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Abstract

The present work presents results of numerical simulations to investigate the effect of different void percentages

on composite materials’ coefficient of thermal expansion (CTE) and local stress fields. A random distribution of

voids is considered within the Representative Volume Element (RVE) matrix, and different types of microstruc-

tures are considered, including square-packed and randomly distributed fibers. The use of a higher-order beam

model within the framework of Carrera Unified Formulation (CUF) leads to a Component Wise (CW) approach,

resulting in an accurate, 3D description of the cross-section although using a 1D formulation. Numerical re-

sults for different fiber volume fractions and void concentration percentages demonstrate the agreement of the

computed effective coefficients of thermal expansion of the present micromechanical thermoelastic model with

references from the literature. The local stress fields is affected by voids, with higher effects over the matrix.

Furthermore, higher void fractions lead to higher variability of stress peaks.

Keywords: Micromechanics; Voids; CUF; RVE; Composite materials; Statistical analysis
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1 Introduction

Fiber-reinforced composites have excellent thermomechanical properties, such as lightweight, high-temperature

mechanical performances and good thermal stability. A fundamental factor governing the thermal behavior of

composite materials is the coefficient of thermal expansion (CTE), which describes the material’s tendency to

expand or contract when subjected to changes in temperature. CTE plays a critical role in designing composite

materials since it can directly determine the dimensional stability of the structure and thermal stress distri-

bution. Furthermore, the multiscale nature of composite materials, with their complex hierarchical structures,

may influence CTE, and multiscale models are desirable for accurate predictions. These models must capture

the behavior of the constituent materials at the microscale while also accounting for the macroscopic response

of the composite as a whole.

Another crucial aspect is the growth of defects that inevitably occur during the manufacturing process. Specifi-

cally, voids are primary manufacturing defects that significantly influence thermoelastic properties. The presence

of voids introduces regions of reduced stiffness and altered stress distributions within the material, thereby af-

fecting its overall thermomechanical behavior. Understanding the influence of voids on thermoelastic properties

is of paramount importance [1]. Little et al. [2] compared the use of micro-computed thermography (micro-CT)

to different conventional techniques [3, 4] for identifying the size, shape, and distribution of voids in carbon

fiber reinforced composite (CFRC). More recently, the X-ray Computed Tomography [5] was adopted as the

framework for measuring voids in composites. Air gaps are often present in 3D printed fiber reinforced compos-

ites [6], where void content is higher in 0◦ printing direction [7] and have an impact on mechanical performance

[8]. Unidirectional laminates demonstrated higher voids sensitivity than the fabric laminates [9], while some

experimental programs investigated the impact of void content on static strength, fatigue life, and interlaminar

shear strength (ILSS) [10, 11, 12]. Additionally, an optimized cure cycle can decrease void volume fraction, thus

improving the mechanical properties of composites [13, 14]. Furthermore, voids are crucial in the formation

process of crack propagation [15, 16, 17].

Computational micromechanics emerged as an approach for investigating defects at a microscale level. Mi-

cromechanics enables retrieving the homogenized thermomechanical properties and the local stress and strain

fields via dehomogenization. Numerous analytical techniques have been developed, offering more sophisticated

solutions for analyzing composite materials. One notable example is the Method of Unit Cells (MOC) [18],

which has been widely used to study composites’ mechanical and thermal behavior. In addition to MOC, more

recent advancements include the Generalized Method of Cells (GMC) [19, 20] and the High-Fidelity Generalized

Method of Cells (HFGMC) [21]. These methods have further refined the analysis of composite materials by

considering additional factors such as material heterogeneity, interface properties, and the presence of defects.

Most of these methods and numerical simulations for the homogenization analysis usually employ Representa-

tive Volume Element (RVE) models [22, 23, 24], which represent the smallest geometric entity containing all the

information about material properties and volume fraction of the constituents. Recently, numerical simulations
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have been conducted employing commercials such as Abaqus [25]. Another recently popular method for carry-

ing out numerical homogenization and dehomogenization analyses is represented by the Mechanics of Structure

Genome (MSG) [26], based on the Variational Asymptotic Method (VAM) [27]. The Finite Element Method

(FEM) represents a viable approach to studying micromechanics. Various research studies have utilized FEM

to model the microscale through the use of RVE [28, 29, 30, 31, 32], while many works embedded voids into

FEM to retrieve elastic properties of composites [33, 34, 35, 36, 37]. Regarding the thermoelastic framework,

MSG-based finite element analysis was adopted to compute the CTE of solid models [38], while Wei et al. [39]

studied the influence of voids on homogenized CTE using a 3D Abaqus formulation.

The computational cost of 3D FEM analyses can be heavy when dealing with 3D RVE or nonlinear cases.

