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Abstract: Parkinson’s disease (PD) is the second most common neurodegenerative disorder, entailing
several motor-related symptoms that contribute to a reduced quality of life in affected subjects.
Recent advances in wearable technologies and computing resources have shown great potential for
the assessment of PD-related symptoms. However, the potential applications (e.g., early diagno-
sis, prognosis and monitoring) and key features of digital biomarkers for motor symptoms of PD
(DB-MS-PD) have not been comprehensively studied. This study aims to provide a state-of-the-art
review of current digital biomarker definitions for PD, focusing on the use of wearable devices. This
review systematically examines research articles from 2012 to 2024, focusing on key features and
recent technologies in PD research. A total of 22 studies were included and thoroughly analyzed.
Results indicate that DB-MS-PD can accurately distinguish patients with PD (PwPD) from healthy
controls (HC), assess disease severity or treatment response, and detect motor symptoms. Large
sample sizes, proper validation, non-invasive devices, and ecological monitoring make DB-MS-PD
promising for improving PD management. Challenges include sample and method heterogeneity
and lack of public datasets. Future studies can leverage evidence of the current literature to provide
more effective and ready-to-use digital tools for monitoring PD.

Keywords: Parkinson’s disease; digital biomarkers; motor symptoms; wearables; body-worn sensors;
machine learning

1. Introduction

Parkinson’s disease (PD) is a chronic neurological disorder caused by the progressive
loss of dopamine-producing cells. Dopamine is a neurotransmitter involved, among other
things, in the organisation of movement and whose effect is to strenghten muscular acti-
vation [1,2]. PD is the second most common neurodegenerative disease after Alzheimer’s
dementia and mainly affects elderly people. The increasingly elderly population has led
to an increase in the number of subjects affected by PD, reaching 8.5 million patients in
2019 [3]. Moreover, projections indicate a substantial increase, with the global patient
population anticipated to 12 million in 2040 [4].
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PD include motor symptoms such as tremor, bradykinesia, rigidity, or postural instability;
and non-motor symptoms such as as loss of smell, constipation, fatigue, anxiety, depression,
and REM sleep behavior disorder, which can occur years before the diagnosis [5–7]. These
symptoms vary from patient to patient, as well as over the course of the disease [8], gradually
reducing patients’ quality of life [9].

The diagnosis of PD is complex, as there is no pathognomonic sign or biomarker to
confirm the disease [2]. Instead, the diagnosis is based on a combination of medical history,
clinical examination and the presence of specific motor and non-motor symptoms [10]. The
diagnosis process involves an evaluation by neurologists, and may be difficult especially in
the early stages of the disease, when symptoms may be mild or non-specific. Therefore, it is
important to monitor symptoms regularly to appropriately adjust the treatment plan [11].

Currently, there is no cure that can stop or reverse the disease progression. Instead,
several symptomatic therapies are available, which can guarantee a good control of the
disease for several years. The most common options are drug treatment or, in severe cases,
surgical interventions (HIFU, intracranial implants or duodenal pumps, among others) [12].
The most widely used drug is Levodopa, a metabolic precursor of dopamine [13], which is
effective in controlling symptoms during the first years of treatment. However, after several
years of Levodopa treatment, motor complications such as dyskinesias (i.e., involuntary
movements) and motor fluctuations may occur, and the patient may switch between periods
of adequate and poor control of the disease [14].

At present, the most commonly used scale for evaluating PD progression is the
Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) [15]. This scale is designed to evaluate both motor and non-motor
symptoms during a clinical examination, using a series of questions and guided exercises
performed by the patient.

The fluctuating nature of PD symptoms during the day [16] and the infrequent clinical
consultations (6–9 months apart [17]) make it difficult to accurately assess the disease.
Furthermore, the correct application and interpretation of this scale depend on the doctor’s
experience. The combination of these variables complicates the accuracy of therapeutic
and pharmacological adjustments, often leading to complications derived from over- or
under-medication [18].

In recent years, the emergence of new technologies, such as wearable sensors, has
gained significant attention in the management of PD. These devices offer the potential
to monitor various aspects of PD symptoms and motor function [? ]. Wearable sensors
enable continuous, objective, and long-term data collection and monitoring in a variety of
contexts, including clinical and free-living environments [20].

Wearable devices can collect a large amount of data, which could give rise to digital
biomarkers (i.e., quantitative and sensitive measurements of disease progression) for PD
assessment, providing a wealth of data that traditional clinical assessments cannot capture.
This extensive data collection can enable better understanding and management of the
disease, facilitate personalized treatment, and support large-scale studies that contribute to
the development of new therapies and interventions [21].

Review Objectives

This article aims to provide the reader with a summary of the trends and techniques
used by the scientific community in the use of wearable technologies to acquire data and
define digital biomarkers for motor symptoms, thus providing a review of the current
status of the defined digital biomarkers.

Recent reviews have investigated the potential of digital biomarkers in PD, providing
useful insights from different perspectives. A summary of biomarkers (speech, gait, hand-
writing) with potential clinical applications in PD was provided in [22], with a particular
focus on validation, regulatory approval, ethical, legal, and social aspects. In [23], the
potential of biomarkers extracted from facial expression analysis and eye tracking were in-
vestigated for early diagnosis and assessment of cognitive decline. Nevertheless, to the best
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of our knowledge, no review studies have focused on digital biomarkers for motor symp-
toms of PD (DB-MS-PD) obtained through wearable devices, as well as their key features,
encompassing sensor settings, experimental procedures, and data analysis methods.

This study reviews relevant research articles published between 2012 and 2024, fo-
cusing on digital biomarkers defined for PD through motion analysis using data collected
through wearable devices. In specific, the objective of this study is to provide a comprehen-
sive overview of sensors’ settings, experimental procedures and data analysis methods that
allow the extraction of relevant DB-MS-PD. Ultimately, comparative analysis of various
studies can facilitate the identification of promising and minimally invasive systems (both
hardware and software) for the supervised and unsupervised assessment of PD.

The remainder of the document is organized as follows. Section 2 presents an overview
of the wearable devices and digital biomarkers. Section 3 describes the methodology used
for the systematic review, including the search strategy used to find relevant articles.
Section 4 presents the results of this literature review. Section 5 provides a discussion of the
findings in the analyzed articles. Finally, the conclusions of this work are given in Section 6.

2. Background
2.1. Wearable Devices

The term wearable devices (wearables) refers to compact electronic devices as well as
wireless-enabled computers that are seamlessly integrated into gadgets, accessories, or
clothing designed to be worn on the human body. It also includes more invasive devices
such as microchips or smart tattoos, or commercial and widespread devices including smart
glasses, smartphones, smartwatches, smart clothing, and smart shoes, among others [24,25].

In recent years, wearable devices have shown the potential to overcome certain lim-
itations of the traditional healthcare and medical assessments by harnessing digital and
mobile health (m-health) technologies to progress towards efficient and personalized
healthcare [26]. Moreover, these devices can facilitate long-term monitoring outside clinical
settings, offering a discreet and comfortable solution [27].

Wearable devices have the ability to collect comprehensive health information while
functioning as they were originally designed, like fashion or productivity devices. The
collected data can be analysed using standard protocols by artificial intelligence, with
the aim of identifying possible predictions of health problems [28], as well as recognising
activities and detecting the context in which these activities are performed [29,30].

Since wearable sensors are going to be integrated into clothes, accessories or applied
directly to the skin, they must be designed to be practical and accepted by people in their
daily lives, so the materials used in their manufacture must be highly flexible, durable,
anti-allergic and lightweight [31]. Advances in materials science are driving innovation in
this field and researchers are exploring the use of nanomaterials, conductive polymers and
elastic electronic components, among others [32]. In addition, these devices and sensors
must be resistant to daily wear and tear if they are to be used for continuous remote
monitoring, so sensors must be able to withstand stretching, bending, and exposure to
sweat or moisture without loss of performance [33].

