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Emerging Spatiotemporal Dynamics in Multiterminal
Neuromorphic Nanowire Networks Through Conductance
Matrices and Voltage Maps

Davide Pilati, Fabio Michieletti, Alessandro Cultrera, Carlo Ricciardi,*
and Gianluca Milano*

Self-organizing memristive nanowire (NW) networks are promising
candidates for neuromorphic-type data processing in a physical reservoir
computing framework because of their collective emergent behavior, which
enables spatiotemporal signal processing. However, understanding emergent
dynamics in multiterminal networks remains challenging. Here experimental
spatiotemporal characterization of memristive NW networks dynamics in
multiterminal configuration is reported, analyzing the activation and
relaxation of network’s global and local conductance, as well as the inherent
spatial nonlinear transformation capabilities. Emergent effects are analyzed i)
during activation, by investigating the spatiotemporal dynamics of the electric
field distribution across the network through voltage mapping; ii) during
relaxation, by monitoring the evolution of the conductance matrix of the
multiterminal system. The multiterminal approach also allowed monitoring
the spatial distribution of nonlinear activity, demonstrating the impact of
different network areas on the system’s information processing capabilities.
Nonlinear transformation tasks are experimentally performed by driving the
network into different conductive states, demonstrating the importance of
selecting proper operating conditions for efficient information processing.
This work allows a better understanding of the local nonlinear dynamics in
NW networks and their impact on the information processing capabilities,
providing new insights for a rational design of self-organizing neuromorphic
systems.

1. Introduction

The field of neuromorphic engineering has attracted significant
attention in recent years owing to its potential to revolutionize
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the design and development of electronic
devices.[1–3] Thanks to their inherent
capabilities of adapting to an external
electrical stimulus, memristive sys-
tems, and devices have been adopted
as artificial synapses for non-von Neu-
mann computing architectures.[4–6]

Besides conventional memristive ar-
chitectures based on crossbar arrays,[7]

self-organizing memristive networks of
nanoscale elements have been shown
to exhibit emergent behavior arising
from the complex interaction among
nanoelements.[8–10] This collective be-
havior has been demonstrated to emulate
short-term/long-term synaptic plastic-
ity effects, structural/wiring plasticity,
memory engrams, and criticality.[11–15]

The presence of neuromorphic features
in these systems attracted great attention
for the low-cost implementation of un-
conventional computing paradigms such
as reservoir computing (RC).[9,12,16–25]

The RC paradigm leverages the in-
trinsic spatiotemporal dynamics of a
system (the reservoir) to map input to
a feature space, outsourcing learning
to a trainable readout layer. While the

reservoir is conventionally modeled as a recurrent neural net-
work, introducing a physical nonlinear, dynamic system as
reservoir layer (from here the name Physical Reservoir Comput-
ing, or PRC) may open to hardware applications for a wide range
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of tasks.[26–28] In this context, the nonlinear dynamics of the
physical system are exploited to extract spatiotemporal features
of the input signal.[26,27]

However, the characterization and understanding of complex
spatiotemporal emergent dynamics of these systems in multi-
terminal configuration still poses a challenge. Simulations have
shown great PRC applicative potential, though using implemen-
tations that are difficult to obtain in experiments.[29] While in a
simulation environment, it’s easy to access an arbitrary num-
ber of signals from the reservoir to be used as reservoir out-
puts, experimentally assessing the internal state of the reser-
voir poses challenges. In this context, the number of reser-
voir signals that can be recorded is related to the number of
terminals, i.e., to the hardware complexity.[30,31] Two terminal
measurements have been used to characterize these systems in
previous works,[8,13,32,33] as well as multiterminal measurement
setups.[11,34] In the context of PRC implementations, different
multiterminal setups and measurement strategies have been pro-
posed for extracting information on the internal state of the phys-
ical network.[12,23,35] For example, Lissajous plots were exploited
to investigate spatially distributed non-linear responses of self-
organizing systems of Ag2Se nanowires[35] and atomic switch
networks.[36] However, conductance matrices and voltage maps
were not investigated. In another work,[11] transresistance matri-
ces of multiterminal devices have been acquired for mapping the
spatial conductivity of NW networks. In this case, no information
on the spatial distribution and evolution over time of voltage drop
across the sample is provided.