Employing the Carrera Unified Formulation (CUF) [40] reduces the computational cost, thus maintaining high

accuracy of results. Previous micromechanics investigations [41, 42] demonstrated the advantages of using CUF

compared to classical formulations. In the work of Sánchez-Majano [43], MSG coupled with CUF for the com-

putation of thermoelastic properties of a Repeatable Unit Cell (RUC) model. The influence of void has been

investigated on the linear response of composite [44], and other works retrieve the local stress and strain fields

using a statistical approach [45, 46].

The present work aims to extend CUF micromechanics to a thermoelastic framework for retrieving the ho-

mogenized CTE and the local stress distributions with a novel computationally efficient technique. Moreover,

the investigation focuses on the effect of random voids on the homogenized thermoelastic properties, using

statistical analysis to analyze the impact of void distributions at a given void volume fraction, which is rarely

mentioned and investigated in the literature. An additional advantage of the current methodology lies in its

capacity to easily model diverse RVE architectures, owing to the utilization of a higher-order formulation that

enables accurate geometrical and material modeling within a one-dimensional kinematic model. Finally, the

local stress fields over RVE’s fiber and matrix with voids are computed. The work is organized as follows:

Section 2 presents the high-order theory formulation; Section 3 introduces the micromechanics model; Section

4 presents an overview of the statistical investigation; Section 5 provides numerical results; and their discussion

is underlined in Section 6. Finally, the conclusions are given in Section 7.

2 Structural theories and FEM

A refined structural model is essential when dealing with complex mechanical behaviors, such as the deformation

field that occurs across the cross-section of an RVE; the present work exploits the capabilities of a refined 1D

kinematic model based on the CUF. In Eq. (1), the three components of the displacement field are defined

according to the reference system in Fig. 1,

u(x, y, z) = {ux uy uz} (1)
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Figure 1 Square-packed RVE model and reference frame.

In CUF [40], the displacement field is defined as in Eq. (2),

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (2)

where Fτ (x, z) are the expansion functions employed over the cross-section, uτ (y) is the vector of general

displacements, and M is the number of terms in the expansion. In addition, τ denotes the summation of

the expansion terms. Arbitrary polynomials can be selected as 2D expansion functions. This paper employs

Lagrange polynomials, thereby enabling a Component-Wise (CW) approach in which fibers and matrix are

described with different sets of primary variables. In the present work, 9-node bi-quadratic expansion elements

(L9) are employed to discretize the model cross-section. Equation (3) shows the displacement field for L9,

ux = F1ux1 + F2ux2 + F3ux3 + ...+ F9ux9

uy = F1uy1 + F2uy2 + F3uy3 + ...+ F9uy9

uz = F1uz1 + F2uz2 + F3uz3 + ...+ F9uz9

(3)

where un1, ..., un9 are the translational displacement components related to each node of the element. By

modeling the longitudinal direction through standard 1D FEM terms, the shape functions are introduced in Eq.

(4):

u(x, y, z) = Fτ (x, z)Ni(y)uτi τ = 1, 2, ...,M i = 1, 2, ..., p+ 1 (4)

where Ni(y) represents the shape functions of p-th order, uτi is the vector of nodal displacements, and M stands

for the number of expansion terms. Equation (5) defines the stress,

σT = {σxx σyy σzz σxy σxz σyz} (5)

The geometrical equation, see Eq. (6), defines the relation between strains and displacements:

ε = Du (6)
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where D is the 6× 3 differential operator. Moreover, the use of Hooke’s law, Eq. (7), enables the establishment

of a relationship between stress and strain:

σ = Cε (7)

where C is the stiffness matrix of the material. The governing equations are derived based on the Principles of

Virtual Displacement (PVD). In the context of static analysis, the PVD can be expressed as in Eq. (8):

δLint = δLext (8)

where δLint is the strain energy and δLext is the work of the external forces. While δ is used to indicate the

virtual variation of the quantity. As shown in [40], the strain energy can be formulated as in Eq. (9):

δLint = δuT
sjkijτsuτi (9)

where the explicit form of the 3× 3 Fundamental Nucleus (FN) kijτs is expressed in Eq. (10):

kijτs =

∫
V

Fs(x, z)Nj(y)D
TCDFτ (x, z)Ni(y)dV (10)

Equation (11) defines the external load,

δLext = δuT
sjPsj (11)

where Psj is the 3× 1 external load vector and is referred to as the FN of the load vector. The global stiffness

matrix and the external load vector are assembled by iterating the indices i,j,τ ,s. The first two indexes, i,j,

denote the loop on the FEM nodes, while τ ,s are the loop indices on the cross-section nodes.

