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Non-linear Model Predictive Control for Multi-task GPS-free
Autonomous Navigation in Vineyards

Matteo Sperti, Marco Ambrosio1, Mauro Martini1, Alessandro Navone1,
Andrea Ostuni1, and Marcello Chiaberge1

Abstract— Autonomous navigation is the foundation of agri-
cultural robots. This paper focuses on developing an advanced
autonomous navigation system for a rover operating within row-
based crops. A position-agnostic system is proposed to address
the challenging situation when standard localization methods,
like GPS, fail due to unfavorable weather or obstructed signals.
This breakthrough is especially vital in densely vegetated re-
gions, including areas covered by thick tree canopies or pergola
vineyards. This work proposed a novel system that leverages
a single RGB-D camera and a Non-linear Model Predictive
Control strategy to navigate through entire rows, adapting
to various crop spacing. The presented solution demonstrates
versatility in handling diverse crop densities, environmental
factors, and multiple navigation tasks to support agricultural
activities at an extremely cost-effective implementation. Exper-
imental validation in simulated and real vineyards underscores
the system’s robustness and competitiveness in both standard
row traversal and target objects approach.

I. INTRODUCTION

In recent years, precision agriculture has advanced sig-
nificantly, utilizing technology to optimize crop production
and reduce waste [1]. Row-based crops, in particular, repre-
sent a pivotal scenario in precision agriculture applications.
Research in this domain encompasses various aspects, such
as plant health monitoring [2], harvesting [3], spraying [4],
irrigation [5], and seeding [6].

This work contributes to the foundation problem of robust
autonomous platforms in row-based crops [7], [8], to address
all the aforementioned tasks. Standard localization technolo-
gies as the Global Navigation Satellite System (GNSS), can
fail in this context due to adverse weather or dense vegetation
[9]. Moreover, GPS-based solutions are often enhanced by
the corrections carried out by multiple costly Real-Time
Kinematics (RTK) receivers.

Alternative methods, such as Visual Odometry (VO), have
been investigated to localize rovers using camera image
streams [10]. However, challenges arise in row-crop fields
due to the repetitiveness of environmental visual patterns.
A versatile position-agnostic system is therefore proposed,
excelling in scenarios where traditional methods fall short.
The presented control system can be inserted in a framework
to address multiple navigation tasks, such as traversing entire
rows, avoiding obstacles effectively, and approaching target
objects in varying row spacing. Position-agnostic sensori-
motor agents directly map sensor data to rover velocity
commands without relying on fixed Reference Frames (RFs).
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(a) Straight vineyard (b) Pergola vineyard

Fig. 1. Vineyards used for testing the proposed navigation system in Agliè,
Turin, Italy.

For instance, [11], [12], [13] proposed to segment the input
image to compute a set point in the camera frame and to use
a proportional controller to align the rover towards the set
point. These methods, however, fail in the case of pergola
vineyards or high trees in which the sky is not visible [11],
[13] or the crops are not uniform on both sides [12], see
Fig. 1. Moreover, segmentation-based methods encounter
difficulties in generalizing due to visual seasonal changes
and in handling unexpected obstacles along the path.

Decision algorithms provide another avenue, with Deep
Reinforcement Learning agents trained by [14] for decision-
making or Convolutional Neural Network (CNN) used by
[15] to output actions from a discrete set. Additionally, [16]
introduced a path-following Non-linear Model Predictive
Control (NMPC) approach, leveraging a Point Cloud Data
(PCD) from four cameras to generate the reference path.

The primary contribution of this research lies in develop-
ing a new robust controller tailored for row crop geometry,
avoiding the need for precise and costly localization systems
such as GPS receivers. Notably, a single RGB-D camera
represents a cost-effective option compared to other sensors
like 3D LIDARs.

Furthermore, the navigation system has been conceived
to support task-oriented behavior. This enables the system
not only to navigate the agricultural space efficiently but
also to engage in auxiliary tasks. This flexibility enhances
the system’s overall utility and broadens its applicability



Fig. 2. Computation Graph of the ROS 2 overall application system. A Behavior Tree manages and coordinates the NMPC controller for row traversal,
target object approach, and recovery behaviors for robust multi-task navigation.

for diverse agricultural tasks beyond navigation, from object
transport to plant harvesting.

The next sections are organized as follows: Section II de-
scribes the proposed control system for multi-task position-
agnostic autonomous navigation in row-based crops. Section
III illustrates the experiments conducted both in simulated
and real vineyards, discussing the obtained results. Finally,
Section IV wraps up all the considerations on the study and
suggests future directions.

