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Atomizing firewall policies for
anomaly analysis and resolution
Daniele Bringhenti, Simone Bussa, Riccardo Sisto, Fulvio Valenza

Abstract—Nowadays, the security management of packet fil-
tering firewall policies got complicated due to the evolution
of modern computer networks, characterized by growing size
and heterogeneity of communications. The traditional manual
approaches for configuring firewalls have become error-prone,
unoptimized and time-consuming, leading to an increasing num-
ber of policy anomalies, including both sub-optimizations and
conflicts. In literature, the techniques proposed for anomaly man-
agement have several shortcomings, as their anomaly analysis is
usually excessively complex, while their anomaly resolution can-
not solve all anomalies. In order to overcome these shortcomings,
this paper proposes a comprehensive approach for firewall policy
anomaly analysis and resolution, based on the formal concept of
atomic predicates. This approach has the aim to simplify the
anomaly management operations, make them efficient and solve
all configuration anomalies. The achievement of these objectives
has been experimentally proved through the validation of a
framework which implements the proposed approach, and whose
time performance and anomaly management efficiency have been
compared with the relevant alternative approaches.

Index Terms—firewall, policy anomaly management, policy-
based systems

I. INTRODUCTION

Packet filtering firewalls represent the most commonly used
security function type to protect computer networks from
undesired or malicious traffic. They may be deployed at the
network edge as a first defense line to stop external cyber
attacks, but also at the network core so as to block unautho-
rized traffic [1]. The behavior of a firewall is determined by its
policy, characterized by a rule list establishing which packet
classes must be discarded and which ones can be forwarded
toward their destination.

The recent evolution of next-generation computer networks
poses new challenges for the management of firewall policies.
Modern networks, such as the ones based on virtualization
paradigms, have introduced higher dynamism and agility,
with which all network management operations must com-
ply. Besides, they are characterized by increasing size and
heterogeneity of communications. Networks based on the
Internet-of-Things technology exemplify how everyday unsafe
devices can connect to each other, opening a multitude of
communications that administrators should take care of. Due to
this higher complexity, the traditional manual approaches used
by network administrators for configuring firewall policies
have become even more error-prone, unoptimized, and time-
consuming [2]. Those approaches could work with small-
sized networks, where everything was almost static and under
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the direct control of a human user, while they now lead to
an increasing number of misconfigurations. Moreover, after
a cyber attack is detected, an administrator introduces new
rules or removes existing ones from a firewall policy as fast
as possible, and the urgency of this operation may introduce
further problems in the configuration [3].

All these misconfigurations due to manual approaches can
cause anomalies among firewall policy rules, which can be cat-
egorized as sub-optimizations and conflicts. Sub-optimizations
occur when different policy rules enforce the same filtering
action on the same packet class, and when removing a sub-
optimal rule does not change the firewall behavior. Their
presence may decrease the filtering performance and increase
the complexity of firewall management. Instead, conflicts are
characterized by the application of opposite actions of different
rules on the same packets, thus causing an undesired firewall
behavior. They may lead to discarding benign traffic, or
creating new vulnerabilities to be exploited by attackers.

Identifying and removing all the anomalies appearing in
a firewall policy is essential. The two policy management
operations that address these two problems are, respectively,
anomaly analysis and resolution, which share a strong connec-
tion with each other. First, as described in the survey by Jabal
et al. [4], anomaly analysis represents a preliminary step of the
anomaly management process, as it consists in assessing the
correctness, consistency, and minimality of security policies,
with the objective of identifying all their anomalies (e.g.,
errors and sub-optimizations). In the literature about anomaly
analysis, several anomaly classification schemes have been
proposed, even though all proposed anomaly classes are still
sub-classes of sub-optimizations and conflicts. Then, anomaly
resolution works on the anomalies identified by anomaly
analysis. Its goal is to remove the conflicts to guarantee a
correct firewall behavior, and the sub-optimizations to improve
the efficiency of the filtering operations. Several studies have
been proposed in literature about these two operations, but
they still have limitations. On the one hand, even if several
anomaly analysis approaches proposed in literature are accu-
rate and detailed, e.g., the ones described in [5]–[8], they are
excessively complex. Besides, most of the existing anomaly
analysis approaches do not provide sufficient guidelines to
help the administrator resolve the identified anomalies, nor
do they provide (semi-)automatic resolution methods coupled
with them. As a result, the human administrator is left with
having to read the reports produced by those anomaly anal-
ysis tools and risks introducing more anomalies because he
must apply manual changes that may introduce new sub-
optimizations and conflicts, which were not present when the
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anomaly analysis algorithms were run. On the other hand,
approaches that perform anomaly resolution (e.g., [9]–[12])
are not able to solve all anomalies, as it is difficult to identify
all the packet classes for which an anomaly type exists in a
firewall configuration. Moreover, many of them do not have
optimal performance, and do not leave the possibility for the
administrator to guide the anomaly resolution.

This paper aims to fill these existing literature gaps by
proposing an alternative method for firewall policy anomaly
analysis and resolution that can simplify those operations,
make them efficient and solve all configuration anomalies at
the same time. To this purpose, the main contributions of this
paper are the following.

First, we propose a simplified anomaly analysis algorithm.
The proposed method uses the concept of atomic predicate,
derived from the studies by Yang and Lam [13], [14], for
the representation of the packet classes identified by firewall
rule conditions. The application of this idea leads to divide
the packet space into disjoint packet classes, and to create an
alternative representation of the firewall policy, named atom-
ized policy. It is thus possible to identify an anomaly between
rules of this atomized policy if their conditions are represented
by the same atomic predicate, i.e., if they identify the same
packet class. The anomalies thus identified can be duplications
or contradictions, depending on whether the actions involved
in those anomalies are the same or different. In this way, we
achieve a simple and intuitive correspondence to the previously
mentioned two classes into which all misconfigurations can
be categorized (i.e., sub-optimizations and conflicts). In fact,
duplications that may appear in atomized policies are sub-
optimizations, while contradictions are conflicts.

Second, we propose an efficient anomaly resolution al-
gorithm that works on the anomalies identified with the
approach based on atomic predicates. This algorithm allows
the creation of a completely anomaly-free firewall policy,
where each rule is disjoint from the others, and it allows
to solve the full amount of anomalies that may afflict a
firewall policy, independently of they type (i.e., contradiction
or duplication). The capability of our algorithm to solve all
anomalies in any firewall policy represents a main novelty of
our proposal, enabled by the atomic predicate usage, whereas
several other state-of-the-art approaches can only solve a
limited number of anomalies, after having identified all of
them. The proposed resolution strategy also provides high
flexibility and user-friendliness, because it supports both a
human-assisted anomaly resolution mechanism, and automatic
ones based on general requirements requested by the user (e.g.,
a user may specify that, in case of conflict for the action
to be applied on a packet class, “deny” is enforced on it).
Besides, as these automatic and semi-automatic mechanisms
for anomaly resolution are strictly coupled with the proposed
anomaly analysis algorithm, our approach does not expose the
administrator to introduce new anomalies, because the human
user is not left alone in solving the identified ones.

The framework that we developed for implementing this
approach has been validated to assess its efficiency and effi-
cacy. In particular, execution time performance and anomaly
management efficiency (i.e., percentage of solved anomalies)

are the metrics used in a comparison validation with relevant
related work. To provide insight regarding this comparison,
our algorithm takes 27s to identify the anomalies in a policy
of 90 rules, compared to the 245s taken by the algorithm of
Al-Shaer et al. [6]). Besides, it can solve the anomalies in
a policy of 132 rules in 0.57s, while the combination and
greedy algorithms proposed by Hu et al. [12] take 9.9s e 8.2s,
respectively. Besides, our approach can solve all anomalies,
while the algorithms of Hu et al. reach lower efficiency (e.g.,
86% and 67% for the previously mentioned policy).

The remainder of this paper is structured as follows. Section
II discusses related work, highlighting their limitations that our
proposal aims to overcome. Section III provides a comprehen-
sive overview of the approach that we propose for both firewall
policy anomaly analysis and resolution. Section IV formalizes
all the operations of the algorithm. Section V describes the
implementation of the proposed approach, and discusses the
results of its validation. Section VI discusses possible limita-
tions in the applicability of the proposed algorithm. Finally,
Section VII draws conclusions and outlines future work.

II. RELATED WORK

This section discusses related work about firewall policy
management, describing the main limitations of related stud-
ies about anomaly analysis (Subsection II-A) and resolution
(Subsection II-B), and highlighting how the approach proposed
in this paper aims to overcome them. It also discusses other
formal network management approaches based on the atomic
predicate concept, underlining how they leverage that principle
to address different problems (Subsection II-C). Many consid-
erations included in this section are based on the findings of
the survey carried out by Jabal et al. in [4], which represents
the most complete investigation of this literature field.

A. Firewall policy anomaly analysis

The milestone study for firewall policy anomaly analysis
is the paper by Al-Shaer and Hamed [5], which lays the
foundations for all next anomaly detection strategies. Their
study proposes a categorization of all anomalies that may
arise among intra-firewall policy rules, i.e., filtering rules that
are part of the configuration of the same firewall instance.
Specifically, it identifies four intra-firewall policy anomaly
classes: shadowing, correlation, generalization, and redun-
dancy anomalies. This preliminary study was extended by Al-
Shaer et al. [6], so as to propose an anomaly classification
scheme that may also apply to inter-firewall policy rule anoma-
lies, so as to detect sub-optimizations and conflicts that may
arise due to the configuration of multiple serially-connected
firewalls.

Both studies propose simple algorithms to identify firewall
anomalies for which they present the respective classifica-
tion schemes. Therefore, next studies tries to improve them,
alongside with alternative classification schemes. The next
most significant studies which propose anomaly detection
techniques are [7], [8], [15]. First, the static analysis approach
proposed by Yuan et al. [7], named FIREMAN, models
firewall rules using binary decision diagrams. It can thus
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use them to execute a symbolic model checking technique
covering every path of those diagrams, so that the firewall
configuration is analyzed for all possible IP packet classes.
Second, Golnabi et al. [8] extend Al-Shaer et al.’s analysis
using a data mining technique, named association rule mining.
The anomaly detection based on this mining technique exposes
many hidden but not detectable anomalies by analyzing only
the firewall policy rules. In particular, such approach allows
the identification of two new non-systematic misconfiguration
anomalies: blocking existing service and allowing traffic to
non-existing service anomalies. The first misconfiguration case
blocks legitimate traffic from a trusted network to an “existing”
service, while the other case of the misconfiguration permits
traffic destined for a non-existing service. Then, Bouhoula et
al. [15] propose a different approach, based on an inference
system to detect intra-firewall policy anomalies. They use
the inference system to construct a tree representation of the
policy, so that this process stops the construction of a specific
branch when no anomaly is found.

The main limitations of all these studies are that their
analysis techniques are very complex, even if accurate and
detailed, and that they are not paired with anomaly resolution
strategies. As these studies were published between 2003 and
2008, they were the first attempt at addressing problems related
to firewall policy management and could solve it only partially.
Specifically, after the strategies proposed in these studies
identify an anomaly, they are not removed or solved from the
original policy. Therefore, human administrators would still be
responsible for solving the detected anomalies, with the risk
of introducing others. Besides, the extensions introduced by
all studies that followed [6] were not extensive and did not
have the same impact, so [6] remains a main reference for
anomaly analysis (but not for resolution).

Our approach aims to overcome all these limitations. On the
one hand, it is based on a simpler analysis technique. The sim-
plicity derives from the fact that it can be applied to a simpler
representation of the firewall policy rules, based on the atomic
predicate concept, where only duplications and contradictions
may be present. On the other hand, our proposed approach also
embeds multiple variants of an anomaly resolution algorithm,
so that either the anomalies are automatically solved or human
administrators are assisted in their resolution.