3 Micromechanics formulation

One of the aims of the present study is to evaluate the effective thermoelastic properties of composite materials,

particularly the Coefficient of Thermal Expansion, through a micromechanical analysis. Periodic Boundary

Conditions (PBC) are applied in the micromechanics framework to ensure that opposite boundary surfaces

undergo the same deformation mode [33, 47]. Figure 2 describes the reference frame adopted for the description

of the micromechanical model and the application of PBC, expressed in Eq. (12):

uj+
i (x, y, z)− uj−

i (x, y, z) = ε̄ik∆xj
k ∆xj

k = xj+
k − xj−

k (12)

where j+ and j- indicate the positive and negative directions of the xk and ε̄ik is the macroscopic strain vector.

The cross-section of the 1D models is discretized with nine-node bi-quadratic elements (L9), whereas along the

fiber direction, four-node cubic elements (B4) are employed.
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Figure 2 Reference frame for micromechanics and PBC.

The thermoelastic analysis considers the stress field given both from the elastic and thermal contributions, as

illustrated in Eq. (13),

σij = σE
ij + σT

ij (13)

where E stands for elastic and T thermal. The present homogenization procedure first involves the resolution of

the static problem in order to obtain the effective stiffness matrix, which is then employed in the effective CTE

vector. In the micromechanics framework, the local solutions, such as the strain and stress vectors, have an

average value over the RVE volume. The local elastic stress field σE
ij is defined in Eq. (7), and its macroscopic

value σ̄E
ij [48] is expressed in Eq. (14):

σ̄E
ij =

1

V

∫
V

σE
ijdV (14)

in the same way, Eq. (15) defines the macroscopic strain vector,

ε̄Eij =
1

V

∫
V

εEijdV (15)

Then, the effective elastic coefficients matrix C̄ijkl can be easily retrieved from Eq. (16),

σ̄E
ij = C̄ijklε̄

E
ij (16)

Moreover, Eq. (17) represents the local stress field given by the thermal contribution due to the application of

a temperature variation θ:

σT
ij = βijθ (17)

where βij = −Cijklαij is the local thermal-induced stress vector. Note that the temperature field applied to

the RVE, unlike the stress and strain, is considered to be uniform throughout the heterogeneous material. By

applying the integral over the volume of the thermal stress vector, it is possible to find the homogenized value

σij as in Eq. (14). Then, by obtaining Eq. (17) for β̄ij and exploiting the relationship between β̄ij ᾱij and β̄ij ,

the effective CTE vector can be obtained by Eq. (18):

σ̄T
ij = −C̄ijklᾱijθ (18)
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Figure 3 Two different sets of 3% of void content over the matrix of a square-packed RVE.

More details about the elastic CUF micromechanics framework are available in [41, 42]. To model voids, a

technique previously employed in [44, 45, 46] is used, where a set of Gauss points within the matrix domain

is randomly selected and assigned low elastic moduli. The FE matrices computation uses Gauss-Legendre

quadrature, and the integrals involving voids’ Gauss points are evaluated with modified elastic moduli. To

achieve a desired void volume fraction, matrix Gauss points are randomly chosen as void sites. This process

generates voids with a domain size corresponding to the volume associated with the selected Gauss point rather

than the entire element. Different combinations of Gauss points can produce the same total void volume

fraction. During the FE matrices computation, void sites’ Gauss points are considered to have negligible elastic

properties. Whilst regarding the thermal behavior, voids are associated with the CTE of the air, equal to 10−3

K−1. An example of different Gauss point selections in a square-packed RVE with a 3% void volume fraction

is shown in Fig. 3.

4 Statistical analysis

The novelty proposed in this article involves the extension of the effect of voids on the thermomechanical response

of composites. One hundred defect distributions were randomly generated for each void volume fraction. In the

pure-elastic related study by Carrera et al. [44], 100 random distributions were used for each percentage, and

the same number was considered for the present investigation, also to satisfy the need for a reliable statistical

analysis. The absolute maximum and minimum of each mechanical quantity for each distribution of results

were considered. Furthermore, the mean value and standard deviation s, Eq. (19), were taken into account:

s =

√√√√ 1

100− 1

100∑
i=1

(xi − x̄)
2

(19)

xi is a given thermomechanical property and x̄ is the mean value of each distribution. Also, the analysis

considered the first, second, and third quartiles - q1, q2, and q3. The first quartile is a statistical measure that

partitions a given dataset into two parts, such that 25% of the data values are located to the left of the first
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quartile, and 75% is located to the right. Conversely, the third quartile partitions the dataset in such a way

that 75% of the data values are located to the left of the third quartile, and 25% is located to the right [49];

q2 is also known as the median. A visual representation of statistical parameters was employed using boxplots

and probability density functions [50]. These graphical tools allow observation of quartiles, notch extremes, and

outliers, providing a clear view of the data distribution [51]. The notch extremes represent interval endpoints,

and they are computed as shown in Eq. (20):

qL = q2–1.57
q3–q1√
100

, qU = q2 + 1.57
q3–q1√
100

(20)

qL and qU are the lower and the upper endpoints. The outliers, see Eq. (21), are defined as the values exceeding

the endpoints,

q < qL & q > qU (21)

5 Numerical results

The first numerical case aims to assess the present approach - CUF-Micromechanics (CUF-MCM) - using

benchmarks from the literature for a square-packed RVE without defects. Furthermore, the variation of the

effective CTE due to growing void fractions is investigated. In the second part of the numerical results, the stress

and strain fields within the RVE resulting from thermomechanical loads are assessed using dehomogenization.