II. METHODOLOGY

The proposed methodology adopts a position-agnostic
controller approach to guide the robot in row-based crops
without relying on a localization signal. Costly GPS sen-
sorization of the platform may lead to unreliable perfor-
mances in case of thick vegetation. Taking a PCD as input,
the controller computes in real-time linear velocity vx and
angular velocity ωz.

A. Navigation System Architecture

The computation graph, shown in Fig. 2, illustrates the
system’s structure. The overall system is orchestrated by a
Behavior Tree, overseeing high-level logic, mission switches,
start and stop commands, failure detection, and initiating
fallback procedures.

The RGB-D camera data is analyzed by two parallel
operation flows that carry out standard row traversal and
check the presence of potential objects of interest in the
mission to be approached. The Point Cloud Analysis process
analyzes the environment starting from the PCD captured by
the camera. Then the NMPC controller uses a Non-linear
Model Predictive Control strategy to determine the optimal
control sequence. This sequence is computed considering
the geometrical constraints of the row and the obstacles
identified by the Point Cloud Analysis process. Concurrently,
a generic Object Detection visual algorithm could be adopted
to estimate the position of potential target objects from
the camera image. If any, the Target approach process is
triggered to smoothly guide the robot to a desired position
near the target. A Fallback Controller manages recovery
from fault behaviors: a simple proportional controller is used
to re-align the rover with the plants’ row.

B. Point Cloud processing pipeline

The PCD of the camera is processed to perceive potential
obstacles and the boundaries of the crop row. The output of
this pipeline includes the obstacle points and two straight
lines, which represent the geometrical sides of the row.

The first part of the procedure consists of mapping the
input PCD to the 2D horizontal plane. Hence, as a first thing,
the PCD is transformed into the rover RF. A down-sampling,
performing a voxelization operation with a resolution rv,
and filtering using a classical k-NN algorithm to exclude
the noise points, are applied. Then, the PCD is cropped
to eliminate outliers and misleading points in the sky and
on the ground. Therefore, minimum and maximum height
thresholds, zth,min, zth,max on the z-axis are set to ensure
the removal of ground points. This operation is necessary
in cases where the rover is not perfectly parallel to the
ground plane due to bumpy or rough terrain. If, after this
preprocessing, the fraction of remaining points falls below
a specified threshold, fpoints, relative to the original point
count, the field of view is considered empty, indicating no
row detection. On the other hand, if the fraction exceeds
the threshold, the points are projected onto a 2D plane
by considering only their coordinates on the x-y plane
generating a grid map. After the generation of the obstacle
occupation map, the areas behind them are also considered
occupied. This allows us to identify the inner edge of the
plants in the row. Then, a heuristic approach is used to gather
the occupied zones on the available borders.

Since the two internal row borders are considered two
straight lines, a least square fit is applied to evaluate the
angular and bias coefficients, ai,bi ∈ R of the equation
y = aix+ bi, i ∈ [l,r]. Two lines are generated, one for the
left side l and one for the right one r.

Finally, a safety distance margin R is added to the row’s
two borders to consider the robot’s occupancy and account
for possible errors. Moreover, suppose the rover is required
to travel only in half of the available row space, for example
in a scenario where multiple robots are expected to move in
opposite directions. In that case, the middle line is computed
and used to separate the two motion lanes. An error is raised
if one of the two lines is (given a predefined maximum
angle) perpendicular to the x−axis, i.e., the direction of



Fig. 3. The black points represent the input PCD, filtered and flattened on
a 2D map (obstacles), the green area is the free space in front of the rover,
while the two straight lanes represent the lane borders. Finally, the dotted
green line is the expected trajectory as computed by the NMPC controller.

motion of the rover. Hence, the fallback recovery procedure
is initiated to prevent the rover crash and realign it with the
row direction.

C. NMPC formulation

A customized model and cost function were tailored to
address the specific requirements and characteristics of the
rover’s navigation scenario. This involved carefully calibrat-
ing the model parameters and formulating the cost function
terms, as well as the problem constraints. The inputs of the
NMPC controller are the obstacle points and the two first-
order polynomials representing the two straight lines delim-
iting the plants, expressed in the robot’s RF, as described in
Section II-B.

The NMPC approach requires a plant model to predict
future states. For this purpose, a modified version of the
Unicycle Model was selected. This decision is based on the
differential drive mechanism of the testing rovers, which the
unicycle model can sufficiently approximate. Summarizing,
the kinematic model of the unicycle has been modified to:

ẋ1
ẋ2
ẋ3
ẋ4

=


v(x2

3 − x2
4)

v(2x3x4)
−ω

x4
2

ω
x3
2

 (1)

where x1 = x, x2 = y, x3 = cos θ

2 , x4 = sin θ

2 .
Moreover, input saturation constraints were incorporated

into the NMPC minimization problem, allowing for the spec-
ification of maximum linear and angular velocities, namely
vx,max and ωz,max, as parameters before the system’s initiation.