There are different types of sensors that can be integrated into a wearable device, from
physical health sensors to obtain electrocardiogram, pulse or electromyogram, sensors
related to human movement such as accelerometers, gyroscopes or magnetometers, to
environmental sensors related to temperature, humidity or luminosity [34]. The geometry
and type of wearable devices is defined in many cases by the type of sensor embedded
in them, giving rise to a wide variety of options. There are very small sensors that can be
included in devices as thin as a sheet of paper, flexible sensors to adapt to anybody surface
or sensors that need a structure such as a watch to be used [35].

In the realm of monitoring and management of neurological disorders, wearable
devices have emerged as a highly effective tool [36]. These devices allow for continuous
and non-invasive monitoring of a range of physiological and behavioral parameters, both in
medical consultation and in free-living conditions [37–39]. Wearables have the possibility to
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provide an abundance of data that can support tasks such as early detection, optimization
of treatment, and management of neurological disorders [40]. However, it is important to
acknowledge that despite the potential advantages of this technology, their application
should be complemented by professional medical supervision and should complement
traditional clinical evaluations [41].

To carry out these tasks, wearable devices incorporate several core components that
are common in most devices. The key hardware components include the display, which
facilitates user interaction and presents information about activities to be performed, the
battery, which provides the necessary power supply, and the processor, which handles com-
putational tasks. In addition, sensors are used to gather physiological and environmental
data. Storage is allocated for local data retention, and the housing encloses and protects
these components. Arguably, the most critical components of wearable devices are sensors.
In the field of human activity recognition, the accelerometer, gyroscope, magnetometer,
and barometer are the most commonly used [42]. These sensors measure and collect data
on motion, orientation, magnetic fields, and atmospheric pressure.

The comprehensive framework for wearable health monitoring systems is shown in
Figure 1. The data collected from the sensors of wearable devices can be processed in
two primary ways: Edge processing and Offline processing. In edge processing, data is
analyzed in real-time directly on the device, enabling immediate responses, albeit with
limited computational resources. In contrast, offline processing involves transmitting
the data to external systems, such as servers or computers, where more extensive and
resource-intensive analysis can be performed.

Figure 1. Comprehensive framework for wearable health monitoring systems.

Regardless of the processing method, the overall process follows a similar structure.
It begins with a pre-processing stage, where raw sensor data is cleaned and transformed
to ensure it is suitable for subsequent steps. Next, feature extraction is performed to
identify key features or patterns within the data. These extracted features could then input
into machine learning (ML) or deep learning (DL) models, which generate predictions,
providing insights or diagnoses based on the analyzed data.

In PD, wearable devices have been used to assess various symptoms. In some cases,
symptom assessment has been done by time and frequency analysis, in other cases by
extracting relevant features from the measured data, another strategy is the development
of classifiers of disease severity [43,44], resting tremor [45], bradykinesia [46] or freezing of
gait [47]. Several studies have presented devices specifically designed for PD patients such
as STAT-ON® [48], KinetiGraphTM® [49] or PD Monitor® [50]. Figure 2 presents examples
of wearable devices employed in the detection and monitoring of PD. These devices could
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be smartwatches, inertial measurement units (IMUs), pressure insoles, sensor belts, or
smartphones with body adaptors, among others.

Figure 2. Examples of wearable devices for Parkinson’s disease management: (a) IMU, (b) smartwatch,
(c) smartphone.

In [51], commercial devices used for PD management were evaluated, considering
their validation process and clinical applications along with the strengths and weaknesses of
each. In [52] the authors explored the wearable devices used for PD in hospitals, concluding
that the most common types of wearable devices include IMUs and smartwatches. In [53] a
comprehensive review was performed on how wearable sensors can support tasks such
as early diagnosis, human motion analysis, motor fluctuations, and home and long-term
monitoring for PwPD. However, although wearable devices hold promise for improving
PD management, their adoption in the clinical setting is limited by problems such as
inadequate technical and clinical validation [54].

2.2. Digital Biomarkers

The term biomarker refers to objective medical signs that can be accurately and repro-
ducibly measured outside the patient. In contrast, medical symptoms are health or disease
indications perceived by patients [55]. Biomarkers can be defined as characteristics that are
objectively measured and evaluated as indicators of normal biological processes, pathogenic
processes, or pharmacological responses to therapeutic interventions [56]. Biomarkers can
include any substance, structure, or process that can be measured from the body and can
influence or predict the incidence of the outcome or disease. They can be diverse, from gait
cadence and pulse measurements to complex laboratory tests of blood and other tissues [57].
However, the main objective of a biomarker remains to establish the connection between
measurable parameters and relevant clinical endpoints [55].

The type of biomarkers studied in this work are known as digital biomarkers. According
to the U.S. Food and Drug Administration (FDA), a digital biomarker is a feature or group
of features obtained from digital health technologies that are measured to indicate normal
biological processes, pathogenic processes, or reactions to exposure or intervention, such
as therapeutic interventions [58,59]. Digital biomarkers are rapidly developing frontier
enabled by the availability of sensors and personal devices that can assimilate informa-
tion about an individual’s psychological state, exercise level, cognitive abilities, eating
patterns, movement, and tremor [60]. These data are largely derived from sources such as
smartphones and portable electronic devices [61].

Although many additional studies are needed to link digital phenotypes and endpoints
with traditional measurements, digital biomarkers have the potential to introduce novel
measurements for phenomena that are already in use [62]. Depending on the applications
of biomarkers, several types can be identified, such as diagnostic biomarkers (to confirm
the presence of a certain disease), monitoring biomarkers (to determine the progression
of a disease), pharmacodynamic/response biomarkers (to check the response to certain
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therapies), predictive biomarkers (to know the response to certain medical products) and
prognostic biomarkers (to identify the possibility of suffering a certain disease) [63].

Extracting digital biomarkers involves collecting and analyzing data from digital
devices or platforms that can provide insights into physiological, behavioral and cognitive
states, in a similar process as shown in Figure 1. These biomarkers can be derived from
various sources such as smartphones, wearables, social media, and other digital interactions.
The information defined in the biomarker must be meticulously processed and extracted,
as raw data is influenced by numerous processes that obscure the underlying signals.
To achieve this, various techniques in digital signal processing, statistical analysis, and
artificial intelligence are employed to extract and refine the data into a coherent biomarker.
Ultimately, these biomarkers undergo validation through clinical studies to ensure their
accuracy and reliability in reflecting predicted physiological, behavioral, or cognitive states.

3. Methods
3.1. Research Questions

The aim of this review is to collect, analyze, and evaluate studies concerning the
identification of DB-MS-PD. To achieve this objective, the following research questions
were formulated:

RQ-1 What types of sensors and wearable devices are most commonly employed for
monitoring and developing DB-MS-PD?
RQ-2 Are there specific digital biomarkers that are commonly measured or tracked using
wearables in PD?
RQ-3 How reliable and accurate are the digital biomarkers captured by these wearables?
RQ-4 What are the main challenges or limitations associated with using wearables for
capturing DB-MS-PD?

3.2. Search Strategy

On 14 February 2024, a literature search was conducted on the PubMed, Scopus, IEEE
and Web of Science databases for all the returned results. The search string included keywords
related to the disease under investigation, the type of biomarker searched and the devices
used to collect the data. In more detail, the following Boolean search string was used:

((Parkinson) OR (Motor symptoms)) AND (Biomarker) AND (Digital) AND (Wearable).
No additional filters were applied in the literature search. All retrieved studies were

systematically identified and screened, and the data were extracted for relevant information
following the PRISMA guidelines [64].