Initially, the outcomes obtained without voids are compared with reference values. The subsequent analysis

focuses on the changes in the stress distribution when voids are introduced.

5.1 Verification of the thermoelastic micromechanical analysis

The square-packed RVE, depicted in Fig. 1, is the selected architecture for the verification phase. First, pristine

RVE are considered with increasing fiber volume fractions. The material properties of the constituents of the

square-packed RVE are listed in Table 1. The mesh has 172 L9 + 2 B4 elements, leading to 20412 degrees of

freedom (DOF), and the same discretization is adopted for each fiber volume fraction. Figure 4 shows the cross-

section discretization and the elements along the y-direction for the RVE with 64% of fiber volume fraction. The

present higher-order CUF 1D simulation (CUF-MCM) is compared to (i) HFGMC method [21]; (ii) MSG-based

analysis with solid elements [38]; (iii) MSG coupled with CUF [43].

Figure 5 illustrates the longitudinal and transversal CTE as a function of the fiber volume fraction, whereas

the results for the 64% of fiber volume fraction case are listed in Table 2.
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Table 1 Thermoelastic properties of the constituents for the Carbon/Epoxy composite [38].

T300 carbon fiber Epoxy resin matrix
E11 [GPa] 230.00 E [GPa] 3.45
E22 = E33 [GPa] 40.00 ν [-] 0.35
G12 = G13 [GPa] 24.00 α×106 [K-1] 63.00
G23 [GPa] 14.30 κ [Wm-1K-1] 0.20
ν12 = ν13 [-] 0.26
ν23 [-] 0.40
α11×106 [K-1] -0.70
α22 = α33×106 [K-1] 10.00
κ11 = κ22 = κ33 [Wm-1K-1] 129.00

x

z y

Figure 4 Discretization for the square-packed 64% Vf RVE with 172 L9 elements for the cross-section and 2 B4
elements along y-direction.
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Table 2 Homogenized longitudinal and transversal CTE for the square-packed RVE with 64% of fiber volume
fraction, compared with literature results.

Model α11×106 [K-1] α22 = α33×106 [K-1]
HFGMC [21] -0.109 32.033
MSG-solid model [38] -0.108 31.975
CUF-MSG [43] -0.102 31.161
CUF-MCM -0.096 31.169
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Figure 5 Longitudinal and transversal CTE for the square-packed RVE for increasing volume fractions.

In addition, the relative percentage deviation between the current analysis and the reference [43] is computed

as in Eq. (22):

E[%] =

(
αCUF−MCM
ii − αCUF−MSG

ii

)
αHFGMC
ii,max

× 100 (22)

where
(
αCUF−MCM
ii − αCUF−MSG

ii

)
are the two sets of CTE to be compared for each fiber volume fraction

V j
f ; α

HFGMC
ii,max is the maximum value of CTE obtained at 10% of fiber volume fraction. Table 3 presents the

percentage deviations computed using Eq. (22).

The analysis of the results suggests a perfect match between the present and the other methods considered.

Only the transversal CTE α22 along the x-direction is reported since it coincides with that obtained along the

z-direction.

Table 3 Relative deviation between the present analysis and CUF-MSG [43], referred to the corresponding
HFGMC solution [21], for the square-packed RVE with different fiber volume fractions.

Fiber volume fraction [%]
10 20 30 40 50 60

Relative
deviation E[%]

Ref HFGMC αHFGMC
11,max = 6.97×10-6 [K-1]

0.182 0.103 0.074 0.059 0.052 0.045

Ref HFGMC αHFGMC
22,max = 7.37×10-5 [K-1]

0.001 0.020 0.035 0.045 0.055 0.041
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5.2 Influence of fiber volume fraction and voids on CTE

The RVE model employed for the current assessment is based on the work of Wei et al. [39], and two values

of fiber volume fraction are evaluated: 57% (see Fig. 6a) and 80% (see Fig. 6b). The 57% Vf RVE has

a 9.96Ö9.96Ö9.96 µm cubic shape, whereas the 80% Vf RVE is 8.40x8.40x8.40 µm. The material is a C/C

composite, and the CTE of the orthotropic fiber and the isotropic matrix are listed in Table 4. According to

[52], the current RVE is not a proper hexagonal-packed RVE but is considered a hexagonal bundle enforced in a

square cross-section shape. The void content ranges from 2 to 8%, and the homogenized CTE is compared with

[39], where 3D Abaqus finite elements equal to 43725 for the 57% RVE and 43680 for the 80% case were used.