In addition, non-linear constraints were integrated to en-
sure obstacle avoidance, according to the following formula:

−(x1 −oi
1)

2 − (x2 −oi
2)

2 +R2 ≤ 0 (2)

where the two negative terms represent the square of the
Euclidean distance between the rover pose x and the i-th
obstacle oi, and the parameter R represents a predetermined
safe distance between the rover and an obstacle point. This
constraint must hold for each time step tk = 1, . . . ,TH and
for every obstacle point, providing a robust mechanism for
obstacle avoidance throughout the prediction horizon.

The core of the NMPC formulation lies in defining an
objective function, which needs to be optimized, represented
as follows:

C =
n−1

∑
k=0

(l (xk,uk, p)︸ ︷︷ ︸
Lagrange term

+∆uT
k R∆uk︸ ︷︷ ︸
r-term

)+ m(xn)︸ ︷︷ ︸
meyer term

(3)

In this equation, three contributions can be identified, respec-
tively the Lagrange term, the meyer term, and the r-term.

The Lagrange term, l (xk,uk, p), evaluated and summed at
each time step until the prediction horizon, is composed of
two contributions as in the following equation:

l (xk,uk, p) = KlaneClane (xk,uk, p)+KorientCalign (xk,uk, p)
(4)

The first term, Clane (xk,uk, p), aims at maintaining a cen-
tral trajectory with respect to the lane while, the second term,
Calign (xk,uk, p), aims at minimizing misalignment from the
row direction. The constants Klane and Korient are the weights
of the corresponding contributions.

Given a position x = [x1,x2,x3,x4], and the two lines
delimiting the row yl = alx1 + bl (on the left), and yr =
arx1 + br (on the right), the cost term regarding the lane
centrality is described by the following equation:

Clane =
4

(yl − yr)2 x2
2 −4

(yl + yr)

(yl − yr)2 x2 +
(yl + yr)

2

(yl − yr)2 (5)

Essentially, it consists of a paraboloid with its minimum
coinciding with the middle of the row. For each depth value
x1 a convex-upward parabola is constructed along the axis
x2 with a minimum in the middle of the lane. Therefore, the
minimum cost trajectory ideally aligns perfectly with it.

The cost term for the alignment is computed considering
the difference between the angular coefficient of the middle
line aavg = (al + ar)/2 and the angular coefficient of a
straight line oriented as the rover arover as in the following
equation:

arover = tanθ =
sinθ

cosθ
=

2x3x4

x2
3 − x2

4
(6)

Calign = (aavg −arover)
2 (7)

The r-term is the quadratic penalty on changes for control
inputs, which can be utilized to smooth the obtained optimal
solution and serve as a crucial tuning parameter.

The terminal (or meyer) term of the objective function is
designed to maximize the distance traveled by the rover in the



Fig. 4. Aerial view of vineyards in Gazebo used for testing in simulation.

prediction horizon time interval. So, recalling that max f =
min− f , the terminal (or meyer) term is set as follows:

m(x) =−Ktravel
x1 +aavg · x2√

1+a2
avg

(8)

here Ktravel represents the parameter for weighting this term,
aavg = (al + ar)/2 is the angular coefficient of the line in
the middle of the row, and x1,x2 are the coordinates of the
rover in plane at the horizon tk = TH . The distance traveled
by the rover is projected onto the middle line to weigh only
the distance traveled in the direction of the row.

The result of this optimization problem is the sequence
of velocities [vx,ωz]k for tk = 1, . . . ,TH , which minimizes
the cost function. The first pair is used to move the rover
immediately, while the entire sequence is used to initialize
the optimization at the next time step, thus enhancing the
startup efficiency of the optimization process.

III. TESTS AND RESULTS

Extensive experiments were conducted on both simulated
and real vineyards to illustrate the proposed solution’s com-
petitive advantages for testing and validation.

A. Experimental Setting

All the code was developed in a ROS 2 framework and has
been tested on Ubuntu 22.04 LTS using the ROS 2 Humble
distro. This research employed two distinct mobile robots:
the Clearpath Robotics Jackal and Husky1. For simulated
tests, the Gazebo platform, the Jackal model and description,
and the PIC4rl gym [17] evaluation tool were utilized. The
world chosen, shown in Fig. 4, contains a straight and curved
vineyard, with an intra-row space of around 1.5 m.