B. Firewall policy anomaly resolution

A second class of studies ( [11], [12], [16]–[21]) also
include anomaly resolution for traditional firewall policies, to
go beyond proposing a simple variant or minimal extension
of existing anomaly analysis techniques. However, all of them
have shortcomings that our approach aims to overcome.

Some of these approaches ([16], [17]) can only detect and
solve sub-optimizations. On the one hand, Liu et al. [16]
address the problem of identifying and removing two sub-
optimization categories, named upward redundant rules and
downward redundant rules. Upward redundant rules are rules
that are never matched, whereas downward redundant rules
are rules that are matched but enforce the same action as
rules with lower priority. Their technique uses a model based

on a data structure named firewall decision diagram. On the
other hand, Jeffrey et al. [17] suggest using a SAT solver
for redundancy analysis. Their problem formulation reduces
complexity, and achieves higher performance. Differently from
this group of studies, our approach can also identify and
solve contradictions which arise when the conditions of rule
with different actions match the same packets. Nonetheless,
contradictions also represent the most dangerous anomaly type
for a firewall configuration.

Instead, Cuppens at al. [18] propose an anomaly resolution
approach for solving two intra-firewall policy anomaly types
among the ones that were originally defined in [5]: shadowing
and redundancy anomalies. Their technique has also been later
extended to support inter-firewall anomaly analysis [19]. The
same technique has been adopted by the same authors in
MIRAGE [20], where they address the resolution problem
only for shadowing and redundancy anomalies. The authors
motivate their choice stating that those two cases are the ones
they consider as serious errors within firewall configurations.
However, as extensively demonstrated by the literature about
firewall anomaly analysis discussed in Subsection II-A, limit-
ing a study to those two anomaly classes may hinder a correct
and efficient behavior for a firewall. Besides, the resolution
strategy proposed in MIRAGE [18]–[20] is fully automated,
and therefore it does not allow a human user to take decisions
in solving the anomalies. Differently from them, our approach
aims to address all the possible firewall policy anomalies, and
also allows human users to be assisted in solving them if they
require it.

The proposal by Hu et al. [11], [12] represents the main
proposal among the ones about traditional firewall policy
anomaly resolution for its impact on this research area. In
fact, by proposing a rule-based segmentation technique, a
grid-based representation to identify policy anomalies, and a
policy reordering algorithm for anomaly resolution, this study
represents a significant step ahead with respect to the previous
literature. Specifically, it broadens the addressed anomaly
categories to all the ones defined in [5], and it introduces the
idea of dividing the packet spaces representing rule conditions
into sub-spaces to identify possible intersections. Nevertheless,
this study has two main limitations to respect to our proposal.
First, the anomaly resolution algorithm does not directly used
the information derived from the segmentation of the rule
condition packet spaces, which thus has a validity restricted
to anomaly analysis. Second, their reordering algorithm does
not guarantee that all policy conflicts and sub-optimizations
are actually removed, because there may be cases where
no ordering can be found to achieve a complete anomaly
resolution.

More recently, also Li et al. [22] has proposed a priority-
based anomaly-free mechanism to resolve anomalies by ad-
justing the priority of existing rules instead of rewriting them.
However, despite being published more recently, their study
shares the same limitations as the one by Hu et al. [11],
[12] (i.e., reordering the rules of an existing policy does not
guarantee that all anomalies are solved), and its applicability
is less broad because only validated for 5G-based networks.

With the advent of network virtualization, Software-Defined
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Networking (SDN) reshaped the traditional vision of network
infrastructures, providing higher flexibility and dynamism in
the creation of service function graphs, and improved mech-
anisms for traffic control [23]. In this context, SDN switches
may be configured by network controllers with protocols,
such as OpenFlow, to behave as firewalls. Therefore, the joint
problem of anomaly analysis and resolution has also been
investigated for this type of filtering function. However, the
proposed solutions in literature are not as feature-complete as
our approach. On the one hand, some proposed techniques
can only solve specific classes of anomalies. Specifically, the
FlowGuard algorithm discussed by Hu et al. [24] can only
solve conflicts with overlapped IP address spaces, but cannot
manage conflicts among multiple packet header fields. Instead,
Li et al. [25] only focus on the resolution of conflicts related
to covert channel attacks, while Cui et al. [26] address the
problem for transaction conflicts. On the other hand, few other
studies cover a broader range of anomaly types, but still in a
limited way. In the approach proposed by [27], the resolution
of interpretive conflicts leads to loss of information. Instead,
the method by Asif et al. [28] bases the resolution algorithm
on merging rule conditions and is more feature-complete than
the other alternatives. Still, it does guarantee that, in the end,
the computed rules are disjoint as there are no atomic rules, but
represents a step ahead in literature with respect to previous
studies about SDN switch anomalies.

In summary, to the best of our knowledge, our approach is
characterized by manifold features which overcome existing
limitations of the state of the art. First, it proposes a joint
algorithm for firewall policy anomaly analysis and resolution,
instead of focusing on a single operation. Second, it sim-
plifies anomaly analysis, thanks to the policy representation
based on atomic predicates. Third, the proposed resolution
algorithm aims to solve all anomalies, differently from the
other strategies which only order rules of an existing policy
without guaranteeing that all anomalies are removed. Fourth,
our approach is efficient in terms of performance, as also
experimentally shown in Subsection V-C.

C. Formal network management approaches based on the
concept of atomic predicates

The concept of atomic predicates was originally proposed
by Yang and Lam in [13], [14]. According to their defini-
tion, given a set of initial predicates, it is possible to apply
an algorithm on them to compute a derived set of atomic
predicates, which is proved to be minimum and unique. The
main property of this set is that each given predicate is equal
to the disjunction of a subset of atomic predicates. Besides,
as each atomic predicate is unique, it can be assigned an
integer number, and each initial predicate can be stored and
represented as a set of integers identifying the atomic predi-
cates that compose it. Through this property, the operations of
conjunction and disjunction of two predicates become easier,
because they can be computed respectively as the intersection
and union of two sets of integers, i.e., the ones representing
the atomic predicates that compose the two predicates.

Yang and Lam initially apply the atomic predicate concept
to real-time verification of network properties such as loop
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Fig. 1: Workflow of the proposed approach

detection, black hole detection, network slice isolation, and
required waypoints [13], and they also show the feasibility of
their proposal to networks composed of packet transformers
[14]. Following studies leverage this concept to solve the
same problem, i.e., verification of data plane properties, but by
introducing some incremental features. In particular, Berardi et
al. [29] use atomic predicates to verify that a 5G network could
be resistant against hijacking and denial-of-service attacks,
Zhang et al. [30] use them to detect a security threat existing
in software-defined networks called firewall bypass. Some
proposals by Zhang et al. [31] and Guo et al. [32] aim to
improve the speed through which the verification of network
properties is performed. Instead, three other studies try to
leverage atomic predicates to solve peculiar problems: service
function chaining [33], network security policy refinement
[34], and to improve network management tasks, such as
dataplane refactoring and network debugging [35].

Most of these studies share the basic algorithm for atomic
predicate computation, but then they leverage the actual
predicates to solve different problems. We also used atomic
predicates as a starting point for our proposal. However, on
the one hand, we had to customize the atomic predicate
computation algorithm to work with formal models of firewall
policy rules. On the other hand, we used them to address a
problem, that is anomaly analysis and resolution, for which
atomic predicates have never been previously used.

III. THE ATOMIZING APPROACH FOR FIREWALL POLICY
ANOMALY ANALYSIS AND RESOLUTION

This section provides a complete overview of the proposed
approach, whose workflow is illustrated in Fig. 1. In particular,
it describes how it applies the concept of atomic predicates for
the representation of firewall policies (Subsection III-A), how
it performs firewall policy anomaly analysis (Subsection III-B)
and resolution (Subsection III-C), and how it rewrites the
firewall policy in an anomaly-free representation (Subsection
III-D). Besides, the applicability of the proposed approach to
mainstream firewall solutions, and possible extensions for the
management of policy anomalies related to other firewall types
or for the management of inter-firewall anomalies are also
discussed (Subsection III-F).

TABLE I and Fig. 2a are used to provide a clarifying
example about all the operations of the proposed approach.

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3495230

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



5

(a) Packet spaces of the firewall rules (b) Atomic predicates of rule conditions (c) Predicates compliant to firewall rules

Fig. 2: Geometric representation of firewall rule packet spaces and atomic predicates

TABLE I: Original firewall policy 𝑅

# Action IPSrc IPDst pSrc pDst Proto

𝑟1 Allow [130.11.2.16, 130.11.2.100] [42.0.2.32, 42.0.2.86] ∗ ∗ ∗
𝑟2 Allow [130.11.2.16, 130.11.2.42] [42.0.2.42, 42.0.2.60] ∗ ∗ ∗
𝑟3 Deny [130.11.2.84, 130.11.2.146] [42.0.2.22, 42.0.2.42] ∗ ∗ ∗
𝑟4 Deny [130.11.2.4, 130.11.2.26] [42.0.2.2, 42.0.2.28] ∗ ∗ ∗

TABLE II: Atomized firewall policy 𝑅𝛼

# (original) # (atomic) Action Condition

𝑟1

𝑟𝛼1 Allow AP1
𝑟𝛼2 Allow AP2
𝑟𝛼3 Allow AP3

𝑟2 𝑟𝛼4 Allow AP2

𝑟3
𝑟𝛼5 Deny AP3
𝑟𝛼6 Deny AP4

𝑟4 𝑟𝛼7 Deny AP5

TABLE I lists four rules belonging to the same firewall policy
for which some anomalies exist, whereas Fig. 2a graphically
depicts the packet spaces matching their conditions. They can
be geometrically represented as penteracts, which are five-
dimensional hypercubes, as also shown in studies such as [36]–
[38]. Each dimension of the hyperspace where these penteracts
lie corresponds to one of the five fields of the IP 5-tuple over
which the firewall rule condition is defined, i.e., source and
destination IP addresses (IPSrc, IPDst), source and destination
ports (pSrc, pDst), protocol type (Proto). Here, for sake of
visualization simplicity, the conditions of all rules specified in
TABLE I only select packets depending on the values of their
source and destination IP addresses. In this way, it is possible
to represent their packet spaces as rectangles in a 2-space.