Figure 7a shows the 57% Vf RVE with 6% of voids, whereas the 2% of void content is in Fig. 7b for the 80%

Vf RVE. A convergence analysis is first carried out on the 57% Vf RVE and shown in Fig. 8. The horizontal

axis reports the CUF numerical models with increasing cross-sectional elements. In contrast, the vertical axis

represents the percentage deviation of the CTE for the given mesh and is computed using the most refined

model as the reference, 1000 L9 + 2 B4. According to the convergence analysis, the model with 160 L9 and

2 B4 elements, resulting in 19740 DOF, exhibits a deviation of 0.0028% and is thus adopted for the following

analyses. For the 80% case, 23996 DOF are employed, and the mesh chosen has 200 L9 + 2 B4 elements, as

shown in Figs. 9a and 9b.

x

z

(a)

x

z

(b)

Figure 6 Cross-section of RVE with (a) 57% and (b) 80% fiber volume fraction without voids.

Table 4 Thermoelastic properties of the constituents for the C/C composite [39].

Carbon fiber Carbon matrix
E11 [GPa] 350.00 E [GPa] 10.25
E22 = E33* [GPa] 13.80 ν [-] 0.23
G12 = G13* [GPa] 9.00 α×106 [K-1] 4.00
G23 [GPa] 4.80
ν12 = ν13 [-] 0.2
ν23* [-] 0.3
α11×106 [K-1] -1.00
α22 = α33×106 [K-1] 18.00

*properties assumed as they were not indicated
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Figure 7 RVE with (a) 57% Vf with 6% voids and (b) 80% Vf with 2% voids.
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Figure 8 Convergence analysis of the longitudinal and transversal CTE for the RVE with Vf=57%.
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Figure 9 Cross-section discretizations for (a) Vf= 57% RVE with 160 L9 + 2 B4, and (b) Vf= 80% RVE with
200 L9 + 2 B4.
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Table 5 Effective CTE of models with 57% and 80% of fiber volume fractions and no void content.

Model α11 × 106 [K-1] α22 = α33 × 106 [K-1]
Vf=57%

3D Abaqus model [39] -0.900 12.720
CUF-MCM -0.909 13.082

Vf=80%
3D Abaqus model [39] -0.962 16.450
CUF-MCM -0.972 15.820

Table 6 Mean values of CTE obtained using CUF micromechanics and 3D Abaqus model [39] with increasing
void volume fraction.

Void content
α11 × 106 [K-1] α22 = α33 × 106 [K-1]

CUF-MCM 3D Abaqus model [39] CUF-MCM 3D Abaqus model [39]
Vf = 57%

2% -0.914 -0.920 13.247 12.800
4% -0.918 -0.960 13.418 12.910
6% -0.923 -0.980 13.596 13.010
8% -0.927 -1.020 13.781 13.120

Vf = 80%
2% -0.975 -0.970 16.036 16.560
4% -0.978 -0.980 16.261 16.780
6% -0.980 -0.990 16.494 17.010
8% -0.983 -1.020 16.737 17.270

Table 5 compares the homogenized CTE with the reference [39] for both cases of fiber volume fractions without

voids, while Table 6 shows the comparison in the case of increasing void content. The statistical parameters for

the 57% Vf RVE are in Table 7.

The results suggest that:

� In the case of the RVE without voids, the CUF has good accuracy in the computation of both the longitu-

dinal and the transversal CTE. The inconsistencies with the reference values may be due to the different

micromechanical frameworks and become more pronounced with larger void contents. Furthermore, some

of the input properties for CUF were assumed as they were not indicated in the papers from the literature.

� Increasing void content leads to a decrease in the longitudinal CTE, whereas transversal CTE exhibits an

increasing trend consistent with the reference values.

Table 7 Statistical parameters of homogenized CTE (K-1) for the 57% Vf RVE.

x̄ s min max q1 q2 q3 Voids [%]

α11×107

-9.137 0.001 -9.138 -9.136 -9.137 -9.137 -9.136 2
-9.181 0.001 -9.183 -9.180 -9.182 -9.181 -9.181 4
-9.226 0.001 -9.228 -9.223 -9.226 -9.226 -9.225 6
-9.270 0.001 -9.272 -9.268 -9.271 -9.270 -9.270 8

α22×106

13.247 0.002 13.241 13.252 13.246 13.247 13.248 2
13.418 0.003 13.412 13.425 13.415 13.418 13.420 4
13.596 0.004 13.586 13.606 13.593 13.596 13.598 6
13.781 0.004 13.770 13.792 13.778 13.780 13.783 8
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� By observing the standard deviation of CTE, the range of variability of properties is small. Consequently,

voids affect the homogenized thermoelastic properties, but the void distribution over the matrix does not

significantly affect the CTE.