In this work, we report on the spatiotemporal analysis of
multiterminal memristive NW networks through the analysis
of conductance matrices and voltage maps, allowing to moni-
tor the emergent behavior of the system characterized by asyn-
chronous activations and spatially distributed activity. The mul-
titerminal characterizations provided information on the volt-
age spatial distribution while stimulating the network, allowing
real-time monitoring of the emergent behavior, and reflecting
the spatiotemporal evolution of the network functional connec-
tivity upon electrical stimulation. While voltage maps allowed
real-time monitoring during potentiation, conductance matrix
analysis was exploited to analyze the network evolution dur-
ing relaxation. We also reported a multiterminal nonlinear ac-
tivity analysis, which showed how the choice of global conduc-
tive state impacts the information processing capabilities of the
network.

2. Results and Discussion

2.1. Multiterminal Characterization of Memristive Nanowire
Networks

Self-organizing NW networks were realized by drop-casting Ag
NWs in solution on a quartz substrate (Figure 1a, Methods).
The memristive switching mechanisms that regulate single-
junction dynamics rely on the voltage-driven formation/rupture
of Ag filaments penetrating the PVP insulating layer, which al-
lows the junction resistance to adapt to external electrical stim-
uli, conferring inherent bio-synapse similarities in terms of
electrical response.[14,5] The emergent behavior of these self-
organized systems is exhibited through the collective operation

of memristive junctions and rewiring effects in single NWs,[37]

conferring brain-like features to the network. In fact, when
stimulated, the network shows some features typical of bio-
logical networks including homo and hetero-synaptic plasticity,
structural plasticity, short- and long-term memory effects.[11,14]

The electrical response results in being spatially distributed
across the network, with different areas activating at differ-
ent times.[8,10,15] Consequently, to characterize the spatiotem-
poral dynamics of these systems, a multiterminal approach is
required.

The experiments described in this work were performed us-
ing a measurement board paired with a custom grid contact fix-
ture (Figure 1b). The measurements were performed with an
Arc Instruments ARC2 board,[38] which features fully parallel
source measure unit (SMU) channels. For the experiments in
this study, 16 of these channels were used. The selected chan-
nels were then connected to a custom grid setup which com-
prises a sample holder and a 4 × 4 grid of spring-loaded gold-
plated contact pins (Figure 1c, details in Methods). Electrical con-
tact was established by pushing the NW network sample against
the gold pins, which allowed for direct electrical contact with the
conductive Ag cores (Figure S1, Supporting Information).[32–34]

The contact resistance in a similar setup has been studied in
a previous work, and was determined to be negligible with re-
spect to the network resistance in operating conditions (details
in Methods).[39] The grid configuration of the contacts allows for
monitoring the evolution of the system across the whole NW net-
work area (Figure 1d). In all characterizations involving a sin-
gle bias-ground configuration, electrode 1 (top left corner) was
designated as the input, while electrode 16 (bottom right cor-
ner) was assigned as ground. This arrangement applies the volt-
age at two opposite corners, thereby distributing the electric field
across the sample diagonal. Notably, this experimental setup al-
lows real-time monitoring of voltage (or current) simultaneously
in all electrodes, providing access to the spatiotemporal evolu-
tion of the network. Additionally, the measurement unit allows
individual management of the electrical routing for each elec-
trode, enabling independent biasing with a specific voltage, con-
nection to ground, or designation as a floating electrode. With
respect to state-of-the-art measurement setups,[11,24,19] where of-
ten waveform generation and voltage or current measurements
are performed by two different units, this setup relies on par-
allel SMUs controlled by a single FPGA-based system, with no
need of a switching matrix to change the electrode configuration.
This enables rapid electrical measurement configuration switch-
ing, significantly minimizing the time required to perform such
kind of measurements. Moreover, in neuromorphic networks,
and particularly in NW networks, often the contacts are sput-
tered on the substrate to form contact pads.[23,24,19] The here-
presented setup instead is capable of achieving electrical con-
tact without the need of contact pads, enabling easier network
characterization.[11]

2.2. Emergent Dynamics Through Conductance Matrices

The electrical connectivity of NWNs can be described through
the conductance matrix of the multiterminal network, as previ-
ously investigated in ref. [40]. A conductance matrix is the result
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Figure 1. Experimental Setup. a) SEM image of Ag NWN sample, scale bar is 4 μm. b) Measurement setup: sixteen channels from the Arc2 measurement
board were connected to a 4 × 4 grid setup (16 pins). c) Spring-loaded pins in contact with the NWN sample. d) Pins position on NW network sample
(sample size 1 × 1 cm2).