A. Atomized firewall policy creation

The first step of our approach, shown in Fig. 1, consists
in writing the original firewall policy, symbolized as 𝑅,
in an alternative representation, named atomized policy and
symbolized as 𝑅𝛼. In order to achieve this objective, it is first
required to model the packet spaces represented by the firewall
rule conditions as predicates. Then, these potentially complex
predicates are split into disjoint simpler predicates, named
atomic predicates, where each one represents a specific packet
sub-class. Each one of these simpler predicates represents
either the intersection among the predicates representing rule
conditions, or the packet sub-space that each rule condition
does not have in intersection with others. After these prelimi-
nary operations, the atomized policy 𝑅𝛼 can be finally created
by decomposing the original rules of 𝑅 into multiple rules,

TABLE III: Atomic predicate division in sub-rectangles

Atomic predicate Division in sub-rectangles

AP1 𝑞11 ∨ 𝑞12 ∨ 𝑞13
AP2 𝑞21
AP3 𝑞31
AP4 𝑞41 ∨ 𝑞42
AP5 𝑞51

# IPSrc IPDst pSrc pDst Proto

𝑞11 [130.11.2.16, 130.11.2.100] [42.0.2.60, 42.0.2.86] ∗ ∗ ∗
𝑞12 [130.11.2.42, 130.11.2.100] [42.0.2.42, 42.0.2.60] ∗ ∗ ∗
𝑞13 [130.11.2.16, 130.11.2.100] [42.0.2.32, 42.0.2.42] ∗ ∗ ∗
𝑞21 [130.11.2.16, 130.11.2.42] [42.0.2.42, 42.0.2.60] ∗ ∗ ∗
𝑞31 [130.11.2.84, 130.11.2.100] [42.0.2.32, 42.0.2.42] ∗ ∗ ∗
𝑞41 [130.11.2.100, 130.11.2.146] [42.0.2.32, 42.0.2.42] ∗ ∗ ∗
𝑞42 [130.11.2.84, 130.11.2.146] [42.0.2.22, 42.0.2.32] ∗ ∗ ∗
𝑞51 [130.11.2.4, 130.11.2.26] [42.0.2.2, 42.0.2.28] ∗ ∗ ∗

TABLE IV: Rewritten anomaly-free firewall policy 𝑅𝜙

# Action IPSrc IPDst pSrc pDst Proto

𝑟
𝜙

1 Allow [130.11.2.16, 130.11.2.100] [42.0.2.60, 42.0.2.86] ∗ ∗ ∗
𝑟
𝜙

2 Allow [130.11.2.16, 130.11.2.42] [42.0.2.42, 42.0.2.60] ∗ ∗ ∗
𝑟
𝜙

3 Allow [130.11.2.42, 130.11.2.100] [42.0.2.42, 42.0.2.60] ∗ ∗ ∗
𝑟
𝜙

4 Allow [130.11.2.16, 130.11.2.84] [42.0.2.32, 42.0.2.42] ∗ ∗ ∗
𝑟
𝜙

5 Deny [130.11.2.4, 130.11.2.26] [42.0.2.2, 42.0.2.28] ∗ ∗ ∗
𝑟
𝜙

6 Deny [130.11.2.84, 130.11.2.146] [42.0.2.22, 42.0.2.42] ∗ ∗ ∗

named atomic rules. In particular, for each atomic predicate
into which the condition of a rule of 𝑅 is split, an atomic rule
is created in 𝑅𝛼, having that atomic predicate as condition and
the same action of the rule from which it derives.

The creation of this atomized firewall policy is inspired by
the idea of atomic predicates originally proposed in [13], [14].
According to those studies, given a set of predicates on packet
fields, it is possible to compute the set of totally disjoint
and minimal predicates, named atomic predicates, such that
each predicate can be expressed as a disjunction of a subset
of atomic ones. Applying this concept to a firewall policy,
it is possible to split each complex predicate representing
a rule condition into a disjunction of simpler and minimal
atomic predicates, each one representing a sub-space of the
packet space identified by the condition itself. Each atomic
predicate can thus be used as condition of an atomic rule.
This guarantees a fine granularity level, as each packet sub-
space considered for anomaly analysis is the minimal one.
As all atomic predicates are disjoint for definition, each one
can also be associated with an integer number that uniquely
identifies it, thus simplifying all operations on them. Besides,
this transformation based on atomic predicates decomposes
complex predicates into simpler predicates, preserving all
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original information without adding any more or removing
any. Therefore, its application does not sacrifice soundness or
completeness.

The atomized policy that is created starting from the ex-
ample of TABLE I and Fig. 2a is reported in TABLE II and
graphically shown in Fig. 2b. The original rule 𝑟1 is divided
into three atomic rules: 𝑟𝛼1 , 𝑟𝛼2 , and 𝑟𝛼3 . The condition of 𝑟𝛼1
is the atomic predicate AP1, which represents the packet sub-
space of the condition of 𝑟1 that is not intersected with any
rule condition. The condition of 𝑟𝛼2 is the atomic predicate
AP2, which represents the packet sub-space of the condition
of 𝑟1 that is intersected with the condition of 𝑟2. Similarly, the
condition of 𝑟𝛼3 is the atomic predicate AP3, which represents
the packet sub-space of the condition of 𝑟1 that is intersected
with the condition of 𝑟3.

The condition of rule 𝑟2 is totally represented by a single
atomic predicate, AP2, because it is entirely intersected with
the condition of 𝑟1. Therefore, a single atomic rule 𝑟𝛼4 having
AP2 as condition derives from 𝑟2. Similarly as for 𝑟1, multiple
atomic rules derives from 𝑟3: the atomic rule 𝑟𝛼5 with condition
AP3, representing the intersection with the condition of 𝑟1, and
the atomic rule 𝑟𝛼6 with condition AP4, representing the non-
intersected packet sub-space. Finally, the condition of rule 𝑟4
has no intersections, so a single atomic rule 𝑟𝛼7 with the atomic
predicate AP5 as condition is derived.

B. Firewall policy anomaly analysis

After computing all atomic rules, it is possible to identify
the presence of an anomaly for a pair of them if their
conditions are represented by the same atomic predicate. In
fact, this means that there is an intersection between the packet
spaces representing the packets that match the conditions of
the original rules from which the two atomic ones derive.

Depending on the rule actions, only two anomaly types
satisfying this definition exist: (i) a duplication, if the two
atomic rules have the same atomic predicate as condition and
have the same action (i.e., both actions are “allow“ or “deny“);
(ii) a contradiction, if the two atomic rules have the same
atomic predicate as condition and have different actions (i.e.,
an action is “allow“, the other is “deny“).

Thanks to the previous creation of the atomized firewall
policy, the method for anomaly analysis is much easier than
state-of-the-art alternatives, and understanding how firewall
rules are sub-optimal or contradicting is more intuitive for
human administrators.

For example, considering again Fig. 2b, which depicts the
sub-spaces related to the atomic predicates representing the
conditions of the atomic rules of TABLE II, two anomalies
can be easily identified. On the one hand, the atomic predicate
AP2 represents the condition of both atomic rules 𝑟𝛼2 and 𝑟𝛼4 .
The anomaly associated to the relationship between these two
atomic rules is a duplication, because the actions of both rules
are “allow”. On the other hand, the atomic predicate AP3
represents the condition of both atomic rules 𝑟𝛼3 and 𝑟𝛼5 . In
this case, the associated anomaly is a contradiction, because
the action of 𝑟𝛼3 is “allow”, while the action of 𝑟𝛼5 is “deny”.

C. Firewall policy anomaly resolution

After all duplications and contradictions have been identi-
fied, the next step of the proposed methodology consists in
resolving them, by deciding which action must be applied to
any packet sub-space represented by an atomic predicate which
is the condition of multiple atomic rules. The output of these
decisions will be used to rewrite the original firewall policy
so as to make it anomaly free.

The decision process to establish the action to be applied on
a packet sub-space represented by an atomic predicate which
is the condition of a pair of atomic rules varies depending
on the anomaly type. If the anomaly is a duplication, the
decision is trivial, because the action is the same as those of
the original rules. Instead, if the anomaly is a contradiction, the
resolution is not immediate and it requires a specific resolution
strategy selected by the user. In particular, two alternative
classes of resolution strategies are envisioned in our method:
human-assisted and automatic resolution. In the former, the
user is asked to take a decision for each contradiction, while
duplications are automatically solved as previously explained.
This strategy is named human-assisted, because all decisions
related to contradiction resolution are manually taken by a
human. In the latter, all decisions are automatically taken,
according to a guideline specified by the user. Examples of
automatic resolution strategies are: (i) deny-win, if the “deny”
action must be applied on all the packets related to an anomaly;
(ii) allow-win, if the “allow” action must be applied on all the
packets related to an anomaly; (iii) priority-win, if the action to
be applied on all the packets related to an anomaly is the action
of the rule having higher priority. Our approach is flexible
enough to support other automatic resolution strategies, which
can be introduced without altering the flow of the methodology
(e.g., the action that is enforced is the one of the firewall rule
that has been introduced in the configuration earliest). Besides,
the simplicity of this anomaly resolution technique is precisely
one of the strengths of our proposal. This degree of simplicity
is possible because atomic predicates are used to create atomic
rules.

For example, let us consider again the atomized policy of
Fig. 2b and TABLE II, and suppose that a deny-win resolution
strategy is selected by the user. The atomic predicate AP2 is
associated with an anomaly of type duplication, and therefore
the action that must be enforced on the packets represented
by AP2 is simply “allow”, which are the same as those of the
two duplicated atomic rules 𝑟𝛼2 and 𝑟𝛼4 . Instead, the two atomic
rules that have the atomic predicate AP3 as condition, 𝑟𝛼3 and
𝑟𝛼5 , are in contradiction, because their actions are opposite. In
view of the selected strategy, the “deny” action must be thus
enforced on the packets identified by AP3.

D. Firewall anomaly-free policy rewriting

As shown in Fig. 1, the final operation of the approach
consists in rewriting the original firewall policy so as to make
it anomaly free, avoiding that a packet sub-space matches
with the condition of more than one rule of the rewritten set.
This operation employs the output of the previous decisions
about which action must be applied to any packet sub-space
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represented by an atomic predicate. The resulting firewall
policy is symbolized as 𝑅𝜙 .

This operation should ensure that, for each packet sub-space
identified by an atomic predicate, only the action decided in
the previous step is performed, and it is part of the condition
of at most one rule. In particular, if all the packet sub-
spaces represented by the atomic predicates intersecting with
an original rule condition are still managed with its action
and neither of them is included in the condition of a rule of
the new policy that is being created, then the original rule is
simply preserved in the new anomaly-free policy. Otherwise,
for each packet sub-space of the original rule condition that
is not already included in the condition of a rule of the
new policy that is being created, a separate new rule is
created, characterized by the corresponding atomic predicate
as condition and the action decided in the previous step.

However, it is not always possible to create rules with
atomic predicates themselves as conditions because some may
represent packet sub-spaces that cannot be expressed as well-
formed firewall conditions. Fig. 2c and TABLE III are here
used to clarify this concept, as they show how each atomic
predicate can be divided into rectangular sub-spaces. In fact,
an atomic predicate can be used as a rule condition if its
shape is rectangular, as it means that its source and destination
IP addresses can be expressed as two intervals of contiguous
values. Considering, for example, the sub-spaces expressed by
atomic predicates AP2, AP3 and AP5 of Fig. 2b, their division
in sub-rectangles reported in Fig. 2c and TABLE III show
that each one of them is a rectangle by itself (𝑞21, 𝑞31, and
𝑞51, respectively). Consequently, they may be directly used
as well-formed rule conditions. Instead, considering the sub-
spaces expressed by atomic predicates AP1 and AP4 of Fig. 2b
as another example, they are not rectangular. As graphically
depicted in in Fig. 2c and shown in TABLE III, the packet
sub-space of AP1 can be divided into three sub-rectangles 𝑞11,
𝑞12, and 𝑞13, while the the packet sub-space of AP4 can be
divided into two sub-rectangles 𝑞41 and 𝑞43. It is thus possible
to create firewall rules with these sub-rectangles as conditions.

Even if this algorithm may create a larger policy than the
original one, nowadays this does not represent a serious issue
for some modern implementations of packet filtering firewalls,
which do not use a linear search anymore, but strategies that
are even more efficient if applied on disjoint rules [39], [40].
At the same time, as expanding the number of rules excessively
would require a larger amount of memory, which is a scarce
resource in firewalling devices, as previously explained, the
proposed algorithm for final policy rewriting tries to keep
the original aggregated rule whenever possible, i.e., if all the
packet sub-spaces defined by atomic predicates intersecting
with that original rule are still associated with its action, and
none are already covered by another rule in the new policy.