5.3 Local stress fields

This section aims to investigate voids’ effect on the local stress distribution. The first part of the section verifies

the micromechanical model for obtaining the local stress distribution in the case without voids. The model

used for the verification is a square-packed RVE, see Fig. 1, which is a boron fiber embedded in an aluminum

matrix denoted as B/Al with a 20% of fiber volume fraction. Both fiber and matrix constituents are modeled

as isotropic, and the thermoelastic properties presented in Table 8 were retrieved from [43].

Table 8 Thermoelastic properties of the constituents for the B/Al composite [43].

Boron fiber Aluminum Matrix
E [GPa] 379.3 68.3
ν [-] 0.1 0.3
α×106 [K-1] 8.1 23.0
κ [Wm-1K-1] 27.4 237.0

The discretization consists of 176 L9 for the cross-section, whereas 2 B4 act along the y-direction, as shown

in Fig. 10, resulting in 21084 DOF. The mesh was chosen due to a convergence analysis on the homogenized

thermoelastic properties, shown in Fig. 11. The reference mesh selected for convergence analysis is the 1100 L9

+ 4 B4.

x

z y

Figure 10 Discretization for the square-packed RVE with 176 L9 elements for the cross-section and 2 B4 elements
along y-direction.

For the local stress analysis, two distinct load cases, derived from [43], were considered:

� A strain-free condition with a θ of 100 K.

� A unitary strain along x-direction (εxx=1) and a θ of 100 K.

Figures 12 and 13 show the distribution of local σxx for both load cases. The results suggest an excellent

agreement of numerical outcomes when compared with SwiftComp [53] [54] and CUF-MSG [43].
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Figure 11 Convergence analysis on the thermoelastic properties for the square-packed RVE.

(a) (b)

-3.93e+02        -3.92e+02       -3.92e+02       -3.91e+02

(c)

Figure 12 Distribution of local σxx (MPa) due to the application of a pure thermal load for (a) SwiftComp [53],
(b) CUF-MSG [43], (c) CUF-MCM.

The maximum value of stress is 0.003% higher than the reference MSG considering the pure thermal case,

whereas the maximum stress for the thermoelastic case is 1.1% lower than the CUF-MSG.

The second assessment investigates the void effect on the local stress field. A random distribution of fibers

with a volume fraction of 47% characterizes the RVE, based on Pineda et al.’s work [55]. Table 1 contains

the thermoelastic properties for the constituents derived from [38]. The T300 carbon fiber is modeled as an

orthotropic material, and the epoxy resin matrix is associated with an isotropic behavior. The discretization

consists of 277 L9 elements for the cross-section and 2 B4 elements along the y-direction, as shown in [44, 45, 46],

with a number of 33068 DOF. Void volume fractions from 1 to 5% are considered, and the distribution over

the matrix is illustrated in Fig. 14, where the adopted mesh is shown. Moreover, Table 9 presents the different

load conditions for the current assessment.

The statistical analysis uses the parameters defined in Section 4, and Table 10 presents the statistical outcomes

concerning the maximum stress over the matrix when applying the axial strain. Figure 15 shows boxplots of

maximum local axial stress over the fiber for the random RVE.
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(a) (b)

4.24e+04        7.82e+04       1.14e+05       1.50e+05

(c)

Figure 13 Distribution of local σxx (MPa) due to the application of a unitary strain along x-direction and
thermal load for (a) SwiftComp [53], (b) CUF-MSG [43], (c) CUF-MCM.

x

z y

(a)

(b) (c)

Figure 14 (a) Random RVE with 277 L9 elements for the cross-section and 2 B4 elements along y-direction,
and an example of (b) 1% and (c) 5% of void volume fractions.

Table 9 Elastic boundary conditions applied on the RVE with random fibers and voids with θ = 50 K.

Strain Void percentage Subcases

Load case 1
εxx = 5 µε

1%, 2%, 3%, 4%, 5% 100
Axial

Load case 2
εxz = 5 µε

1%, 2%, 3%, 4%, 5% 100
Shear

Load case 3
εyz = 5 µε

no void*, 2%, 4% 100
Shear

Load case 4
No elastic

no void, 2%, 4% 1
strain

*subcases not required; only one analysis is performed.
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Table 10 Statistical parameters of stress (MPa) over the matrix for the random RVE when εxx is applied.

x̄ s min max q1 q2 q3 Voids [%]

σmax
xx

96.181 6.305 83.421 107.701 89.866 97.296 100.668 1
101.128 6.342 88.044 119.365 97.210 100.871 104.244 2
103.464 6.573 89.892 126.526 99.566 102.417 107.191 3
107.198 6.343 93.865 125.660 103.074 107.044 110.748 4
109.319 6.162 95.222 126.207 105.552 108.748 112.997 5

