managing GSNR due to varying amplifier and fiber charac-
teristics. Higher channel density, as shown in Fig. 4.5, leads to more significant
variations in GSNR, indicating increased susceptibility to nonlinear impairments
and noise. However, a uniform distribution of channels for 150GHz channel width
across bands, as shown in Fig. 4.6, results in a more balanced GSNR profile.
This approach can reduce nonlinear effects and improve overall network perfor-
mance. These insights underscore the importance of strategic channel distribution
and amplifier optimization to maintain a stable and efficient multi-band optical
transmission system.

4.4 Network performance analysis

To assess the impact of the newly deployed WSS architecture on diverse op-
tical transport networks, the Statistical Network Assessment Process (SNAP) is
employed, focusing on the physical layer interactions. SNAP evaluates the degra-
dation of the QoT by quantifying the influence of each network component on
signal integrity. The methodology adopts a disaggregated approach to the physical
layer, simulating each component’s influence on the network through specific gains,
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losses, and Gaussian noise contributions. This includes quantifying the effects of
ASE generated by optical amplifiers and NLI resulting from the Kerr effect in fiber
propagation.

The analysis is tailored to a multi-band optical system, considering distinct
amplification strategies for different wavelength bands. Specifically, the C-band
and L-band utilize EDFAs, each calibrated to optimize performance within their
respective spectral regions. Meanwhile, the S-band channels are amplified using
a TDFA, which is specially tuned for the lower wavelength range. The amplifiers
details are described in Tab. 4.2.

Band Amplifier
Type

Gain (dB) Noise Figure (dB) Bandwidth (THz)

C EDFA
[126, 127]

20-25 4.5 4.8

L EDFA
[128]

20-25 5.0 6.0

S TDFA
[129]

20-25 6.0 6.0

Table 4.2: Characteristics of fiber amplifiers

The transmission path consists of 75 km segments of single-mode fiber that meet
the ITU-T G.652D standard, which specifies the fiber’s attenuation and chromatic
dispersion properties, critical for maintaining signal quality over long distances.
Each segment’s performance is analyzed under these conditions to determine the
cumulative impact on the network’s overall QoT, ensuring the assessment reflects
realistic operational environments. In our comprehensive analysis, alongwith the
WSS device, we have evaluated a range of transceivers, including ZR++, 800G,
and 1200G models for range of transceiver characteristics, described in Tab. 4.4
and network parameters described in Tab. 4.3.

4.4.1 Optical capacity analysis

SDM and BDM, are crucial technologies that contribute significantly to the
progress of optical fiber communications. SDM improves network capacity by
using many spatial pathways inside a single fiber, such as MCF and Few-Mode
Fibers (FMF), hence increasing the number of transmission channels. However,
BDM, specifically using Dense Wavelength Division Multiplexing (DWDM) and
Coarse Wavelength Division Multiplexing (CWDM), enhances bandwidth by as-
signing distinct data streams to various wavelength ranges inside a single fiber.
These technologies play a fundamental role in optimizing the efficiency and capac-
ity of optical networks, addressing the increasing need for faster data rates and
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Parameter Value Description
Channel Spacing 100 GHz, 150 GHz Depending on the sce-

nario, different spacings
were evaluated

Number of Channels 40/40/40 (C/L/S -bands),
25 (C-band) - 40 (L-band)
- 40 (S-band), 25/25/25
(C/L/S -bands)

Total number of channels
evaluated in multi-band
scenarios

Fiber Type Standard Single-Mode
Fiber (SSMF)

Used for all simulations to
ensure consistency

Network topology Italian, German, US,
Spain-E, DCI (random)

Real and random topolo-
gies are used

Traffic profile Uniform, Population based Traffic profiles are consid-
ered for different scenarios

Table 4.3: Simulation parameters and their descriptions

wider bandwidth in global communications.

4.4.1.1 SDM vs BDM analysis

To ensure an equitable evaluation of multi-band performance while implement-
ing the ROADM architecture with the proposed WSS structure, we conducted a
comparative analysis of BDM versus Space Division Multiplexing SDM in network
efficiency. In this comparison, SDM is configured to utilize multiple fibers within
the C-band, utilizing the same total available optical spectrum as BDM. For SDM,
a core continuity constraint (CCC) is applied, ensuring that each LP maintains the
same fiber route from the source to the destination. This constraint aligns with the
specific switching technology employed in SDM. This configuration is advantageous
as it increases the number of fiber pairs by two to three times relative to the BDM
strategy employing S+C+L bands, thereby potentially offering enhanced network
robustness and capacity under the SDM framework. In our comparative analysis,
we use the single-fiber C-band configuration as a baseline reference to evaluate the
performance of different transmission strategies: (i) SDM with dual fibers in the
C-band versus BDM with a single fiber in the C+L configuration, and (ii) SDM
with triple fibers in the C-band against BDM with a single fiber in the C+L+S
configuration. Performance metrics are derived from statistical averages calculated
over multiple Monte Carlo simulations, focusing on the BP in relation to the total
traffic progressively assigned to each scenario.
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Specification 400G[130] 800G[131] 1200G[132] Ideal trx.
Bitrate (Gbps) 400 800 1200 -
Baud Rate (GBd) 60-90 90-120 120-150 60-150
Modulation Formats QPSK,

16QAM,
64QAM

16QAM,
64QAM

64QAM -

SNR (dB)
- QPSK > 20 N/A N/A > 30
- 16QAM > 18 > 18 N/A > 28
- 64QAM > 16 > 16 > 16 > 25
Noise Figure (dB) 5-7 6-8 7-9 3-5
Power Consumption (W) 10-15 15-22 22-30 10-20
Optical SNR (OSNR, dB) > 24 > 22 > 20 > 30
Receiver GSNR (dB) > 22 > 20 > 18 > 25
Spectral eff. (bits/s/Hz) 4-6 5-7 6-8 7-10

Table 4.4: Transceiver Specifications

400G transceiver

Traffic allocation

Fig. 4.7 shows the total allocated traffic vs the blocking probability chart for the
German network, considering the channel bandwidth = 100 GHz. Uniform traffic
profile of 100 Gbps is considered. For our analysis, we set a BP of 10

−2 as a thresh-
old to assess the traffic handling capacity for each configuration. In this analysis,
a single C-band fiber demonstrates a delivery capacity of about 23 Tbps. When
exploring scenarios with dual fibers in the C-band and a single fiber in the multi-
band C+L configuration, both arrangements exhibit similar performances, capable
of handling approximately 45 Tbps of traffic. Further extending the comparison,
the use of triple fibers in the C-band significantly enhances capacity, allowing for
the allocation of around 73 Tbps. Conversely, employing a single fiber in the multi-
band C+L+S configuration results in a slightly lower capacity of approximately
68 Tbps. BDM leverages the broader spectral range by utilizing additional bands.
Each band can carry its own set of channels, effectively increasing the network’s
bandwidth without needing more physical fibers. However, the efficiency of addi-
tional bands are not linear due to factors like the inherent limitations of amplifi-
cation technologies across different bands, and increased complexity in managing
cross-band nonlinearities and channel interference. The analysis reveals that BDM
configurations perform closely to their corresponding SDM setups, demonstrating
the efficacy of BDM in achieving comparable transmission capabilities with fewer
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fibers.