TABLE IV reports the rewritten anomaly-free firewall pol-
icy 𝑅𝜙 , supposing again that a deny-win strategy has been
selected to solve the anomalies of the atomized policy in
TABLE II. According to the result of anomaly resolution, the
packet sub-space represented by the atomic predicate AP2 is
associated with the “allow” action, while the packet sub-space
represented by the atomic predicate AP3 is associated with

the “deny” action. Therefore, the original rules 𝑟2 and 𝑟4 are
directly preserved in the rewritten policy, where they are 𝑟

𝜙

2
and 𝑟

𝜙

6 , because their conditions are fully represented by AP2
ane AP3 respectively, and their actions are the same as those
decided in the resolution step. Then, as 𝑟3 does not have any
anomaly with other rules and its condition is fully represented
by the single atomic predicate AP5, then it can be preserved as
well, and it is included in the anomaly-free policy as 𝑟

𝜙

5 . The
only packet sub-space that still needs to be covered in the final
policy 𝑅𝜙 is the one represented by the atomic predicate AP1.
However, this sub-space is not well formed for representing a
rule condition, as it is not a rectangle. Therefore, three separate
rules (𝑟 𝜙1 , 𝑟 𝜙3 , and 𝑟

𝜙

4 ) are created, having as conditions the
packet sub-spaced represented by 𝑞11, 𝑞12, and 𝑞13.

E. Contributions of the designed approach

Even if the proposed approach has been designed using the
atomic predicate computation algorithm as a starting point, it
provides several contributions to the related literature, which
can be clarified now that all the steps of the designed workflow
have been described.

The algorithm for atomic predicate computation is used
only for a single operation included in the first stage of the
workflow depicted in Fig. 1, i.e., for transforming the predi-
cates representing the initial firewall policy conditions into the
corresponding atomic predicates. Then, after this preliminary
step, all the next steps of our approach have been designed by
us without leveraging or customizing any other existing algo-
rithm of the literature. In other words, the rest of the method
for the creation of the atomized policy (Subsection III-A),
the simplified anomaly analysis strategy based on the new
anomaly classification scheme characterized by contradictions
and duplications (Subsection III-B), the anomaly resolution
method with the resolution strategy choices involving the
human user (Subsection III-C), and the anomaly-free policy
rewriting (Subsection III-D) are entirely new and represent
the main contributions offered by our design. Therefore, the
atomic predicates computation algorithm, used at the first
stage, simply represents a starting point, allowing us to design
a completely new methodology, which goes beyond what the
literature described in Section II offers. Moreover, also the
design for the atomic predicate computation algorithm has
been customized, as it will be explained and formalized in
Section IV-A.

F. Applicability and possible extensions of the proposed ap-
proach

The proposed approach has been designed to be applied
successfully to practical mainstream packet filtering firewall
products.

Typically, those firewalls are characterized by a resolution
strategy (e.g., First Matching Rule, Deny Takes Precedence,
Most Specific Takes Precedence) determining which action
must be applied to packets matching the conditions of multiple
rules. Thanks to this, even if a rule ordering is afflicted by
anomalies (e.g., a rule is shadowed by another one with higher
priority), the application of a specific resolution strategy may
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sometimes hide the existence of those anomalies, which will
not thus impact the filtering outcome. For this reason, the
literature defines them as “potential anomalies”, because they
may potentially impact the correct decisions of a firewall, and
thus become “real anomalies”, only depending on the used
resolution strategy. However, if there are potential anomalies,
then the problem of understanding what resolution strategies
could be used arises. Therefore, the best thing to do is to
remove all potential anomalies as well. In this way, through
the application of our proposed approach that can solve all
anomalies, also real anomalies will be surely removed.

Additionally, the proposed approach can also be extended to
support other kinds of firewall solutions, such as application-
layer firewalls and SDN switches, and to work within inter-
firewall anomalies.

1) Extension to application-layer firewalls or SDN
switches: This approach for anomaly analysis and resolution
can be extended to solve the same problem, but related
to firewall types whose rule conditions are characterized
by more than 5 dimensions, such as application-layer
firewalls and SDN switches. This extension would require
to model other fields (e.g., HTTP method, web domain,
MAC addresses, VLAN tags) as additional predicates, to be
included among the predicates composing the model of a
firewall rule condition. If for a packet filtering firewall the
condition is modeled as a conjunction of five predicates, for
an application-layer firewall or an SDN switch it would thus
be modeled as a conjunction of more predicates. Then, all
the other algorithms, including the one for firewall policy
atomization, could still be applied to the modified model.

2) Extension to inter-firewall anomalies: This approach
can also be extended to inter-firewall scenarios, where each
instance of a distributed firewall architecture has its own
policy. In those scenarios, anomalies may be relationships
between policy rules of different firewall instances, crossed
by the same traffic flow. Some changes need to be applied to
the steps of the proposed methodology to adapt it to that case.

First, the atomic predicate computation must be performed
simultaneously on the rule conditions of the policies of all
instances of the distributed firewall. This change is required so
as to consider all possible intersections among rules not only
within the same policy, but also belonging to different policies.
After that, each single policy can be atomized independently
from the other ones, using the atomic predicates computed
simultaneously over all firewall rules. Second, the anomaly
analysis can still identify duplications and contradictions in
rule pairs. The only difference is that the anomalies may
be intra-firewall duplications and contradictions if they afflict
rules belonging to the same policy, or inter-firewall dupli-
cations or contradictions if they afflict rules belonging to
different policies. Third, for what concerns anomaly resolu-
tion, in view of the complexity of this problem for inter-
firewall anomalies, the strategy that is suggested is the human-
assisted. The reason is that, for an automatic resolution of
inter-firewall policy anomalies, it would be necessary to know
the direction of each possible traffic flow, as also discussed
in [6]. However, such knowledge cannot be known a-priori
when analyzing a distributed firewall policy offline. Fourth,

each firewall instance policy is simply rewritten as already
discussed for the intra-firewall case, by using the atomic
predicates computed simultaneously over all firewall rules.

At the same time, a main challenge that would arise in
this extension relates to the size of the overall rule set. If, as
observed in literature, a centralized firewall might have a few
hundred rules, a distributed firewall might be characterized by
thousands of them in order to handle malicious traffic gener-
ated by potentially millions of different sources. Consequently,
in addition to the abovementioned changes, parallelization
strategies might be necessary for good performance.

IV. ALGORITHM

This section formalizes the approach that is followed for the
proposed anomaly and resolution strategy. First, it introduces
the model used for the representation of a firewall policy
(Subsection IV-A). Then, it describes the formalization of
the four operations composing the methodology: the atomized
firewall policy creation (Subsection IV-B), the firewall policy
anomaly analysis and resolution (Subsection IV-C), and the
final operation of rewriting the original rule list into an
anomaly-free policy (Subsection IV-D).

A. Firewall policy model

A firewall policy is modeled as an (ordered) rule list:

𝑅 = [𝑟1, 𝑟2, ..., 𝑟 |𝑅 | ] (1)

where each rule is a tuple 𝑟𝑖 = (𝑐, 𝑎). In the proposed model,
the ‘.’ notation, when applied to a tuple, is used to retrieve a
specific tuple element. As the policy is ordered, if 𝑟𝑖1 precedes
𝑟𝑖2 , the firewall checks if a packet satisfies 𝑟𝑖1 .𝑐 (and, if so, it
applies 𝑟𝑖1 .𝑎) before checking the satisfaction of 𝑟𝑖2 .𝑐.

The element 𝑟𝑖 .𝑐 is the rule condition that allows to identify
the packet classes to which the action 𝑟𝑖 .𝑎 must be applied.
Specifically, the rule condition is modeled as the conjunction
of five predicates, one for each field of the IP 5-tuple:

𝑟𝑖 .𝑐 = 𝑟𝑖 .𝑐.𝑥1 ∧ 𝑟𝑖 .𝑐.𝑥2 ∧ 𝑟𝑖 .𝑐.𝑥3 ∧ 𝑟𝑖 .𝑐.𝑥4 ∧ 𝑟𝑖 .𝑐.𝑥5 (2)

The two predicates 𝑟𝑖 .𝑐.𝑥1 and 𝑟𝑖 .𝑐.𝑥2 respectively express
conditions on the source and destination IP addresses. Each
of them can identify a single IP address (e.g., 𝑟𝑖 .𝑐.𝑥1
= 127.10.22.3) or a range of contiguous IP addresses
(e.g., 𝑟𝑖 .𝑐.𝑥1 = [𝑟𝑖 .𝑐.𝑥1,begin, 𝑟𝑖 .𝑐.𝑥1,end] = [127.10.22.0,
127.10.22.255]). Instead, the two predicates 𝑟𝑖 .𝑐.𝑥3 and 𝑟𝑖 .𝑐.𝑥4
respectively express conditions on the source and destination
port numbers. Each of them can identify a single port number
(e.g., 𝑟𝑖 .𝑐.𝑥3 = 80) or a range of contiguous port numbers (e.g,
𝑟𝑖 .𝑐.𝑥3 = [𝑟𝑖 .𝑐.𝑥3,begin, 𝑟𝑖 .𝑐.𝑥3,end] = [22, 79]). Finally, 𝑟𝑖 .𝑐.𝑥5
identifies a specific protocol type (e.g., TCP or UDP). For
each field of the IP 5-tuple, the set of all the possible values
is concisely symbolized by the wildcard ∗.

The element 𝑟𝑖 .𝑎 is the rule action that is enforced onto
the packets satisfying the rule condition. The rule action can
be “allow” if the packets matching its conditions must be
forwarded by the firewall to the next network node, whereas
“deny” if they must be discarded.
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Finally, the last rule of the firewall policy is expressed as
𝑟 |𝑅 | = (∗, 𝑎). The action 𝑟 |𝑅 | .𝑎 is commonly named firewall
default action, as it is applied to all the packets that do not
satisfy the condition of any other policy rule.

B. Atomized firewall policy creation

The creation of the atomized firewall policy from the
original policy 𝑅 requires two preliminary steps, which are (1)
computing the atomic predicates related to all rule conditions
predicates, and (2) creating atomic rules, where the condition
of each one is represented by a single atomic predicate. These
two steps are formalized in Algorithm 1.

First, the algorithm computes the set of atomic predicates
C related to all rule conditions, by applying function A to the
set of all condition predicates P (lines 1-4). A is a standard
function, described as Algorithm 3 in [14], that, given a set of
predicates, splits them according to their mutual intersections,
so as to compute atomic predicates that are disjoint to each
other. This function represents the only algorithmic part we
have mutated from the literature. All the rest of Algorithm
1 and all the next Algorithms here presented are entirely
novel. Besides, the original version of A works on predicates
representing packet classes defined such that each predicate
is a Boolean formula with a variable for each packet header
bit. Instead, the model that we use, illustrated in (2), defines
the predicate representing a rule condition and, consequently,
a packet class as a conjunction of five sub-predicates, one for
each field of the IP 5-tuple. This different modeling choice is
motivated by the fact that, differently from [14], we explicitly
work with packet filters and do not need to have a complexity
as significant as the one that characterizes their model. So
we simply adapted that algorithm to work with this different
predicate model by applying all operations there included (e.g.,
intersections and unions) not to single bits, but to packet fields,
while keeping the same algorithmic logic.

Each atomic predicate 𝑐𝑘 of the output set C is the dis-
junction of multiple predicates 𝑞𝑘ℎ, where each 𝑞𝑘ℎ expresses
conditions related to the IP 5-tuple fields of network packets,
and it is similarly modeled as 𝑟𝑖 .𝑐:

𝑐𝑘 =

𝐻∨
ℎ=1

𝑞𝑘ℎ,with 𝑞𝑘ℎ =

5∧
𝑙=1

𝑞𝑘ℎ .𝑥𝑙 (3)

It is possible that an atomic predicate 𝑐𝑘 is equal to a single
𝑞𝑘ℎ, i.e., when 𝐻 = 1. Moreover, given a 𝑞𝑘1ℎ associated to an
atomic predicate 𝑐𝑘1 , the packet classes that it identifies cannot
be identified by any other 𝑞𝑘2ℎ associated to a different atomic
predicate 𝑐𝑘2 .