3.3. Inclusion and Exclusion Criteria

The topic of this review concerns the definition of digital biomarkers of PD obtained
from wearable devices. Journal articles published between January 2012 and February 2024
and written in English were included. Furthermore, the exclusion criteria were as follows:

1. Papers without peer review, books, book chapters, or published as “letter”, “com-
ments”, “perspective” “case reports”, “surveys” or “reviews”.

2. Literature not written in English.
3. Studies related to diseases other than PD.
4. Studies that did not use any wearable devices or portable sensors for data acquisition.
5. Studies showing the results of a challenge, competition or programme.
6. Studies primarily focused on activities not related to motor symptoms in PD.
7. Studies that do not include humans.

3.4. Data Extraction

Four authors (C.PF, L.S., L.B., and I.P.) independently selected candidate studies by
reviewing the title and abstract and repeated the process until they reached a consensus.
The same procedure was performed for the selection based on the full-text evaluation.
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Finally, candidate studies that met the eligibility criteria were selected for inclusion in the
review. The following information was included in the data extraction procedure:

a. Identification of study data, including authors, title and citation.
b. Type of test performed.
c. Characteristics of the participants in the study.
d. Type, number, and location of the wearable sensors and devices used for data acquisition.
e. Objective of the study.
f. End points.

4. Results
4.1. Systematic Review

Based on the search criteria, 59 articles were retrieved from PubMed, 172 from Scopus,
16 from Web of Science and 8 from IEEE, for a total of 255 publications. After removing
duplicates (57), 198 publications were examined for titles and abstracts. Then 143 articles
were excluded according to the exclusion criteria. Of the 55 remaining records, 9 studies
were excluded due to the unavailability of the full text. Consequently, a total of 46 full
texts were screened for eligibility, and 24 records were excluded according to the exclusion
criteria. Finally, 22 research studies were included and reviewed. The PRISMA flow chart
used for the literature search and selection is shown in Figure 3.

Figure 3. PRISMA flow diagram of literature search and selection process showing the number of
studies identified, screened, and included in the review.

4.2. Study Characteristics

A summary of the findings of the 22 reviewed articles is given in Table 1. The informa-
tion in each article was harmonized to facilitate comparability and analysis among studies.
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Table 1. Summary of included papers. F: female; M: male; N: number; IMU: inertial measurement unit; PwPD: patients with Parkinson’s Disease; HC: healthy
control; AUC: area under the curve; VGRF: vertical ground reaction force; TUG: timed up and go; ML: machine learning; DL: deep learning

Reference Study Design Participants Device, Sensors, Number
(Device, Sensor), Body Location Aim Extraction Method End Point

[65] Gait
(Physionet database)

PwPD:
N = 90 ( 34 F; 56 M)
HC:
N = 62 (34 F; 28 M)

Pressure insoles
VGRF sensors
N = (1, 16)
Foot (8 each)

Gait
monitoring

Features combined with
ML model (Random
Forest)

Gait features that impact the
predicted TUG scores are gait
speed-based features (percentiles,
mean, and kurtosis), with
84.8% accuracy.

[21] Gait

PwPD:
N = 29 (12 F; 17 M)
HC:
N = 27 (14 F; 13 M)

IMU (Opals by APDM®)
3-axial accelerometer, 3-axial gyroscope
and 3-axial magnetometer
N = (3, 3)
Foot (1 each) and lower back

Classification
PwPD-HC

Features combined with
ML model (Logistic
regression)

Turning and gait indicators
discriminate PwPD from HC (Turn
angle, swing time variability adn
stride length with AUC = 0.87–0.89).

[66] Gait

PwPD:
N = 29 (12 F; 17 M)
HC:
N = 20 (8 F; 2 M)

IMU (Opals by APDM®)
3-axial accelerometer, 3-axial gyroscope
and 3-axial magnetometer
N = (3, 3)
Foot (1 each) and lower back.

Classification
PwPD-HC

Features combined with
ML model (Polynomial
regression)

Gait measures (gait speed, stride
length) could be used to classify
PwPD from HC, with AUC > 0.8.

[67] Gait

PwPD:
N = 5
HC:
N = 5

IMU (Axivity AX3®)
3-axial accelerometer
N = (1, 1)
Lower back

Classification
PwPD-HC Features

The sample entropy of the gait
signal of PwPD are higher than
HC participants.

[68]

Gait
Balance Task
Finger Tapping
(Mpower database)

PwPD:
N = 1057 (359 F; 698 M)
HC:
N = 5343 (1014 F; 4329 M)

Smartphone
3-axial accelerometer (gait and balance)
and pixel coordinates (tapping)
N = (1, 2)
Pocket (gait and balance) and front of
participant (tapping)

Classification
PwPD-HC

Raw data + DL model
(Convolutional neural
network)

Tapping positions (Centered
tapping coordinates) are the most
relevant data (AUC = 0.935) for
PD detection.

[69] Gait
(Physionet database)

PwPD:
N = 93 (35 F; 58 M)
HC:
N = 73 (33 F; 40 M)

Pressure insoles
VGRF sensors
N = (1, 16)
Foot (8 each)

Gait
monitoring
and
classification
PwPD-HC

Features combined with
ML model (Support vector
machine)

Gait parameters (stride time, step
time, stance time, swing time,
cadence, step length, stride length,
gait speed) differentiate PD severity
and HC with 98.65% accuracy.
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Table 1. Cont.

Reference Study Design Participants Device, Sensors, Number
(Device, Sensor), Body Location Aim Extraction Method End Point

[70] Gait
(Physionet database)

PwPD:
N = 93 (35 F; 58 M)
HC:
N = 72 (32 F; 40 M)

Pressure insoles
VGRF sensors
N = (1, 16)
Foot (8 each)

Gait
monitoring
and
classification
PwPD-HC

Features combined with
ML model (Decission
Tree)

Gait parameters (step length, force
variations at heel strike, centre of
pressure variability, swing stance
ratio, and double support phase) are
able to detect PwPD with 99.9%
accuracy and its severity shows
R2 = 98.7%.

[71]
Gait
Activities of daily
living

PwPD:
N = 27 (11 F; 16 M)

IMU (RehaGait®) (clinical assessment)
and IMU (Physilog 5®) (home
assessment)
3-axial accelerometer and 3-axial
gyroscope (clinical assessment), and
3-axial accelerometer, 3-axial gyroscope,
and barometrer (home assessment)
N = (3, 3)
Foot (1 each in clinical assessment)
(only 1 in home assessment)

Gait
monitoring
and
treatment
detection

Features Gait speed could be used to control
of medication intake in PD.

[72] Finger Tapping
Pronation-supination

PwPD:
N = 11 (3 F; 8 M)
HC:
N = 11 (6 F; 5 M)

Smartphone
Pixel coordinates
N = (1, 1)
Front of participant

Classification
PwPD-HC
and ON-OFF
states
monitoring

Features combined with
ML model (Logistic
regression)

Tapping features (total taps, tap
interval, and tap accuracy) can
detect PwPD with p < 0.0005 and
detect ON/OFF state with
AUC 0.82.

[73]

Pronation-supination
Leg Agility
Toe Tapping
TUG test
Postural stability
Postural Tremor
Rest Tremor

PwPD:
N = 36 (9 F; 27 M)

IMU (Movit G1®)
3-axial accelerometer and 3-axial
gyroscope
N = (14, 2)
Lower back, upper back, forearm
(1 each), arm (1 each), upper leg
(1 each), lower leg (1 each), hand
(1 each), foot (1 each)

Prognosis
(motor
symptoms)
and therapy
response
monitoring

Features

A correlation was found between
motor symptoms progression and
some features (toe tapping
amplitude decrement, velocity of
arms and legs, sit-to-stand time,
p < 0.01).
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Table 1. Cont.