Figure 4.7: Blocking probability evaluated over the German network (≈
4 THz/band) considering 400G transceivers.

Fig. 4.8 presents the link allocation by traffic volume in the SDM scenario, com-
paring the outcomes for both uniform and population-based traffic profiles (where
the latter aligns with the population sizes of node-cities). In the population-based
profile, congestion exceeding 60% is observed in 9 links, whereas in the uniform
traffic profile, a lesser number of connections, only 5, exhibit congestion above the
60% threshold. Addressing this disparity in traffic allocation, the implementation of
BDM could significantly enhance capacity utilization either on selected high-traffic
links or across the entire network. Subsequently, Fig. 4.9 and Fig. 4.10 provide a
comparative analysis of SDM and BDM under both traffic scenarios. The results
demonstrate close performance metrics between the two multiplexing strategies,
with SDM marginally surpassing BDM in terms of efficacy.

By analyzing the Spain-E topology at a BP threshold of 10
−2, we determine

the amount of traffic that may be allocated as a comparison measure for different
transmission systems. In Fig 4.11, two different transceiver cases are used to de-
marcate the traffic distribution in the figure: the ideal transceiver configuration is
represented by the dotted line, and the ZR+ transceiver scenario is represented by
the plain lines. After conducting a thorough comparison of BDM and SDM solu-
tions, using both idealized and more practical ZR+ transceiver settings, we have
seen a significant similarity: BDM solutions closely resemble their respective SDM
benchmarks.

More precisely, a single C-band fiber has the capability to transmit around 31
Tbps when using ZR+ transceivers. The traffic allocation increases significantly to
87 Tbps when ideal transceivers are used, representing a difference of about 180%.
When assessing the SDM setup using C-band at double (2x) the fiber count, the
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Figure 4.8: SDM (C-band 1x fiber)

ZR+ transceivers enable a traffic allocation of 74 Tbps (≈ 2x of SDM, 1x), which
significantly rises to 195 Tbps under ideal transceiver conditions. Simultaneously,
the BDM system employs C+L bands and a single fiber to achieve a capacity of
72 Tbps with ZR+ transceivers (≈ same as of SDM, 2x case and 2x of the SDM,
1x case). Under ideal trannsceiver case, this capacity extends to 187 Tbps. Addi-
tionally, under the C-band, the SDM technique with a 3x in fiber count distributes
traffic at 140 Tbps (≈ 3x of the SDM, 1x case) with ZR+ transceivers, up to 330
Tbps for ideal transceivers. In contrast, the BDM architecture that combines the
C+L+S bands on a single fiber allows for a traffic allocation of 105 Tbps slightly
less than SDM, 3x case) while using ZR+ transceivers. This capacity is increased
to 289 Tbps in the optimal transceiver situation. SDM relies on increasing the
number of physical channels (fibers) to scale up capacity. This method is straight-
forward and effective but involves higher costs associated with fiber deployment.
Whereas, BDM increases the spectral efficiency by utilizing additional frequency
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Figure 4.9: Population based traffic (SDM-C-band 3x-fiber vs BDM-C+L+S band
1x-fiber)

bands within the same fiber. While technically complex, BDM can achieve com-
parable capacities to SDM but with less deployment cost (fibers). BDM with 3
bands perform slightly less than the SDM, 3x fibers case due to the crosstalk and
non-linear effects induced across multiple bands. Both SDM and BDM show a ca-
pability to scale traffic capacity significantly. The choice between them may depend
on specific network requirements, cost considerations, and technological availability.
BDM’s ability to closely match or approximate the performance of SDM configu-
rations even under practical transceiver conditions (ZR+) highlights its potential
for high-capacity networks where physical expansion is limited.

Fig. 4.12 (a) and (b) depicts a comparative analysis of traffic deployment in
SDM and BDM setups for Spain-E topology. The graphic displays a side-by-side
comparison of SDM using a C-band with double fiber and BDM using a single fiber
in the C+L band. Fig. 4.12 (c) and (d) further expand this comparison to compare
BDM using a single fiber in the wider C+L+S band with SDM using a 3x fiber
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Figure 4.10: Uniform based traffic (SDM-C-band 3x-fiber vs BDM-C+L+S band
1x-fiber)

in the C-band. Figure 4.12 depicts a comparative analysis of traffic deployment in
SDM and BDM setups. The graphic displays a side-by-side comparison of SDM
using a C-band with double fiber and BDM using a single fiber in the C+L band.
Fig. 4.12 (c) and (d) further expand this comparison to compare BDM using
a single fiber in the wider C+L+S band with SDM using a 3x fiber in the C-
band. The level of deployment is graphically represented using a gradient heat
map, with deeper shades of orange indicating higher traffic allocaiton and cooler
shades of blue indicating lower traffic allocation. Using this color measure, the
graphical analysis shows that the amount of traffic sent per link for BDM, while
using fewer fibers, is somewhat lower than that of the SDM setups, which need
two to three times more fiber deployment. In particular, in Fig. 4.12(a), the
SDM scenario exhibits a 3.3% greater traffic deployment compared to its BDM
counterpart, as seen in Fig. 4.12(b). The difference in traffic distribution increases
in the shown scenarios of Fig. 4.12(c) and Fig. 4.12(d), with a traffic discrepancy
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Figure 4.11: Blocking probability evaluated over the Spain-E network considering
ideal(....) and ZR+(—) transceivers case.

of around 11.8% between SDM and BDM. The greater difference is due to the
non-linear propagation penalties that occur when transmitting over three bands
(C+L+S) using a single fiber. This comparative analysis of the two multiplexing
systems highlights the inherent efficiency trade-offs involved in selecting between
fiber upgrading and bandwidth growth. Having a detailed knowledge of these trade-
offs is crucial when considering network design, especially in situations where there
are limitations on fiber rollout or when bandwidth is scarce.

Channels allocation

In the previous section, we analyzed the networking performance by examining
the traffic allocation of the WSS device equipped with 400G transceivers. In this
section, we explore the networking performance further by assessing channel allo-
cation across various network topologies (USA and Spain-E) and characteristics.

The analysis evaluates channel allocation, set at 40 channels per band for the
USA topology, in both SDM with multiple fibers and BDM configurations. Fig.
4.13 (a) and (b) compare the SDM setup utilizing two fibers to the BDM setup
employing one fiber in the C+L band with 80 channels per fiber. Fig. 4.13 (c) and
(d) in the same figure examine the SDM configuration with three fibers against
the BDM setup using one fiber in the C+L+S bands, which supports 120 channels
per fiber. Channel allocations for each fiber link are depicted through a heatmap,
ranging from 0% (blue) to 100% (orange) to represent utilization percentages. In
Fig. 4.13 (a), the channel utilization for the SDM scenario (two fibers, C-band
only, 40 channels per fiber) is reported at 55.65%, whereas Fig. 4.13 (b) records a
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(a) SDM (C-band, 2x fibers) (b) BDM (C+L-band, 1x fiber)

(c) SDM (C-band, 3x fibers) (d) BDM (C+L+S-band, 1x
fibers)

Figure 4.12: Deployed traffic comparison - ZR+ transceiver.

utilization of 55.46% for the BDM scenario (one fiber, C+L band, 80 channels per
link). Fig. 4.13 (c) shows a channel utilization of 56.72% for the SDM setup (three
fibers, C-band only, 40 channels per fiber). In contrast, Figure 4.13(d) documents a
channel utilization of 54.25% for the BDM configuration (one fiber, C+L+S bands,
120 channels per fiber) across the overall network. The same analysis is shown for
the Spain-E topology in Fig. 4.14. In Fig. 4.14 (a), the SDM scenario employing
two fibers within the C-band, configured with 40 channels per fiber, exhibits a
channel utilization of 41.83%. Conversely, the BDM case using a single fiber in the
C+L band with 80 channels per link, as shown in Fig. 4.14 (b), demonstrates a
slightly lower channel utilization of 41.67%.