Second, the algorithm creates an alternative representation
of 𝑅, where each rule has a condition expressed by a single
atomic predicate (lines 5-13). The notation used for this
version, named atomized policy or rule list, is 𝑅𝛼. Starting
from a rule 𝑟𝑖 of the original policy, the algorithm checks if
its condition 𝑟𝑖 .𝑐 intersects any atomic predicate 𝑐𝑘 ∈ C. For
each intersecting atomic predicate 𝑐𝑘 , it creates a new rule
𝑟𝛼
𝑗

, having 𝑐𝑘 as condition and 𝑟𝑖 .𝑎 as action. The algorithm
also keeps track of the the connection between each created
atomic rule and the original policy rule from which it derives,

Algorithm 1 for creating the atomized policy
Input: the rule list 𝑅
Output: the rule list 𝑅𝛼, the array 𝑜

1: P ← {false}
2: for 𝑖 = 1, 2, ..., |𝑅 | do
3: P ← P ∪ {𝑟𝑖 .𝑐}
4: C ← A(P)
5: 𝑅𝛼 ← []
6: 𝑗 ← 1
7: for 𝑖 = 1, 2, ..., |𝑅 | − 1 do
8: for 𝑘 = 1, 2, ..., |C| do
9: if 𝑟𝑖 .𝑐 ∧ 𝑐𝑘 then

10: 𝑟𝛼
𝑗
← (𝑐𝑘 , 𝑟𝑖 .𝑎)

11: 𝑅𝛼 ← 𝑅𝛼 + [𝑟𝛼
𝑗
]

12: 𝑜[ 𝑗] ← 𝑖

13: return 𝑅𝛼, 𝑜

by means of the 𝑜 array. In particular, 𝑜[ 𝑗] is set to the integer
number 𝑖 if the atomic rule 𝑟𝛼

𝑗
derives from 𝑟𝑖 .

The worst-case time complexity of Algorithm 1 can be
estimated as the sum of the time complexities of three
sequential code blocks. Lines 2-3 have 𝑂 ( |𝑅 |) complexity,
because 𝑂 (1) operations are performed on each one of the
|𝑅 | input rules. Line 4 has 𝑂 (A) complexity, where A is
the external function that is called to compute the atomic
predicates of a given set of input predicates. Referring to the
A presented in [14], this function is linear in the number of
input predicates in P. Here, in the worst case, the size of P
is equal to the size of 𝑅, so 𝑂 (A) would be 𝑂 ( |𝑅 |). Lines
7-12 have 𝑂 ( |𝑅 | · |C|) complexity because the algorithm has to
iterate over the entire set of atomic predicates for each rule of
the original firewall policy. Therefore, the overall worst-case
time complexity of Algorithm 1 is 𝑂 ( |𝑅 | · |C|), which is the
dominant term. However, this algorithm can be parallelized,
potentially by associating one thread to each original rule that
must be atomized. This parallelization can thus practically
counterbalance the theoretical worst-case complexity.

C. Firewall policy anomaly analysis and resolution
The creation of the atomized policy 𝑅𝛼 allows the actual

anomaly identification. Given two atomic rules 𝑟𝛼
𝑗1

and 𝑟𝛼
𝑗2

with
𝑗1 ≠ 𝑗2, only two anomaly types may afflict them:
• a duplication if 𝑟𝛼

𝑗1
.𝑎 = 𝑟𝛼

𝑗2
.𝑎 and 𝑟𝛼

𝑗1
.𝑐 = 𝑟𝛼

𝑗2
.𝑐;

• a contradiction if 𝑟𝛼
𝑗1
.𝑎 ≠ 𝑟𝛼

𝑗2
.𝑎 and 𝑟𝛼

𝑗1
.𝑐 = 𝑟𝛼

𝑗2
.𝑐;

If 𝑟𝛼
𝑗1
.𝑐 ≠ 𝑟𝛼

𝑗2
.𝑐, no anomaly afflicts the two atomic rules.

Then, the anomaly resolution algorithm has the objective of
removing all the duplications and contradictions, as previously
defined, that afflict an atomized firewall policy 𝑅𝛼.

As already discussed in Section III, the user of this method-
ology can express their preference among a human-assisted
resolution strategy and fully automated resolution strategies,
such as deny-win, allow-win, and priority-win. In the former,
the user is asked to take a decision for each contradiction,
while duplications are automatically solved. In the latter, all
decisions are automatically taken, according to guidelines
derived from the selected strategy.

In all cases, the objective of the policy anomaly resolution
algorithm is to compute two sets, identified by the 𝐴 and
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Algorithm 2 for anomaly resolution (human-assisted strategy)
Input: the rule list 𝑅𝛼, the array 𝑜

Output: the sets 𝐴 and 𝐷, the array altered

1: 𝐴← ∅, 𝐷 ← ∅
2: for 𝑖 = 1, 2, ..., |𝑅 | − 1 do
3: altered[𝑖] ← false
4: for 𝑗 = 1, 2, ..., |𝑅𝛼 | do
5: if 𝑟𝛼

𝑗
.𝑎 = allow ∧ 𝑟𝛼

𝑗
.𝑐 ∉ 𝐴 then

6: 𝐴← 𝐴 ∪ {𝑟𝛼
𝑗
.𝑐}

7: else if 𝑟𝛼
𝑗
.𝑎 = deny ∧ 𝑟𝛼

𝑗
.𝑐 ∉ 𝐷 then

8: 𝐷 ← 𝐷 ∪ {𝑟𝛼
𝑗
.𝑐}

9: else
10: altered[𝑜[ 𝑗]] ← 𝑡𝑟𝑢𝑒

11: for each 𝑐𝑘 ∈ (𝐴 ∩ 𝐷) do
12: decision← input(Select ‘A’ or ‘D’:)
13: if decision = ‘A’ then
14: 𝐷 ← 𝐷\{𝑐𝑘}
15: for 𝑗 = 1, 2, ..., |𝑅𝛼 | do
16: if 𝑐𝑘 = 𝑟𝛼

𝑗
.𝑐 ∧ 𝑟𝛼

𝑗
.𝑎 = deny then

17: altered[𝑜[ 𝑗]] ← true
18: else if decision = ‘D’ then
19: 𝐴← 𝐴\{𝑐𝑘}
20: for 𝑗 = 1, 2, ..., |𝑅𝛼 | do
21: if 𝑐𝑘 = 𝑟𝛼

𝑗
.𝑐 ∧ 𝑟𝛼

𝑗
.𝑐 = allow then

22: altered[𝑜[ 𝑗]] ← true
23: return 𝐴, 𝐷, altered

𝐷 letters, which respectively contain the atomic predicates
related to packet classes that must be allowed or blocked by
the firewall. As previously defined, each atomic predicate is
associated with a representative integer number, so that 𝐴

and 𝐷 are sets of integers. This representation guarantees
that each 𝑐𝑘 ∈ C can appear once in a set, thus removing
any duplication. Besides, the algorithm must also ensure that,
given an atomic predicate 𝑐𝑘 ∈ C, it can appear only in
one of the two sets, i.e., 𝑐𝑘 ∈ (𝐴 ∪ 𝐷) ∧ 𝑐𝑘 ∉ (𝐴 ∩ 𝐷).
If it appeared in both sets, a contradiction would still be
present. Besides, the algorithm computes a Boolean array
named altered. Specifically, altered[𝑖] = true if there is at
least an atomic rule 𝑟𝛼

𝑗
, such that 𝑜[ 𝑗] = 𝑖, whose condition

𝑟𝛼
𝑗
.𝑐 has not been included in either 𝐴 or 𝐷. Both sets of

atomic predicates and the altered array will be used to rewrite
the anomaly-free policy, as we will show in Subsection IV-D.

Even if all the proposed anomaly resolution strategies may
be jointly designed as a single algorithm, we preferred defining
a separate algorithm for each one of them. Each algorithm can
be specifically optimized to minimize the number of operations
that must be executed to satisfy the user-selected guideline,
thus maximizing the overall performance. In the following, we
describe the formalization of the algorithms for the different
anomaly resolution strategies.

Human-assisted strategy: Algorithm 2 formalizes the
human-assisted resolution strategy. Initially, the algorithm au-
tomatically removes the existing duplications. Specifically, for
each atomic rule 𝑟𝛼

𝑗
∈ 𝑅𝛼, the atomic predicate corresponding

to its condition 𝑟𝛼
𝑗
.𝑐 is included into the 𝐴 or 𝐷 set, depending

on the rule action (lines 1-10). This step ensures removal of
all duplications, as the integer number representing a predicate
𝑐𝑘 cannot appear more than once in a set. Then, for each

Algorithm 3 for anomaly resolution (deny-win or allow-win)
Input: the rule list 𝑅𝛼, the array 𝑜, the winning action 𝑎𝑊

Output: the sets 𝐴 and 𝐷, the array altered

1: 𝐴← ∅, 𝐷 ← ∅
2: for 𝑖 = 1, 2, ..., |𝑅 | − 1 do
3: altered[𝑖] ← false
4: for 𝑗 = 1, 2, ..., |𝑅𝛼 | do
5: if 𝑟𝛼

𝑗
.𝑎 = 𝑎𝑊 then

6: if 𝑎𝑊 = allow ∧ 𝑟𝛼
𝑗
.𝑐 ∉ 𝐴 then

7: 𝐴← 𝐴 ∪ {𝑟𝛼
𝑗
.𝑐}

8: else if 𝑎𝑊 = deny ∧ 𝑟𝛼
𝑗
.𝑐 ∉ 𝐷 then

9: 𝐷 ← 𝐷 ∪ {𝑟𝛼
𝑗
.𝑐}

10: else
11: altered[𝑜[ 𝑗]] ← true
12: for 𝑗 = 1, 2, ..., |𝑅𝛼 | do
13: if 𝑟𝛼

𝑗
.𝑎 ≠ 𝑎𝑊 then

14: if 𝑎𝑊 = allow ∧ 𝑟𝛼
𝑗
.𝑐 ∉ (𝐴 ∪ 𝐷) then

15: 𝐷 ← 𝐷 ∪ {𝑟𝛼
𝑗
.𝑐}

16: else if 𝑎𝑊 = deny ∧ 𝑟𝛼
𝑗
.𝑐 ∉ (𝐴 ∪ 𝐷) then

17: 𝐴← 𝐴 ∪ {𝑟𝛼
𝑗
.𝑐}

18: else
19: altered[𝑜[ 𝑗]] ← true
20: return 𝐴, 𝐷, altered

predicate 𝑐𝑘 that is included in both 𝐴 and 𝐷 sets, the user
is asked to decide if the action that must be enforced on the
packets represented by that predicate is “allow” or “deny”. At
that point, 𝑐𝑘 is removed from the opposite set, i.e., 𝐷 if the
selected action is “allow”, 𝐴 if the selected action is “deny”
(lines 11-22). This human-assisted operation guarantees that
all contradictions are solved as the user actually requires. The
Boolean array altered is accordingly updated, depending on
the original policy rules from each each atomic rule derives
𝑟𝛼
𝑗

. For this purpose, the previously computed 𝑜 array is used
to properly set the values of the altered array.