σmax
yy

30.753 2.770 24.680 36.458 28.384 31.293 32.717 1
33.319 3.357 26.030 44.549 30.908 33.238 34.707 2
34.944 3.333 28.267 44.805 32.923 33.982 36.358 3
36.336 3.636 29.100 47.079 33.874 35.382 38.061 4
37.589 3.247 32.057 47.247 35.281 37.046 39.579 5

σmax
zz

25.848 3.279 20.402 34.989 22.926 25.576 28.556 1
28.415 3.364 21.257 39.179 25.763 28.758 30.497 2
30.286 3.303 22.154 42.523 28.378 30.299 31.882 3
31.726 3.732 24.483 41.589 29.212 31.232 33.711 4
32.893 3.031 28.282 43.013 30.474 32.797 34.958 5

σmax
xz

17.046 0.381 16.483 18.294 16.764 16.953 17.246 1
17.229 0.493 16.471 19.198 16.810 17.188 17.511 2
17.329 0.647 16.198 18.979 16.850 17.220 17.681 3
17.442 0.606 16.051 20.070 17.025 17.404 17.819 4
17.673 0.640 16.326 19.543 17.203 17.601 18.027 5

σmax
yz

2.958 0.620 2.030 5.112 2.499 2.800 3.228 1
3.598 0.610 2.346 5.473 3.099 3.521 4.032 2
4.249 0.743 2.994 6.379 3.741 4.159 4.701 3
4.686 0.789 3.125 7.206 4.144 4.434 5.164 4
5.293 1.000 3.672 8.377 4.629 5.157 5.809 5

σmax
xy

6.277 2.527 2.631 12.427 4.467 5.873 7.412 1
7.637 2.617 3.432 15.776 5.541 6.990 9.937 2
8.793 2.393 4.342 17.075 6.825 9.072 10.029 3
9.744 2.838 5.033 17.650 7.383 9.363 11.614 4
10.715 2.937 4.960 23.504 8.820 10.175 11.809 5

The results related to applying the shear strain εxz are presented through the boxplots in Fig. 16. For load cases

3 and 4, Fig. 17a shows the distribution of σyz on the upper edge of the RVE for the thermoelastic simulation,

whereas Figs. 17b and 17c show the statistical parameters of σyz over the fiber and the matrix. Fig. 18 reports

the distribution of σxx with a strain-free condition on the upper edge and over the entire RVE.

The following comments stem from the analysis of the results:

� Voids induce higher stress peaks over the matrix when εxx is applied. Also, the fiber exhibits increased

stress peaks and a larger variability range when the void volume fraction increases; however, the effect is

more prominent over the matrix.

� The combination of shear strain εxz and the temperature leads to higher stresses over the matrix with

increasing void volume fractions. On the other hand, shear stress along the x-direction over the fiber

follows a decreasing distribution when the void percentage becomes higher. Voids significantly affect

thermoelastic and pure thermal loading conditions.

� By observing the variation of shear stress on the upper edge of the RVE, the evolution along the x-direction

shows minor differences between the case without void and with increased void content. More pronounced

deviations are detected in the pure thermal load case.
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Figure 15 Boxplots of maximum (a) σxx, (b) σyy, and (c) σzz over the fiber for the random RVE when axial
strain εxx is applied.
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Figure 16 Boxplots of maximum σxx over the (a) the fiber and (b) the matrix, and boxplots of maximum σxz

over (c) the fiber and (d) the matrix for the random RVE when shear strain εxz is applied.
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Figure 17 Distribution of σyz on (a) the upper edge of the RVE and boxplots of maximum σyz over (b) the fiber
and (c) the matrix, when shear strain εyz and θ are applied.
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Figure 18 Distribution of σxx (MPa) with a strain-free condition on (a) the upper edge and over the entire RVE
with (b) 2% and (c) 4% of void volume fraction.
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6 Discussion

The initial numerical investigation demonstrates the robustness of the current CUF framework in determining

the homogenized thermoelastic properties of pristine CFRP varying the fiber volume fractions. The results

obtained from the CUF-MCM analysis, as shown in Fig. 5, exhibit a remarkable agreement with established

methods, e.g., HFGMC [21], MSG-Solid model [38], CUF-MSG [43].

The second assessment thoroughly examines the capability of CUF micromechanics in determining the homog-

enized thermoelastic properties of composites with different void content. Initially, the analysis focuses on

the pristine RVE, and the resulting homogenized properties are computed. The findings presented in Table

5 demonstrate a high level of agreement regarding longitudinal CTE. At the same time, slight differences are

observed for the transversal CTE when compared to the 3D Abaqus model [39], probably due to differences in

input material properties. The void content exerts a significant influence on the homogenized properties. The

longitudinal CTE exhibits a decreasing trend, whereas a discernible increasing distribution is observed for the

transversal CTE, as illustrated in Table 6. When comparing the CUF results with the reference [39], it is clear

that a high void volume fraction leads to more significant differences, primarily due to the different modeling

approaches employed for voids. Moreover, Table 7 indicates that the properties exhibit minor variations, as

evidenced by the standard deviation values.