Further analysis in Fig. 4.14 (c) reveals that the SDM setup with three fibers,
exclusively in the C-band and maintaining 40 channels per fiber, achieves a channel
utilization of 43.59%. Fig. 4.14 (d) illustrates the BDM arrangement, which utilizes
a single fiber spanning the S, C, and L bands and can accommodate 120 channels
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(a) SDM (C-band, 2x fibers, 40
ch/fiber)
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(b) BDM (C+L-band, 1x fiber,
80 ch/fiber)
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(c) SDM (C-band, 3x fibers, 40
ch/fiber)

Seattle

Portland

Palo Alto

Las Vegas

San Diego

Helena

Salt Lake City

Tucson

Boulder

El Paso

Chicago

Lincoln

Dallas

San Antonio

Columbus

Frankfort

Birmingham

Mobile

Ithaca

Princeton

Washington

Knoxville

Raleigh

Jacksonville
0

20

40

60

80

100

Li
nk

 a
llo

ca
ti

on
 (

ch
) 

[%
]

(d) BDM (C+L+S-band, 1x
fibers, 120 ch/fiber)

Figure 4.13: Channel allocation comparison - ZR+ transceiver.

per fiber. The network’s channel utilization is 42.7%, which demonstrates the
interplay between fiber topology, band usage, and channel allocation efficiency in
these multiplexing settings. SUmmary of channel allocation is given in Table. 4.5

Configuration Fiber Count Bands (GHz) Channel Utilization (%)- USA Channel Utilization (%)- Spain-E
SDM (C-band) 2x 4 × 2 THz 55.65% 41.83%
BDM (C+L-band) 1x 4 + 6 THz 55.46% 41.67%
SDM (C-band) 3x 4 × 3 THz 56.72% 43.59%
BDM (C+L+S-band) 1x 4 + 6 + 6 THz 54.25% 42.70%

Table 4.5: Channel utilization for different configurations

This analysis underscores the superiority of BDM over SDM, particularly in
high-demand scenarios where maximizing data throughput and minimizing loss and
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delays are critical. By leveraging multiple spectral bands, BDM not only enhances
the total capacity but also efficiently distributes network load, thus reducing the
chances of traffic bottlenecks. This strategic use of expanded bandwidth is essential
for future-proofing network infrastructures against escalating data demands and for
enhancing overall network resilience and performance.
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(a) SDM (C-band, 2x fibers, 40
ch/fiber)
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(b) BDM (C+L-band, 1x fiber, 80
ch/fiber)
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(c) SDM (C-band, 3x fibers, 40
ch/fiber)
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(d) BDM (C+L+S-band, 1x fibers,
120 ch/fiber)

Figure 4.14: Channel allocation comparison - ZR+ transceiver.
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800G transceiver

Traffic allocation

For the 800G transceiver shown in Fig. 4.15, starting from the C-band, C+L
bands and C+L+S bands, we analyse the total traffic allocation for the USA net-
work topology. In Fig. 4.15, with a blocking probability of 10

−1, the C-band only
managed to allocate approximately 80 Tbps of traffic. In contrast, the combined
C+L-band setup supported a total traffic allocation of around 280 Tbps. When all
three bands (C+L+S) were utilized, the traffic allocation for the 800G transceiver
case surpassed 500 Tbps.
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Figure 4.15: Total traffic allocation vs blocking probability for 800G transceivers
In evaluating the performance of the 800G transceiver for the German network

topology, two bandwidth scenarios are considered: one with approximately 4 THz
per band across all bands, and the other with extended bandwidth, approximately
6 THz for S and L bands and 4 THz for the C band. The traffic allocation versus
blocking probability is illustrated in Fig. 4.16 for the first scenario. For the C-band
1x fiber, the delivery capacity is around 27 Tbps. Introducing C-band 2x fibers
and multi-band C+L 1x fiber yields similar performance, capable of allocating
approximately 60 Tbps of traffic. Utilizing C-band 3x fiber increases this capacity
to around 92 Tbps, while multi-band C+L+S 1x fiber can allocate about 87 Tbps.
Notably, in scenarios where both the 400G (Fig. 4.7) and 800G transceivers have
similar bandwidth, the traffic allocation slightly favors the 3x fiber over the multi-
band scenario.

In the extended bandwidth scenario shown in Fig. 4.17, the C-band 1x fiber
has a delivery capacity of approximately 28 Tbps. Traffic allocation for C-band 2x
fiber is close to 55 Tbps, while for multi-band C+L 1x fiber, it exceeds 100 Tbps.
This substantial difference in allocation is primarily due to the greater spectrum
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Figure 4.16: Blocking probability evaluated over the German network (≈
4 THz/band) considering 800G transceivers.

usage in the C+L bands, with nearly 10 THz compared to 7.5 THz in the C-band
2x fiber. With C-band 3x fiber, the allocation reaches around 94 Tbps, whereas
with multi-band C+L+S 1x fiber, it climbs to approximately 148 Tbps, largely
attributed to the higher spectrum usage in the latter case, approximately 15 THz.
It’s noteworthy that the C+L+S-band capacity for the 400G transceiver (Fig. 4.7
is 5.67 b/Hz, while for the 800G transceiver, it rises to 14.6 b/Hz. Overall, the
800G transceiver demonstrates superior traffic allocation compared to the 400G
transceiver, particularly evident in the multi-band C+L+S scenario due to the
increased spectrum usage.

Channels allocation

To ensure a fair comparison, we conducted a comprehensive evaluation of multi-
band results utilizing the proposed WSS structure integrated into the ROADM
architecture.While the BDM method used multi-bands (C+L and C+L+S), our
study used the SNAP network performance analysis, presuming SDM with numer-
ous fibers in the C-band on the same total spectrum. We accounted for different
fiber configurations (2x and 3x) for SDM and maintained the channel limit for
L- and S-bands at 25, utilizing nearly 4 THz of spectrum per band to ensure an
effective comparison of link capabilities.

The evaluation encompassed two network topologies (Italy and Germany), con-
sidering the allocation of channels (25 channels per band) in both scenarios of SDM
with multiple fibers and BDM for the 800G transceiver. The comparisons between
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Figure 4.17: Blocking probability evaluated over the German network (C/L/S-
band ≈ 4 THz/6 THz/6 THz) considering 800G transceivers.