Reference Study Design Participants Device, Sensors, Number
(Device, Sensor), Body Location Aim Extraction Method End Point

[74]
Gait
TUG test
Sit-to-tand test

PwPD:
N = 10 (4 F; 6 M)
PSP (Progressive
Supranuclear Palsy):
N = 10 (4 F; 6 M)

IMU (LEGSys®)
3-axial accelerometer, 3-axial gyroscope,
3-axial magnetometer
N = (3, 3)
Shin (1 each) and lower Back

Classification
PwPD-PSP Features Gait speed was significantly slower in

PSP (p < 0.001).

[75]

Balance Task
Gait
Finger tapping
Reaction time
Rest tremor
Postural tremor

PwPD:
N = 334 (125 F; 209 M)
HC:
N = 84 (17 F; 67 M)
iRBD (idiopathic REM
sleep behavior disorder):
N = 104 (88 F; 16 M)

Smartphone
3-axial accelerometer (Balance, gait, rest
tremor and postural tremor) and pixel
coordinates (Tapping and reaction time)
N = (1, 2)
Pocket (balance and gait), front of
participant (tapping and reaction time)
and hand (postural and rest tremor)

Features
combined
with ML
model
(Random
Forest)

Clasification PwPD-HC
and clasification PwPD-
iRBD

Postural tremor (mean squared
energy, azimuth, 25th quartile, mode,
radius) and rest tremor (entropy, root
mean square) were the most
discriminatory task between
PD-HC-iRBD, with 85–88%
of sensitivity.

[76]

Finger Tapping
- Two-target finger
tapping test
- Reaction time
- Pronation-
supination

PwPD:
N = 19
HC:
N = 17

Tablet
Pixel coordinates
N = (1, 1)
Front of participant

Classification
of PwPD-HC
and ON-OFF
states
monitoring

Features combined with
ML model (Artificial
neural network)

All test combined classify PwPD-HC
with 93.11% accuracy. Most
differentiating test is reaction time
(inter-tap interval, tap accuracy) with
83.9% accuracy while ON-OFF state
classifies with 76.5% accuracy.

[77] Gait

PwPD:
N = 81 (28 F; 53 M)
HC:
N = 61 (27 F; 34 M)

IMU (Axivity AX3®)
3-axial accelerometer
N = (1, 1)
Lower Back

Clasification
PwPD-HC

Features combined with
ML model (Discriminant
analysis)

Gait features (root mean square
values, power spectral density, gait
speed velocity, step length, step time
and age) classify PwPD with
AUC = 0.94.

[78] Gait PwPD:
N = 40 (19 F; 21 M)

IMU (+sMotion®)
3-axial accelerometer and 3-axial
gyroscope
N = (1, 2)
Lower back

Classification
motor
condition
and Quality
of Life.

Features combined with
ML model (Logistic
regression)

Gait Features (velocity pace, SD
swing time variability,
Antero-posterior center of mass angle
of postural control) classify
UPDRS-III severity with AUC 0.89.
Gait Features (gait speed, step time
rhythm, stance time, step length)
correlated with PDQ39 with
AUC 0.95.
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Table 1. Cont.

Reference Study Design Participants Device, Sensors, Number
(Device, Sensor), Body Location Aim Extraction Method End Point

[79]

Gait
Balance Task
Finger Tapping
(Mpower database)

PwPD:
N = 610 (211 F; 399 M)
(gait), 612 (211 F; 401 M)
(balance), 970 (340 F; 630
M) (tapping)
HC:
N = 807 (152 F; 655 M)
(gait), 823 (155 F; 668 M)
(balance), 1674 (304 F;
1370 M) (tapping)

Smartphone
3-axial accelerometer (gait and balance)
and pixel coordinates (tapping)
N = (1, 2)
Pocket (gait and balance) and front of
participant (tapping)

Classification
PwPD-HC
and therapy
response
monitoring

Features

Tapping features (total taps,
inter-tap intervals,
median/standard deviation
absolute deviations, correlation X-Y
tap) displayed the best performance
in classify PwPD-HC (p < 0.05).

[80]

Activities of Daily
Living
Rest tremor
Postural tremor
Finger tapping
Balance task
Gait

PwPD:
N = 43 (8 F; 35 M)
HC:
N = 35 (8 F; 27 M)

Smartphone
3-axial accelerometer, 3-axial gyroscope
and 3-axial magnetometer
N = (1, 3)
Waist (balance and gait), hand (tremor)
and front of participant (tapping)

Classification
PwPD-HC
and Motor
symptoms
monitoring

Features

Tapping (inter-tap variability), rest
tremor (acceleration skewness),
postural tremor (total power of
accelerometer), balance (mean
velocity), gait (turn speed)
differentiated HC from PwPD and
PD abnormalities (p < 0.005).

[81]
Activities of daily
living
MDS-UPDRS task

PwPD:
N = 31 (11 F; 20 M)
HC:
N = 50 (27 F; 23 M)

IMU (Opals by APDM®)
3-axial accelerometer, 3-axial gyroscope
and 3-axial magnetometer
N = (1, 3)
Wrist

Motor
symptoms
monitoring;
Therapy-
response
monitoring

Features

RMS (amplitude) of the magnitude
vector for resting tremor (p < 0.0004)
and RMS (amplitude) and jerk
(smoothness) of the magnitude
vector forbradykinesia (p < 0.0001)
achieve agreement with clinical
assessment of symptom severity
and treatment-related changes in
motor states.
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Table 1. Cont.

Reference Study Design Participants Device, Sensors, Number (Device, Sensor),
Body Location Aim Extraction Method End Point

[82]

Activities of daily
living
TUG test
Abnormal
Involuntary
Movement Scale
MDS-UPDRS task
Gait

PwPD:
N = 18 (7 F; 11 M)
HC:
N = 24 (11 F; 13 M)

IMU (Physilog 4®), Android smartwatch,
Android smartphone, Empatica E4®

smartwatch
3-axial accelerometer, 3-axial gyroscope,
3-axial magnetometer, and barometer
(IMU), 3-axial accelerometer, 3-axial
gyroscope, barometer, and light (Android
smartwatch), 3-axial accelerometer, 3-axial
magnetometer, light, proximity, GPS, WiFi,
and cellular networks (Android
smartphone), and Galvanic skin response,
photoplethysmogram, skin temperature,
3-axial accelerometer (Empatica)
N = (8, 12)
Ankles (1 each), wrist (1 each), lower back
(IMU), wrist (Android smartwatch), pocket
(Android smartphone), and wrist
(Empatica)

Classification
of
PwPD-HC;
ON-OFF
states
monitoring

Features combined with
ML model (Logistic
regression)

The total power in the 0.5- to 10-Hz
band was most discriminate feature
to classify PwPD-HC (AUC = 0.76)
and ON-OFF detection
(AUC = 0.84).

[83]

Finger Tapping
- Index and middle
finger tapping (IMFT)
- Alternate index
finger tapping (IFT)
- Thumb index finger
tapping (TIFT)

PwPD:
N = 20 (6 F; 14 M)

Tablet (IMFT and IFT) and Biometrics®

(TIFT)
Pixel Coordinates (IMFT and IFT) and
Goniometer (TIFT)
N = (2, 2)
Front of participant (IMFT and IFT) and
hand (TIFT)

Therapy
response
monitoring
and Classifi-
cation of
subjects with
therapy and
placebo

Features combined with
ML model (Discriminant
analysis)

The IFT features (total taps,
bivariate contour ellipse area,
spatial error, velocity changes,
intertap intervals) provides the best
performance in estimating
MDS-UPDRS III, with p < 0.001 and
accuracy of 84% in classification
of subjects.
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Table 1. Cont.