of a series of sequential two-terminal measurements, in which
a reading voltage (100 mV) is imposed between the two elec-
trodes and the resulting current is measured. Each element of
the matrix corresponds to an electrode pair, and the value of
each element is the effective network conductance seen by those
two electrodes. The conductance matrix was used to determine
the pristine state of the network (i.e., the conductive state be-
fore any electrical stimulus was applied), as well as for moni-
toring the potentiation and relaxation of the network under ex-
ternal stimulation (Figure 2). The network, which was initially
found in the off state, was activated by applying a voltage stimula-
tion ramp between selected electrodes placed across the diagonal
(input voltage applied between electrodes 1 and 16, Figure 2a).
From here on, we will refer to network turn-on (or network
activation) as a significant increase in the global conductance
(i.e., the effective conductance measured between a bias and a
ground electrode positioned at opposite sample corners, i.e., re-
spectively electrodes 1 and 16). After network activation, the volt-
age ramp was interrupted to monitor the spontaneous relaxation
of the conductance state of the network both across the stimu-
lated electrodes (Figure 2a) and in a multiterminal fashion by
monitoring the evolution of the conductance matrix of the sys-
tem (Figure 2b–g). It is worth noticing that, during the relax-

ation analysis, the reading voltage (100 mV) has been applied to
the system just for the time needed to perform the conductance
snapshots, avoiding any unnecessary stimulation. In the con-
text of multiterminal analysis, the pristine-state conductance ma-
trix depicted in Figure 2b reveals a conductive region distributed
mainly across network areas probed by electrodes 13, 14, 15, and
16. This information is something unachievable with a standard
two-terminal conductance measurement, such as the global con-
ductance reported in Figure 2a, where only the conductance be-
tween the stimulated electrodes is available. The first conduc-
tance matrix measured after network stimulation (Figure 2c)
shows the activation of electrodes 1, 4, and 9 as a consequence
of network stimulation between electrodes 1 and 16. The po-
tentiation measured by electrodes that have not been directly
stimulated (e.g., electrodes 4 and 9) is a form of heterosynaptic
plasticity.[14]

With regard to relaxation, the network takes ≈70 s to return to
a turn-off state if considering the two-terminal conductance mea-
surement across stimulated electrodes 1–16 (refer to Figure 2a).
However, Figure 2e–g demonstrates that the network actually
took significantly longer time (>260 s) to return to a state that
resembles the pristine state (Figure 2g). This type of information
is significant when implementing a series of experiments aimed
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Figure 2. Conductance matrix analysis. a) I–V ramp characterization showing potentiation and spontaneous relaxation over time. b) Pristine state
conductance matrix. c) Conductance matrix after network potentiation. d-g) Conductance matrix analysis of the network relaxation over time.

at operating in a multiterminal configuration, since results in-
dicate that the relaxation of different network areas leads to dif-
ferences in relaxation time of the effective conductance between
different electrode pairs. Moreover, as demonstrated by the in-
termediate conductance matrices, internal rearrangements con-
tinue to occur until a conductance matrix similar to the pristine
state is reached.

Although the conductance matrix provides information about
the internal network connectivity, it cannot be used as a physi-

cal observable in a computing framework (e.g., RC), since this
characterization technique does not allow synchronous measure-
ments on all 16 electrodes.

2.3. Emergent Dynamics Through Voltage Maps

An alternative for investigating internal dynamics of the mul-
titerminal network is represented by tracking the evolution of
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Figure 3. Spatiotemporal analysis during I–V characterization. a) Input voltage and global conductance. b) Zoom of panel a around activation.
c) Voltage evolution of floating electrodes. d) Zoom of panel c around activation. e—h) Spatial voltage distribution snapshots of the network dur-
ing I–V characterization from e (t = 40.2 s) to h (t = 260.9 s). Bias electrodes in panels e–h are represented by a circle (source electrode) and a triangle
(ground electrode).