The worst-case time complexity of Algorithm 2 can be esti-
mated as the sum of the time complexities of three sequential
code blocks. Lines 2-3 have 𝑂 ( |𝑅 |) complexity, because 𝑂 (1)
operations are performed on each one of the |𝑅 | input rules.
Lines 4-10 have 𝑂 ( |𝑅𝛼 |) complexity, because 𝑂 (1) operations
are performed on each one of the |𝑅𝛼 | atomic rules. Lines 11-
22 have 𝑂 ( |𝐴 ∩ 𝐷 | · |𝑅𝛼 |) complexity, because it is a nested
loop, where the external iterates on the elements in common
to the 𝐴 and 𝐷 sets, the internal on the |𝑅𝛼 | atomic rules.
Overall, the computational complexity is dominated by this
last term, i.e., 𝑂 ( |𝐴 ∩ 𝐷 | · |𝑅𝛼 |), as the number of atomic
rules is not smaller than the number of original rules.

Deny-win and allow-win strategies: Algorithm 3 jointly
formalizes the deny-win and allow-win resolution strategies in
a parametric way, as their approaches are similar. In particular,
𝑎𝑊 is a parameter named winning action, that is “allow” or
“deny” depending on the selected strategy. The algorithm iter-
ates twice on the atomized firewall policy. In the first iteration,
it considers only the atomic rules with the same action as
𝑎𝑊 , and it includes its condition 𝑟𝛼

𝑗
.𝑐 in the appropriate set,

i.e., 𝐴 if 𝑎𝑊 = allow, 𝐷 if 𝑎𝑊 = deny. If 𝑟𝛼
𝑗
.𝑐 is already

included in that set, then altered[𝑜[ 𝑗]] is set to true, to specify

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3495230

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



11

Algorithm 4 for anomaly resolution (priority-win)
Input: the rule list 𝑅𝛼, the array 𝑜

Output: the sets 𝐴 and 𝐷, the array altered

1: 𝐴← ∅, 𝐷 ← ∅
2: for 𝑖 = 1, 2, ..., |𝑅 | − 1 do
3: altered[𝑖] ← false
4: for 𝑗 = 1, 2, ..., |𝑅𝛼 | do
5: if 𝑟𝛼

𝑗
.𝑎 = allow ∧ 𝑟𝛼

𝑗
.𝑐 ∉ (𝐴 ∪ 𝐷) then

6: 𝐴← 𝐴 ∪ {𝑟𝛼
𝑗
.𝑐}

7: else if 𝑟𝛼
𝑗
.𝑎 = deny ∧ 𝑟𝛼

𝑗
.𝑐 ∉ (𝐴 ∪ 𝐷) then

8: 𝐷 ← 𝐷 ∪ {𝑟𝛼
𝑗
.𝑐}

9: else
10: altered[𝑜[ 𝑗]] ← true
11: return 𝐴, 𝐷, altered

that the duplication has been successfully removed (lines 1-
11). Instead, in the second iteration, the algorithm analyzes
the atomic rules with the opposite action with respect to 𝑎𝑊 .
Their condition 𝑟𝛼

𝑗
.𝑐 is included in corresponding set (𝐷 if

𝑎𝑊 = allow, 𝐴 if 𝑎𝑊 = deny) only if it is not already present
in the other set. In that case, it is not included so as to remove
the contradiction, and altered[𝑜[ 𝑗]] is set to true (lines 12-
19). Differently from Algorithm 2, each contradiction is solved
automatically, because the decision about the action to be
enforced on the packet classes related to that policy anomaly
is derived from the guideline selected by the user. The worst-
case time complexity of Algorithm 3 can be estimated as the
sum of the time complexities of three sequential code blocks.
Lines 2-3 have 𝑂 ( |𝑅 |) complexity, because 𝑂 (1) operations
are performed on each one of the |𝑅 | input rules. Lines 4-11
and also lines 12-19 have 𝑂 ( |𝑅𝛼 |) complexity each, as they
iterate 𝑂 (1) operations on the |𝑅𝛼 | atomic rules. As these two
terms are equal and dominate the first one, the overall time
complexity is 𝑂 ( |𝑅𝛼 |).

Priority-win strategy: Algorithm 4 formalizes the priority-
win strategy. Here, for each atomic rule 𝑟𝛼

𝑗
∈ 𝑅𝛼, its condition

𝑟𝛼
𝑗
.𝑐 is included into the 𝐴 or 𝐷 set, depending on the rule

action, if it is not already part of one of the two sets (lines
1-10). Indeed, if 𝑟𝛼

𝑗
.𝑐 such that 𝑟𝛼

𝑗
.𝑎 = allow already belongs

to the 𝐴 set, a duplication is thus removed. Instead, if it
already belongs to the 𝐷 set, that means that the packets are
managed by a rule with higher priority and “deny” action, and
a contradiction is automatically removed. Similar reasoning
applies to a predicate 𝑟𝛼

𝑗
.𝑐 such that 𝑟𝛼

𝑗
.𝑎 = deny. For all

the cases in which 𝑟𝛼
𝑗
.𝑐 is not included in the 𝐴 and 𝐷

sets in this algorithm, altered[𝑜[ 𝑗]] is set to true, similarly
as for the other strategies. The worst-case time complexity
of Algorithm 4 can be estimated as the sum of the time
complexities of two sequential blocks: the loop on the 𝑅 set at
lines 2-3 with 𝑂 ( |𝑅 |) complexity and the loop on the 𝑅𝛼 set
at lines 4-10 with 𝑂 ( |𝑅𝛼 |) complexity. As already explained,
the second term is dominant and coincides with the algorithm
time complexity.

D. Firewall anomaly-free policy rewriting

The last step of the algorithm consists in rewriting an
anomaly-free policy version, by using the information com-

Algorithm 5 for writing the anomaly-free policy
Input: the rule list 𝑅, the sets 𝐴 and 𝐷, the arrays 𝑜 and altered
Output: the rule list 𝑅𝜙

1: 𝑅𝜙 ← [], 𝐶𝑇 ← ∅
2: if 𝑟 |𝑅 | .𝑎 = allow then
3: 𝐶𝑇 ← 𝐷

4: else if 𝑟 |𝑅 | .𝑎 = deny then
5: 𝐶𝑇 ← 𝐴

6: for 𝑖 = 1, 2, ..., |𝑅 | − 1 do
7: if 𝑟𝑖 .𝑎 ≠ 𝑟 |𝑅 | .𝑎 ∧ altered[𝑖] = false then
8: 𝑅𝜙 ← 𝑅𝜙 + [𝑟𝑖]
9: for each 𝑐𝑘 ∈ 𝐶𝑇 do

10: if 𝑐𝑘 ∧ 𝑟𝑖 .𝑐 then
11: 𝐶𝑇 ← 𝐶𝑇\{𝑐𝑘}
12: for each 𝑐𝑘 ∈ 𝐶𝑇 do

13: for each 𝑞𝑘ℎ |𝑐𝑘 =
𝐻𝑘∨
ℎ=1

𝑞𝑘ℎ do

14: 𝑅𝜙 ← 𝑅𝜙 + [({allow, deny}\{𝑟 |𝑅 | .𝑎}, 𝑞𝑘ℎ)]
15: 𝑅𝜙 ← 𝑅𝜙 + [𝑟 |𝑅 | ]
16: return 𝑅𝜙

puted by the resolution strategy. Algorithm 5 formalizes the
algorithm that produces the anomaly-free policy 𝑅𝐹 .

First, the default action of the initial policy 𝑅 is kept in the
anomaly-free policy 𝑅𝜙 . Given this assumption, the definition
of the other filtering rules requires analyzing just one of the
two sets 𝐴 and 𝐷, i.e., the set containing the atomic predicates
related to packet classes on which the opposite action of the
default one must be enforced (lines 2-5). The selected set (i.e.,
𝐷 if the default action is allow, 𝐴 if the default action is deny),
used in the next steps of the algorithm, is denoted as 𝐶𝑇 .

Second, the algorithm checks if some filtering rules of 𝑅

can be directly reintroduced in 𝑅𝜙 . This is feasible for rule
𝑟𝑖 ∈ 𝑅 if two conditions are satisfied: i) the rule action
is the opposite of the default action, and ii) the previous
algorithm for anomaly resolution establishes that, even after
removing duplications and contradictions among atomic rules,
the action of the original rule must be still applied to the packet
classes represented by its condition, i.e., altered[𝑖] = false. If
these conditions hold, 𝑟𝑖 is directly included in 𝑅𝜙 , and all
atomic predicates that intersect with 𝑟𝑖 .𝑐 are removed from
𝐶𝑇 , because they do not have to be processed in the final step
(lines 6-11).

Third, for each predicate 𝑞𝑘ℎ composing each remaining
atomic predicate 𝑐𝑘 ∈ 𝐶𝑇 , a rule having that predicate as rule
condition and the opposite of the default action as rule action
is created and included in 𝑅𝜙 (lines 12-14). Finally, the rule
enforcing the default action is actually included at the end of
the produced rule list (line 15). In the computation of this
policy, there is no need to enforce a specific priority among
the rules. The reason is that the configuration is anomaly-
free and, for any pair of policy rules, there is no intersection
among the packet space represented by their conditions, thanks
to the resolution algorithm based on the atomic predicate
computation. The anomaly-free policy 𝑅𝜙 is thus the final
output of the resolution strategy, as all anomalies have been
successfully removed, and it can be installed on real packet
filter implementations.
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The worst-case time complexity of Algorithm 5 can be
estimated as the sum of the time complexities of two nested
loops. Lines 6-11 have 𝑂 ( |𝑅 | · |𝐶𝑇 |) complexity, because the
predicates in 𝐶𝑇 are iterated for each firewall rule. Instead,
lines 12-14 has 𝑂 ( |𝐶𝑇 | ·max𝑘∈𝐾 𝐻𝑘) complexity, because for
each predicate in 𝐶𝑇 some 𝑂 (1) operations are executed on
each sub-predicate composing it, and in the worst-case the one
with the higher number of sub-predicates must be considered.

V. IMPLEMENTATION AND VALIDATION

The proposed approach for firewall policy anomaly analysis
and resolution has been implemented as a Java framework.
The firewall policies to be analyzed can be specified by the
user in XML or JSON format. The same format is used for
the representation of the output, i.e., the rewritten anomaly-
free policy. The framework exposes a set of REST APIs, so
that it can interact with the user or with other applications.
A set of translators have been also developed to translate the
XML or JSON representation into the concrete configuration
of real-world firewall implementations. The firewall types that
the tool already supports are the most commonly used in
modern networks: iptables, ipfirewalls, eBPF-based firewalls,
OpenVSwitch. However, it is possible to create translators for
any other kind of packet filter, with minor changes to the ones
that have been already developed. The code of the tool is
publicly available in the GitHub repository at the following
link: https://github.com/netgroup-polito/firewall-anomalies.

The remainder of this section is structured as follows. On
the one hand, it discusses the experimental setup that has
been created to validate the framework (Subsection V-A), and
then it presents the results of the performance validation of
the developed tool (Subsection V-B). On the other hand, the
framework is compared with relevant proposals of the related
literature [6], [12], [28] (Subsection V-C).

A. Experimental Setup for Performance Validation

The experimental setup used to carry out all tests related to
the framework validation consists in a machine with an Intel
i7-6700 CPU running at 3.40 GHz and 32GB of RAM. In
particular, this setup was used to validate the performance
of our framework, by computing its execution time. This
evaluation metric has also been adopted by other state-of-the-
art studies such as [6], [12], [28] to validate their proposals
related to firewall anomaly analysis and resolution. A moti-
vation is that fast times are nowadays required by modern
networks, such as the virtualized ones. Any issue in a firewall
configuration must be solved as fast as possible, so as to
stop and prevent possible cyberattacks, or to avoid service
disruptions. Moreover, as the firewall configuration updates
have becoming progressively more frequent, it is essential to
have anomaly resolution methods whose performance is in line
with those update times.