SDM (2x fibers, 50 channels) and BDM (C+L, 50 channels per fiber) are depicted
in Fig. 4.18(a) and (b), while Fig. 4.18(c) and (d) illustrate the comparisons be-
tween SDM (3x fibers, 75 channels) and BDM (C+L+S, 75 channels per fiber)
for the German topology. Similarly, the comparisons for the Italian topology are
presented in the Fig. 4.19. The allocation of links based on channel utilization
is visually represented as a heat map, where darker shades of orange indicate a
higher percentage of channel allocation, while blue represents a lower percentage of
channel allocation.

The link allocation in terms of channels for the SDM and BDM scenarios for
both network topologies is summarized in Table 4.6. The multi-band BDM scenario
exhibits slightly lower channel allocation in both network scenarios compared to
the single-band SDM scenario. However, the difference between SDM and BDM
increases marginally in the case of SDM with three fibers and multi-band BDM
(C+L+S bands) due to nonlinear propagation resulting from transmitting all three
bands on a single fiber.

Transparent vs Translucent network

In the context of a transparent network, our approach involves establishing a
new LP that spans end-to-end, utilizing the highest achievable modulation for-
mat without intermediate regeneration and adhering to the wavelength continuity
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(a) SDM (C-band - 50 channels,
2x fibers)
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(b) BDM (C+L-band - 50
channels, 1x fiber)
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(c) SDM (C-band - 75 channels,
3x fibers)
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(d) BDM (C+L+S-band - 75
channels, 1x fibers)

Figure 4.18: German topology channel allocation comparison - 800G transceiver.

Network Topology Configuration Fiber Count Channels per Fiber Bands

German

SDM 2x 50 C-band

BDM 1x 50 C+L-band

SDM 3x 75 C-band

BDM 1x 75 C+L+S-band

Italian

SDM 2x 50 C-band

BDM 1x 50 C+L-band

SDM 3x 75 C-band

BDM 1x 75 C+L+S-band

Table 4.6: Channel utilization for different network topologies and configurations

constraint across all links in the path. However, in translucent scenarios, this con-

straint is eliminated at nodes where regeneration occurs, which involves using a pair

83



Network level performance analysis in multi-band systems

Bolzano

Milano Verona
Venezia

Trieste

Torino

Genova Bologna

Pisa Firenze Ancona

Perugia

Roma

Pescara

Cagliari

Napoli

Bari

Potenza

Palermo

Catania

Catanzaro

0

20

40

60

80

100

Li
nk

 a
llo

ca
ti

on
 (

ch
) 

[%
]

(a) SDM (C-band - 50 channels,
2x fibers)
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(b) BDM (C+L-band - 50
channels, 1x fiber)
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(c) SDM (C-band - 75 channels,
3x fibers)
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(d) BDM (C+L+S-band - 75
channels, 1x fibers)

Figure 4.19: Italian topology channel allocation comparison - 800G transceiver.

of back-to-back transceivers. To ensure that the maximum bit rate of 800 Gbps
(16QAM) is maintained for the LP, our controller activates an additional pair of
transceivers at intermediate nodes when necessary. We conducted performance
evaluations in a multi-band scenario, specifically using the C+L and C+L+S-
bands, across network topologies of Italy and Germany, shown in Fig. 4.20 and
4.21. The Italian network, characterized by slightly longer link lengths compared
to the German network, demonstrated significant differences in traffic allocation
between transparent and translucent scenarios. In the transparent setup, the C+L
band supported a total traffic load of 65 Tbps, which increased substantially to
220 Tbps under the translucent setup. For the C+L+S- band, traffic allocation
rose from 100 Tbps in the transparent mode to around 350 Tbps in the translu-
cent mode. Similarly, in the German network, the C+L band’s traffic allocation
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Figure 4.20: Network capacity for transparent and translucent network design for
the C-, C+L-, and C+L+S-band with 800 Gb/s traffic request size in the Italian
network topology.
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Figure 4.21: Network capacity for transparent and translucent network design for
the C-, C+L-, and C+L+S-band with 800 Gb/s traffic request size in the German
network topology.

escalated from 120 Tbps in the transparent scenario to 210 Tbps in the translucent
configuration. The C+L+S- band exhibited a growth in traffic from 155 Tbps to
approximately 330 Tbps when transitioning from transparent to translucent modes.

This marked increase in traffic allocation in translucent scenarios as opposed
to transparent ones is primarily attributed to the relaxation of the wavelength
continuity constraint at nodes where regeneration is deployed. This adjustment
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facilitates greater flexibility in traffic routing and enables the utilization of addi-
tional wavelengths, thereby enhancing the overall traffic handling capacity of the
network. Furthermore, the activation of supplementary transceiver pairs at critical
nodes to sustain the LP’s maximum bit rate of 800 Gbps also plays a crucial role
in achieving higher traffic capacities in translucent network setups.

1.2T transceiver

Traffic allocation

The network performance evaluation was conducted on a randomly structured
DCI network (Fig. 4.3) using two categories of transceivers, specifically the 800
Gbps and 1200 Gbps models. The analysis focused on assessing the relationship be-
tween traffic allocation and BP, with a particular emphasis on different transceiver
capacities. The results, illustrated in Fig. 4.22, show that at a BP of 10−2, the
total traffic allocated using the 800 Gbps transceiver in the C-band was approxi-
mately 49 Tbps. Conversely, the 1200 Gbps transceiver facilitated a slightly higher
traffic allocation, reaching over 55 Tbps. Expanding the analysis to include the

Figure 4.22: BP evaluated considering ideal transceivers.

C+L bands, the traffic allocation for the 800 Gbps transceiver was noted at 102
Tbps. This figure significantly increased to 170 Tbps for the 1200 Gbps transceiver,
marking a substantial increment of 66%. The trend continued when considering
the C+L+S bands, where the traffic for the 800 Gbps transceiver stood at 140
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Tbps, and escalated dramatically to 260 Tbps for the 1200 Gbps transceiver, in-
dicating an 84% increase. This marked improvement in traffic allocation can be
largely attributed to the different spectrum/bandwidth allocations between the two
transceiver types. For the 800 Gbps transceiver, the total spectrum assigned across
the C, L, and S bands was 4 THz. In contrast, the 1200 Gbps transceiver was
allocated 6 THz for the L and S bands, with an additional 4 THz for the C-band.