Reference Study Design Participants Device, Sensors, Number (Device, Sensor),
Body Location Aim Extraction Method End Point

[84]

Gait
Balance Task
Finger Tapping
(Mpower database)

PwPD:
N = 610 (211 F; 399 M)
(gait), 612 (211 F; 401 M)
(balance), 970 (340 F; 630
M) (tapping)
HC:
N = 787 (147 F; 640 M)
(gait), 803 (150 F; 653 M)
(balance), 1257 (239 F;
1018 M) (tapping)

Smartphone
3-axial accelerometer (gait and balance) and
pixel coordinates (tapping)
N = (1, 2)
Pocket (gait and balance) and front of
participant (tapping)

Classification
PwPD-HC

Features combined with
ML model (Support
vector machine)

Tapping features (inter-tap interval
(range, maximum value and
Teager-Kaiser energy operator)
detect PwPD with AUC = 0.74.

[85] TUG test

PwPD dataset 1:
N = 15 (5 F; 10 M)
PwPD dataset 2:
N = 27 (9 F; 17 M)
HC:
N = 1015 (671 F; 344 M)

IMU (Kinesis QTUG®)
3-axial accelerometer and 3-axial gyroscope
N = (1, 2)
Shin

Fall risk,
prognosis
and gait
monitoring

Features combined with
ML model (Logistic
regression)

The mobility parameters (speed,
turn, transfers, symmetry,
variability) could be used to predict
number of fall counts of PwPD
(R2 = 43%).
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4.3. Study Design

The studies under investigation analyzed different sets of activities and tasks. These
can be classified into 11 different categories: activities of daily living, balance task, finger
tapping, MDS-UPDRS task, postural tremor, pronation-supination movements of the hands,
reaction time, rest tremor, timed up and go (TUG) test, gait task, and others.

Due to the diversity of exercises performed within a category, similar activities were
grouped in a more general category. Specifically, the finger tapping activity includes four
types of sub-activities: index and middle finger tapping, alternate index finger tapping,
thumb-index finger tapping, and two-target finger tapping test. Similarly, the gait includes:
2-min walk at convenient speed, 20-m straight walk at convenient speed, 20-m straight
walk at fast speed, 10-m at convenient speed, 20-m circular walk at fast speed, 20-steps
straight walk, normal walking, rhythmic auditory cued walking, treadmill walking, and
2-min circular walk at convenient speed.

Figure 4 shows the distribution of the different activities evaluated in the
selected studies.

Figure 4. Distribution of the activities performed in the different studies.

A total of 52 different activities were investigated in the 22 articles analyzed. The most
frequent activity is gait ( N = 16, 31%), followed by finger tapping (N = 8, 15%), balance task
(N = 5, 10%), and TUG test (N = 4, 8%). Other activities that appear less frequently include
postural tremor, pronation-supination, rest tremor, MDS-UPDRS tasks and reaction time.

Less than one third of the studies (N = 6, 27%) used public datasets. In more detail,
3 studies [68,79,84] used the mPower dataset [86] and 3 studies [65,69,70] used data from
the Physionet vertical ground reaction force (VGRF) dataset [87]. The Physionet database
contains measures of gait from 93 PwPD and 73 HC. The database includes the VGRF
records of subjects as they walked at their usual, self-selected pace for approximately 2 min
on level ground. The mPower database includes data from more than 1000 PwPD and
4000 HC. Different activities (i.e., memory, tapping, voice and walking) were recorded with
the built-in smartphone sensors (i.e., triaxial accelerometer, microphone and touchscreen) in
unsupervised environments.

4.4. Participant Characteristics

Of the 22 studies reviewed, 5 of them evaluated only PwPD [71,73,74,78,83], while
the other 17 papers included PwPD and HC in their study. A single study [75] included
people with idiopathic REM sleep behavior disorder, while [74] also evaluated subjects
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with progressive supranuclear palsy. Furthermore, in most studies (53%) the number of
PwPD was higher than the number of HC.

The distribution of the number of articles according to the number of participants is
shown in Figure 5. In terms of the number of PwPD, the mean and median values are 44
and 33 subjects, respectively. However, it should be noted that there is a high variability,
with a minimum of 5 and a maximum of more than 1000 PwPD. More than half of the
articles ( N = 14, 63%) presented a sample size of 1 to 50 patients, while 14% (N = 3) enrolled
more than 1000 patients.

Figure 5. Distribution of the number of articles according to the number of participants.

This variability can also be observed with the distribution of HC, which presents mean
and median values of 57 and 50 participants, respectively. In this case, 59% (N = 13) of the
studies enrolled less than 50 controls while 18% (N = 4) use a sample size of more than
1000 controls.

Regarding the gender distribution (Figure 6), 65% PwPD were male while 35% were
female, reflecting the actual gender distribution in the PD population. This difference
increases in HC, where 71% of the participants were male and 29% were female.

Figure 6. Gender distribution in the selected papers.

4.5. Device, Sensor and Body Location

Regarding the type of devices used, 20 studies (91%) used a single type of device for
data recording, while [83] employed two different devices and [82] used three types of
devices. In total, 25 devices were used in the 22 studies. As shown in Figure 7a, the most
commonly used device is the IMU (N = 11 of the 25 devices, 44%) [21,66,67,71,73,74,77,78,81,82,85],
followed by the smartphone (N = 7, 28%). [68,72,75,79,80,82,84], pressure insoles were used
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in 3 cases (12%) [65,69,70], while other devices such as tablets were used in 4 studies
(16%) [76,82,83].

Figure 7. Distribution of types of (a) devices and (b) sensors used.

In terms of sensor types ( Figure 7b), of the 55 total sensors used, the most used sensor is
the triaxial accelerometer (N = 17, 31%), followed by the triaxial gyroscope (N = 11, 20%), the
touch screen (N = 7, 13%), triaxial magnetometer (N = 6, 11%), VGRF sensors (N = 3, 5%), and
barometer (N = 2, 4%). Other sensors (N = 9, 16%) include the goniometer, GPS or galvanic
skin response.

Figure 8a presents the distribution of the number of devices used. The most common
option involves a single device (N = 14, 64%). The remaining studies used multiple sensors.
Specifically, 6 papers (27%) [21,66,71,74,83,85] used between 2 and 3 devices, while the
2 remaining papers (9%) [73,82] used equal or more than 8 devices. Figure 8b presents the
number of sensors used. The most popular choice is to use 2 sensors (N = 8, 36%). A single
sensor was used in 3 articles [67,76,77] (14%), 3 sensors in 6 articles [21,66,67,74,80,81] (27%),
while 5 articles (23%) use more than 10 sensors.

Figure 8. Number of (a) devices and (b) sensors used.

Figure 9 shows common positions of the sensor on the human body. The device was
placed in front of the person (e.g., smartphone, tablet) or on the foot or in the lower back in
8 articles each (18%). In 5 cases (11%), the wearable device was placed in the pocket, in the
hand in 4 papers (9%) and the wrist in 2 cases (5%). The rest of the studies positioned the
sensors in other locations like the ankle or the waist. Half of the included articles used a
single location, while the other half used more than one body position.
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Figure 9. Distribution of the location of the sensor on the human body.

4.6. Aim

In terms of the study aims, the reviewed articles were categorized into the following
primary areas: diagnosis (i.e., classification between PwPD and HC), monitoring, and
prognosis, as outlined in [20]. Figure 10 presents a summary of the principal aims of the
selected studies.

Figure 10. Principal aims of the selected studies.

Most of these studies focused on the classification between PwPD and HC (N = 12,
55%), followed by monitoring (N = 6, 27%), prognosis (N = 2, 9%) and other type of
classification (N = 2, 9%). The six studies on PD monitoring included the assessment
of gait impairment (N = 5, 39%), therapy response (N = 3, 23%), ON-OFF state (N = 3,
23%) estimation, and automatic detection of motor symptoms (bradykinesia, tremor, and
postural instability) (N = 2, 15%). Regarding prognosis, the studies aimed to predict the
risk of falls (number of falls) and the evolution of motor symptoms such as abnormalities
in movement of the lower-limbs.