In this experimental setup, the performance of the Java
framework has been evaluated by applying it to solve the
anomalies in firewall policies of different sizes and characteris-
tics. These policies are synthesized by a policy generator, that
we have written in Java and whose code can be found in the
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Fig. 3: Scalability versus resolution strategy

same Github repository linked above. This generator produces
different firewall policies according to the values assigned to
a set of different configurable parameters: (i) the number of
filtering rules composing the firewall policy, (ii) the number
of anomalies (i.e., duplications and contradictions) afflicting
the firewall policy rules, and (iii) the percentage of firewall
policy rules that impose specific conditions also on source
and destination ports, in addition to IP addresses.

After each configurable parameter is assigned a value, the
generator works as follows. First, it creates an initial subset of
random firewall rules, while checking that no anomalies occur.
Next, the remaining rules of the whole policy, whose size is
specified as parameter (i), are created with an internal logic of
the generator, so that each one has an anomaly with a rule of
the initial subset. This generation continues until the number of
anomalies, expressed as parameter (ii), is reached. At the same
time, the generator enforces the conditions heterogeneity of
the generated rules by ensuring that the percentage of firewall
policy rules that impose specific conditions also on source
and destination ports (i.e., those conditions fields are not ∗) is
equal to the specified parameter (iii). Furthermore, concerning
the anomalies that afflict each analyzed policy, by default the
firewall policy generator equally distributes them among the
four categories considered by Al-Shaer et al. in [6] (shad-
owing, correlation, generalization, redundancy). This helps us
cover the full range of possible anomalies that, according to
the literature, may occur in a firewall configuration.

B. Performance Validation
The strategy employed for text execution was the following.

First, we investigated how the choice of the resolution strategy
affects the results, checking if there is one that performs better
or if the three strategies have comparable time. Then, we
proceeded to analyze how the numbers of rules and anomalies
influence the computation times (varying parameters (i) and
(ii)). In doing so, for each analyzed test case, we present
two charts, one showing the computational time and the other
representing the number of generated atomic predicates for
each considered firewall policy. The aim was to check if there
exists a link between the resolution time and the number
of generated atomic predicates. Additionally, we investigated
how the heterogeneity of rule conditions may impact the
performance of the framework (varying parameter (iii)).

In the following, we discuss the results achieved from test
execution.
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1) Impact of the chosen anomaly resolution strategy: As
anticipated, we investigated how the execution time changes
with respect to the chosen automatic resolution strategy, i.e.,
deny-win, allow-win and priority-win. For these tests, we
consider only the time related to Algorithms 3 and 4 proposed
in our model (i.e., the time required to solve the anomalies
once policy rules are atomized). We did not report the times
of the previous operations of the workflow, because they are in
common to all strategies. However, we will report and analyze
them in the context of the next tests.

Fig. 3 shows the results obtained analyzing firewalls with
200, 300 and 500 rules. In this case, the percentage of rules
with anomalies is always constant and set at 40% of the total
number of rules. As it can be seen from Fig. 3a, the resolution
time remains fairly constant regardless of the chosen strategy
and increases with the number of rules. Therefore, there is not
an automatic resolution strategy that performs better than the
others. The number of generated atomic predicates, instead,
is exactly the same in each test case and increases with the
number of rules as well (Fig. 3b). This was expected, since
the atomic predicate computation phase is a preliminary step
common to all the strategies (and thus independent of the
selected one).

Since the resolution strategy choice does not influence in
a significant way the computation time results, for simplicity
we decided to use only one resolution strategy, the deny-win
one, for all next tests.

2) Impact of increasing numbers of policy rules and anoma-
lies: In a second series of tests, we investigated how the
total number of rules and anomalies specifically impact the
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Fig. 6: Scalability versus number of anomalies

computation times. To this purpose, we considered three
different test case scenarios:

• in the first test case scenario, the numbers of rules and
anomalies increase simultaneously, and there is a fixed
ratio between them (Fig. 4);

• in the second test case scenario, only the number of rules
progressively increases, while the number of anomalies
is kept constant (Fig. 5);

• in the third test case scenario, only the number of
anomalies progressively increases, while the number of
rules is kept constant (Fig. 6).

Together, these three scenarios cover a large number of cases,
with an exhaustive comparison of the possible impact the two
parameters may have.

Again, for each test, we present two charts. The first one
refers to the computation time, that is the time required by the
tool to analyze the firewall policy and solve the anomalies.
Each bar of this chart is composed of three components
with different colors, representative of the time to execute
specific sub-algorithms of our methodology: i) time required to
compute all the atomic predicates (lines 1-4 of Algorithm 1);
ii) time required to create the atomized policy by using the
previously computed atomic predicates (lines 5-12 of Algo-
rithm 1); iii) time required for anomaly resolution (Algorithm
3 or 4, depending on the selected strategy) and for writing the
final anomaly-free policy (Algorithm 5). These two times were
joined, because the latter is negligible as it is time to iterate
once over all input rules and once over all atomic predicates in
the worst case. Therefore, it would not be visible if represented
alone in the bar. The second chart, instead, shows the number
of generated atomic predicates.

For what concerns the impact of the rule number, we can
state that an increasing number of rules leads to a longer
execution time. This is true in both the first and second test
case scenarios, i.e., when the number of anomalies increases
with the number of rules (Fig. 4a) and when it remains
constant (Fig. 5a). In particular, all three times grow. An
increasing number of rules requires longer time to compute
the set of atomic predicates representative for all rules, and it
also leads to a higher number of predicates (Fig. 4b and 5b). A
larger set of predicates then increases the time spent to atomize
the policy rules, as there are more rules to atomize and a larger
set of atomic predicates to consider. The anomaly resolution
time increases as well, but it has a less significant impact. The
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Fig. 7: Atomic Predicates generated by an intersection (AP1,
AP2, AP3) and by an inclusion (AP4, AP5)

major contribution is given by the time spent to atomize the
policy rules. The reason is that the tool has to iterate, for each
original rule, over the entire set of atomic predicates. However,
this process can be parallelized, potentially one thread to
atomize each original rule. In our tests, we run the tool using 8
threads. Increasing the number of threads, performance would
be better. Besides, we would like to remark that, even in the
worst case that has been analyzed here, the framework can
successfully solve all anomalies which are present among 500
rules in less than 60 seconds.

For what concerns the impact of the anomaly number, as we
can see in Fig. 4a, 5a and more specifically in Fig. 6a, we can
state that an increasing number of anomalies among firewall
rules decreases the total resolution time. This apparently
paradoxical result is actually reasonable and expected, since a
greater number of anomalies reduces the number of generated
atomic predicates (Figs. 4b, 5b, 6b). This is particularly true
when the packet space of a rule condition is included in the
space of another rule condition. Fig. 7 exemplifies this concept.
In this example, the two overlapping predicates presenting
the packet spaces of rules 𝑟1 and 𝑟2 (i.e., PS(𝑟1) and PS(𝑟2))
generate three atomic predicates, while predicates that are one
the subset of the other (such as PS(𝑟3) and PS(𝑟4) generate only
two atomic predicates. This two-dimensional exemplification
gives the idea that the fewer the anomalies, the higher the
number of generated atomic predicates. As we have seen in
all the previous charts, there is a direct positive correlation
between the number of generated predicates and the increase
of the times, i.e., the fewer the anomalies, the higher the
resolution times. This result is interesting, as our approach can
be efficiently solve quite complex problems where the number
of anomalies is very high.

3) Impact of rule conditions heterogeneity: The hetero-
geneity of rule conditions represents a complexity factor for
the algorithms defined for atomic predicates computation and
atomized policy creation. In particular, the more heterogeneous
the values selected by the condition fields are among the rules
of the same policy, the more atomic predicates are generated.
This relationship is explained by the fact that different rule
conditions represent different packet sub-spaces of the 5-
dimensional hyperspace, and therefore different atomic predi-
cates are associated to those sub-spaces and their intersections.

In order to assess this potential impact onto the perfor-
mance, we have executed our framework on policies with
peculiar characteristics. Each rule of those policies imposes
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Fig. 8: Scalability versus rule conditions heterogeneity (un-
common case)
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Fig. 9: Scalability versus rule conditions heterogeneity (com-
mon case)

specific different values for the condition fields related to
the source and destination IP addresses, so as to make the
analyzed policies sufficiently complex. Then, the policies have
a progressively increasing percentage (from 0% to 100%)
of rules that impose specific conditions on port fields, and
consequently a decreasing percentage (from 100% to 0%) of
rules that set the port fields to the wildcard value ∗. Policy
that have more rules with specific conditions on port fields
are thus more heterogeneous, and more complex to analyze,
than the other ones.

First, we have considered an uncommon case, where port
numbers are randomly selected among all possible 65535 ones
(Fig. 8). The execution time and the atomic predicates number
increase progressively with the percentage of rules that impose
specific conditions on port fields, as it can be seen in Figs. 8a
and 8b. Specifically, the largest increase is given by the time
to compute the atomic predicates and the time to atomize the
original rules, since the algorithm has to iterate over a larger
set of predicates. This is an uncommon case, because it is
quite rare that firewall policies have rules so heterogeneous,
as the commonly used port numbers belong to a restricted
set. Anyhow, this test showed that, despite the impact that
rule conditions heterogeneity has onto the performance, our
framework can still analyze and solve all anomalies in a little
more than 10 seconds even for the worst case considered.

Then, we have considered a more common case, where port
numbers are selected from a restricted set of 30 "well-known"
ports, e.g., 80, 443, 22 (Fig. 9). Even if more atomic pred-
icates are generated as the percentage of rules with specific
conditions on port fields increases, their increase is limited

This article has been accepted for publication in IEEE Transactions on Dependable and Secure Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2024.3495230

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



15

10 20 30 40 50 60 70 80 90
0

20

40

60

80

Number of rules

A
no

m
al

y
A

na
ly

si
s

Ti
m

e
(m

s)

Our Approach
Al-Shaer et al. [6]

(a) Test Case A

10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

Number of rules

A
no

m
al

y
A

na
ly

si
s

Ti
m

e
(m

s)

Our Approach
Al-Shaer et al. [6]

(b) Test Case B

10 20 30 40 50 60 70 80 90
0

50

100

150

200

250

Number of rules

A
no

m
al

y
A

na
ly

si
s

Ti
m

e
(m

s)

Our Approach
Al-Shaer et al. [6]

(c) Test Case C

10 20 30 40 50 60 70 80 90
0

50

100

150

200

Number of rules

A
no

m
al

y
A

na
ly

si
s

Ti
m

e
(m

s)

Our Approach
Al-Shaer et al. [6]

(d) Test Case D

Fig. 10: Comparison with the approach by Al-Shaer et al. [6]

since only a limited set of possible port numbers is employed
for policy creation. While in the previous example, Fig. 8,
ports were randomly selected from the set of all possible port
numbers (i.e, 0 to 65535) thus generating a higher combination
of atomic predicates. Fig. 9b shows that, in the first two test
cases, the number of generated atomic predicates increases.
Starting from the third case, instead, it remains constant. The
number of atomic predicates, in this case, saturates at the
maximum possible value, that is the one that has a specific
predicate for each port in the set of "well-known" ports. This
helps to reduce the resolution times (see Fig. 9a) and is also
reasonable in real case scenarios, where the firewall rules
hardly have port numbers different from well-known values.