Further insights from the analysis are presented in Fig. 4.23, which details the
traffic allocation per link for both transceiver scenarios. Notably, the ’E11-E12’ link
demonstrated the highest traffic loads, reaching approximately 4100 Gbps for the
800 Gbps case, and 7550 Gbps for the 1200 Gbps case. A horizontal dotted line in
the figure indicates 50% of the total traffic allocated, normalized for each transceiver
type. The significant traffic allocations observed were predominantly associated
with data centers located at nodes E10, E12, and E17, with all links exceeding
the 50% threshold primarily linked to these centers. This analysis underscores the
substantial benefits of higher capacity transceivers in effectively managing larger
volumes of network traffic, particularly in complex DCI environments.
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Figure 4.23: Traffic allocation / link

E1
 - 

E2

E1
 - 

E3

E1
 - 

E4

E2
 - 

E8

E2
 - 

E4

E3
 - 

E4

E3
 - 

E5

E4
 - 

E1
1

E5
 - 

E7

E5
 - 

E1
2

E6
 - 

E7

E6
 - 

E1
4

E6
 - 

E1
2

E6
 - 

E1
5

E7
 - 

E1
4

E8
 - 

E9

E8
 - 

E1
0

E8
 - 

E1
1

E9
 - 

E1
0

E1
0 

- E
16

E1
0 

- E
19

E1
1 

- E
12

E1
1 

- E
16

E1
2 

- E
13

E1
3 

- E
15

E1
3 

- E
17

E1
4 

- E
15

E1
6 

- E
17

E1
7 

- E
18

E1
7 

- E
19

E1
8 

- E
20

E1
9 

- E
20

Links

0

50

100

C
ha

nn
el
s

800G - channels limit
1200G - channels limit
75% ch - 800G

75% ch - 1200G
800G
1200G

Figure 4.24: Channel allocation / link

Channels allocation

Fig. 4.24 delineates the channel allocations for both the 800 Gbps and 1200
Gbps transceiver scenarios. In the setup with 800 Gbps transceivers, a total of
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120 channels are allocated, whereas the 1200 Gbps scenario involves a slightly re-
duced total of 105 channels. The figure includes dotted lines representing the 75%
threshold of total channel allocations for each scenario. Notably, the ’E11-E12’ link,
which was previously identified in Fig. 4.23 as having the highest traffic allocation,
reaches maximum channel capacity under both transceiver conditions. Moreover,
all links that exceed the 75% threshold of channel allocations are primarily associ-
ated with data centers, highlighting the significant demand for channel resources at
these critical network nodes. This observation underscores the pivotal role of chan-
nel capacity in supporting high traffic volumes, particularly in scenarios involving
advanced, higher-capacity transceivers.

4.4.1.2 Conclusion and future insights

The results examine the performance dynamics inside multi-band optical net-
work systems by comparing SDM and BDM systems using the described WSS
device and range of transceivers. Utilizing several fibers or broadening wavelength
bands offers clear benefits in various operating situations and limitations. The re-
sults of our study demonstrate that SDM, although it necessitates a greater num-
ber of fibers, intrinsically provides a slightly improved network allocations, and
resilience, particularly when several C-band fibers are employed. Alternatively,
BDM techniques offer a cost-effective solution to address the increasing bandwidth
demand without the need for major physical infrastructure changes required by
SDM. BDM does this by using fewer fibers and expanding operations into the L
and S bands.

The performance metrics obtained from Monte Carlo simulations show that
SDM can achieve slightly better efficiency in scenarios where dual or triple C-band
fibers are used. However, BDM configurations maintain comparable performance
with fewer resources in terms of fiber infrastructure, especially in combined C+L
and C+L+S band setups. The fact that BDM shows similar performance indicates
that it is a feasible approach for expanding networks in situations where deploy-
ing fiber is restricted or too expensive. Ultimately, both SDM and BDM play a
crucial role in meeting the future requirements for network capacity and efficiency.
However, the decision between them should be influenced by unique network needs,
budgetary limitations, and physical infrastructure capabilities.

We have done our study with a focus on the future, considering the changing
needs of network infrastructure. We assessed the efficiency of several transceivers,
namely those with capacities of 400G, 800G, and 1200G, in the context of the
German network topology.

Assuming the porjected traffic growth of 25% annually [133], we mapped out
network traffic utilization over the next decade. The methodology for projecting
network traffic over a 10-year period is based on a systematic increase in traffic
demands, reflecting anticipated growth in data consumption. The projection starts
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with an initial uniform traffic load of 400 Gbps per request in the baseline year (year
0). This figure is representative of current traffic demands in high-capacity network
environments. To model future network traffic, the initial traffic volume is incre-
mented annually by 25% to reflect the compounded growth in data transmission
requirements. This rate of increase is aligned with observed trends in data usage
and network load, influenced by factors such as increased digital media consump-
tion, expansion of cloud-based services, and broader adoption of high-bandwidth
applications like HD streaming and virtual reality. The projection is calculated
using the formula:

TrafficYear n = TrafficYear 0 × (1.25)n

where n represents the number of years since the baseline measurement. This
method provides a straightforward yet effective way to anticipate future demands on
optical transport networks, ensuring that the infrastructure developed can handle
upcoming increases in data traffic. It helps in planning for capacity enhancements,
strategic investments, and technological upgrades necessary to support the growing
needs of network users. The data delineating the usage trends for the C-band alone
is illustrated in Fig. 4.25, while Fig. 4.26 and Fig. 4.27 represent the scenarios
for the combined C+L and C+L+S bands, respectively. According to Fig. 4.25, in

Figure 4.25: C band traffic allocation trend for 10 years

the initial four years, the three transceivers exhibit comparable performance due
to the moderate traffic volume. However, as traffic intensifies, the 400G and 800G
transceivers begin to reach their limits sooner, leading to earlier blocking and a
decline in traffic accommodation capacity. After a decade, it’s projected that the
1200G transceiver will handle approximately 105 Tbps, surpassing the 800G by
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23.81% and the 400G by 40.9%, which are expected to support 80 Tbps and 62
Tbps, respectively. In the scenario depicted in Fig. 4.26, the traffic can be fully

Figure 4.26: C+L band traffic allocation trend for 10 years

accommodated without blocking for up to six years for all transceivers, with an
average throughput of around 107 Tbps. Over a span of ten years, the 1200G
transceiver is anticipated to accommodate up to 240 Tbps. In comparison, the
800G and 400G transceivers are projected to support 170 Tbps (29.17% less) and
135 Tbps (43.1% less), respectively. Finally, as per the C+L+S bands scenario
shown in Figure 4, after ten years, the capacity expected to be facilitated by the
1200G transceiver reaches 365 Tbps, which exceeds the capacity of the 800G and
400G transceivers by 17% and 47.9%, respectively, with the 800G expected to
handle 303 Tbps and the 400G around 190 Tbps.

Fig. 4.28 displays a projection for the future of SDM over the next ten years,
with the 1200G transceiver serving as the foundation for the analysis. The x-axis of
the graph represents the years, while the y-axis measures the number of fiber pairs
involved in the German network. The orange line shown illustrates the growth in
the number of fiber pairs over a period of years. Starting with one fiber pair per
link, we anticipate a yearly growth of 25% in the need for traffic. Initially, the
network is comprised of 26 fiber pairs to accommodate high levels of traffic. In the
second year, we expect that we will need an average of 36.3 fiber pairs, which is a
1.4-fold increase over the initial 26 fiber pairs. By the conclusion of the projection
period, we anticipate that there will be a significant 5.9-fold increase in the number
of fiber pairs required, resulting in an average of 153 pairs.
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Figure 4.27: C+L+S band traffic allocation trend for 10 years

These analysis highlights the potential for increasing network capacity by up-
grading transceivers and expanding the number of fiber pairs to support an archi-
tecture based on SDM.