voltage maps. These maps provide a visual representation of the
spatial dynamics of the voltage distribution by presenting it as
a heatmap, as shown in Figure 3e–h. In this case, the voltage
(measured with respect to a ground electrode) is measured on
all read electrodes that are kept floating, while the network is
stimulated in two-terminal configuration between a source elec-
trode and ground where also current is monitored (voltage and
current sampling at 10 Hz). As reference, Figure 3a,b report the
effective conductance measured between input and ground elec-
trodes (normalized by the fundamental quantum of conductance
G0), when an external voltage is applied as stimulation in be-
tween electrode 1 and 16. While an activation is clearly revealed
by a sudden jump in the global conductance between input and
ground electrode occurring at t = 120 s, the two-terminal conduc-
tance does not provide information regarding the local voltage
distribution, thus not helping in identifying localized effects. On
the opposite, Figure 3c,d show that multielectrode voltage mea-
surements allow real-time spatiotemporal dynamic analysis, dif-
ferently from conductance matrices that are based on sequen-
tial measurements. It can be noticed that prior to activation, the
effective conductance of the network between stimulated elec-

trodes exhibits intensified activity, as demonstrated by the spikes
in the 90–120 s region (Figure 3d).[8,23] Such rapid fluctuations
in the electrical activity are the typical fingerprint of metastable
states related to the local dynamic reorganization of the network.
Regarding localized dynamics, Figure 3d clearly shows the non-
synchronous local activation of the different areas of the sample
(represented by electrode pairs): while two electrodes (2 and 3) are
activated around t = 95 s, other electrodes are organized in two
groups that activate later (around t= 100 s and t= 120 s). Such ex-
perimental evidence about how information is spatiotemporally
processed in a NWN would be unachievable with standard two-
terminal sequential characterization set-ups.

The data provided by these measurements can be better visu-
alized as time evolution of voltage maps, in which each square
represents an electrode reflecting its spatial position on the sam-
ple. In the reported voltage maps (Figure 3e–h), although the
effective conductance jump (network activation) between stim-
ulated electrodes occurred at t = 120 s, electrodes 13, 14, and 15
remain electrically close to ground (electrode 16). This electrical
configuration appears to be stable until t = 225 s, when the net-
work begins to potentiate toward a higher conductive state, and
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electrode 13 shows a voltage increase, suggesting activity in that
area as a consequence of the formation of new conductive path-
ways or existing pathways adjustments in response to the input
voltage increase. Given the voltage map reported in Figure 3h,
we can observe that the voltage distribution across the sample
area resembles a nearly homogeneous 2D material, but asyn-
chronous jumps and fluctuations in local voltages are a direct
consequence of emerging dynamics of the network. Thanks to
these voltage maps, it is possible to analyze the behavior of the
network during the activation phase since the measured activ-
ity is connected to the spatiotemporal dynamics of conductive
paths formation (see voltage evolution from Figure 3e–h; Video
S1, Supporting Information). Note that the movie format al-
lows better visualization of the local activity of the network over
time.

However, this approach comes with limitations. During ac-
tive stimulation, this method allows a detailed study of conduc-
tive pathways formation, but during the relaxation phase the
source voltage must be kept low (under 100 mV) to avoid stim-
ulation. This results in a reduced applied voltage on the float-
ing electrodes, with a consequent reduced signal-to-noise ratio
that limits this characterization approach during the relaxation
phase. While voltage maps enable to access the internal dynam-
ics of the network during potentiation, the analysis of conduc-
tance matrix analysis remains a valid alternative to investigate
conductance evolution during relaxation. These two character-
ization approaches can therefore be used in a complementary
manner to investigate different aspects of the network electri-
cal behavior: voltage maps provide a real-time snapshot that al-
lows the investigation of local events such as spikes and asyn-
chronous activations in terms of variations of voltage distribu-
tions, while conductance matrices allow the evaluation of elec-
trode pair relations when sequential conductance matrices do
not represent a limitation (i.e., during the slow spontaneous
network relaxation). Moreover, while conductance matrices are
purely used as a characterization tool, voltage maps can be also
used to extract real-time voltage signals from different network
areas for computing tasks such as nonlinear transformation
(NLT) and, more in general, for physical reservoir computing
applications.