C. Comparison with related approaches

The proposed methodology has been compared with three
proposals of the related literature: [6] [12] [28].

1) Comparison with Al-Shaer et al.: The study by Al-Shaer
et al. [6] was selected as a baseline among the works that
only address anomaly analysis (i.e., the ones discussed in
Subsection II-A) because its anomaly categorization is mutated
by all other studies of that class, which were excluded because
they did not provide an equally impactful contribution, and the
description of their performance validation is more limited.

Fig. 10 shows a comparison of our anomaly analysis al-
gorithm with the one proposed by Al-Shaer et al. in [6]. All
the times reported in this figure are related to the computation
time required for anomaly analysis because the approach by
Al-Shaer et al. cannot resolve the identified anomalies. For
a fair comparison, our anomaly analysis algorithm has been
executed on the same four test cases which were used by Al-
Shaer et al. to validate their technique:
• Test Case A is based on firewall policies whose rules are

different in the destination address only.
• Test Case B is based on firewall policies whose rules are

different in the source address only.
• Test Case C is based on firewall policies where each rule

is a superset match of the preceding rule, i.e., the packet
space of the rule condition includes the packet space of
the preceding rule condition.

• Test Case D is based on firewall policies where the rules
are randomly selected from the three previous test cases.

For each test case, nine different firewall policies have been
used, with progressive number of rules from 10 to 90. Even

though our approach can analyse bigger policies as shown in
Subsection V-B, the paper by Al-Shaer et al. did not report
execution times related to bigger firewall configurations.

Test Cases A and B represent the best case scenario for
the approach by Al-Shaer et al., because they require the
minimum time to navigate the policy rule tree that they build to
search for possible anomalies. However, they are also the best
cases for our anomaly analysis strategy. In fact, the number of
atomic predicates that is generated is very low, as it is directly
equal to the number of policy rules. Therefore, our anomaly
analysis times are always lower by one or two magnitude
orders than the ones by Al-Shaer et al., and our technique
is extremely efficient, because it identifies all anomalies in
few milliseconds.

Test Case C represents the worst case scenario for the
approach by Al-Shaer et al., because each rule requires a
complete navigation of the policy tree in order to analyze the
entire rule set. Our approach can deal efficiently also with
this peculiar test case. As each rule condition includes the
condition of the previous one, the rules have several common
intersections, which can be expressed with a single atomic
predicate for each one. This guarantee that, in less then 30
ms, our approach can successfully identify all anomalies for a
firewall configuration whose analysis required 245 ms for the
strategy by Al-Shaer et al..

Test Case D represents the average case scenario for the
approach by Al-Shaer et al.. Instead, it is the worst case among
these four for our approach. Indeed, the number of atomic
predicates is higher than the ones in the previous scenarios,
because multiple different intersections among rule condition
may occur due to the randomness of rule selection. However,
for all nine firewall policies, including the one with 90 rules,
our approach still proved to be always more efficient.

In summary, this comparison shows that our anomaly analy-
sis time is always lower than the one by Al-Shaer et al. for all
the test cases which they described in [6]. Besides, we would
like to remark that their approach cannot solve the identified
anomalies, differently from ours.

2) Comparison with Hu et al.: The study by Hu et al. [12]
was selected as a comparison reference in the class of studies
about traditional firewall anomaly resolution (i.e., the ones dis-
cussed in Subsection II-B) because it is widely acknowledged
in the firewall policy management research community, and it
addresses the firewall problem broadly. Instead, the other ones
were excluded because published earlier, less relevant, or in
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Fig. 11: Comparison with the approach by Hu et al. [12]

TABLE V: Test case characteristics for the comparison with
the approach by Hu et al. [12]

Our Approach Approach of Hu et al.
# Test Case #Rules #Anomalies #Rules #Anomalies

A 12 4 12 4
B 18 6 18 5
C 27 9 25 8
D 54 18 52 14
E 81 27 83 20
F 132 44 132 36
G 354 118 354 67
H 927 309 926 107

the case of [22] too domain-specific.
Fig. 11 shows a comparison of our approach with this

proposal by Hu et al. [12]. The evaluation of the two ap-
proaches was carried out in eight use cases, described in their
paper. Those eight scenarios are based on firewall policies,
with increasing numbers of policy rules and anomalies. These
characteristics allow assessing the differences between the two
strategies as the policy complexity varies.

The two validation parameters used for the comparison were
the computation time and the anomaly resolution efficiency,
expressed as the percentage of solved anomalies. Even if it
was not possible to execute their code as it is not publicly
available, we could compute the total execution times by
summing the segmentation, correlation, and resolution times
that the authors reported in their paper for those eight use
cases. The characteristics of those eight use cases, in terms of
the number of rules and anomalies, are reported in the right
part of TABLE V. We decided not to report the results of their
third proposed strategy, named permutation algorithm, because
it has much worse performance than the other two ones, and
it is not able to compute a solution for complex instances of
the anomaly resolution problem in finite time, as declared by
the authors themselves.

For this comparison, our proposed algorithm was applied
to eight use cases that are the most similar as possible to the
ones described by Hu et al. in their paper, and are described in
the left part of TABLE V. Specifically, we used eight firewall
policies whose numbers of rules and anomalies are in the same
magnitude order as those described in [12], and at the same
time we kept a constant ratio of 3:1 between the number of
rules and the number of anomalies. For what concerns the
other parameters that are relevant to the performance of our
algorithm, we decided to keep the values for the percentages
of firewall policy rules that impose specific conditions on ports

and transport-level protocols the same as the one defined for
most of our previous tests, i.e., 20% and 50%. Then, we use
the deny-win strategy for anomaly resolution, as we already
proved that all proposed automatic resolution strategies have
anyway the same performance.

A significant conclusion that can be drawn by Fig. 11b
about anomaly resolution efficiency is that our approach can
actually solve all anomalies afflicting any firewall policy.
This achievement is feasible because we reformulate the
original firewall policy into an anomaly-free version, rewriting
the original rules when needed by means of the computed
atomic predicates. Instead, both the combination and greedy
resolution strategies proposed by Hu et al. cannot solve all
anomalies. In the worst case where those strategies were
tested, the percentages of solved anomalies could go down to
78% and 60%, respectively. This difference is motivated by the
fact that their resolution strategies consists in rule reordering
algorithms. However, as experimentally shown by the authors
with the values reported in this table, there may not exist a
rule reordering that allows to solve all anomalies.

Another relevant consideration, which can be drawn from
Fig. 11a (whose y axis is in logarithmic scale) about computa-
tion time comparison, is that the performance of our approach
is significantly better than both the strategies by Hu et al.
in most of the analyzed test cases. For the simpler six test
cases, the computation time of our approach is better by even
a magnitude order, as it is inferior to one second. For the
worst analyzed case, it is still better than the combination
resolution algorithm by Hu et al., while it is slightly inferior
to the computation time taken by their greedy algorithm.
Nevertheless, their greedy algorithm can solve a reduced
number of anomalies. Indeed, the authors themselves considers
the combination algorithm their most valuable algorithm, as
it represents higher efficiency and effectiveness in conflict
resolution. With respect to that, our approach is better with
respect to both time performance and anomaly resolution.

Additionally, if we sum the execution times of the frame-
works described in [6] and [12] and we compare them with
the total execution time of ours, our framework would be able
to outperform their straightforward combination.

In conclusion, these comparisons further show the benefits,
previously discussed in Section II, that our proposal can bring
over to the state of the art.

3) Comparison with Asif et al.: The study by Asif et al. was
selected as a baseline among the studies about SDN switch
anomalies because, as explained in Subsection II-B, all the
others are not as feature complete as this study.

Fig. 12 shows a comparison of our approach with the pro-
posal by Asif et al. [28]. For this comparative experiment, we
used three real firewall policies that used to be installed in the
backbone of the Stanford networks, and whose configuration
has been made publicly available by past Stanford researchers
publicly available in the GitHub repository at the following
link: https://github.com/eastzone/atpg/tree/master. Specifically,
we reused the same three firewall policies on which Asif et
al. validate their proposals according to their paper. These
policies are named Stanford1, Stanford2 and Stanford3, and
are respectively composed of 203, 43 and 53 rules.
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Fig. 12: Comparison with the approach by Asif et al. [28]

The experimental results reported in Fig. 12 are directly
derived from applying our framework to the three policies on
the previously described experimental setup for our approach,
and are taken from the paper [28] for Asif et al.’s approach.
In all three cases, our solution achieves a complete resolution
of all the existing anomalies in less time than the other one.
Besides, for the most complex policy, i.e., Stanford1, the
execution time of our framework is an order of magnitude
smaller. This comparison has a twofold value. On the one
hand, it shows that our proposed approach has performance
that is also in line with the times requested to address the
anomaly management problem in SDN-based virtual networks,
for which the compared solution of Asif et al. was designed.
On the other hand, this comparative evaluation allowed us to
successfully apply our approach to real firewall policies, thus
proving its feasibility in real-world networks.

VI. LIMITATIONS

In the following, some limitations of the proposed approach
are highlighted.

First, parallelization has been used to improve the perfor-
mance of the designed algorithms, such as Algorithm 1. How-
ever, the full benefits of parallel computing can be exploited
by using hardware tailored to parallelization, e.g., multi-core
processors. For the performance validation of the developed
framework, we used the Intel i7-6700, a 4-core processor that
supports up to eight parallel threads thanks to the hyper-
threading technology. Indeed, we were able to achieve the
best performance in that experimental setup when using eight
threads. If a process with more cores were used, then better
performance would also be achieved. This may represent a
limitation, as it requires the users to have hardware suitable
to execute parallel code. At the same time, nowadays most
commercial processors, including the ones used in personal
computers, have at least four cores. Therefore, this hardware
requirement is not very restrictive.

Second, the proposed approach has been validated to solve
the anomaly analysis and resolution problems for packet fil-
tering firewall policies, whose rules define conditions over the
fields of the IP 5-tuple. An extension to other filtering controls,
such as application-layer firewalls and SDN switches, may be
theoretically feasible, but it may impact the performance of
the approach. The reason is that the packet space matching
the conditions of an application-layer firewall or SDN switch
rule would be an N-dimensional hypercube, with N greater
than five. The parallelization strategies that have been already

implemented would decrease the impact, but they may not be
enough. Therefore, new strategies should be investigated.

VII. CONCLUSIONS

This paper proposes a novel approach for firewall policy
anomaly analysis and resolution. This approach is based on
modeling rule conditions as potentially complex predicates,
and splitting them into simpler ones, named atomic predicates.
Their computation allows to identify intersections among the
packet spaces represented by rule conditions, and to create
an alternative representation of the firewall policy, where each
rule has an atomic predicate as condition. For these atomic
rules, the anomaly analysis is much easier and more intu-
itive with respect to other approaches. To solve the detected
anomalies, we propose multiple resolution strategies, including
human-assisted or automatic ones. All these strategies allow to
solve all anomalies in fast times. This achievement has been
experimentally proved with tests assessing the performance
of the framework implementing our approach, with respect to
multiple parameters and to related proposals of the literature.

As future work, we plan to integrate our approach into
an existing open-source framework for firewall configuration,
Batfish, so as to have a comprehensive tool for the manage-
ment of firewall policies, inclusive of a consistency check of
the produced anomaly-free policy. We also plan to research
how the rules of the final anomaly-free policy output by our
approach may be further aggregated when needed, without
introducing new anomalies. The objective of this study would
be to improve the performance of firewall implementations
that still use linear search algorithms when deciding which
rule matches a received packet. Besides, we will investigate if
this approach based on atomic predicates can be used to solve
other problems related to policy-based management, such as
security policy-based verification and configuration.
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