Figure 4.28: SDM trend over years
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4.4.1.3 WBSS - Networking performance evaluation

Resource assignment

We propose an algorithm designed for efficient resource allocation in waveband
networks, facilitating the deployment of new connection requests in the form of
lightpaths (LP). The algorithm is structured as follows:

Initially, the algorithm checks if there is an existing lightpath with the same source
(s) and destination (d) nodes that also has enough spare capacity to accommodate
the traffic demand (t). This step is shown in line 1 of Alg. 1.

If no suitable existing lightpath is found, the algorithm then considers the estab-
lishment of a new lightpath. It sequentially evaluates each of the k possible routes
between the node pair (line 4).

For each route (r), the algorithm identifies the available free channels, which are
segmented into sets each containing M channels (line 10).

For each channel set, the algorithm calculates the total bit rate, taking into account
the modulation format that the Generalized GSNR of these channels can support
(line 15). The choice of modulation format is determined based on the required
generalized signal-to-noise ratio (RGSNR) for the transceiver.

The algorithm proceeds to check if the capacity of the channels (T) meets or exceeds
the requested traffic volume. If so, the connection is established using the selected
channels within the identified route (line 18).

This resource assignment algorithm adheres to wavelength continuity and con-
tiguity constraints, which are integral to conventional WL routing where M is set
to 1. The same principles apply to waveband WB routing, whether in multiband
or multicore fiber/parallel single-mode fiber (SMF) contexts. This method ensures
that resources are allocated efficiently, optimizing the utilization of network capac-
ity and supporting the robust deployment of new services.

Traffic allocation

The analysis is performed in two stages; initially, it is sim- ulated for the multi-
band optical system, and after that, the investigation is further extended to multi-
core fiber/parallel- SMF. The multiband transmission system is constructed from
a series of bands, with components, especially optical amplifiers, optimized for
each band. The transceiver of 1200 G transmission with a channel bandwidth
of 150 GHz, symbol rate of 130 GBaud is considered. The number of fibers is
fixed to five to relax the computation complexity. A single channel is routed at a
given time for the conventional single-layer WL switching system. On the other
hand, in the WB switching architecture, a continuous WL is grouped up first; the
minimum 2WL/WB and maximum 6WL/WB are considered. The grouped WLs
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Algorithm 1 Resource Assignment

Require: RSi,j: Route space for all network node pairs (i, j), M : number of chan-
nels to compose the waveband, c(s, d, t): new connection request (c) containing
source (s) and destination (d) nodes, and traffic (t)

1: Try allocation of c in already deployed LPs
2: if c is not allocated then
3: R← RSs,d

4: while R /= ∅ & c not allocated do
5: r ← the first route from R
6: R← R \ r
7: c(s, d, t, r)← c(s, d, t) ∪ r
8: T ← 0
9: n← ∅ ▷ Set of channels used to allocate request c

10: H ← list of free channels in route r divided in sets of M channels
11: while H /= ∅ & T < t do
12: h← first set of M channels from H
13: H ← H \ h
14: n← n ∪ h
15: i← computation of bit rate of route r using channels in h (GSNR based)

16: T ← T + i
17: end while
18: if T ≥ t then
19: c(s, d, t, r, n)← c(s, d, t, r) ∪ n
20: allocate c using channels in n through route r
21: end if
22: end while
23: end if
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are routed as a single WB at a given time. This work considers the German network
topology. In order to evaluate the influence of the WB architecture on networking
performance in comparison to the traditional WL architecture, an extensive series
of simulations are conducted across various network scenarios. Fig. 4.29 illustrates

Figure 4.29: Blocking probability vs. traffic for wavelength and waveband enabled
C+L network.

the distribution of network traffic across a spectrum of BP for conventional WL and
WB architectures (M = 2, 3, 4, 5, 6), with each scenario accommodating a uniform
traffic load of 4000 Gbps per request, within the C+L spectrum. Whereas Fig.
4.30 shows the overall network allocation against the BP for the C+L+S scenario.
In Fig. 4.29, for BP = 10−2, the traffic allocation for the WL case is 166 Tbps.
Compared to the WB case (M = 2, 3, 4, 5, 6), the overall traffic allocation is 164
Tbps (1.2% lower), 177 Tbps (6.63% higher), 136 Tbps (22.9% lower), 139 Tbps
(15.66% lower), and 141 Tbps (14.4% lower), respectively. In Fig. 4.30, for BP =
10−2, the traffic allocation for the WL case is 241.5 Tbps. Compared to the WB
case (M = 2, 3, 4, 5, 6), the overall traffic allocation is 248.5 Tbps (2.9% higher),
238 Tbps (1.3% lesser), 189 Tbps (21.5% lesser), 199 Tbps (17.4% lesser), and 189.5
Tbps (21.54% lesser), respectively.

Fig. 4.31 and Fig. 4.32 illustrate the network performance regarding the overall
traffic allocation across a spectrum of traffic intensities, specifically with a fixed
BP = 10−2, within the context of the C+L and C+L+S scenarios, respectively.
These figure presents a comparison of the overall network traffic capacity (mea-
sured in Tbps - y-axis) as a function of the waveband size (M) for a network
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Figure 4.30: Blocking probability vs. traffic for wavelength and waveband enabled
C+L+S network.

Figure 4.31: Impact of waveband size (M) on overall C+L Network Traffic.

utilizing the multi (C+L- and C+L+S-) bands. The configurations tested vary in
the number of wavelengths grouped into a single waveband, ranging from 2 to 6
wavelengths per band for uniform traffic requests ranging from 1000 to 7000 Gbps
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Figure 4.32: Impact of waveband size (M) on overall C+L+S Network Traffic.

(x-axis). The dots in the plot represents the actual simulation data and the dot-
ted line shows the trend line for particular WB case for all the traffic profiles. As
the waveband size increases for the increasing traffic intensity, there is a notable
variation in the network’s ability to handle traffic. The steeper downward slope
in the conventional WL results in earlier blocking of traffic requests due to limited
channel bandwidth. This variation is indicative of the trade-off between the flexi-
bility of wavelength allocation and the efficiency of waveband switching. There is
an optimal waveband size for the given traffic profiles, where the network achieves
the highest traffic capacity. In Fig. 4.31, at 2000 Gbps traffic profile, conven-
tional WL allocates around 190 Tbps network traffic, the allocation is of the order
conv.WL > 3WB/WL > 2WB/WL > 5WB/WL > 4WB/WL > 6WB/WL.
For 6000 Gbps case, overall network traffic allocation is of the order 5WB/WL >
2WB/WL > 4WB/WL > 6WB/WL > 3WB/WL. At lower traffic intensities,
the conventional WL switching offers superior granularity and flexibility in routing
individual wavelength channels. This finer granularity allows for more efficient uti-
lization of available spectral resources, minimizing wasted bandwidth and reducing
the likelihood of blocking under moderate traffic loads. As traffic demand increases,
the advantages of appropriately configured waveband switching become more evi-
dent, reducing fragmentation and maximizing spectral utilization, which translates
to better overall network performance compared to the conventional WL approach.
This indicates a balance between the granularity of switching and the overhead
associated with waveband formation and management. Fig. 4.32 shows the same
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scenarios for the C+L+S- bands, providing overall larger bandwidth. The impact
of waveband size on traffic capacity differ from the C+L network scenario due to
the added complexity and the potential for increased bandwidth which results in
less blocking.