2.4. Nonlinear Response Analysis

In this section we report on local nonlinearity response of the net-
work in different global conductance regimes, to study the influ-
ence of the system conductive state on its information processing
capabilities. This has been done to demonstrate how emergent
behavior can be exploited with the synchronous measurement
methodology described previously in this work (volage maps)
to perform reservoir computing, while simultaneously obtaining
information about the system conductive state. However, it has to
be clarified that the network has not been optimized for comput-
ing, since it is outside the scope of this work. For this purpose,
the nonlinear transformation (NLT) task has been experimen-
tally implemented, since it represents a common benchmark
for analyzing the information processing capability of a physi-
cal network.[13,17,41,42] Here, the response of a nonlinear system is
expected to be a periodic waveform in which the harmonic com-

ponents are changed with respect to the provided input (e.g., with
a triangular wave fed as input, the network provides a sinusoidal
wave as output). While it has been established that the dynamic
condition of the system can influence NLT performance,[17] how-
ever, the ability to monitor the voltage evolution of all the elec-
trodes simultaneously enables additional examination about the
dynamic response variations. For this purpose, the voltage map
(simultaneous sampling of the 16 electrode floating voltages) has
been exploited as physical observable of the reservoir state for
each timestep.

As illustrated in Figure 4, a triangular wave is fed to elec-
trode 1 (Figure 4a), with electrode 16 at the other end of the di-
agonal set to ground. Conductance analysis was performed on
these two electrodes (Figure 4b) to determine the global conduc-
tive state of the system, while the other 14 electrodes were set to
floating state in order to read voltage (Figure 4c) and extract the
output node signals (from the voltage readings only). The net-
work showed activation between stimulated electrodes after 3 pe-
riods (Figure 4b), setting to a higher effective conductive state
(0.6 G0). For sake of clarity the low conductance region and the
high conductance regions have been denominated respectively
Glow state and Ghigh state. Following the network activation, the
magnitude of the floating electrode voltages changes due to elec-
trical reconfiguration of the network (Figure 4c). More interest-
ingly, only few electrodes showed nonlinear response. Concern-
ing nonlinear signals, Electrodes 4, 8, and 12 already provided a
transformed output before the activation (Glow state), with their
voltage evolutions resembling the shape of a sine wave. After a
transition phase, in which the network turned on and adjusted
itself to the new conductive state, the floating electrode outputs
changed significantly. As shown in Figure 4c, around t = 7 s, the
output waveform of electrode 8 exhibits a more pronounced trian-
gular shape as the stimulation progresses, thereby worsening the
inherent nonlinear transformation. On the other hand, remain-
ing electrodes do not show resemblance to periodic waveforms,
due to the inherent noisier characteristic of such low voltage
signals (see Figure S2, Supporting Information for the zoomed
graph).

Such a behavior is also supported by Lissajous patterns shown
in Figure 5, where the electrode voltages are reported as a func-
tion of the input voltage for the Glow (Figure 5a) and for the Ghigh
state (Figure 5b). Lissajous plots provide an immediate represen-
tation of the nonlinearity:[35,36] if an output signal is linearly de-
pendent on a given input, the resulting plot will be a straight line,
while a nonlinear dependence is represented by a circular shape.
This analysis confirms that the electrodes showing a clear nonlin-
ear response seem to be limited to electrode 4, 8, and 12. Further-
more it is possible to notice a worsening in the Lissajous patterns
exhibited by electrodes 4, 8, and 12 as the system transitions from
the Glow to the Ghigh state. This set of information is crucial for
computing applications, since it demonstrates that the nonlinear
contribution is not uniformly distributed across the sample area.
The presented analysis not only shows that the nonlinear activ-
ity is confined to specific sample areas, but also highlights the
significant influence that electrode selection can have on compu-
tational performance.

These observations were further corroborated by performing
a series of non-linear transformation (NLT) tasks. From the tri-
angular wave in input, the three targets for NLT performance
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Figure 4. Nonlinear transformation analysis of a triangular wave. a) Input voltage as a triangular wave centered at 0.8 V with an amplitude of 0.6 V.
b) Global conductance of the network evaluated between input electrode (1) and GND electrode (16). c) Voltage evolution of the floating electrodes.
The transformation is modified upon global network activation.

assessment were a sinewave with the same period, a delayed
triangular wave, and a square wave with the same period. In
Figure 6 we have reported a global overview of the NLT perfor-
mances for all the aforementioned tasks. The predictions for the
three tasks have been performed by means of linear regression,
using the 14 signals from floating electrodes as reservoir output
nodes (more details in Methods section). In Figure 6a–f both the
targets (black lines) and the predicted waveforms (colored lines)
are reported for the Glow (blue) and Ghigh (red) states. The accu-
racy for each task is shown in Figure 6g–i. From left to right,
the tasks are reported in increasing difficulty order, and so the
predictions get less and less accurate with respect to the targets.
Interestingly, the network shows better performances before the
activation (Glow state) for all the targets: sinewave (Figure 6a,d,g),
phase shift (Figure 6b,e,h), and square wave task (Figure 6c,f,i).