Figure 11 shows the distribution of the aims addressed in the selected studies.
Specifically, 59% (N = 13) of the studies addressed more than one aim, while the

remaining 41% (N = 9) addressed a single primary area (i.e., diagnosis, monitoring, and
prognosis). Three studies (14%) [72,76,82] combined ON-OFF states monitoring with PwPD
and HC classification, while three studies (14%) [73,79,81] combined therapy response
evaluation with PwPD/HC classification and prognosis. Two studies (9%) [80,85] com-
bined motor symptoms monitoring with PwPD and HC and prognosis, respectively. Two
studies (9%) [69,70] combined classification PwPD/HC with gait monitoring. Three studies
(14%) combined other aims, such as classification of therapy/placebo subjects and therapy
response monitoring [83], the classification of PD/REM sleep behavior disorder with the
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classification of PwPD/HC [75] or the classification of motor condition was addressed,
together with the assessment of the quality of life of PwPD [78].

Figure 11. Distribution of the aims addressed in the selected studies.

4.7. Extraction Methods

DB-MS-PD were extracted by different methods (Figure 12). 7 studies (32%) assessed
the potential of single features as biomarkers. Most studies (N = 14, 64%) combined
multiple features and used ML models to provide a robust result. Logistic regression
(N = 5, 33%) and random forest (3, 20%) was the most common between the ML models.
Finally, only one study used raw data as input for a DL model (N = 1, 4%).

Figure 12. Biomarker extraction methods. ML and DL models used.

4.8. Endpoints

In 11 studies (50%), different motor tasks were evaluated. The distribution of the most
relevant tasks in studies addressing multiple tasks is shown in Figure 13.
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Figure 13. Most relevant tasks in studies addressing multiple tasks.

In 7 studies (32%), finger tapping was associated to different tasks, including balance,
gait, rest tremor, postural tremor, pronation-supination, leg agility and reaction time. In
6 of these studies, finger tapping performed better than the other tasks for PD diagnosis,
ON/OFF detection and PD progression. Gait gave better results than other activities in
2 cases (18%) for PD detection and progression. The 3 remaining articles (27%) studies
another tasks. In a single study [75], resting and postural tremor provided better results
than the other tasks (including finger tapping) for the diagnosis of PD. A single study [73]
(which included neither finger tapping nor gait) found that toe tapping and TUG tasks give
better results than leg agility and hand movements for PD progression estimation. Finally,
a single study [81] concluded that resting tremor and bradykinesia achieve agreement with
clinical assessment of symptom severity and treatment-related changes in motor states.

In half of the studies, DB-MS-PD were extracted in the laboratory/clinic, whereas
in the other half, remote home monitoring was used. In the laboratory-based studies,
mostly supervised active tasks (participants were asked to perform different tasks) were
used, whereas in one study both active and passive monitoring were used. When data
were recorded at home (11 studies), active tasks were used in 6 and passive monitoring
(extraction of DB-MS-PD during daily life) in the other 5.

Focusing on the tapping task (Figure 14), of the 7 studies in which tapping was the
most relevant task, most found that, in 5 cases each (71% of the cases), statistical metrics
calculated on the intervals between taps (i.e., mean value, variability, percentiles) or on the
spatial accuracy (i.e., two-dimensional distance between tap position and target point) were
the most significant DB-MS-PD. This is followed by total taps (N = 4, 57%) and the number
of on-target taps (N = 2, 29%). Other characteristics include tap duration and fatigue. The
latter was calculated as the difference in tap speed between the first and last tap. These
features were highly relevant for the diagnosis of PD, the estimation of motor fluctuations,
the assessment of disease progression and the prediction of clinical motor scores.

Regarding to the gait task (Figure 15), of the 11 studies where gait was the primary
task, most (N = 7, 63%) found gait speed and its variability to be the one of most significant
DB-MS-PD in both supervised and unsupervised contexts. This is followed by average
step length and their variability (N = 4, 36%), stride length (N = 3, 27%), step time (N = 3,
27%), swing time (N = 2, 18%), stance time (N = 2, 18%), and cadence (N = 2, 18%). Other
characteristics include total power, center of pressure, force variations, power spectrals
and entropy. These features were found to be highly relevant for the diagnosis of PD, the
estimation of motor fluctuations and the assessment of disease progression.
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Figure 14. Most relevant features in the finger tapping task.

Figure 15. Most relevant features in the gait task.

Overall, the supervised and unsupervised finger tapping task (assessed through
position and acceleration analysis on a smartphone or tablet) and the supervised and
unsupervised gait task (assessed through inertial or force sensors) represented the most
explored tasks. When comparing the results obtained from different studies, it is evident
that these two tasks provide similar performance for PD diagnosis and treatment response
assessment, as shown in Table 2. On the other hand, gait was also explored for severity
estimation, while the finger tapping task for predicting the clinical motor score. The
classification and regression results are reported in the Table 2, where the results of the
different studies are summarized using the performance range.

Table 2. Performance comparison of tasks for disease diagnosis, prognosis, and monitoring.
Acc: accuracy; r: Pearson’s correlation coefficient; MAE: mean absolute value.

Task Diagnosis Treatment Severity UPDRS–III

Finger tapping AUC 0.74–0.95 Acc 0.75–0.84 - r = 0.51–0.69, MAE = 8
Gait AUC 0.76–0.98 AUC 0.82 AUC 0.85–0.98 -

It is worth noting that all finger tapping tasks represent active tests, in which subjects
have to actively participate in the activity. On the other hand, tapping on touch screens
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represents an easy and effective activity that can be performed at home. Very good perfor-
mance was obtained both in supervised laboratory settings and in unsupervised remote
settings (i.e., at home), demonstrating that finger tapping represents an easy and effective
task for the extraction of DB-MS-PD. With regard to gait, data recorded in supervised labo-
ratory environments performed better for PD diagnosis (accuracy 0.94–0.98) and severity
estimation (accuracy 0.85–0.98), compared to unsupervised data recorded continuously in
the home environment, with an area under the curve (AUC) between 0.76–0.95.

Analyzing tremor, a sensitivity of 0.85 and a specificity of 0.88 were obtained in
distinguishing PwPD from HC; A sensitivity of 0.88 and specificity of 0.90 were obtained
for the classification of PD versus idiopatic sleep behavior disorder (iRBD) [75]. The
performance of tremor detection achieved an accuracy of 0.83 and a correlation of r = 0.97
(p < 0.001) with the UPDRS tremor score (item 3.18). A correlation of r = 0.67 (p < 0.001,
RMSE = 2) was obtained between the sensor measurements (amplitude of hand movement)
and the clinical bradykinesia score (sum of items 3.4–3.6) [81]. For toe tapping, a correlation
of r = 0.74 (p < 0.001) was found in predicting motor progression at 30 months [73]. Finally,
the TUG test analysis provided an r = 0.55 and an RMSE of 0.33 in predicting the number
of falls in PD [85].

5. Discussion

This article provides an updated review of the existing literature on digital biomarkers
for motor symptoms assessment in PD. This disorder represents the second most common
neurodegenerative disease in the world [3], and new digital technologies promise to
significantly support the approach to the diagnosis, prognosis and monitoring of PD.

In this review, a total of 22 articles were selected and thoroughly analyzed to provide
an summary of current DB-MS-PD in PD. As the term biomarker is very broad and the
use of wearable devices can be extended to different locations, a large heterogeneity was
found among the studies examined. Nevertheless, it was possible to identify trends and
patterns in the definition of the experimental protocols, the number of participants, the
number and type of devices and sensors used, the location of the devices on the human
body, the objectives pursued and the types of DB-MS-PD proposed.

Overall, the results indicate that wearable devices have the potential to be used to
define DB-MS-PD. These can provide measurable and objective evaluations in clinical or
hospital settings. Furthermore, the indicators collected through wearable devices could
contribute to the development of remote and continuous patient monitoring systems to
follow the evolution of different symptoms, especially in unsupervised settings such as
patient’s home.