Both figures underscore the importance of WB size in optimizing network per-
formance for multi-band optical networks. They highlight the need for a careful
balance between the granularity of control offered by smaller wavebands and the
efficiency and scalability benefits of larger wavebands. The analysis demonstrates
that the optimal waveband size can significantly affect the network’s capacity to
manage traffic, with implications for network design and operation in bandwidth-
intensive environments.
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Chapter 5

Conclusions and future work

Overall, the thesis underscores the transformative impact of integrating ad-
vanced photonic technologies and machine learning into optical networking. The
findings emphasize the potential for multi-band transmission systems to meet future
network demands, offering scalable and efficient solutions. The research highlights
the critical role of ongoing innovation in optical network technologies, paving the
way for the development of next-generation optical transport systems that can han-
dle increasing traffic demands while maintaining high performance and reliability.
SUmmar of the key methods and their outcomes is summarized in Table.

Method/Tool Description/Techniques Used Purpose Outputs
Network
Simulation (SNAP
Framework)

Simulates multi-band optical
transport networks using real-world
topologies (e.g., Germany, Italy, USA)

To evaluate network
performance under
different configurations and
conditions

Network capacity, blocking
probability, signal quality,
bandwidth utilization

Photonic
Integrated
Wavelength
Selective Switch
(WSS)

A photonic integrated device enabling
switching across C, L, and S bands

To optimize bandwidth
allocation and routing in
multi-band ROADM
architectures

Enhanced spectral efficiency,
lower insertion loss, and
increased routing flexibility

Machine Learning
Model (DNN and
Heuristics)

Deep Neural Networks (DNN) with
heuristic-based optimization for
control state prediction and Quality of
Transmission (QoT) evaluation

To dynamically manage
traffic and predict routing
control states in real-time

Reduced blocking probability,
improved QoT, and lower
latency in network operations

Comparison of
SDM and BDM
Systems

Compare Space Division Multiplexing
(SDM) and Band Division
Multiplexing (BDM) systems in terms
of capacity, spectral efficiency, and
network complexity

To evaluate the impact of
SDM and BDM on network
performance and capacity
expansion in multi-band
networks

Insights into system scalability,
capacity gains, network
complexity, and efficient resource
allocation

Table 5.1: Summary of key methods/tools used

The thesis starts with a thorough examination of optical communication sys-
tems and the essential technologies that form the foundation of the worldwide
communications infrastructure. With the continuous development of communica-
tion technologies, there is a persistent requirement for improved traffic control in
optical communication networks. Chapter 2 presents a suggested switching device
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specifically created to manage the growing requirements. This chapter presents the
abstraction of the physical layer along with the fiber propagation impairments.

Chapter 3 of this thesis presents an implementation of the application of ma-
chine learning techniques to photonic devices, focusing on optimizing switching
structures and evaluating their control states and QoT. The collaborative research
with Synopsys, Inc. and Politecnico di Torino has led to significant advancements
in enhancing the efficiency and reliability of optical network switching by harness-
ing the predictive and analytical power of machine learning. The chapter begins by
introducing the fundamental concepts of Artificial Intelligence (AI) and Machine
Learning (ML), setting a solid foundation for understanding their relevance in the
context of optical networks.

The study evaluates a management model using machine learning applied to
multistage crossover switches, which are essential for creating non-blocking net-
works. These networks can handle any input-output configurations without inter-
nal routing conflicts, making them ideal for implementing machine learning-based
management models. The ability of machine learning techniques to predict routing
control states accurately, even with limited training data, is demonstrated through
various Beneš network configurations. This highlights the resilience and scalability
of the machine learning model in managing larger and more complex networks,
showcasing its potential to handle complex scenarios effectively.

Moreover, the chapter discusses the use of a Deep neural network (DNN) with
optimized hyperparameters to predict QoT degradation. The deployment of a
parallel DNN structure enhances both predictive accuracy and computational effi-
ciency, ensuring optimal signal integrity across the network. This approach under-
scores the potential of machine learning to significantly improve the management
and performance of optical networks.

The findings illustrate the transformative impact of integrating machine learn-
ing techniques within photonic networks. The developed models demonstrate high
accuracy in predicting control states and QoT, even in large-scale networks, show-
casing the potential for machine learning to revolutionize optical network man-
agement and optimization. This research highlights the critical role of ongoing
innovation in machine learning applications to meet the increasing demands of
modern optical networks, ensuring enhanced performance, reliability, and scalabil-
ity. The study provides a robust framework for future advancements in photonic
devices, contributing to the evolution of next-generation optical transport systems.
By leveraging the capabilities of machine learning, this research paves the way for
more efficient and flexible optical networks, capable of adapting to the dynamic
demands of contemporary data transmission needs.

Chapter 4 of this thesis provided an in-depth analysis of network-level perfor-
mance within multi-band optical transmission systems. Previous chapters discussed
significant advancements in long-haul network technology, including improvements
in optical switching. These developments have shifted bandwidth and operational
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challenges toward metro and access networks. As demand for on-demand services
increases, there is a pressing need for enhanced flexibility and rapid reconfiguration
capabilities in optical networks. These improvements are essential to ensure contin-
uous service delivery for critical operations. Spatial-division multiplexing (SDM)
and Band division multiplexing (BDM) have emerged as pivotal technologies in
enhancing optical system capacities. While SDM is already commercially viable (if
redundant or dark fibers are considered), BDM—utilizing multi-band setups hows
great potential for future scalability. The study employed the Statistical Network
Assessment Process (SNAP) to evaluate the QoT by quantifying the impact of
various network components on signal integrity, providing a robust framework for
performance assessment.

The comparative analysis between SDM and BDM configurations revealed that
BDM could achieve similar performance metrics with fewer fibers, highlighting its
viability as an alternative in high-capacity network contexts. Evaluations of various
network topologies, including real and random network topologies, demonstrated
that BDM can effectively enhance network capacity without necessitating extensive
modifications to the existing fiber infrastructure. This adaptability makes BDM
particularly attractive for expanding current network capabilities cost-effectively.

Further analysis of traffic allocation and blocking probability underscored the
efficiency of multi-band systems in managing higher volumes of data traffic while
reducing operational expenses. Multi-band configurations showed marked improve-
ments in traffic allocation and lower blocking probabilities compared to traditional
single-band setups. These findings highlight the operational benefits and enhanced
efficiency of adopting multi-band technologies in modern optical networks.

Projections for the growth of SDM over the next decade indicate a significant
increase in the number of fiber pairs required to support rising traffic demands. This
projection underscores the need for scalable and efficient network architectures to
accommodate future growth.

Overall, the findings in provide a detailed evaluation of multi-band optical trans-
mission systems, demonstrating their potential to meet future network demands
through enhanced capacity and efficiency. The study underscores the importance
of integrating advanced technologies, such as SDM and BDM, to optimize network
performance and pave the way for next-generation optical transport systems. This
study lays a strong foundation for future research focused on further enhancing
the scalability and effectiveness of optical networks, ensuring they can meet the
ever-growing demands of data traffic in a cost-effective and efficient manner.