To understand the impact of the nonlinear response of each
electrode on computing performances, feature score maps were
used (details in methods). Feature score represents a com-
monly employed method for feature selection in machine learn-
ing, utilized to individually evaluate features.[43] As can be ob-
served from score maps for both Glow and Ghigh state reported
in Figure 6j–o, not all electrodes impact the accuracy of the
NLT task in the same way. Also, the impact of each electrode
is different when considering different NLT tasks, suggesting
that the local nonlinear response of the network could be op-
timized depending on the specific task. Furthermore, the im-
pact of each electrode changes when the network is programmed
in different networks states, further showing the importance of
selecting proper operating conditions for efficient information
processing.

3. Conclusion

We have demonstrated that multielectrode analysis of NWNs pro-
vides valuable information about the spatiotemporal evolution

of emergent behavior, which is undetectable through traditional
two-terminal measurements. This has been achieved by means
of voltage maps, conductance matrices and multielectrode Lis-
sajous nonlinear activity analysis. The results indicate that a two-
terminal conductance analysis is only a manifestation of much
more complex internal spatiotemporal dynamics that can be ob-
served only with a multielectrode approach. Moreover, the results
demonstrate that monitoring spatiotemporal voltage distribution
can provide information on the formation and adaptation of con-
ductive paths during the potentiation, revealing electrical activity
that is not measurable with a conventional two-terminal setup.
While conductance matrix analysis represents a valid solution
for monitoring the relaxation over time, voltage maps acquired
through synchronous measurements enable real-time monitor-
ing of the potentiation phase. However, while we exploit reser-
voir computing as an example of how emergent behavior can be
harnessed for computing, further work is required to optimize
computing performances. Besides showing that different non-
linear responses can be observed in different network areas, re-
sults suggest that proper operation conditions are crucial for opti-
mizing the computing performances of the system. More in gen-
eral, these results shed new light on complex spatiotemporal dy-
namics arising from complexity in self-assembled nano systems,
paving the way for more efficient implementations of physical
reservoir computing.

4. Experimental Section
NWN Fabrication: NWN were fabricated by drop-casting PVP-coated

Ag nanowires (NW) in isopropyl alcohol (IPA) suspension (0.13%) on a
quartz commercial substrate (1 × 1 cm2).

The used nanowires were Sigma–Aldrich PVP-coated Ag NW, with
length 20–50 μm and average diameter 115 nm ± 15 nm. The network
density was controlled by diluting the NW suspension with additional IPA,
starting from a product concentration of 0.5 wt.%. A 13.8 μL drop was
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Figure 5. Lissajous analysis of the nonlinear response of each electrode. a) Lissajous analysis before activation (Glow state). b) Lissajous analysis after
activation (Ghigh state).
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Figure 6. NLT performance overview. NLT tasks were performed by giving as input a triangular wave, while the targets were a same-period sinewave, a
𝜋/2 shifted triangular wave, and same-period square wave (first, second, and third column, respectively). a–f) Target (black lines) and prediction using
Glow state and Ghigh state data (blue and red lines, respectively). g–i) Relative accuracies for the three targets, i.e., sinewave (g), shifted triangular wave
(h), and square wave (i). j–o) Maps representing the feature score of each electrode for each task, for Glow (j–l) and Ghigh (m–o) state.
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casted onto the substrate, and the IPA was removed by spontaneous evap-
oration. Fabrication parameters and respective densities were chosen fol-
lowing previous studies.[23,40]