Instead, tests in a real vineyard utilized the Husky to
evaluate the path metrics, an Intel Realsense D455 RGB-D
camera, and a Velodyne VLP16 3D LIDAR for comparison.
The tests were conducted on a straight vineyard with an intra-
row space of around 2.5 m and on a pergola vineyard with
an intra-row space of around 4 m, both shown in Fig. 1.

An accurate robot localization in the row was necessary for
comparing its position to a ground truth path. However, the
odometry system of the IMU of the rover failed to localize
the rover due to significant drifts; SLAM techniques based on
scan matching algorithms such as KISS-ICP [18], also failed
to correctly localize the system due to the repetitiveness
of the environment. So, the GPS position provided by the
SwiftNav Duro GNSS receiver was used as a reference to

1https://clearpathrobotics.com/

Fig. 5. Satellite view of the vineyard. In red the trajectory followed by
the Husky rover during a test session.

compute the metrics, along with a precise geo-localization of
the row in the vineyards (Fig. 5). However, GPS positioning
is prone to errors in environments where leaves obstruct
GPS visibility, leading to signal failures and inaccuracies in
position tracking. Moreover, costs must also be considered:
the GNSS receiver chosen to obtain a sufficiently precise
localization is much more expensive than an RGB-D camera.
These facts highlight the difficulties in localizing a ground
rover in this environment and suggest the advantages of
adopting a position-agnostic controller such as the one devel-
oped in this project. RGB-D cameras are also a cost-effective
choice to get a limited FOV PCD, compared to a multi-range
3D LIDAR.

To implement the NMPC controller, the DO-MPC library
[19] was chosen for its versatility. The hyper-parameters of
the NMPC controller have been set by a trial and error
procedure. For the tests, vx,max = 0.4 m/s or vx,max = 0.5 m/s
and ωz,max = 0.5 rad/s has been set. The control period
has been fixed to 0.7 s. In the PCD processing pipeline,
the resolution of the voxel has been set to rv = 0.05 m, the
minimum and maximum height threshold have been set to
zth,min = 0.15 m and zth,max = 2 m and the minimum point
threshold has been set to fpoints = 0.2. The safety margins
for the Jackal and the Husky robots were respectively set to
RJackal = 0.3 m and RHusky = 0.4 m.

B. Evaluation Metrics

The metrics used to evaluate the performances of the
control system include:

• Clearance Time [s] and Mean linear velocity vavg [m/s]:
gauging the effectiveness of the proposed solution.

• Cumulative heading average Cum.γavg or standard de-
viation of the heading γstd [rad], and the standard



Fig. 6. Tests in a simulated vineyard using the PCD of the camera as input
in two different scenarios.

deviation of the angular velocity ωstd [rad/s]: measuring
the oscillation around the trajectory.

• Trajectory Mean Absolute Error (MAE) [m] and trajec-
tory Mean Squared Error (MSE) [m2]: measuring the
error of the rover trajectory concerning a predefined
ground truth.

C. Tests in simulated environment

The extensive simulations conducted in simulated vineyard
environments have demonstrated the reliability and robust-
ness of the proposed navigation system. As illustrated in
Fig. 6, the rover’s trajectory closely aligns with the desired
central path, exhibiting minimal oscillations in both straight
and curved vineyards.

Detailed results are provided in Tab. I, revealing several
key performance indicators. In both straight and curved
vineyards, the rover consistently achieves speeds close to
the maximum limit (vavg ≃ 0.39 m/s for vx,max = 0.4 m/s),
resulting in effective clearance times. The rover’s trajectory
shows minimal oscillations, as indicated by a small standard
deviation of angular velocity (ωstd ≃ 0.05 rad/s), reflecting
stable and smooth behavior. Path metrics, including MAE
and MSE, are minimal, on the order of centimeters. This
demonstrates the rover’s precise adherence to the center of
its lane. In the curved vineyard, a slightly larger path error
is observed (MAE up to 0.2 m in the worst case), attributed
to the controller’s inclination to cut curves. This behavior
can be mitigated through parameter tuning. The algorithm’s
consistent performance across input sensors, including RGB-
D cameras, highlights its reliability and versatility. This
robustness, even compared to more expensive technologies
such as LIDAR, underscores the algorithm’s adaptability
to various sensor configurations. The ability to achieve

Fig. 7. Test in a real pergola vineyard using the PCD of the camera as
input. The desired position is in the middle of the right lane (so at 3/4 of
the entire intra-row space). The rover starts in the middle of the row and
then converges smoothly to the desired position.

comparable results with RGB-D cameras suggests a cost-
effective alternative for applications where LIDAR may be
cost-prohibitive. Overall, these findings underscore the ef-
fectiveness and versatility of the proposed navigation system
across diverse vineyard scenarios.