In conlcusion, this study lays a robust foundation for future advancements in op-
tical networking, with a focus on scalability and efficiency. The insights provided in
this thesis are invaluable for researchers and industry professionals working towards
the evolution of optical communication systems. By leveraging the capabilities of
advanced photonic technologies and machine learning, this research paves the way
for more efficient and flexible optical networks, ensuring they can adapt to the
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dynamic demands of contemporary data transmission needs.

Future work

The research and findings presented in this thesis open several promising avenues
for future work, particularly in the development and enhancement of multi-band
systems. A key area of exploration involves the creation of hybrid multi-band
systems. By combining the strengths of different multi-band technologies such as
SDM and BDM, researchers can aim to maximize network capacity and flexibility.
Hybrid systems can leverage the high spatial efficiency of SDM and the spectral
efficiency of BDM, resulting in a more robust and scalable network architecture
capable of meeting the diverse demands of future optical networks.

Another critical aspect of future research is the efficient spectrum sharing be-
tween different network operators and services. As the demand for bandwidth con-
tinues to grow, optimizing the utilization of available spectrum becomes paramount.
Developing advanced techniques for spectrum sharing can ensure that multiple op-
erators can coexist without interference, thereby improving the overall efficiency
and capacity of the network.

In addition to theoretical advancements, real-world deployments and testing of
the proposed technologies are essential to validate their performance and practi-
cality. Conducting large-scale field trials and deployments will provide valuable
empirical data, helping to refine the models and techniques based on practical
feedback. This involves collaboration with industry partners and network oper-
ators to test the hybrid multi-band systems and spectrum sharing techniques in
real-world scenarios. By focusing on these areas, future research can ensure that
the advancements in multi-band optical systems are not only theoretically sound
but also practically viable and ready for real-world implementation. This approach
will pave the way for the next generation of optical networks, characterized by
unprecedented capacity, flexibility, and efficiency. Through continuous innovation
and collaboration, the optical networking community can address the ever-growing
demands for high-speed, reliable communication, ultimately leading to more con-
nected and efficient digital infrastructure.
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Acronyms

ADC Analog-to-digital. 10

ADCs Analog-to-digital onverters. 25

AI Artificial intelligence. 41

APIs Application programming interfaces. 9, 48

ASE Amplified spontaneous emission. 29, 33, 62, 64, 69

AWGN Additive white Gaussian noise. 29

BDM Band division multiplexing. 60, 61, 69–78, 81, 82, 88, 100, 101

BER Bit error rate. 26, 50, 55

BP Back-propagation. 70–72, 86, 94

BPDs Balanced photodetectors. 25

CD Chromatic dispersion. 10, 60

CDCs Contra-directional couplers. 17, 19

CWDM Coarse Wavelength Division Multiplexing. 69

DAC Digital-to-analog. 10

DCUs Dispersion compensating units. 10

DD Direct-detection. 10

DFAs Doped Fiber Amplifiers. 32

DNN Deep neural network. 48, 52, 56, 99

DSP Digital signal processing. 10, 12, 25, 26, 28, 35
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Acronyms

DWDM Dense Wavelength Division Multiplexing. 5, 14, 69

EDC Electronic dispersion compensation. 10

EDFA Erbium Doped Fiber Amplifier. 13, 23, 29, 69

EDFAs Erbium Doped Fiber Amplifiers. 15, 34

EONs Elastic optical networks. 12

FF First-fit. 62

FMF Few-Mode Fibers. 69

FSR Free spectral range. 20

FWM Four-wave mixing. 31

GGN Generalized gaussian noise. 14, 33

GSNR Generalized Signal-to-Noise Ratio. 33–36, 62–66, 68, 92

GVD Group-velocity dispersion. 27

ILAs Inline amplifiers. 32

IoT Internet Of Things. 12, 42

JPDF Joint Probability Distribution Function. 39

LCoS Liquid crystal on silicon. 16

LOGO Local-Optimization Global-Optimization. 64

LP Lightpath. 10, 34, 36, 37, 62, 70

LPs Light-paths. 35, 36

M2M Machine-to-machine. 12

MBT Multi band transmission. 2, 3, 12–15, 20, 22, 29, 30, 33–35, 60

MC Monte Carlo. 62, 63

MCF Multicore fiber. 61, 69

MEMS Microelectronicmechanical systems. 16
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ML Machine learning. 41–44, 46–48, 52, 55–57

MMF Multimode fiber. 61

MPF Multiparallel fiber. 61

MRR Microring Resonator. 50

MRRs Micro-ring resonators. 17, 19, 45

MSE Mean square error. 52, 56, 57

MZI Mach-Zehnder Interferometer. 20, 45

MZMs Mach-Zehnder modulators. 24

NEs Network elements. 11

NF Noise figure. 30, 34

NFs Noise Figures. 34

NLI Nonlinear interference. 14, 33, 62, 69

NLP Natural language processing. 41

NOS Network operating system. 9

OAs Optical amplifiers. 31

OEO Optical-electro-optical. 10

OLO Optical local oscillator. 25

OLS optical line system. 12, 23, 32

OLSs optical line systems. 11

OSE Optical Switching Element. 56

OSEs Optical Switching Elements. 20, 44, 45

OSNR Optical Signal-to-Noise Ratio. 50, 55, 57

OXC Optical cross connect. 21, 23

PBSs Polarization beam splitters. 24, 25

PIC Photonic integrated circuit. 16, 46
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Acronyms

PICs Photonic integrated circuits. 43

PMD Polarization-mode dispersion. 10, 26, 27, 60

PONs Passive optical networks. 6, 14

PS Probabilistic shaping. 60

QoT Quality of transmission. vi, 12, 27, 30, 33–35, 43, 44, 46, 47, 50, 56–58, 62,
64, 68, 69, 99, 100

ROADM Reconfigurable optical add-drop multiplexer. 15, 21, 23, 32, 35, 37, 62,
70

ROADMs Reconfigurable optical add-drop multiplexers. 6, 10, 11, 36, 42

RWA Routing and Wavelength Assignment. vi, 35–39, 62, 63

SDM Spatial-division multiplexing. 22, 23, 60, 61, 69–77, 81, 82, 88, 90, 91, 100,
101

SDN software-defined networking. 7–12, 21, 42, 43

SNAP Statistical Network Assessment Process. 62, 100

SNR Signal-to-Noise ratio. 30, 32, 33

SOAs Semiconductor Optical Amplifiers. 32

SRS Stimulated Raman Scattering. 14, 29, 32, 33, 61

SSMF Standard Single-Mode Fiber. 28, 33

TDFA Thulium Doped Fiber Amplifier. 15, 23, 30, 34, 69

TDFAs Thulium Doped Fiber Amplifiers. 34

TF TensorFlow©. 48

UWB Ultra wideband. 60

WB Waveband. 22, 23, 92, 94

WBSS Waveband selective switch. vi, 21

WDM Wavelength division multiplexing. 2, 13, 16, 25, 26, 28, 30, 31, 35, 36, 42,
59, 60, 62
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Acronyms

WL Wavelength. 23, 92, 94

WSS Wavelength selective switch. 15, 16, 21, 23, 43, 68–70, 76, 88
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