Measurement Setup: The measurement setup was based on Arc In-
struments ARC2 board.[38] ARC2 features 64 fully parallel SMU channels
controlled by a FPGA. The instrument is controlled by a PC using custom-
made Python scripts that exploit the exposed Rust libraries to control the
board. The measurement board comes with a series of daughterboards
that serve as interfaces for the SMU channels. The experiments conducted
in this work have all been performed using 16 channels from the SMA 32
channel board. Custom SMA to DIN adapter cables have been made to
bridge the measurement board with the 16 electrodes grid setup. The cus-
tom grid fixture has been realized on the base of previous experiences on
electrical resistance tomography.[44] The fixture includes a insulating plas-
tic sample holder and a movable contact array with 16 spring-mounted
pins (Ingun GKS-080) disposed as a 4 × 4 grid. Pins’ tips have a round
profile with a radius of 400 μm. The movable contact array can be lowered
to push the spring-loaded pins toward the NW and achieve direct, purely
mechanical electrical contact between the pins and the Ag nanowire cores.
Once the electrical contact is established, each individual channel can be
independently connected to the voltage or current source, as well as left
floating during the voltage reading. Moreover, each ARC2 channel can be
connected to a hard ground, a soft ground, or the voltage source set to 0 V
to be exploited as reference voltage.

Conductance Evaluation: The evaluation of the network’s conductance
was carried out as outlined in Equation (1), which is analogous to a two-
terminal measurement between an input electrode and a ground elec-
trode. This measurement was then normalized by the fundamental quan-
tum of conductance, G0, as per Equation (2). This is done for readability
reasons, since the reported computing tasks are performed when the net-
work is in a conductive state of the same order of magnitude as G0.

G =
Ibias

Vbias − VGND
(1)

G0 = 2e2

h
= 7.748091729…× 10−5S (2)

In general, two terminal conductance measurements can be affected
by contact resistance. The contact resistance between the spring-loaded
pins and the nanowire network has been studied in a previous work,[39]

finding a correlation between the contact resistances and the areal mass
density (AMD). In particular, for AMD = 90 mg m−2, the measured contact
resistance was found to be less than 80Ω. All the samples used in this work
have higher AMD values, therefore resulting in a lower contact resistance
with respect to the 90 mg m−2 samples. The operating conditions in this
work are obtained for network resistances close to 10 kΩ, thus keeping the
influence of the contact resistance lower than 1%.

Conductance Matrix Analysis: The conductance matrix was evaluated
by computing the two-terminal conductance for each electrode pair. Being
the measurement system globally controlled by the same FPGA, there is
no need of external switching matrix or physical electrode reconfiguration
to perform the measurement. The measurement is conducted at 40 Hz
sampling rate, with each sample corresponding to a different electrode
pair. The conductance for each electrode pair was determined following
Equation (1), reading the current from the ground electrode with a bias
voltage of 100 mV applied to the input electrode. The relaxation time of
the NWNs under analysis has been demonstrated to be in the order of
hundreds of seconds, therefore being able to perform an entire cycle of 112
measurements, each with a different electrode configuration, in just 3 s,
allowing a significant analysis of the conductive state of the system.

Nonlinear Transformation (NLT) Tasks: The NLT tasks were performed
starting from a triangular input signal centered on a bias voltage (0.8 V),
with amplitude 0.3 V and frequency 1 ± 0.07 Hz, with measurement sam-
pling frequency of ≈100 Hz. 14 output nodes were used by means of float-
ing voltage measurements (16 total electrodes, including one source and
one ground). The voltage readings from the output nodes were processed
by a low-pass filtered designed in MATLAB with designfilt function (PB =

30 Hz, SB = 40 Hz, ripple = 1 dB, As = 12 dB). The filtered signals were
used to train a linear regression model on three target signals: sinewave,
phase-shifted triangular wave, and square wave. The accuracy for each tar-
get has been evaluated as 1-RNMSE, or Root Normalized Mean Square Er-
ror (Equation 3), as done by Fu et al. in a previous work.[17] Here, T(tn) rep-
resents the target value at time tn, and y(tn) represents the reconstructed
output, while N is the total number of samples.

RNMSE =

√√√√
∑N

n= 1 [T (tn) − y (tn)]2

∑N
n= 1 [T (tn)]2

(3)

The feature score of each electrode was evaluated through the MAT-
LAB’s built-in fsrftest function. This function assigns a score to each signal
based on the F-test’s p-value, following the equation below:

SCORE = − log (p-value) (4)
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