The final assessment aims to determine the local stress distribution within a square-packed pristine RVE do-

main. The reliability of the current framework is demonstrated under the application of a pure thermal load.

A comparison between the current results and the MSG approach, as shown in Fig. 12, reveals a significant

agreement. When considering the combined effect of mechanical strain and thermal loading, the local σxx dis-

tribution gets closer to the references. Although the stress peaks are slightly lower, as depicted in Fig. 13, the

results still maintain a reasonable agreement regarding both stress distribution over the domain and the local

stress peaks.

The presence of voids significantly affects the local stress peaks. Table 10 reveals that voids can increase the

maximum stress within the matrix, particularly in the axial components. Additionally, higher void contents

increase mean values and extend the range of stress variation within the fiber, as evidenced by the boxplots in

Fig. 16. Applying shear strain alters the mean values with increasing void content. Specifically, the maximum

σxz in the fiber exhibits a decreasing trend, as illustrated in Fig. 16, as shown in [46]. The void content also

influences the variation of shear stress over the edge of the random RVE. Under a thermoelastic load, voids do

not cause significant alterations in stress distribution over the edge of the RVE, as observed in Fig. 17. Notably,

in the case of a pure thermal load, the stress exhibits more pronounced oscillations compared to the pristine

architecture, as Fig. 18 suggests.
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7 Conclusions

The present work has investigated the influence of void content on the micromechanical homogenized thermoe-

lastic properties and the local responses of composites. The micromechanical model has been based on the

Carrera Unified Formulation (CUF) and a Component Wise (CW) approach. Three Representative Volume El-

ement (RVE) architectures have been considered, including an RVE with randomly placed fibers. Thermal and

thermomechanical loads have been considered, and 3D distributions of stress fields have been obtained. Com-

parisons with data from the literature have been carried out. The numerical assessments have demonstrated

that:

� The current micromechanical analysis based on CUF can predict the homogenized thermoelastic properties

with good accuracy compared with well-established methods, e.g., the High-Fidelity Generalised Method

of Cells (HFGMC) and the Mechanics of Structure Genome (MSG). It has been found that the relative

variation between the current method and the MSG-based analysis, and HFGMC, produces differences in

CTE values lower than 0.2% for each fiber volume fraction considered.

� The presence of voids has a significant impact on homogenized thermoelastic problems. Moreover, the

statistical analysis has highlighted that the void content affects the range of variability of homogenized

properties. Specifically, the longitudinal CTE for the RVE with Vf of 57% exhibits a decrease of 1.4%

with void volume fraction ranging from 2 to 8%. In contrast, the CTE along the transverse direction

demonstrates an increase of 4.0%. On the other hand, the small value of the standard deviation of CTE

suggests that the final homogenized properties are less influenced by the distribution of voids throughout

the matrix.

� CUF-MCM enables retrieving the local 3D stress fields induced by a thermoelastic load using a 1D

formulation. Maximum CUF-MCM stress in the case of pure thermal conditions matches the reference.

Furthermore, the maximum stress is lower by 1.1% compared to the benchmark for the thermoelastic load

case.

� Voids influence the distribution of stress over the fiber and the matrix of the RVE. The matrix is the

constituent mostly affected by voids since the maximum stress value tends to increase with higher void

content. Examining the random RVE under axial strain εxx, the increased void content from 1 to 5%

leads to a 13.5% variation of σxx over the matrix. However, σxx over the fiber has a more limited increase

of about 2.9%. Similar variations are evident when the RVE is subjected to εyz. Specifically, the mean

σyz exhibits an increase of 11.1% over the matrix and an increment of 2.4% over the fiber.

� The presence of voids leads to decreased shear stress over the fiber when εxz is applied since the maximum

σxz decreases by 5.2% with 1 to 5% of void volume fraction. Conversely, the matrix exhibits a 10.9% rise

in σxz with increasing void content in the same load case.
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� Increments in void volume fractions influence stress distributions along the cross-section in thermoelastic

and pure thermal load cases. For thermoelastic load cases, the RVE with 4% void content has a σyz

distribution along the upper edge that is, on average, 3.2% lower than that of the pristine architecture.

Furthermore, applying a pure thermal load to a 4% void RVE leads to a σxx distribution along the upper

edge 5.1% higher, on average, than the RVE without defects.

Future research will include the impact of voids on a multiscale level, thus involving examining how the behavior

of a material point interacts with a lower scale through explicit heterogeneous definitions via homogenization

while also accounting for crack nucleation and propagation at the microscale level. Additionally, the research

will explore the explicit modeling of voids and developing Convolutional Neural Network (CNN) models for

predicting the homogenized elastic properties of fiber-reinforced composites.
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