D. Tests in real scenario

The real-world tests conducted in vineyards have val-
idated the results obtained in the simulated environment.
Detailed results are presented in Tab. II, highlighting the
robust performance of the controller in real scenarios. As
in simulation, the rover consistently achieves speeds close to
the maximum limit (vavg ≃ 0.399 m/s for vx,max = 0.4 m/s
and vavg ≃ 0.49 m/s for vx,max = 0.5 m/s). The achieved
trajectory shows minimal oscillations, as indicated by a small
standard deviation of angular velocity (ωstd ≃ 0.05 rad/s),
reflecting stable and smooth behavior. The exception is the
narrow straight vineyard in the right lane configuration,
where this metric is slightly larger (ωstd ≃ 0.18 rad/s): the
rover displays a more oscillatory behavior, likely due to the
proximity of the right lane to the crops. This behavior is less
prominent in the pergola vineyard test (Fig. 7) with a larger
intra-row distance (4 m), where the rover shows a smooth
convergence to the right lane without significant oscillations.
Path metrics, including MAE and MSE, are minimal, on the
order of centimeters (up to 20 cm for the narrow vineyard
and up to 30 cm for the larger pergola vineyard). However,
it’s important to consider the error in the reference trajectory,
as well as the error of localization, affected by the intrinsic
accuracy of the sensor used when interpreting these results.

To prove that our solution provides a valid alternative to
localization-based navigation algorithms, KISS-ICP [18], a
state-of-the-art SLAM technique based on scan matching,
has been tested on a set of trajectories collected in the real-
world vineyard. It was demonstrated that the localization
provided by KISS-ICP is not reliable for a standard control
algorithm. In fact, in two tests of straight vineyards, it failed
after 13.6 m in the first case and after 2.4 m in the second.
In the pergola vineyard, it fails after 20.7 m in one case but
succeeds in localizing the robot until the end of the row.



TABLE I
RESULTS OF CONDUCTED EXPERIMENTS IN SIMULATED STRAIGHT AND CURVED VINEYARDS.

Field Sensor Clearance time [s] Cum. γavg [rad] vavg [m/s] ωstd [rad/s] MAE [m] MSE [m2]

LIDAR 49.528±0.167 0.036±0.001 0.395±0.002 0.034±0.001 0.034±0.001 0.001±0.000
PCD cam 52.586±4.130 0.045±0.001 0.377±0.019 0.038±0.001 0.048±0.005 0.003±0.001Straight
RGB-D cam 49.321±0.356 0.011±0.005 0.395±0.001 0.046±0.004 0.104±0.011 0.018±0.004

LIDAR 52.080±0.220 -0.024±0.001 0.397±0.001 0.036±0.001 0.102±0.001 0.015±0.000
PCD cam 52.157±0.673 0.002±0.002 0.393±0.002 0.041±0.003 0.068±0.004 0.007±0.001Curved
RGB-D cam 51.763±0.228 -0.011±0.002 0.394±0.001 0.056±0.007 0.188±0.005 0.051±0.003

TABLE II
RESULTS OF A SERIES OF EXPERIMENTS IN REAL VINEYARDS.

Field Sensor Position vx,max [m/s] γstd [rad] vavg [m/s] ωstd [rad/s] MAE [m] MSE [m2]

Centered 0.4 0.031±0.007 0.399±0.000 0.042±0.002 0.165±0.007 0.035±0.000PCD camera Right lane 0.5 0.388±0.395 0.488±0.007 0.184±0.108 0.204±0.098 0.070±0.044Straight
LIDAR Right lane 0.5 0.0153 0.4989 0.0271 0.1519 0.0294

Centered 0.4 0.122 0.399 0.063 0.313 0.129Pergola PCD camera Right lane 0.4 0.047 0.399 0.04 0.092 0.011

IV. CONCLUSIONS

The position-agnostic NMPC controller proposed in this
paper has demonstrated robustness in effectively handling
the diverse challenges presented in traversing row-based
fields with different characteristics without accessing any
localization information. Its resilient navigation on rough
terrains underscores its adaptability to real-world agricultural
conditions with a lower platform cost. This research signif-
icantly contributes to the continuous advancement of preci-
sion agriculture and the evolution of autonomous navigation
systems tailored for row-based crop environments.
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