The vast majority of studies included in this review employed commercial IMUs,
mostly embedding at least accelerometer and gyroscope, or the touchscreen of smartphones
and tablets. These sensors allowed assessment and monitoring of a wide spectrum of motor
symptoms in PD for diagnosis, prognosis, and monitoring purposes. Importantly, more
than half studies used a single device embedding multiple sensors. Among these, IMUs
seem to represent the most promising solution (11 of 22 studies). IMUs are widespread
and used on various applications due to their versatility, accuracy, and relatively compact
form factor, thus can be used for data collection and analysis without requiring additional
dedicated hardware. They feature built-in sensors like an accelerometer, gyroscope, and
magnetometer for comprehensive motor symptom evaluation. The results are promising,
with high diagnostic accuracy in discriminating PwPD from HC and high correlation with
clinical scores. However, smartphones (7 of 22 studies) are used on a daily basis, and
are equipped with a large number of built-in sensors such as accelerometer, gyroscope,
magnetometer, touchscreen, camera, and microphone. Smartphones were mostly used in
the execution of scripted active tasks (e.g., finger tapping, memory, walking). None of the
studies evaluated the potential of smartphones for long term, continuous monitoring in
unsupervised environments. While representing technology which subjects are familiar
with, the dimension and weight of smartphones are not comparable to the small and tiny
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inertial modules that can be even embedded in smart-clothes or devices. Passive continuous
monitoring through IMUs or smartphones (i.e., in the pocket) was not addressed and needs
further evaluation.

Gait and finger tapping represent the most frequent activities in the studies analyzed.
Other tasks and activities such as TUG test, balance task, and reaction times were poorly
addressed and thus do not allow to obtain robust conclusions. As previously discussed,
gait and finger tapping provided similar results in terms of discrimination capability of
PwPD from HC and for therapy condition assessment. These tasks were analysed both
in supervised clinical settings and in unsupervised home environments. Despite similar
results, gait has the potential to provide a continuous passive evaluation of disease severity,
the presence of motor symptoms, and the effect of therapy. On the other hand, finger
tapping represents an active task and should be performed several times a day to accurately
estimate motor fluctuations.

In general, this review emphasizes the potential of DB-MS-PD for PD diagnosis, prog-
nosis, and monitoring. Data can be collected in unsupervised environments for long periods
of time using widespread commercial devices such as smartphones. Individual features
or a combination of multiple features and ML models can be used to detect symptoms,
predict severity, and evaluate therapy response. The evidences are convincing, as large
sample sizes, correct validation procedures, and robust methods were used. Ultimately, this
review article is intended to provide the reader with a comprehensive set of information
that demonstrates the potential of DB-MS-PD in PD, critically discussing current limitations
and providing recommendations for future work.

5.1. Challenges

The careful analysis of the articles included in the review highlights several challenges,
which are reported below. The identification of these challenges can help design and conduct
future studies related to digital biomarkers for motor symptoms assessment in PwPD.

Participant Selection: Most studies focused on the diagnosis of PD, alone or in combi-
nation with other objectives (e.g., estimation of disease severity, treatment conditions). The
proper evaluation of digital tools for computerized early diagnosis should be conducted on
newly diagnosed PwPD. However, some studies have not reported any measurement of
duration and/or severity of disease, which makes it complicated to assess the potential of
the proposed solution. When reported, the average duration of the disease was in the range
of 3.5–13 years and the H&Y stage was mostly equal to or greater than 2. This means that
the recruited PwPD were mostly at an advanced stage of the disease, when motor symptoms
were fully visible. This raises doubts about the usefulness of the solutions developed and their
real potential for early diagnosis. It is essential to define appropriate standardized criteria that
provide guidelines for the recruitment process and the reporting of participant characteristics.
For example, in order to enable a proper evaluation of the PD, at least disease duration, H&Y
and MDS-UPDRS scores must be reported. Strict inclusion criteria with regard to disease
duration (e.g., less than 2) and H&Y stage (e.g., less than or equal to 1) must be adopted when
evaluating digital systems for early diagnosis.

Additionally, regarding the number of participants, the sample size significantly varies.
Two clear trends are observed, 14 studies with a number of PwPD between 5 and 42, and
8 works with more than 80 participants (3 studies with more than 1000). Furthermore, stud-
ies tend to have a higher number of HC than PwPD (of the articles that are clearly specified,
77% of the total participants are HC). It would be interesting for a correct definition of
DB-MS-PD that these are defined from a significant number of PwPD registries, close to
50% of the total. In addition, another factor that should be taken into account is the gender
balance of the participants, as, for HC and PwPD, the percentage of male participants
is high compared to female participants (71% HC, 65% PD). It could be interesting to
try to define a minimum number of patients or healthy participants and age or gender
distribution for a biomarker to be proposed as such, as it would allow us to know that it
has been tested with a relevant number of people.
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Reporting of methods: Related to the activities and tasks performed, in some cases,
the activity carried out is very detailed, while in others it is described in a general way.
For example, distance travelled, gait trajectories to be followed, and speeds are indicated
in a limited number of studies. Similarly, the addressed tasks are sometimes referred
as MDS-UPDRS tasks, without precise indication of the specific UPDRS item. A similar
phenomenon is observed in the description of the positioning of wearable devices on the
body. Some studies explicitly describe the position of the device through photographs or
diagrams, while others merely refer to general anatomical regions, such as the upper limb
or lower limb. A possible option would be to use a diagram in the shape of a human body
to identify the location of each of the devices on the body. Several articles [67,73,74,77] have
already used this approach and it is an effective way to identify the positions discussed
in detail.

Tasks performed: Gait and finger tapping have been found to be the most studied
activities for monitoring and understanding the evolution of PD severity and motor symp-
toms. In the reviewed studies, most PD participants were at the same stage of the disease
and performing the movements in a fairly similar way, which allows for a classification
of each stage easily. Gait is the task performed in the studied papers that is the easiest
to apply in free-living conditions. However, the use of other activities such as reaction
times, pronation-supination movements or TUG test can help to get a broader and more
detailed overview of the disease for each PwPD. In addition, analysis of these less studied
activities, or new ones yet to be discovered, could provide valuable information on more
subtle aspects of disease progression. For example, reaction times may reveal alterations in
processing speed in patients PwPD, while pronation-supination movements could provide
clues about coordination and fine motor control. Therefore, all possible activities that have
significant results for the follow-up and monitoring of PwPD should be further studied
and promoted.

Monitoring settings: Regarding the evaluation of therapy condition (ON/OFF), half
of the studies were conducted in clinical, supervised settings. This raises questions about
the applicability of the developed digital tools to unsupervised remote environments.
When performing at-home monitoring, passive monitoring during activities of daily living
lasted 1 h to 1 day [71,82]. This represents rather a short period of time for fully evaluating
the performance of automatic motor condition assessment. On the other hand, long-
term monitoring of 2 weeks to 6 months [79,80] provide robust performance estimate.
However, this was achieved using active tests, involving patients to complete a scripted set
of tasks. Ideally, passive monitoring over a long period of time would be desirable, so the
evolution of biomarkers over time can be monitored without forcing patients to engage in
sustained activities.

Report of the results: A comprehensive reporting of performance metrics is essential
to fully evaluate the potential of the prediction system and to fairly compare similar studies.
Focusing on diagnosis, almost half of the studies reported classification performance in
terms of AUC. This allows the diagnostic ability of DB-MS-PD to be assessed regardless
of the selected classification threshold and serves as a summary of the overall model
performance. However, AUC was not reported in the other half of the studies, where
accuracy or the combination of sensitivity and specificity were preferred. With regard to
regression metrics, the performance evaluation is rather heterogeneous across studies. A
substantial number of studies reported the correlation coefficient alone or a single error
measure (i.e., MAE, RMSE). Furthermore, test-retest reliability was assessed in a single
study using the intra-class correlation coefficient. Finally, inter-rater variability was not
studied. Establishing common metrics across all proposals would facilitate a meaningful
comparison of their respective performances.

Overall, the heterogeneity of the performance metrics hinders a fair comparison with
similar work and does not allow a comprehensive evaluation of performance. Again,
some guidelines are needed to suggest the minimum set of performance metrics to be
reported. These may include at least the receiver operating characteristic-ROC curve and
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AUC value in classification problems and the correlation coefficient, the associated p-value
and a measure of error (i.e., MAE, RMSE or MSE) for regression tasks. In the latter case,
test-retest reliability and inter-rater variability are essential to assess the consistency of
multiple measurements and multiple clinical raters, respectively [88,89].

Proposed Biomarkers: Above all, the definition of biomarkers is heterogeneous in the
evaluated studies, with no common report structure. Some studies used single features
as DB-MS-PD and assessed their classification or regression performance. Other studies
extracted multiple features from the data and combined them using an ML model. In
this case, if adequately described, the aggregation of features and the ML model can
represent a DB-MS-PD. In most of these studies, the contribution of each feature to final
performance was assessed using regression metrics or statistical tests between groups of
subjects, conditions, or treatments. This is useful as it is possible to identify the most
important feature for the specific purpose. Therefore, it would be better if the proposal
studies use a standardized reporting structure or presentation of results that reflects certain
key aspects and allows other authors to easily identify what the proposal is.

The reliability and accuracy of a biomarker depend on their development context,
such as patient characteristics (e.g., Hoehn and Yahr stage, MDS-UPDRS), tasks performed,
exact placement of sensors and metrics calculated. To assess whether biomarkers have been
calculated correctly, appropriate reporting of key aspects is essential. To ensure reliability,
biomarkers must be reproduced in multiple studies around the world, so reproducibility
is very important, because if a biomarker is consistently reproduced and applied to many
patients, it can be considered reliable and accurate for the study of the disease.

Reproducibility is a key aspect to allow for repeatable experiments ready-to-use
solutions. However, methods and implementation details were not always exhaustively
reported. Relevant information such as sensor characteristics and specific positioning on
the body, signal pre-processing and conditioning steps, and ML models’ parameters should
be carefully described. In addition, most of the evaluated studies used proprietary datasets
that were not made publicly available. Although the diversity between the different
datasets provides new perspectives and enrich the current body of knowledge, proprietary
datasets hinder reproducibility of the experiments and results, and limits the advance in
scientific research.

The recent significant technological advances in wearable technology allows for a
wide range of data measurement modality. This is obviously a great advantage, as a large
spectrum of physical and physiological parameters can be easily extracted from on-body
sensors. However, it is worth considering that the number of devices, their wearability and
comfort are of utmost importance when designing systems for long-term unsupervised
monitoring. PwPD often suffer from non-motor symptoms such as sleep disorders, anxiety,
and depression. Thus, cognitive load and patient compliance are essential aspects to
consider when developing digital solutions.

5.2. Limitations of This Study

This review has some limitations. First, despite extensive search on several digital
journals, only 22 studies were finally included and fully evaluated. Considering the
heterogeneity in the sample size, objective, methods and results, a direct and comprehensive
comparison of similar studies is not always possible. This is particularly evident for studies
focusing on activities different from gait and finger tapping, for which it is not possible
to provide robust conclusions. In addition, the distribution of study objectives is very
unbalanced, with most studies focusing of diagnosis and therapy condition estimation,
while the severity of motor symptoms and overall motor condition were poorly addressed.
Finally, this review focused specifically on DB-MS-PD. This led to consider motor symptoms
such as gait impairment, postural instability, tremor, bradykinesia, and dyskinesia. Other
motor symptoms such as rigidity, fatigue, and hypomimia were not addressed in the
reviewed studies.
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Another limitation that may be encountered is the replicability, as each study uses a
different wearable device with its own sampling frequency and filtering techniques (not all
of which are indicated), using a wide variety of devices.

A high percentage of the assessed studies (84.8%, n = 168 of the 198 articles screened)
are from 2020 or later. Furthermore, the observable trend in recent years has been that more
articles are being produced each year, so it can be deduced that the definition of biomarkers
using wearable technology is a subject on which numerous research projects are being
carried out and that new results and DB-MS-PD will be published in the coming years.
Therefore, this work can be a reference to know the current trends and future literature
reviews on this topic can expand the information shown and know in further detail the
way to the definition of DB-MS-PD.

In addition, 6 of the 22 articles use public databases, therefore, the variability in the
results is conditioned to a certain extent, since the results of these databases are similar. It
would be interesting to extend the results obtained by using other different databases or by
proposing new activities or measures.

6. Conclusions

This article explores the use of wearable sensors to extract digital biomarkers to assess
motor symptoms of Parkinson’s disease (PD). Findings show these digital biomarkers can
accurately track severity symptoms, monitor the response to treatment, and distinguish
between patients with PD (PwPD) and healthy controls. Although these tools can provide
objective and continuous information for improved monitoring, findings highlight the
importance of standardized data collection and analysis methods to ensure reliable inte-
gration into clinical practice. Among the reviewed studies, a total of 25 different devices
(20 out of 22 articles used a single type of device) were used for developing digital biomark-
ers for motor symptoms of PD (DB-MS-PD), with the inertial measurement units (IMU)
being the most commonly used, followed by smartphones. In terms of sensor types, the
most frequently used sensors were triaxial accelerometers and gyroscopes.

DB-MS-PD were extracted primarily through three approaches: combining multiple
features with machine learning (ML), deep learning (DL) algorithms, or evaluating single
features using statistical methods. To extract these digital biomarkers, different motor tasks
were assessed, with finger tapping and gait being the most frequent motor activities.

Finger tapping, particularly in terms of tap intervals, spatial accuracy, and total taps,
consistently stands out as a significant indicator for the diagnosis and monitoring of PD
progression. Performance metrics indicate that finger tapping tasks, which involve active
participation, are effective for both laboratory and home environments, with accuracies
ranging from 0.75 to 0.84 and area under the curve (AUC) values between 0.74 and 0.95.

Gait analysis, on the other hand, using measurements such as speed, variability,
and stride length was also important to assess motor function in both supervised and
unsupervised contexts. Furthermore, the results indicate that gait tasks are similarly
effective in the diagnosis of PD and in evaluating treatment responses. AUC values for
gait analysis range from 0.76 to 0.98, with the highest accuracy (0.94 to 0.98) observed in
controlled laboratory settings.

The use of wearable devices can provide many advantages for traditional clinical
monitoring and assessment, as they can generate a high volume of data in a relatively short
time, provide objective opinions on the patient’s actual condition, or be able to assess or
account for aspects that traditionally have not been possible, such as falls or freezing. In
addition, they introduce an unexploited aspect, such as the possibility of monitoring a
patient in a home environment without the pressure of feeling observed by the neurologist.

However, in order to develop remote patient monitoring systems, several issues
identified in the review need to be addressed. One of the most relevant challenges is
the standardization of data collection, analysis, processing, evaluation, and reporting of
DB-MS-PD in order to facilitate comparability and replicability of results. In the absence of
general guidelines for experimental development, each trial can be conducted in a different
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way and managed differently. This idea of standardization has been pursued in other
fields such as neuroimaging in Alzheimer [90] or in the use of public tools for database
publication [91].

The review highlighted multiple issues and constraints within the included studies,
offering suggestions for future research to overcome these limitations and improve PD
assessment. Rapid progress in sensing and data analysis technologies is expected to
significantly expedite the integration of wearable devices in this field. These DB-MS-PD
can be used to obtain objective and measurable information on the status of certain disease
symptoms and could be used in continuous patient monitoring systems.
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